Reihe Informatik
9 /2002

Early Grouping Gets the Skew

Sven Helmer Thomas Neumann
Guido Moerkotte

This page left intentionally blank.

Early Grouping Gets the Skew

Sven Helmer

Thomas Neumann

Guido Moerkotte
helmer|tneumann|moer@pi3.informatik.uni-mannheim.de

Fakultat fiir Mathematik und Informatik,
University of Mannheim, Germany

Abstract

We propose a new algorithm for external
grouping with a large result set. Our approach
handles skewed data gracefully and lowers the
amount of random IO on disk considerably.
In contrast to existing grouping algorithms,
our new algorithm does not require the op-
timizer to employ complicated or error-prone
procedures adjusting the parameters prior to
query plan execution. We implemented sev-
eral variants of our algorithm as well as the
most commonly used algorithms for grouping
and carried out extensive experiments on both
synthetic and real data. The results of these
experiments reveal the dominance of our ap-
proach. In case of skewed data we outperform
the other algorithms by a factor of two.

1 Introduction

In database systems, grouping is used for a variety
of purposes, including aggregation and duplicate elim-
ination. Although usually a well-behaved operator,
grouping becomes a nuisance when the result does not
fit into main memory. We propose a new algorithm for
grouping that shows good performance for arbitrarily
large inputs and handles data skew gracefully. In addi-
tion, we show the results of extensive experiments de-
tailing the behavior of our algorithm and several other
currently used techniques.

Recently, aggregation and duplicate elimination
have become a focus of attention for the database
community again. Several researchers investigated the
possibilities of improving query evaluation and opti-
mization with regard to aggregation [4, 12]. There has
also been work on materializing aggregates for speed-
ing up the processing, especially in a data warehouse
environment [2]. Furthermore, there are ongoing activ-
ities looking into the exchange of precision for perfor-
mance [1]. Finally, we mention the studies concerning
the extension of standard aggregate functions [5].

Our main concern is the processing of aggregation

encompassing a large number of groups, so this work
complements the work on query optimization. Our
scheme is simple to apply, so adding it to an optimizer
is straightforward. Consequently, the optimizer does
not need to expend resources on an inevitably inac-
curate estimation of parameters. We focus on exact,
ad-hoc queries with standard aggregation functions as,
for example, used in SQL. So, tradeoffs involving pre-
cision and materialization are not in our scope. We
concentrate on external aggregation, i.e. the (inter-
mediate) results of the aggregation are several times
larger than the available main memory, as the main
memory case is well covered by simple hashing.

Up to now only rough estimations have been given
for the performance of different aggregation algo-
rithms. The reason for this is that the theoretical
analysis of practical cases is very difficult. We im-
plemented different algorithms and compared them to
each other under realistic conditions. Here we present
some results of our experiments with synthetically gen-
erated and real data, which provide new insights into
the subject of aggregation.

Moreover, in our opinion the matter of data skew
has not received enough attention yet. Often it is as-
sumed that the data is uniformly distributed or that
data skew can be effectively counteracted by an ade-
quate hashing scheme [10]. Under realistic conditions
this is rarely the case. We show that our scheme is
able to handle non-uniformly distributed data very ef-
ficiently.

This paper is structured as follows. In Section 2
we describe our approach for combining early aggre-
gation with hashing. A brief introduction to existing
aggregation algorithms can be found in Section 3. We
specify the environment in which the experiments were
conducted in Section 4. The results are explained in
Section 5. A summary in Section 6 concludes the pa-
per.

2 Owur approach

We start by giving a brief outline of the ideas behind
our approach in Section 2.1. This is followed by a more

detailed look in Section 2.2.

2.1 Basic Ideas

Y

Y

in main memory

Y

on disk

Y

Figure 1: Hybrid Hashing

As there are some similarities between aggregation
and join operations, many of the algorithms applied
for aggregating tuples bear a semblance to join algo-
rithms. One of the most popular algorithms for aggre-
gation as well as joining is hybrid hashing (for a brief
introduction to aggregation algorithms, see Section

3).

However, when joining tuples with hybrid hashing,
it does not matter which partitions are swapped to
disk and which partitions remain in main memory, as
long as the partitions are roughly of equal size. During
aggregation and duplicate elimination things look dif-
ferent. We want to keep certain groups in main mem-
ory as long as possible. On the one hand, these are
groups that have a high reduction factor, i.e. a large
number of tuples belonging to these groups exist. The
longer we can keep these groups in main memory, the
more early aggregation we can achieve. On the other
hand, if the data is clustered, we want to keep those
groups in main memory, whose cluster we are currently
traversing.

