Reihe Informatik
2 /1999

A Study of Four Index Structures
for Set-Valued Attributes
of Low Cardinality
Sven Helmer Guido Moerkotte

A Study of Four Index Structures
for Set-Valued Attributes of Low Cardinality

Sven Helmer Guido Moerkotte

Lehrstuhl fiir Praktische Informatik III
Universitat Mannheim
68131 Mannheim
Germany

helmer|moerkotte@informatik.uni-mannheim.de
Phone: +49 (621) 292 8819 Fax: +49 (621) 292 8818

Abstract

We review and study the performance of four different index structures for in-
dexing set-valued attributes designed to speed up set equality, subset and superset
queries. All index structures are based on traditional techniques, namely signa-
tures and inverted files. More specifically, we consider sequential signature files,
signature trees, extendible signature hashing, and a B-tree based implementation
of inverted lists. The latter is refined by a compression scheme in order to keep
space requirements within acceptable bounds. The performance study is based on
real implementations subjected to a benchmark accounting for different set sizes,
domain sizes, and data distributions (uniform and skewed).

1 Introduction

Will such venerable tools as inverted files and signature files stand up to the job of re-
trieving sets efficiently? We think that the answer is yes and show how these traditional
techniques, when modified to suit the needs, speed up set-retrieval tremendously. We il-
lustrate our approach for small sets and back up our claims with results from our extensive
benchmarks.

Imagine a database containing the recipes of various cocktails. Each recipe is stored
in a data item r; with a set-valued attribute called ingredients. If the resources of your
home bar are depleted, a typical query would be: “Given the ingredients 'Scotch’, "Ver-
mouth’, and ’lemon juice’, which drinks can I mix just using these?” This translates to the
more formal query of “Fetch all recipes r; for which {Scotch, Vermouth, lemon juice} D
ri.ingredients (a possible answer to this query would be ’Hole-In-One’ [3]). If one of
your guests prefers "Vodka’ and ’orange juice’, you might want to know different varia-
tions and ask for the following “Fetch all recipes r; for which {Vodka, orange juice} C
r;.ingredients”. Besides helping you to be a perfect host there are more serious applica-
tions where it is necessary to answer queries with predicates involving set-valued attributes
efficiently. Some examples are keyword searches and queries in annotation databases con-
taining information on images [6, 17], genetic, or molecular data [2, 11]. Further universal

quantifiers can be transformed into set comparisons [8], which can now be supported effi-
ciently. Most if not all sets found in set-valued attributes are small, containing less than
a dozen elements. Examples for applications where almost all sets are of low cardinality
can be found in product and production models [12] and molecular databases [1, 26].
Therefore we focus on indexing small sets.

Work on evaluation of queries with set-valued predicates is few and far between.
Several indexes dealing with special problems in the object-oriented [7] and the object-
relational data models [23] have been invented, e.g. nested indexes [4], path indexes [4],
multi indexes [21], access support relations [18], join index hierarchies [27]. The pre-
dominant problem attacked by these index structures is the efficient evaluation of path
expressions. With the exception of signature files [16] and Russian Doll Trees [14] the
problem of indexing data items with set-valued attributes has been neglected by the
database community. The methods used in text retrieval are very similar to our sub-
set queries, where we look for sets that are supersets of a query set. However, superset
queries, where sets are fetched that are subsets of a query set, are not necessary in text
retrieval and therefore are not efficiently supported. This query type is needed in other
applications, like molecular databases [26], and must therefore be supported efficiently by
our index structures.

We adapt several index structures to suit the needs of efficiently indexing set-valued
attributes. We give a quick review of the index structures and describe the performance-
enhancing modifications. Our extensive benchmarks show that one of the index structures,
the inverted file, is superior to the others in terms of retrieval time and index size.

The paper is organized as follows. The next section covers preliminaries, i.e. a formal
description of queries and a brief introduction to the technique of superimposed coding.
In Section 3 we briefly describe the index structures. A detailed description of the bench-
mark environment is the content of Section 4. We present and analyze the results of the
benchmarks in Section 5. Section 6 concludes our paper.

2 Preliminaries

Before proceeding to the actual index structures, we need to explain some basics. A
summary of the symbols used throughout this paper and their definitions are shown in
Table 1. In the remainder of this section we define set-valued queries and take a quick
look at the technique of superimposed coding.

2.1 Set-valued Queries

Our database consists of a finite set O of data items or objects 0; (1 < i < n) having
a set-valued attribute A with a domain D. Let 0;.,A C D denote the finite value of the
attribute A for some data item o;. A query predicate P is defined in terms of a set-valued
attribute A, a finite query set Q@ C D, and a set comparison operator 8 € {=,C,D}. A
query of the form {0; € O|Q = 0;.A} is called an equality query, a query of the form
{0; € O|Q C 0;.A} is called a subset query, and a query of the form {o; € O|Q D 0;.A}
is called a superset query. Note that containment queries of the form {o; € O|z € 0;.A}
with € D are equivalent to subset queries with @ = {z}.

‘ Symbol ‘ Definition

0 set of data items (our database)

n total number of data items

0; i-th data item of O

f(o;) | reference to o; (e.g. an OID)

A set-valued attribute

D domain from which elements of A are taken
P

Q

0

query predicate
query set
set comparison operator, here =, C, and D
s, t arbitrary sets
sig(s) | signature of set s
sigq(s) | prefix (first d bits) of sig(s)
b length of signature
k number of bits set in signature for each mapped element

Table 1: Used symbols

2.2 Superimposed Coding and Signatures

There are three reasons for using signatures to encode sets. First, signatures are much
more space efficient than explicit set representations. Second, they are of fixed length and
hence very convenient for index structures. Third, set comparison operators on signatures
boil down to efficient bit operations.

