
Reihe Informatik
11 / 1996

Constructing

Optimal Bushy Processing Trees
for Join Queries is NP-hard

Wolfgang Scheufele Guido Moerkotte

1

Constructing Optimal Bushy Processing Trees for

Join Queries is NP-hard

W. Scheufele G. Moerkotte

Lehrstuhl f�ur praktische Informatik III

Universit�at Mannheim

Seminargeb�aude A5

68131 Mannheim

Germany
email: ws jmoer@pi3.informatik.uni-mannheim.de

Abstract

We show that constructing optimal bushy processing trees for join

queries is NP-hard. More speci�cally, we show that even the construc-

tion of optimal bushy trees for computing the cross product for a set of

relations is NP-hard.

1 Introduction

Ever since the invention of relational database systems, query optimization has
been an important issue. One of the problems the query optimizer has to deal
with is the ordering of joins. Given a set of relations to be joined, that means
�nding a minimal cost expression joining these relations. The �rst approach used
to solve this problem applies dynamic programming [8]. This algorithm uses two
heuristics in order to cut down the search space. First, only left-deep trees are
considered. Second, no cross products are considered. Nevertheless, the number
of alternatives considered can be exponential.

Often, the larger search space where cross products are allowed contains much
cheaper processing trees [7]. But then, the dynamic programming approach in-
vestigates n2n�1�n(n+1)=2 di�erent plans if left-deep trees are considered. For
bushy trees, the number of considered alternatives is even higher ((3n�2n+1+1)=2,
[7]).

2

A problem one is confronted with immediately is whether this exponential run
time is inherent to the problem or whether smart polynomial algorithms exist.
For constructing optimal left-deep processing trees, some answers have been given
so far.

Constructing optimal left-deep trees not containing any cross products for general
join graphs is known to be NP-hard. This has been proven for a special|quite
complex|block-wise nested-loop join cost function [3] and for a very simple cost
function counting just the number of tuples in the intermediate results [1]. When
restricting the join graph to be acyclic, constructing optimal bushy trees for those
cost functions which ful�ll the ASI property [6] can be done in polynomial time
[3, 5]. If cross products are considered, then even if the join graph has the form
of a star, the problem of constructing an optimal left-deep tree has been shown
to be NP-hard [1].

As far as we know, no such result exists for constructing bushy processing trees.
Hence, this paper discusses this question. More speci�cally, we show that con-
structing optimal bushy trees for a set of relations whose cross product has to
be computed is NP-hard. This contrasts the left-deep case where the optimal
left-deep tree can easily be computed by sorting the relations on their sizes.
Moreover, since taking the cross product is a very special case in which all join
selectivities are set to one, constructing optimal bushy trees for any join prob-
lem|independent of the join graph|is NP-hard. Thus, any hope of constructing
optimal bushy trees in polynomial time has to be abandonded for whatever join
problem at hand. The only possible exceptions are those where no cross prod-
ucts are considered and special join graphs exhibit a polynomial search space.
An example are chain queries.

2 The Proof of the Claim

We assume that the cross product of n relations R1; : : : ; Rn has to be computed.
This is done by applying a binary cross product operator � to the relations
and intermediate results. An expression that contains all relations exactly once,
can be depicted as a bushy tree, where the intermediate nodes correspond to
applications of the cross product operator. For example, consider four relations
R1; : : : ; R4. Then, the expression (R1�R2)� (R3�R4) corresponds to the bushy
tree

HH��
�@

R1 R2

�@
R3 R4

For each relation Ri, we denote its size by jRij = ni. As the cost function
we count the number of tuples within the intermediate results. Assuming the

3

relation's sizes n1 = 10, n2 = 20, n3 = 5 and n4 = 30, the cost of the above bushy
tree would be 10 � 20+ 5 � 30+ (10 � 20 � 5 � 30) = 30350. Since the �nal result is
always the same for all bushy trees|the product of all relation sizes|we often
neglect it.

For the proof of our claim, we need the following lemma.

Lemma 2.1 Let R1; : : : ; Rn be relations with their according sizes. If jRnj >Q
i=1;n�1 jRij, then the optimal bushy tree is of the form X�Rn or Rn�X where

X is a bushy tree containing relations R1; : : : ; Rn�1.

The proof of this lemma is quite obvious and hence omitted.

Let us denote the problem of constructing optimal bushy trees for taking the
cross product of n relations by XR. Then, in order to proof that XR is NP-hard,
we need another problem known to be NP-hard which can be reduced to XR. We
have chosen to take the exact cover with 3-sets (X3C) as the problem of choice.
The next de�nition recalls this problem which is known to be NP-complete [2].

De�nition 2.2 Let S be a set with jSj = 3q elements. Further let C be a
collection of subsets of S containing three elements each. The following decision
problem is called X3C : Does there exist a subset C 0 of C such that every s 2 S
occurs exactly once in C 0?

We are now prepared to proof our claim.

Theorem 2.3 The problem XR is NP-hard.