If an overflow occurs in hybrid hashing, a whole
partition is swapped to disk. Figuratively speaking,
we divide the data “horizontally” (see Figure 1). All
groups that belong to the same partition (because of
their hash value) are swapped to disk and cannot be re-
duced further, as tuples belonging to these groups are
written directly (or via a small buffer) to their corre-
sponding partition on disk. Usually, the hash keys do
not respect the reduction factor or clustering of the
data (as this is very difficult to achieve in practice), so
groups are swapped out arbitrarily from the viewpoint
of early aggregation.

In our approach we propose to swap out the data
“vertically” (see Figure 2). We keep those groups of

in main memory | on disk

Y

Y

Y

Y

Figure 2: Our approach

each partition in main memory where most of the ag-
gregation takes place and swap out all other groups,
i.e. the partitioning scheme does not control which
groups are swapped out.

We investigated two principal approaches. In the
first approach, we add a counter to each group that
registers how many tuples have been aggregated in this
group. When an overflow occurs, we sweep through
main memory to identify the groups that have aggre-
gated fewer than average tuples. These groups are
written to disk and the counters of all the other groups
are reset to zero to allow adaption to changing frequen-
cies of tuple values.

move to front

modi—
fied

Y
Y
\

Y

Y
Y
Y

Y
Y

Y
Y
Y
Y
Y

Y

Y
Y
Y

Figure 3: LRU strategy

The second approach uses an LRU strategy (simi-
lar to the management of cache lines [14]). The groups

are stored in collision chains in the hash table (see Fig-
ure 3). Each time a tuple is added to an aggregate,
we move the corresponding group to the start of the
collision chain. When an overflow occurs, we traverse
all collision chains and swap out the entries found to-
wards the end of the chains. We take care to consider
the variable lengths of the collision chains. Compared
to the first approach, the LRU strategy has the advan-
tage that it needs no additional storage overhead.

After scanning the whole input, we have to start the
algorithm recursively for each partition on disk that
has not been fully processed yet. We use a smaller
number of partitions than hybrid hashing (during the
experiments the number of partitions was usually set
to four). This keeps the amount of random IO low
when writing partitions to disk. We can afford the
smaller number of partitions because our algorithm
reduces the data much better.

2.2 Detailed Description

In the first step of the algorithm we scan the whole in-
put relation, hashing each tuple into a hash table that
contains the aggregate values for the groups currently
processed. If the corresponding group is present, we
update the aggregate with the tuple value. Otherwise
a new group is allocated and inserted into the hash
table. If there is not enough memory left to allocate a
new group, we have to swap out some of the groups.
How do we determine the groups that are to be writ-
ten to disk? As already mentioned we have developed
two variants to do this.

In the first variant, each group has a frequency
counter that stores the number of tuples aggregated
in this group. We go through the hash table and look
at the counters of all entries. All groups that aggre-
gated a number of tuples that is below average are
marked for replacement. We only have to record the
number of groups and the number of processed tuples
to do this.

In the second variant of our algorithm, the colli-
sion chains of the hash table are simultaneously LRU
queues. We mark the entries towards the end of each
queue for replacement. We know the number of groups
and the number of queues and use this information to
calculate the expected queue length I. We skip the
first 1/2 entries of the first queue and mark the en-
tries from /2 + 1 to the end for replacement. As it
is very improbable that [/2 entries will be marked for
replacement in this way, we compute the difference of
actually marked entries minus /2. This difference is
added to the skip value of the next queue, i.e. if we
have marked more than [/2 entries in a list, we can
skip more than [/2 entries in the next list. If we have
marked less, we need to skip less than [/2. We do this
to swap out approximately half of the entries without
calculating the length of each queue.

After determining which groups to replace we now

describe the actual process of swapping. We divide
the groups into a small number of partitions k. For
our experiments this k was usually equal to four. For
this we calculate k£ — 1 separators. We looked at two
different techniques for determining separators. In the
first technique we calculate the medians for dividing
the hash keys evenly. The second technique involves
dividing the domain into equidistant intervals. In the
first step of the algorithm we use the currently known
minimum and maximum of the hash keys. This may
result in a deviation from the actual values because we
have not seen the whole relation yet. In the subsequent
(recursive) steps of the algorithm, however, we have
the exact values of the minimum and maximum in form
of the separators. While the first technique is more
accurate, i.e. it divides the data more evenly, the costs
of the second technique are much lower. We used the
second technique as it was sufficient for our needs.