When applying the technique of superimposed coding, each element of a given set s is
mapped via a coding function to a bit field of length b——called signature length—where
exactly k£ < b bits are set. These bit fields are superimposed by a bitwise or operation to
yield the final signature of the set s (denoted by sig(s)) [10, 20].

In our case, the coding function maps an element of D onto an integer which is used
as a seed for a random number generator. The latter is called several times to determine
each of the k bits to be set. The following properties of signatures are essential (let s and
t be two arbitrary sets):

st = sig(s)Osig(t) forh € {=C,D} (1)

(
where sig(s) C sig(t) and sig(s) D sig(t) are defined as

sig(s) Csig(t) = sig(s)& sig(t)
sig(s) D sig(t) = sig(t)& sig(s)

(& denotes bitwise and and ~ denotes bitwise complement.)

As set comparisons are very expensive, signatures are helpful as filters. Before com-
paring the query set () with the set-valued attribute o;.A of a data item o;, we compare
their signatures sig(Q) and sig(0;.A). If sig(Q) 6 sig(0;.A) holds, then we call o; a drop.
If additionally) € 0;.A holds, then o; is a right drop, otherwise it is a false drop. We have
to eliminate the false drops in a separate step. However, the number of sets we need to
compare in this step is drastically reduced as only drops need to be checked.

=0
=0

4

3 The Competitors

Let us briefly introduce the four index structures that we adapted for set retrieval. We
distinguish two main strategies: signatures and inverted files. We start by discussing
access structures based on signatures, then move on to inverted files.

3.1 Signature-based retrieval

There are basically three ways of signature organization: sequential, hierarchical, and
partitioned. We examine sequential signature files (SSF) for sequential organization,
signature trees (ST) for hierarchical organization, and extendible signature hashing (ESH)
for partitioned organization.

3.1.1 Sequential Signature File (SSF)

| [sig(01.A),ref(01)] | [sig(o2.A),ref(02)] | ... | [sig(0,.-4),ref(0,)] |

Figure 1: Sequential signature file index structure (SSF)

General description A sequential signature file (SSF) [16] is a rather simple index
structure. It consists of a sequence of pairs of signatures and references to data items.
[sig(0;.A),ref(0;)] (see Figure 1). During retrieval the SSF is scanned and all data items
o; with matching signature sig(o;.A) are fetched and tested for false drops.

Implementation details An SSF index consists of a root object, which is copied into
main memory when the index is opened, and pages containing the signatures and refer-
ences. The entries of the root object are described in Table 2.

The pages containing the signatures and references are doubly linked. The first 8 bytes
contain the link (page number, area number) to the next page, the next 8 bytes the link
to the previous page (see Figure 2). For empty links the page and area numbers are set
to 0.

next page | next area | prev. page| prev. area
number number number number

Figure 2: Signature and reference lists

3.1.2 Signature Tree (ST)

General description The leaf nodes of the Signature Tree (ST) [9, 14] contain pairs
[sig(0;.A),ref(0;)]. In the leaf nodes of an ST we find the same information as in an

Offset ‘ Name ‘ Description

0 noOfEntries the number of data items inserted into index

4 sizeOfSig b, the size of the signatures (in bits)

8 pageSize the size of the pages in the database (in bytes)

12 sigPageNo the starting page number of signature list

16 sigAreaNo the area number of signature list

20 lastSigPageNo | the ending page number of signature list

24 lastSigPos the first free position on last page of signature list
28 refPageNo the starting page number of reference list

32 refAreaNo the area number of reference list

36 lastRefPageNo | the ending page number of reference list

40 lastRefPos the first free position on last page of reference list
44 noOfSetBits k, the number of bits set in signature for each element

Table 2: Root object of an SSF index

[sigo1-A) [sig(g -A) |siglogA), /] | [Si9(0,.A) [sig(og.A) |siglog.A). /] | [Sig(a,.A) [sigog.A) | sig(ogA), /]
07

'|' denotes bitwise or

[sig(0 1), ref(0,)]|[sig(0,,A). ref(0,)] [0 3A). (0] [Isiglo; A).ref(0,)]| [sg(05A). ref(0g] | [5(0gA). (0]

[15g(0,A). ref(0,)] | [5g(05A). ref(0)] | [Sa(0g A). k(o]

Figure 3: A Signature tree (ST)

SSF. We can construct a single signature representing a leaf node by superimposing all
signatures found in the leaf node (with a bitwise or operation). An inner node contains
signatures and references of each child node (see Figure 3). Signature trees are very similar
to R-trees [13].

When we evaluate a query we begin by searching the root for matching signatures.
We recursively access all child nodes whose signatures match and work our way down to
the leaf nodes. There we fetch all eligible data items and check for false drops. Matching
signatures in leaf nodes are determined by the appropriate bitwise operation (see Section
2.2). Matching signatures in inner nodes are determined as follows. For equality and
subset queries we check if sig(Q) C sig(child node). For superset queries there has to be
a non-empty intersection, i.e. |sig(Q) N sig(child node)| > k. More details on ST can be

found in our technical report [15].

Implementation details A Signature Tree consists of a root object, which is copied
into main memory upon opening the index, and pages comprising the tree itself. Table 3
shows the contents of the root object.