Next we scan the hash table k£ times, swapping out
the marked groups of one partition each time. Al-
though this results in multiple scans in main memory,
we are able to write the data to disk sequentially. The
avoidance of random IO compensates for the multiple
scans more than enough. Now we have enough mem-
ory to continue the aggregation process. If we run out
of memory again, we have to apply the steps above
over again. We continue until the input stream of tu-
ples ends. Any groups in a partition that remained
in main memory during the whole step are completely
aggregated and can be output. This concludes the first
step of the algorithm.

The groups swapped to disk have to be processed
recursively in the further steps, i.e. for each partition
we repeat our aggregation algorithm. The only differ-
ence to the first step is that we now work with partially
aggregated data instead of “raw” tuples. So, when in-
serting groups into the hash table, we have to combine
their aggregate values. Any SQL-like aggregate can be
computed in this way (AVG is put together with SUM
and COUNT).

3 The Competitors

In the following sections we describe different exist-
ing approaches for grouping and aggregating tuples.
Many of the algorithms used for aggregation and du-
plicate elimination are similar to techniques applied
for joining relations. Nevertheless, we point out two
important differences. These differences make it ques-
tionable to transfer the knowledge of join algorithms
to grouping in a straightforward way.

While join operators combine two or more relations,
aggregation operators work on a single relation, i.e. we
do not have to coordinate the access and merging of
tuples from different relations. Also, almost all join al-
gorithms are divided into two phases: a preprocessing
phase (involving the sorting or partitioning of tuples)
and the actual join phase. (Notable exceptions to this

are nested-loop joins and Diag-Join [11].) These two
phases may overlap to some extent (like in hybrid hash
joining), but most tuples are joined during the second
phase. When grouping tuples, these two phases are
not as distinct. We can start aggregating right from
the start, collapsing many tuples to a single value.

3.1 Nested-loop Grouping

Nested-loop Grouping is the most straightforward way
of aggregation [10], in which we accumulate the out-
put in a temporary file. An outer loop traverses the
relation and for each tuple, an inner loop searches the
output file for a matching aggregate. If we find one,
we compute the new aggregate value, else we add a
new item to the output.

Clearly, this technique is very inefficient if the result
is too large for the available main memory. On the
other hand, it can can support unusual aggregations
(e.g., where a single tuple contributes to more than one
group). However, we focus on standard aggregation
types, so we do not consider the nested-loop algorithm
further, listing it only for the sake of completeness.

3.2 Sort-based grouping

Sorting the tuples prior to the grouping is the tradi-
tional way to compute aggregates [8, 10]. The con-
cept of this technique is easy to grasp. First we sort
the tuples on their grouping attributes, and then we
aggregate all tuples with identical values. This is not
difficult because identical values can be found together
in one chunk.

As long as all tuples fit into main memory, this ap-
proach is quite fast. Otherwise we have to sort ex-
ternally, which reduces the performance considerably.
We can speed up this method by aggregating as early
as possible, i.e. while generating the runs [3]. In spite
of early aggregation we may still be forced to sort ex-
ternally, even if the result fits into main memory. This
is the case when intermediate results are too large.

We implemented three different variants of sort-
based grouping. One does a replacement selection us-
ing a weak heap [7] to save CPU-time. No early ag-
gregation was integrated, so this algorithm serves as
a reference. The second variant uses the same weak
heap as above, but does an early aggregation. We call
this algorithm “eager sort”. The third and final one
applies quicksort (with a median of three) and early
aggregation. We call this variant “eager quicksort”.

3.3 Hash-based grouping

Hash-based grouping follows the same outline as
nested-loop grouping. We loop through the tuples
of the relation. However, instead of appending new
groups to the end of an output file, we store them in a
hash table for quick lookups. As long as we can store
the result in main memory, we do not need to swap out

tuples to disk and a simple hashing scheme suffices. If
the result turns out to be too large for the available
main memory, we have to use a more sophisticated
method.

One such approach is Grace hash [9, 17], where the
input is partitioned to disk such that each partition
can be grouped in main memory. Compared to hybrid
hash grouping, however, Grace hash is inferior, due to
a suboptimal IO behavior. Therefore, hybrid hashing
is commonly used.

Hybrid hashing [6, 17] tries to keep groups in main
memory as long as possible. When space runs out, one
partition is swapped to disk. Further tuples belonging
to this partition are appended to the file on disk. Ide-
ally, one partition can be kept in main memory during
the whole execution of the aggregation. Groups be-
longing to this partition can be processed immediately.
All other partitions are worked off in a second step.
The main problem of this approach is determining the
number of partitions, such that the resulting groups
of each partition fit into main memory. If the data is
distributed uniformly, this poses no great problem. In
practice, however, this is very seldom the case. Even if
statistics on base relations are known, complex queries
involving the filtering of tuples might change the dis-
tribution drastically. Choosing the wrong number of
partitions renders the partitioning scheme suboptimal,
because all partitions that cannot be processed in main
memory have to be partitioned recursively.

Nakayama, Kitsuregawa, and Takagi propose a dy-
namic hybrid hash strategy in [13, 15] to adapt to data
skew by choosing a large number of partitions. This
lowers the probability that a partition will not fit into
main memory. In order to accelerate the processing in
the second phase of the algorithm, they fill the buffer
with partitions as completely as possible and work on
those partitions simultaneously. At first glance this
approach seems superior to hybrid hashing because it
avoids overflowing partitions. On the other hand, it
is still not clear how an optimal number of partitions
should be determined. It also involves a lot of random
IO for writing groups into partitions in the first phase
of the algorithm and for reading those groups again in
the second phase.

3.4 Brief Comparison

Our approach is superior to the sort-based method,
because we do not have the overhead of completely
sorting the input. The performance of hybrid hashing
deteriorates when overflows occur, as the size of the
swapped out partitions will not decrease from that
point on. The reason for this is that once a parti-
tion is swapped to disk, no further aggregation takes
place until this partition is read into main memory
again [10]. Determining the optimal number of parti-
tions to avoid overflows is very difficult for irregularly
distributed data. In our approach, we keep on aggre-

gating the most active groups in all partitions, which
reduces their size considerably. Additionally, we ad-
just the partitioning of the groups according to the
data distribution (the calculation of the separators is
data-driven rather than space-driven). Nakayama et
al. prevent overflows by playing for safety when deter-
mining the number of partitions, i.e. they overestimate
the number of buckets significantly [13, 15]. This, how-
ever, leads to excessive random IO. In contrast to this
we write large blocks of groups sequentially to disk.

After this comparison we will give a more thorough
experimental evaluation of the different approaches in
the following section.

4 Environment of Experiments

When comparing algorithms, there are several princi-
pal avenues of approach: mathematical modeling, sim-
ulations, and experiment. We decided to do extensive
experiments, because it is very difficult, if not impos-
sible, to devise a formal model that yields reliable and
precise results for non-uniform data distribution and
average case behavior. In the following sections we
present the system parameters and the specification of
our experiments. This is followed by the presentation
of the results of the experiments.

4.1 System Parameters

We implemented our algorithm (and several other
competing algorithms) in our database system SOD !
and ran extensive experiments. Since the problem of
external aggregation is not as straightforward as it may
seem at first glance, we compared the algorithms us-
ing several different metrics. Among these are over-
all running time, size of intermediate results, and ra-
tio of random IO to overall I0. Additionally, we em-
ployed several different data sets to benchmark the al-
gorithms. For synthetically generated data we utilized
the specification of TPC-R (with a scale factor of 1),
Zipf-distributed data, and normally distributed data.
For real data we had access to a chemical database
used at BASF. The experiments were conducted on a
lightly loaded PC (1 GHz Athlon processor) with 512
MByte main memory running under Windows NT4.0
SP6. We implemented the algorithms in C++ using
the Borland C++ Compiler Version 5.5.

4.2 Synthetic Data

We used three different sets of synthetically generated
data in our experiments: Zipf-distributed data, nor-
mally distributed data, and TPC-R data. In this sec-
tion we describe the data sets. The groupIDs seen
in the figures for synthetically generated data are not
necessarily equal to the attribute value we grouped by.
We attain the attribute values by hashing the groupID
(taking care not to cause any collisions). The position

Thttp://sod.tneumann.de

of each tuple in a generated relation is also random-
ized, i.e. the relations are not sorted in any way.