‘ Offset ‘ Name ‘ Description
0 depth the height of the tree
4 sizeOfSig the size of the signatures (in ints)
8 pageSize the size of the pages in the database (in bytes)
12 rootPageNo | the page number of the root of the tree
16 rootAreaNo | the area number of the root of the tree
20 noOfSetBits | k£, the number of bits set in signature for each element
24 sizeInBits b, the size of the signatures (in bits)

Table 3: Root object of an ST index

We distinguish two different kinds of nodes in a signature tree, inner nodes and leaf
nodes. The first 4 bytes of each page are identical. They are used to store the offset of
the first free byte on a page. Page of inner nodes contain pairs of signatures and 8 byte
references (page numbers and area numbers) to child nodes. In leaf pages we store EOS
object identifiers of data items instead of page references. EOS oids also have a size of 8
bytes (see Figure 4).

‘en Ptr‘ sig ‘ Oi ‘ sig ‘ 0|/‘ 7:| ‘en Ptr‘ sig ‘ Oi ‘ sig ‘ 0|/‘ 7:|

Figure 4: Pages of a signature tree

3.1.3 Extendible Signature Hashing (ESH)

General description An extendible signature hashing index (ESH) is divided into two
parts, a directory and buckets. In the buckets we store the signature/reference pairs of all
data items. We determine the bucket into which a signature/reference pair is inserted by
looking at a prefix sigy(0;.A) of d bits of a signature. For each possible bit combination
of the prefix we find an entry in the directory pointing to the corresponding bucket.

d=2 | h(x)=00
d=3 / [sig(0, A), ref(0,)], ...
000 //
001 -~ d=3 | hy(x)=010
010 — [sig(0, A), ref(0,)], ...
011 —
100 \ d=3 | h()=011
101 [sig(og.A), ref(o,)], ...
110 \\
111 \\ d=1] h(=1
\ [5i9(0, A), 1ef(0,)] ...

Figure 5: Extendible signature hashing (ESH)

Obviously the directory has 2¢ entries, where d is called global depth. When a bucket
overflows, this bucket is split and all its entries are divided among the two resulting
buckets. In order to determine the new home of a signature the inspected prefix has to
be increased until we are able to distinguish the signatures. The size of the current prefix
d' of a bucket is called local depth. If we notice after a split that the local depth d’ of a
bucket is larger than the global depth d, we have to increase the size of the directory. This
is done by doubling the directory. Pointers to buckets that have not been split are just
copied. For the split bucket the new pointers are put into the directory and the global
depth is increased (see Figure 5). We stop splitting the directory beyond a global depth
of 20 and start using chained overflow buckets at this point, as further splitting leads to
a huge directory, which is difficult to manage.

The evaluation of an equality query is straightforward. We look up the entry for
s1g4(Q) in the directory, fetch the content of the corresponding bucket, check the full
signatures, and eliminate all false drops. In order to find all subsets (supersets) of a
query set (), we determine all buckets to be fetched. We do this by generating all subset
(supersets) of sigq(Q) with the algorithm by Vance and Maier [24]. Then we access the
corresponding buckets, all the while taking care not to access a bucket more than once.
Afterwards we check the full signatures and eliminate the false drops.

ESH is similar to Quickfilter by Zezula, Rabitti, and Tiberio [28]. However, we use
extendible hashing instead of linear hashing as our underlying hashing scheme and we
also optimize the bucket accesses. For more details see our technical report [15].

Implementation details Like in the other index structures the general information of
an ESH index is kept in a root object. The structure of an ESH index root object can be
seen in Table 4.

In the root node of the directory the first 10 bits of the query signature are checked,
i.e. they are used as an offset to find the corresponding entry. This entry points to a
directory subpage, which is fetched in order to check the remaining 10 bits of the query

8

‘ Offset ‘ Name ‘ Description

0 depth the global depth of the hash table

4 sizeOfSigInInts | the size of the signatures (in ints)

8 sizeOfSigInBits | the size of the signatures (in bits)

12 noOfSetBits k, the number of bits set in signature for each element

16 pageSize the size of the pages in the database (in bytes)

20 rootPageNo the page number of the root node of the directory

24 areaNo the area number of the root node of the directory

28 maxBucketSize | not used

32 maxPossDepth | the maximal global depth of the hash table (before chaining)

Table 4: Root object of an ESH index

signature. The root node contains 4 byte references (page numbers) to the subpages. The
subpages contain 4 byte references (page numbers) to the buckets. In a bucket the first
4 bytes store the link to the next page (in form of a page number), if chaining has been
invoked. The next 4 bytes contain an offset pointing to the first free byte on the page.
This is followed by 4 bytes holding the local depth of the bucket. For an illustration see
Figure 6.

0000000000.. 0000000001.. 0000000010..

[—1]
..0000000000 ..0000000001 ..0000000010 ..0000000000 ..0000000001 ..0000000010
[] []
nextPageNo | endPtr local depth sig oid sig oid ‘ :‘

/(

Figure 6: Pages of an ESH index

As already mentioned we need a way to rapidly step through all subsets and supersets
of a given signature. An algorithm utilized by Vance and Maier in their blitzsplit join
ordering algorithm quickly generates all subset representations of a given bit string [24].
It is repeated on the left-hand side of Figure 7. When executed, x passes through all
possible subsets of sig(s). Its counterpart on the right-hand side generates all supersets
by inverting the signature sig(s), stepping through the subsets of the inverted sig(s)
and inverting the generated sets (~ stands for the bitwise complement, - for the two-
complement). f(x) denotes a function processing the current subset/superset.