4.2.1 Zipf-distributed Data

Zipf distribution with z=1
le+06

Zipfdist +

100000 r

10000

1000 ¢

size of group

100 |

10 +

1
1 10 100 1000 10000

id of group

100000 1e+06

Figure 4: Zipf Distribution

We decided to use a Zipf distribution (with z =1
and z = 0.5), since various naturally occurring phe-
nomena exhibit a certain regularity that can be de-
scribed by it, e.g. word usage or population distri-
bution [16]. A discrete Zipf distribution is defined by
P, (x), which denotes the probability of event x occur-
ring, with « € {1,2,...,n}.

1
o (1)

with

Hn:ziz (2)

Figure 4 shows the sizes of the groups generated
for a Zipf distribution with z = 1. Please note the
logarithmic scale on the x- and y-axis. The cardinal-
ity of the input relation for Zipf-distributed data was
10,000,000 tuples.

4.2.2 Normally Distributed Data

Another distribution that is quite common is the nor-
mal distribution. We used the parameters yu = 500K,
o = 50K and p = 500K, o = 75K, respectively. Fig-
ure 5 shows the sizes of the groups generated for p =
500K, o = 50K. The cardinality of the input relation
for normally distributed data was 100,000,000 tuples.
We increased the cardinality for this distribution to get
a substantial number of groups that have more than
one element.

normal distribution mue=500K, sig=50K
1000

T —
normal dist ~ +

++

800 1

D
o
o
T
L

N
o
o
T
L

size of group

200 1

400000 500000 600000
id of group

0
200000 300000 700000 800000

Figure 5: Normal Distribution

TPC-R

200000

150000 1

100000 1

number of groups

50000 B

0 L L L L L L L
0 1 2 3 4 5 6 7 8

size of group

Figure 6: TPC-R

4.2.3 TPC-R

For the TPC-R data benchmark the number of groups
for each size is nearly uniformly distributed. We have
groups with a size ranging from 1 to 7. The differences
in frequency of each group size are minimal. Figure 6
depicts the number of groups found for each group size.
We used the lineitem relation with a scaling factor of
1, which results in 6,001,215 tuples.

4.2.4 Real Data

The real data was taken from a chemical database for
structure elucidation [19]. The data has a distribution
that is approximately distributed normally in the num-
ber of groups that share a certain size (see Figure 7).
This is different from the normal distribution in Figure
5 (where the size of the groups is normally distributed).
The cardinality of this relation was 5,832,781 tuples.

5 Results

We present an excerpt of the results of our extensive
experiments emphasizing overall running time, size of

Chemical Database
120000 .

100000 -] R

80000 - - g

60000 1

number of groups

40000 [1

Ll

0 5 10 15 20 25 30
size of group

Figure 7: Chemical Data

intermediate result, and the ratio of random IO to to-
tal IO. First we deal with the results for synthetically
generated data, in Section 5.2 with those for real data.

As units of measurement we use seconds for the
overall running time, number of tuples for the size of
the intermediate results, and a percentage between 0
and 1 for the ratio of random IO to total I0. We count
a page access as random if we access two pages con-
secutively that are not adjacent to each other on disk,
regardless of the buffering done by the buffer man-
ager. Consequently, only the running time is machine
dependent.

Each algorithm was given the same amount of main
memory for each experimental run. The division of
this main memory into buffer space and memory for
the actual aggregation was optimized individually for
each algorithm. We also tuned the number of parti-
tions for hybrid hashing for each run (determining an
optimal value experimentally instead of using the usual
formulas). The variants of our algorithm are marked
with “ctr hash” (for the variant with counters) and
with “Iru hash” (for the variant with LRU-queues).
For all results presented here, the number of partitions
was set to four for our algorithms.

5.1 Synthetic Data
5.1.1 Zipf-distributed Data

In Figure 8 the total running time for all algorithms
for Zipf distributed data is shown. Our algorithm out-
performs the others by at least a factor of two. Hybrid
hashing, while starting out strong, starts to degenerate
for small memory sizes.

In Figure 9 we plotted the sum of the intermediate
results output by all algorithms. Our algorithm per-
forms even better than the eager sorting algorithms,
because we do not need to sort the runs. Groups allow-
ing a high reduction that are surrounded by scarcely
visited groups have to be kept together in sorted runs,
while our algorithm has the freedom to swap out arbi-

Zipf distribution (z=1)

300 T T T T T T T
eager quicksort —+— —]
eager sort ——
L sort —*—]
250 hybrid hash ----+--- o
ctr hash -+~ P
< 200 F Iru hash/ - - |
Q /
2]
E
@ 150
£
c
2 100 1
50 ¢ s X N
g e K *
0 ! , .

1 2 3 4 5 6 7 8 9 10
size of result/size of available memory

Figure 8: Total Running Time (Zipf)

Zipf distribution (z=1)

3e+07 F F * * * ¥ eager quicksort ——
2 eager sort —=—
] sort —*—
Z 2.5e+07 hybrid hash -
5 ctr hash
% Iru hash -
3 2e+07)
kS
8 15e+07 | e
£ -
2
Q ;
2 le+07 |/)
g y
£
5 5e+06
e

1 2 3 4 5 6 7 8 9 10
size of result/size of available memory

Figure 9: Reduction of Data (Zipf)

trary groups.

We also have the smallest amount of random IO of
all algorithms. We have a better ratio than hybrid
hashing, because we write out all data sequentially.
Reading back in partitions during a recursive step of
our algorithm involves some random IO. But as the
number of partitions is smaller than that of hybrid
hashing, we have less random IO during reads as well.
The random IO in the sort-based algorithms is caused
by the merge steps, where data from different runs has
to be collected. The random IO for hybrid hashing and
the sorting algorithms is not as bad as it may seem at
first glance. Some of the negative effects of random IO
(long seek and latency times) can be compensated by
a smart buffering strategy. However, the memory used
by the buffer manager is not available for the grouping
operator.

The LRU-variant of our algorithm outperforms the
counter-based variant in all three different metrics we
looked at. We are able to determine which groups to
swap out more precisely with counters, but the over-
head is not worth it because it reduces the memory

Zipf distribution (z=1)

1
eager quicksort —+—
eager sort —=—
sort —*—
*l hybrid hash -+ 4
: ctr hash - T
g Iru hash -
2
I 0.6 |
S
(]
j=2
E l W
: —
Q
1S
g W
| P e
...... Xemmmammnnene
- — O R g %
okt : . . ‘ ‘ ‘ ‘ |

size of result/size of available memory

Figure 10: Percentage of Random IO (Zipf)

available for aggregation.

The sort-based aggregation algorithms employing
early aggregation outperform the standard sort-based
algorithm in all metrics except for percentage of ran-
dom IO. Although the standard sort-based algorithm
has less random IO in relative terms, the absolute
amount of IO is much higher (as can be seen by the
size of the intermediate results in Figure 9).

5.1.2 Normally Distributed Data

Normal Distribution mue=500K, sig=50K

10000 ‘ ! ‘
eager quicksort —+—
eager sort —x—
sort —x—
8000 - hybrid hash ----+-— | |
ctr hash ——+-]
—~ Iru hash -
8 i
@ 6000 - f |
£ |
o)
£
= 4000
2
2000 T
R ':‘,:“;,i:,:,::..::x;:,,,,
0 L | ‘ ‘ | | |

1 2 3 4 5 6 7 8 9
size of result/size of available memory

Figure 11: Total Running Time (Normal)

The results for normally distributed data are simi-
lar to those for the Zipf-distributed data. The LRU-
variant of our algorithm is still the fastest in terms
of total processing time (see Figure 11). Hybrid hash-
ing shows the same problems with small memory sizes,
while the eager sorters outperform the standard sort-
ing algorithm.

For small memory sizes the reduction factor of hy-
brid hashing approaches almost the level of the eager
sorters and our algorithms (see Figure 12). As the
normally distributed data is not as heavily skewed as

Normal Distribution mue=500K, sig=50K

5e+08 " .
ager quicksort —+—
g aoem eager sort —— -
) sort —*—
: feroe hybrid hash -+ 4
E ctr hash - -
% oo Iru hash - s A
o
S 3e+08 3]
3 25e+08 | 7
£
2 2e+08 .
i)
8 1.5e+08
3
E 1le+08
£ 5e+07 -]
0 A ‘ ‘ ‘ ‘ ‘ |
1 2 3 4 5 5 Z s .

size of result/size of available memory

Figure 12: Reduction of Data (Normal)

the Zipf-distributed data, the early aggregation is not
quite as effective.

Normal Distribution mue=500K, sig=50K

1 | ‘ |
eager quicksort —+—
eager sort ——
sort —*—
o hybrid hash ---+-—
: ctr hash - .
: Iru hash -~ -
o
©
E 0.6 | |
k]
& //*M
[=2}
g 04 W
c
:
g I I ozsssREFIET
o2y P t:i,::iii‘ii—' 2R |
PRt A
0 » : : ! . L L L
1 2 3 4 5 6 . . g

size of result/size of available memory

Figure 13: Percentage of Random IO (Normal)

While hybrid hashing is able to reduce the data
much better, the amount of random IO is even larger
(see Figure 13).