9

x = sig(s) & -sig(s); x = “sig(s) & -"sig(s);

f(x); £(°x);

while(x) while(x)

{ {
x = sig(s) & (x - sig(s)); x = "sig(s) & (x - “sig(s));
f(x); £("x);

} }

Figure 7: Quick generation of subsets/supersets

3.2 Inverted Files

111" I 113 113"

v, \\
3 ‘ [ref(0;,,), 0}, All [ref(0;,), [0;,,-All, [ref(0;.,), [0 ,Al...

\ [ref(0;,,), 10, All, [ref(0), 10;.,,-All [ref(0;.), [0 Al ‘
‘[ref(o-). o, All [ref(0,). lo; ,-All, [ref(0;), 0 ,All.-.. ‘

141 141° I

Vi ‘\>‘ [ref(0;,), lo;, All [ref(0;,), lo; ,-All [ref(0;.,,), [0 LAl...

e, o Al (e,). oy, All [0,). 0 Al |

Figure 8: Inverted File

General description An inverted file consists of a directory containing all distinct
values that can be searched for and a list for each value containing all references to data
items in which the corresponding value appears (for an overview see [19, 22]). We hold the
search values of the directory in a B-tree. We modify the lists by storing the cardinality
of the set with each reference. This enables us to answer queries efficiently by using the
cardinalities as a quick pretest (see Figure 8).

Using an inverted file for evaluating subset queries is straightforward. For each item in
the query set the appropriate list is fetched and all those lists are intersected. This query
type is comparable to partial match retrieval, which is the main application of inverted
files in text retrieval. When evaluating equality queries we proceed the same way as with
subset queries, but we also eliminate all references to data items whose set cardinality
does not match the query set cardinality. When evaluating a superset query we search all
lists associated with the values in the query set. We count the number of occurrences for
each reference appearing in a retrieved list. When the counter for a reference does not
match the cardinality of its set, we eliminate that reference. We can do this, because this
reference also appears in lists associated with values that are not in the query set. So the
referenced set cannot be a subset of the query set.

10

We use several well-known techniques to increase the performance of inverted lists. To
reduce the size of the lists we compress them. We keep the lists sorted and encode the gaps
using very light-weight techniques [25]. It is also sensible to fetch the lists in increasing
size and to use thresholding, i.e. instead of fetching very large lists, we immediately access
the data items. For a more detailed explanation of these techniques see [31, 32].

Implementation details The root object of an inverted file index and its description
are depicted in Table 5.

‘ Offset ‘ Name ‘ Description ‘
0 noOfEntries the number of data items inserted into index
4 depth the height of the B-tree
8 pageSize the size of the pages in the database (in bytes)
12 rootPageNo the page number of the root of the tree
16 rootAreaNo the area number of the root of the tree
20 minNoOfEntries | minimal number of entries in a node

Table 5: Root object of an inverted file index

The first 4 bytes of a node in the B-tree directory of an inverted file index are used
to store the offset of the first free byte on a page. In leaf nodes we have search-keys
along with the references to the corresponding list of data item references (which will be
described later). In inner nodes we store references to child nodes which are separated by
search keys. The size of search keys is 4 bytes, the size of references 8 bytes (see Figure
9).

fonp| /[key [kv |]
e

]

lendPrr| key | | | key |] lendPre| key | | key |

Figure 9: Pages of an inverted file index

11

We distinguish two different types of lists, compressed and uncompressed. List con-
taining less than 8 oids are not compressed to avoid overhead. In Table 6 the internal
structure of a compressed list is shown.

‘ Offset ‘ Name ‘ Description
0 compressionFlag | for a compressed list contains char ’c’
1 noOfOids number of oids in the list
5 firstOid first oid in uncompressed form
9 gapBits number of bits used to code the gaps
10 setCardBits number of bits used to code set cardinalities
11 oids and a list of compressed oids followed by a list of
set cardinalities | compressed set cardinalitites

Table 6: Compressed list

An uncompressed list merely consists of a compression flag, which is set to 'u’ in this
case, and a list of oids and set cardinalities (see Table 7). The number of oids in the list
is derived from the size of the list, which can be determined by an EOS function.

‘ Offset ‘ Name ‘ Description ‘
0 compressionFlag | for an uncompressed list contains char "u’
1 oids and a list of (uncompressed) pairs of oids and set,
set cardinalities | cardinalities

Table 7: Uncompressed list

4 The Benchmark Environment

When comparing index structures, there are several principal avenues of approach: ana-
lytical approach, mathematical modelling, simulations, and experiment [30]. We decided
to do extensive experiments, because it is very difficult, if not impossible, to devise a for-
mal model that yields reliable and precise results for non-uniform data distribution and
average case behavior. In the following sections we present our benchmark specification.

4.1 System Parameters

The benchmarks were conducted on a lightly loaded UltraSparc2 with 256 MByte main
memory running under Solaris 2.6. The total disk space amounted to 10 GByte. All
index structures were set atop the EOS storage manager, release 2.2, using the C+-+
interface of the manager [5]. We implemented the data structures and algorithms of
the index structures in C++ using the GNU C++ Compiler Version 2.8.1. The data
structures were stored on 4K plain pages. The algorithms were not parallelized in any

12

way. We allowed no buffering/caching of any sort, i.e. each benchmark was run under
cold start conditions. We kept the storage manager from buffering pages read from disk
by running the queries locally in the single-user mode of EOS (no client/server mode)
and terminating all EOS processes after the processing of a query was done. For the next
query EOS was restarted from scratch. We prevented the operating system from buffering
by using RawlO instead of the file system. We cleared the internal disk cache of relevant
pages by transferring 2 MBytes of data between the queries. Within a single run, the
buffer was large enough to prevent accessing pages more than once.

4.2 Generating Data

We generated databases containing data items with set-valued attributes, varying the
cardinality of the database (in number of data items contained), the cardinality of the
set-valued attributes (in number of elements contained), and the cardinality of the domain
of the set elements. For a summary see table 8. Each data item with a set-valued attribute
was stored on a separate page to eliminate any clustering effects.

‘ parameter ‘ symbol ‘ min value ‘ mazx value ‘
database cardinality | |O| 50000 250000
set cardinality l0;. Al 5 15
domain cardinality |D| 200 | 1000000

Table 8: Parameters for generation of databases

The data items in the databases were generated randomly. We investigated the per-
formance of the index structures for uniformly distributed data and skewed data. For the
skewed data we used a Zipf distribution with z = 1.

4.3 Generating Queries

In order to guarantee hits during query evaluation we generated the query sets out of
data sets inserted into the database. For equality queries the sets were taken directly
from the bulkload files. Query sets for subset queries were generated by creating subsets
from data sets containing 15 elements. Generating query sets for superset queries was
done by adding random values to data sets containing 5 elements. The data sets used for
generating query sets came from the head, middle, and tail of the bulkload files.

5 Results

We present an excerpt of the results of our extensive benchmarks emphasizing query
evaluation speed. We also look at scalability, and the influence of skewed data and
domain size. As unit of measurement we use the number of page accesses (and to a lesser
extent total elapsed time in msec). In Tables 9, 10, 15, and 16 only the number of page
accesses within the index structures appear, since the costs for fetching qualifying data

13

items are the same for all index structures. In Tables 11, 12, 17, and 18 the total elapsed
time appears including the costs for fetching qualifying data items. Additionally for the
signature-based techniques we need to consider the false drops, of which statistics are
shown in Figure 11.

5.1 Retrieval Costs

uniform distribution
= C 2
DBsize | SSF ST ESH INV |SSF ST ESH INV |SSF ST ESH INV
50000 | 149 32 21| 149 59 69 16 | 149 219 48 24
100000 | 296 62 211 296 99 144 16 | 296 438 103 24
150000 | 443 63 21 | 443 165 157 16 | 443 659 139 24
200000 | 590 83 21| 590 205 192 16 | 590 881 150 24

250000 | 737 131 18 | 737 255 408 16 | 737 1091 207 24

DN DN NN N

Table 9: Retrieval costs for uniformly distributed data (in number of pages accessed)

Zipf distribution
= - 2
DBsize | SSF ST ESH INV |SSF ST ESH INV |SSF ST ESH INV
50000 | 149 31 41 | 149 96 142 32| 149 222 63 33
100000 | 296 87 58 | 296 191 287 59 | 296 437 141 36
150000 | 443 103 67 | 443 235 284 73 | 443 655 142 53
200000 | 590 153 86 | 590 403 397 106 | 590 887 190 66

250000 | 737 176 118 | 737 425 485 127 | 737 1108 193 83

W W W NN

Table 10: Retrieval costs for Zipf distributed data (in number of pages accessed)

Tables 9 (uniformly distributed data) and 10 (Zipf distributed data) show the query
evaluation costs for different database sizes. For equality queries the hash table index is
unbeaten, as it only takes 2 (respectively 3) page accesses to reach the searched data item.
Subset and superset queries are the more difficult and more interesting cases. In these
cases the inverted file index reigns supreme. For uniformly distributed data the retrieval
costs depend mainly on the size of the query set as the (compressed) lists grow slowly. For
skewed data the performance is not as impressive as for uniformly distributed data. Here
the lists for the most frequently appearing value grow unproportionally faster. These lists
are also queried more frequently, because the query sets are also skewed. Skewed data
also influences the other index structures (except SSF). While performance losses of ESH
are marginal, ST has severe problems. ESH still achieves low retrieval costs, because it
compensates by rapidly doubling its directory. The number of overflow buckets is still
limited by the doubling. ST has trouble with balancing the tree structure. Skewed data

14

lead to very many splits during the insertion of the data, thereby increasing the depth of
the tree causing a negative impact on the retrieval costs.

domain:0..1999, sig_size:32, set_size5..15, dist:Zipf, dbsize:250000 domain:0..1999, sig_size:32, set_size5..15, dist:Zipf, dbsize:250000
T T 450 T T T T T T T T T T T T T
SSF —+— 5SF
ST -&— ST/[-e—
ESH »— 400 ESH/ *— |
INV — NV +—

1200

1000 -
350 |

800 - B 300 -
a

pagf
pagf

250 -
600 |-
200 |

400 |- 1 S 1s0

100 B
200 | 1

1 2 3 4 5 6 7
size

T O T S S R S R
8 9 10 11 12 13 14 15 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
of query set size of query set

(a) Subset queries (b) Superset queries

Figure 10: Retrieval cost depending on query set size

The signature-based index structures (except SSF) have another disadvantage. Usually
subset queries are formulated with small query sets and superset queries with large query
sets. In these cases ST and ESH show their worst performance (see Figure 10), as ST
needs to traverse many branches in the tree and ESH needs to visit almost all buckets.

uniform distribution
DBsize | SSF ST ESH INV | SSF ST ESH INV | SSF ST ESH INV
50000 | 1263 317 33 146 | 6827 5919 7029 495 | 1770 1976 1257 161
100000 | 2662 661 23 218 | 13946 12761 14421 870 | 3721 4274 2240 249
150000 | 4061 680 25 242 | 21977 21524 23239 1158 | 5340 6134 2905 278
200000 | 5396 1028 37 243 | 30025 29898 33767 1354 | 7137 8156 4282 287