Furthermore, the LRU-variant of our algorithm has
proven to be superior to the counter-variant in all three
metrics again.

5.1.3 TPC-R Data

The TPC-R data is as close to uniformly distributed
data as we get. Moreover, the size of the groups is
very small (in the range from one element to seven el-
ements). This represents a kind of worst case for early
aggregation algorithms. The drastic improvement of
the standard sorting algorithm illustrates this fact (see
Figure 14).

The reduction factor of our algorithms deteriorates
as can be seen in Figure 15, but the percentage of
random IO is still very low (see Figure 16). This make
it possible for our algorithms to stay on a par with the

TPC-R Data
500 T T T T
eager quicksort —+—
450 | eager sort —=— 4
sort —=—_ v
[hybrid hash ----+--" - i
400 ctr hash - + -4
< 350 Iru hash / .
Q s
2]
£ 300
o
E 250 |~
= .
2 200
150
100
50

size of result/size of available memory

Figure 14: Total Running Time (TPC-R)

TPC-R Data
2e+07 : — , .

eager quicksort —+—
3 eager sort —»—
L 1.8et07 cort
2 hybrid hash -+
3 1.6e+07 - ctr hash -+ I
g Iru hash - T
S l4e+07 |
s}
£ 1.2e+07
E -
3
S le+07
B
3 8et06
S
Q g
€ 6e+06

4e+06 : !

1 2 3 4 5 6 7 8 9 10
size of result/size of available memory

Figure 15: Reduction of Data (TPC-R)

others. Nevertheless, the LRU-variant still bests the
counter-variant.

5.2 Real Data

Judging from the behavior of the algorithms, the real
data has to be classified as lying between uniformly
and heavily skewed data.

Although not being on top in terms of data re-
duction (see Figure 18), the LRU-variant of our al-
gorithm outperforms all other algorithms (see Figure
17). Partly this has to do with the superior IO behav-
ior (see Figure 19).

6 Conclusion

Our contribution is twofold. On the one hand, we il-
lustrated that early aggregation is very effective in re-
alistic cases. For sort-based aggregation this has been
suspected [10]. On the other hand, we proposed a
new algorithm that combines hashing and early aggre-
gation in a clever way using an LRU strategy. Our
algorithm regularly outperforms the other methods in

TPC-R Data

eager quicksort —— |
eager sort —<—
sort —«—
08 [hybrid hash -+ -
'9 ctr hash -+~
5 Iru hash -
o
2
g 06r |
G
(]
(=]
g 04l |
c
Q
o
[
o
02| —
U S R
I I — — — gt % : ‘

1 2 3 4 5 6 7 8 9 10
size of result/size of available memory

Figure 16: Percentage of Random IO (TPC-R)

Chemical Data

300 T T T T
eager quicksort —+—
eager sort —<—
L sort —*—]
250 hybrid hash —+— J;
ctr hash -+
,,,,,,,,,, AT
= 200 Iru hash - T
Q
2]
£
(]
£
c
2

0

1 2 3 4 5 6 7 8 9 10
size of result/size of available memory

Figure 17: Total Running Time (Real)

terms of total processing time (by up to a factor of
two). Although the algorithm does not always have
the best reduction factor, this is compensated for by a
very small ratio of random page accesses to total page
accesses. Additionally, it gets by with a very small
number of partitions (four was sufficient in our case),
which means that an optimizer does not risk a subop-
timal execution of the aggregation operation due to a
miscalculation of the parameters.

We plan to adapt our algorithm to parallel execu-
tion. As our algorithm has a distinct separation be-
tween CPU phases and IO phases, the CPU phases of
one process can be interleaved with the IO phases of
another process. We are also searching for faster main
memory data structures. At the moment we are exper-
imenting with exchanging the hash table with a splay
[18]. Extending the algorithm for processing non-
standard, overlapping groups using order-preservable
hashing is also conceivable.

Chemical Data

1.8e+07

3

o 1l.6e+07 i

=} .