250000 | 6866 1970 33 221 | 35767 36552 40767 1546 | 8863 10302 4945 301

Table 11: Retrieval costs for uniformly distributed data (total elapsed time in msec)

Table 11 (uniform distribution) and Table 12 (Zipf distribution) present the query
evaluation costs measured in total elapsed time. These are not directly comparable to
the query evaluation costs measuring page accesses as the time for fetching the qualifying
data items is included. For the average total number of right and false drops of the
signature-based index structures see Table 13. Let us first look at uniformly distributed
data (Table 11). Not surprisingly ESH is superior to the other index structures for equality
queries with inverted files close behind on second place. The influence of drops (both right
and false drops) is minimal in this case (see Table 13). For subset queries inverted files
outperform all other index structures. The poor performance of the signature-based index
structures is due to the high number of false drops. ESH also needs to generate a large
number of sets for the subqueries, which slows it down even further. Superset queries
are generally handled better than subset queries, because the number of drops is much
lower. The gap between inverted files and the signature-based index structures has become

15

Zipf distribution
= C 2

DBsize | SSF ST ESH INV | SSF ST ESH INV SSF ST ESH INV
50000 | 1348 392 25 252 | 18279 21719 25512 25019 | 2906 3213 2549 564
100000 | 2771 1304 29 302 | 37693 49835 57124 68754 | 6325 6926 5342 1525
150000 | 4086 2665 35 331 | 53270 76151 82615 73983 | 9237 10184 7604 1894
200000 | 5348 3793 41 418 | 78803 115158 125955 85157 | 10939 12491 8901 2336
250000 | 6912 3146 46 531 | 92317 138423 149502 98140 | 14298 16327 11901 2962

Table 12: Retrieval costs for Zipf distributed data (total elapsed time in msec)

smaller, but inverted files still lead unchallenged. Zipf distributed data (Table 12) leads
to some drastic performance losses. What are the reasons for this? For subset queries the
main reason is the large increase in qualifying data items because of the skewed data (see
Table 13). A slight increase in false drops can also be noticed for superset queries. Skewed
data influences the split behavior of ST and ESH unfavorably, i.e. ST has a greater height
while ESH has longer overflow chains. Because of the skewed data the lengths of the lists
in an inverted file will also be skewed, i.e. we have a small number of large lists. Those
lists will also be accessed most, because the query sets are skewed likewise.

uniform distribution

Zipf distribution

= - D = C D)
DB size | right false | right false | right false | right false | right false | right false
50000 1 0 17 983 1 79 1 0| 3514 1121 1 119
100000 1 0 34 2020 1 174 1 0| 7077 2130 1 160
150000 1 0 50 3238 1 21 1 0] 9809 3249 1 430
200000 1 0 69 4419 1 280 1 0 | 14599 4894 1 501
250000 1 0 85 5128 1 658 1 0| 17833 5016 1 655

Table 13: Number of right and false drops for signature-based index structures

5.2 Scaling

uniform distribution Zipf distribution
DBsize | SSF ST ESH INV |SSF ST ESH INV
50000 | 149 220 434 269 | 149 223 461 221
100000 | 296 439 868 530 | 296 438 916 428
150000 | 443 660 1272 788 | 443 656 1178 637
200000 | 590 882 1743 1046 | 590 888 1501 845
250000 | 737 1092 2165 1302 | 737 1109 1845 1060

Table 14: Index sizes (in number of 4K pages)

16

Table 14 shows the benchmarks results pertaining to the scalability of the index struc-
tures. The compression of the inverted lists makes them competitive. An earlier uncom-
pressed version of the inverted files we used was about 8 to 9 times larger. Zipf distributed
data lead to even smaller files as we have fewer, longer lists which can be compressed bet-
ter. There is no effect of data skew on SSF, as the signatures are stored sequentially
in a file. Therefore the size depends solely on the size of the signatures and not on the
organization of the signatures. The size of ST increases slightly for skewed data, because
the signatures are organized less favorably. The size of ESH decreases slightly, because
the space is better utilized. The reason for this is the larger number of chained overflow
buckets.

5.3 Influence of domain size

uniform distribution
= C
Domain size | SSF ST ESH INV |[SSF ST ESH INV |SSF ST ESH INV

V)

200 | 296 54 2 22| 296 122 113 16 | 296 443 75 23
2000 | 296 62 2 211 296 99 144 16 | 296 438 103 24
1000000 | 296 56 2 30| 296 104 175 24| 296 432 79 36

Table 15: Retrieval costs for uniformly distributed data (in number of pages accessed)

Zipf distribution
C >

Domain size | SSF ST ESH INV | SSF ST ESH INV | SSF ST ESH INV

200 | 296 126 3 421 296 195 233 99 | 296 437 162 41
2000 | 296 87 2 98 | 296 191 287 99 | 296 437 141 36
1000000 | 296 81 2 31| 296 139 202 39 | 296 427 122 41

Table 16: Retrieval costs for Zipf distributed data (in number of pages accessed)

Tables 15 and 16 show the influence of the domain size on the retrieval costs. Although
the performance of the inverted files index decreases for increasing domain sizes, it still
has a strong showing. The skip from 24 page accesses to 36 page accesses for uniformly
distributed data is due to a deeper B-tree structure (going from depth 2 to depth 3). For
Zipf distribution we did not notice this effect, because many values of the domain do not
appear in the data sets.

In Tables 17 and 18 the total query processing time is presented. The main reason for
the discrepancy between costs measured in page accesses and the total processing time is
the cost for fetching data items. In Table 19 the average number of right and false drops
for each query type can be found. Generally small domains intensify the skewing of data,
because the variety of appearing values is lowered. ST and ESH are the index structures

17

uniform distribution

= - D)
Domain size | SSF ST ESH INV ‘ SSF ST ESH INV ‘ SSF ST ESH INV
200 | 2705 691 26 231 | 16708 15943 17492 3364 | 3890 4371 2129 315
2000 | 2662 661 23 218 | 13946 12761 14421 870 | 3721 4274 2240 249
1000000 | 2716 561 25 215 | 13759 12546 14464 178 | 3694 4036 1870 234

Table 17: Retrieval costs for uniformly distributed data (total elapsed time in msec)

Zipf distribution

= - D)
Domain size | SSF ST ESH INV ‘ SSF ST ESH INV | SSF ST ESH INV
200 | 2627 2577 40 240 | 40000 51165 60768 36198 | 9193 9677 8464 601
2000 | 2771 1304 29 302 | 37693 49835 57124 68754 | 5641 6233 4492 593
1000000 | 2695 1369 31 185 | 22335 25399 28846 29134 | 3728 4099 2414 714

Table 18: Retrieval costs for Zipf distributed data (total elapsed time in msec)

that suffer most from this effect, especially for subset queries. ST has to traverse a larger
number of branches, while the explosive growth of the ESH directory makes it necessary
to generate a large number of subqueries during query processing.

uniform distribution Zipf distribution
= - 2 = - 2
Domain size | right false | right false | right false | right false | right false | right false
200 1 0| 350 2258 1 195 1 0| 8836 1327 1 1086
2000 1 0 34 2020 1 174 1 0| 7077 2130 1 160
1000000 1 0 1 1995 1 158 1 0| 3011 1453 1 486

Table 19: Number of right and false drops for signature-based index structures

Table 20 shows the results of the influence of the domain size on the index size. The
smaller the domain, the better the space demand of inverted files. The obvious reason
for this is that for each value appearing in a set, a list has to be allocated. The number
of lists could be reduced by merging lists of infrequently appearing values into one. This
would lead to higher retrieval costs, however, as false drops would have to be eliminated.
For skewed data the size of the inverted file index is smaller than for uniformly distributed
data due to a better compressibility of the data (there are fewer, longer lists). SSF is not
influenced at all by the domain size. ST is influenced slightly. ESH has a smaller index
structure for small domains at the price of higher retrieval costs. Smaller domains have
a similar effect as Zipf distributed data leading to chained overflow buckets with a better
space utilization.

18

uniform distribution Zipf distribution
Domain size | SSF ST ESH INV | SSF ST ESH INV
200 | 296 444 879 369 | 296 438 758 266
2000 | 296 439 868 530 | 296 425 787 341
1000000 | 296 433 886 1559 | 296 428 823 960

Table 20: Influence of domain on index size (in number of 4K pages)

domain:0..1999, sig_size:32, set_size:5..15, dist:Zipf, dbsize:250000 domain:0..1999, sig_size:32, set_size:5..15, dist:Zipf, dbsize:250000
—— T —— T

160000 400

—
false drops ——

140000 - 350 |

120000 - 300 -
100000 - 250 |

80000 - 200 |

no of false drops
no of false drops

60000 - 150 -

40000 - 100

20000 -

0

L L L L L - L ' ' ' ' '
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
t

I e
5 6 7 8 9 10 1 12 13 14 15 16 17 18 19
size of query set size of query set

query

(a) Subset queries (b) Superset queries

Figure 11: Number of false drops (for database cardinality 250000)

5.4 False drops

Figure 11 summarizes the false drop rates of the signature-based index structures. The
rates are identical for all three index structures as the same signatures are stored in each
index. The index structures differ only in the organization of the signatures. We have
registered no false drops for equality queries in our benchmarks. Small query sets for
subset queries lead to sparse query bitvectors and large query sets for superset queries
to dense query bitvectors. So for subset and superset queries the signature-based index
structures show the worst performance for these cases.

6 Conclusion

We have studied the performance of several different index structures for set-valued at-
tributes of low cardinality. All index structures were based on traditional methods, which
we refitted for indexing set-valued attributes. We implemented sequential signature files,
signature trees, extendible signature hashing and B-tree based inverted files designed to
support the evaluation of queries containing set-valued predicates. Using these imple-
mentations we conducted extensive benchmarks. The inverted file index dominated the
field clearly, though for equality queries the hash-based ESH was faster. Generally the
signature-based index structures have difficulties with skewed data and frequently used
query sets (small sets for subset queries, larger sets for superset queries). Zobel, Mof-

19

fat, and Ramamohanarao made a similar observation for text retrieval while comparing
inverted files to signature files [29].

In summary, we can say that for applications with set-valued attributes of low cardi-
nality inverted lists showed the best overall performance of all studied index structures. It
was least affected by the variation of the benchmark parameters and displayed the most
predictable behavior, which makes it a good choice for practical use.

References

[1] J.E. Ash, P.A. Chubb, S.E. Ward, S.M. Welford, and P. Willet. Communication,
Storage and Retrieval of Chemical Information. Ellis Horwood, Chichester, England,
1985.

[2] A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence data bank and its
new supplement TrEMBL. Nucleic Acids Research, 24(1):21-25, 1996.