= s

8 1.4e+07 -]

=] . .

o L

S 120407 Y

2 i -

o AT e

g 1le+07

c s

2 s ‘

2 8e+06 i eager quicksort —+— |

3 eager sort —=—

£ sort —*—

£ 6e+06 7 hybrid hash -—+— |

£ ctr hash -+
Iru hash -

4e+06 ‘ ‘ ‘ ‘ ‘ ‘ ; ‘

1 2 3 4 5 6 7 8 9 10
size of result/size of available memory

Figure 18: Reduction of Data (Real)

Chemical Data

eager quicksort —+—
eager sort —x—
sort —*—

08T hybrid hash ——+— 1
ctr hash -+
Iru hash -~ N

0.6 |

percentage of random io

1 2 3 4 5 6 7 8 9 10
size of result/size of available memory

Figure 19: Percentage of Random IO (Real)

Acknowledgments

We thank Martin Will of BASF for providing us with
the chemical data.

References

[1] S. Acharya, P.B. Gibbons, and V. Poosala. Con-
gressional samples for approximate answering of
group-by queries. In 19th SIGMOD Conference,
pages 487-498, Dallas, Texas, 2000.

[2] S. Agarwal, R. Agrawal, P.M. Deshpande,
A. Gupta, J.F. Naughton, R. Ramakrishnan, and
S. Sarawagi. On the computation of multidimen-
sional aggregates. In Proc. 22nd Int. Conf. Very
Large Databases, VLDB, pages 506—521, Mumbai
(Bombay), India, 1996.

[3] D. Bitton and D.J. DeWitt. Duplicate record
elimination in large data files. Database Systems,
8(2):255-265, 1983.

[4]

[13]

[16]

S. Chaudhuri and K. Shim. An overview of cost-
based optimization of queries with aggregates.
Data Engineering Bulletin, 18(3):3-9, 1995.

S. Cluet and G. Moerkotte. Efficient evaluation
of aggregates on bulk types. In Workshop on
Database Programming Languages, page 8, 1995.

D. DeWitt, R. Katz, F. Olken, L. Shapiro,
M. Stonebraker, and D. Wood. Implementation
techniques for main memory database systems.
In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 1-8, 1984.

S. Edelkamp and I. Wegener. On the perfor-
mance of weak-heapsort. In 17th Annual Sympo-
sium on Theoretical Aspects of Computer Science

(STACS), pages 254-266, Lille, France, 2000.

R. Epstein. Techniques for processing of aggre-
gates in relational database systems. Technical
report, University of California, Berkeley, Cali-
fornia, 1979.

S. Fushimi, M. Kitsuregawa, and H. Tanaka. An
overview of the systems software of a parallel re-
lational database machine: GRACE. In Proc. Int.
Conf. on Very Large Data Bases (VLDB), pages
209-219, 1986.

G. Graefe. Query evaluation techniques for large
databases. ACM Computing Surveys, 25(2):75—
170, June 1993.

S. Helmer, T. Westmann, and G. Moerkotte.
Diag-join: An opportunistic join algorithm for 1:n
relationship. In Proc. of the 24th VLDB Confer-
ence, pages 98-109, New York, August 1998.

A. Kemper, D. Kossmann, and C. Wiesner. Gen-
eralized hash teams for join and group-by. In
Proc. of the 25th VLDB Conference, pages 30—41,
Edinburgh, 1999.

M. Kitsuregawa, M. Nakayama, and M. Takagi.
The effect of bucket size tuning in the dynamic
hybrid grace hash join method. In 14th Confer-
ence on Very Large Data Bases, pages 257-266,
Amsterdam, Netherlands, 1989.

M. Moudgill. Techniques for fast simulation of as-
sociative cache directories. Technical report, IBM,
1998.

M. Nakayama, M. Kitsuregawa, and M. Tak-
agi. Hash-partitioned join method using dynamic
destaging strategy. In 14th Conference on Very
Large Data Bases, Los Angeles, California, 1988.

V. Poosala. Zipf’s law. Technical report, Univer-
sity of Wisconsin Madison, 1995.

[17]

18]

[19]

L.D. Shapiro. Join processing in database systems
with large main memories. ACM Transactions
on Database Systems, 11(3):239-264, September
1986.

D.D. Sleator and R.E. Tarjan. Self-adjusting bi-
nary search trees. Journal of the ACM, 32(3):652—
686, 1985.

M. Will, W. Fachinger, and J.R. Richert. Fully
automated structure elucidation - a spectro-
scopist’s dream comes true. J. Chem. Inf. Com-
put. Sci., 36:221-227, 1996.