[3] S.A. Berk. The New York Bartender’s Guide. Black Dog & Leventhal Publishers,
Inc., New York, 1995.

[4] E. Bertino and W. Kim. Indexing techniques for queries on nested objects. IEEE
Trans. on Knowledge and Data Engineering, 1(2):196-214, 1989.

[5] A. Biliris and E. Panagos. EOS user’s guide. Technical report, AT&T Bell Labora-
tories, 1994.

[6] K. Béhm and T.C. Rakow. Metadata for multimedia documents. SIGMOD Record,
23(4):21-26, December 1994.

[7] R. Cattell, editor. The Object Database Standard: ODMG 2.0. Morgan Kaufmann,
1997.

[8] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner. Optimizing queries with
universal quantification in object-oriented and object-relational databases. In Proc.
of the 23rd VLDB Conference, pages 286—295, Athens, August 1997.

[9] U. Deppisch. S-tree: A dynamic balanced signature index for office retrieval. In Proc.
of the 1986 ACM Conf. on Research and Development in Information Retrieval, Pisa,
1986.

[10] C. Faloutsos and S. Christodoulakis. Signature files: An access method for documents
and its analytical performance evaluation. ACM Transactions on Office Informations
Systems, 2(4):267-288, October 1984.

[11] K.H. Fasman, S.I. Letovsky, R.W. Cottingham, and D.T. Kingsbury. Improvements
to the GDB human genome data base. Nucleic Acids Research, 24(1):57-63, 1996.

[12] T. Grobel, C. Kilger, and S. Rude. Object-oriented modelling of production or-
ganization. In Tagungsband der 22. GI-Jahrestagung, Karlsruhe, September 1992.
Informatik Aktuell, Springer-Verlag. (in German).

20

[13] A. Guttman. R-trees: A dynamic index structure for spatial searching. In Proc. of
the 1984 ACM SIGMOD, Boston, Mass., 1984.

[14] J.M. Hellerstein and A. Pfeffer. The RD-tree: An index structure for sets. Technical
Report 1252, University of Wisconsin at Madison, 1994.

[15] S. Helmer. Index structures for databases containing data items with set-
valued attributes. Technical Report 2/97, Universitit Mannheim, 1997.
http://pi3.informatik.uni-mannheim.de.

[16] Y. Ishikawa, H. Kitagawa, and N. Ohbo. Evaluation of signature files as set access
facilities in oodbs. In Proc. of the 1993 ACM SIGMOD, pages 247-256, Washington
D.C., 1993.

[17] R. Jain and A. Hampapur. Metadata in video databases. SIGMOD Record, 23(4):27-
33, December 1994.

[18] A. Kemper and G. Moerkotte. Access support relations: An indexing method for
object bases. Information Systems, 17(2):117-146, 1992.

[19] H. Kitagawa and K. Fukushima. Composite bit-sliced signature file: An efficient
access method for set-valued object retrieval. In Proc. Int. Symposium on Coopera-
tive Database Systems for Advanced Applications (CODAS), pages 388-395, Kyoto,
Japan, December 1996.

[20] D. E. Knuth. The Art of Computer Programming, Vol. 3: Sorting and Searching.
Addison Wesley, Reading, Massachusetts, 1973.

[21] D. Maier and J. Stein. Indexing in an object-oriented database. In Proc. of the IEEE
Workshop on Object-Oriented DBMSs, Asilomar, California, September 1986.

[22] R. Sacks-Davis and J. Zobel. Text databases. In Indezing Techniques for Advanced
Database Systems, pages 151-184. Kluwer Academic Publishers, 1997.

[23] M. Stonebraker and D. Moore. Object-Relational DBMSs: The Next Great Wave.
Morgan Kaufmann, 1996.

[24] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian products.
In Proc. of the ACM SIGMOD Int. Conf. on Management of Data, pages 35-46,
Montréal, Canada, June 1996.

[25] T. Westmann, D. Kossmann, S. Helmer, and G. Moerkotte. The implementa-
tion and performance of compressed databases. Technical Report 3/98, Universitét
Mannheim, 1998. http://pi3.informatik.uni-mannheim.de.

[26] M. Will, W. Fachinger, and J.R. Richert. Fully automated structure elucidation - a
spectroscopist’s dream comes true. J. Chem. Inf. Comput. Sci., 36:221-227, 1996.

[27] Z. Xie and J. Han. Join index hierarchies for supporting efficient navigation in object-
oriented databases. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
522-533, 1994.

21

[28] P. Zezula, F. Rabitti, and P. Tiberio. Dynamic partitioning of signature files. ACM
Transactions on Information Systems, 9(4):336-369, October 1991.

[29] J. Zobel, A. Moffat, and K. Ramamohanarao. Inverted files versus signature files for
text indexing. Technical Report CITRI/TR-95-5, Collaborative Information Tech-
nology Research Institute (CITRI), Victoria, Australia, 1995.

[30] J. Zobel, A. Moffat, and K. Ramamohanarao. Guidelines for presentation and com-
parison of indexing techniques. ACM SIGMOD Record, 25(3):10-15, September 1996.

[31] J. Zobel, A. Moffat, and R. Sacks-Davis. An efficient indexing technique for fulltext
database systems. In Proc. of the 18th VLDB Conference, pages 352-362, Vancouver,
Canada, 1992.

[32] J. Zobel, A. Moffat, and R. Sacks-Davis. Searching large lexicons for partially spec-
ified terms using compressed inverted files. In Proc. of the 19th VLDB Conference,
pages 290-301, Dublin, Ireland, 1993.

22