Proof We proof the claim by reducing X3C to XR. Let (S;C) with jSj = 3q
be an instance of X3C . Without loss of generality, we assume that jCj > q.
Obviously, if jCj < q there exists no solution. If jCj = q, we just double one
element in C. Note that this does not a�ect solvability.

We start by coding X3C. First, we map every element of S to an odd prime.
Let S = fs1; : : : ; s3qg, then si is mapped to the i-th odd prime. Note that we can
apply a sieve method to compute these primes in polynomial time. Subsequently,
we identify si and pi.

Every element c = fsi1 ; si2; si3g 2 C is mapped to the product si1 � si2 � si3 .
Again, we identify c with its product.

Note that this coding allows to identify uniquely the si and c. (Of course, the
same c could occur twice.) Each c will now become a relation R of size c.

4

Remarks (interrupt of proof) In order to understand the proof, it might be
necessary to state the underlying idea explicitly. An optimal bushy tree for a set
of relations is as balanced as possible. That is, a bushy tree (T1�T2)� (T3�T4)
with subtrees Ti is optimal, if abs(jT1 � T2j � jT3 � T4j) is minimal and cannot
be reduced by exchanging relations from the left to the right subtree. This is
not always true, since a left-deep tree can be cheaper even if this criterion is
not ful�lled. In order to see this, consider the following counter example. Let
R1; : : : ; R4 be four relations with sizes n1 = 2, n2 = 3, n3 = 4, and n4 = 10. The
optimal \real" bushy tree is (R1�R4)�(R2�R3) with cost 2�10+3�4 = 32. Its
top-level di�erence is 20� 12 = 8. But the left-deep tree ((R1 �R2)� R3)�R4

has lower cost (2 � 3+ 2 � 3 � 4 = 30) although it has a higher top-level di�erence
(24 � 10 = 14). Considering our lemma, it becomes clear that it is a good idea
to add some big relations at the top to �x the shape of an optimal tree. Further,
these additional relations are needed to guarantee the existence of a fully balanced
and optimal tree.

Proof continued In addition, we need two further relations T and D with
sizes ~T and ~D de�ned as follows:

~S :=
Y

s2S

s

~C :=
Y

c2C

Y

c02c

c0

~H := lcm(~S;
~C
~S
)

K := 2 ~C2

~T :=
~H
~S
K

~D :=
~H ~S
~C
K

where lcm(x; y) denotes the least common multiple of the numbers x and y, i.e.
the smallest number z such that z mod x � 0 and z mod y � 0.

Without loss of generality, we assume that ~C mod ~S � 0. If this is not the case,
obviously no solution to X3C exists.

We will now show that

there exists a solution to X3C if and only if the optimal solution has
the form (A� T)� (B �D) where A and B are subtrees and T and

D are the special relations from above. Further, jAj = ~S and B =
~C
~S

must hold.

5

Of course, the above must be seen with respect to possible interchanges of sibling
subtrees which does not result in any cost changes.

Clearly, if there is no solution to the X3C problem, no bushy tree with these
properties exists. Hence, it remains to proof that, if X3C has a solution, then
the above bushy tree is optimal.

Within the following trees, we use the sizes of the intermediate nodes or relation
sizes to denote the corresponding subtrees and relations. To proof the remaining
thesis, we distinguish three cases. Within the �rst case, we compare our (to be
shown) optimal tree with two left-deep trees. Then, we consider the case where
both T and D occur in either the left or the right part of a bushy tree. Last, we
assume one part contains T and the other part contains D.

For the �rst case, the left tree of the following �gure must be cheaper than the
right left-deep tree.

HHHHHH

������
�

�
�

@
@
@

~S ~T

�
�
�

@
@
@

~C
~S

~D

�
�
�

@
@
@

~D
�
�
�

@
@
@

~TC

As mentioned, the tree shows only the sizes of the missing subtrees. If some
C 0 � C is a solution to X3C, then it must have a total size ~C 0 = ~S.

Note that we need not to consider any other left-deep trees except where T and
D are exchanged. This is due to the fact that the sizes of these relations by far
exceed the C. (Compare with the above lemma.)

The following is a sequence of inequalities which hold also if T and D are ex-
changed in the left tree of the above �gure. We have to proof that

~S ~T +
~C
~S
~D + cost(C 0) + cost(C n C 0) < ~Cmin(~D; ~T) + cost(C)

Obviously,

cost(C 0) + cost(C n C 0) < cost(C)

Further,

2 ~HK < ~C
~H
~S
K

(=

2 <
~C
~S

6

and
2 ~HK < ~C

~H ~S
~C
K

(=

2 < ~S

also hold. This completes the �rst case.

In order to follow the inequalities note that the cost of computing a bushy tree
never exceeds twice the size of its outcome, if the relation sizes are greater than
two, which is the case here.

If we assume T and D to be contained in either the right or the left subtree, we
get the following cost estimations:

~S ~T +
~C
~S
~D + cost(C 0) + cost(C n C 0) < ~T ~D

(=

2 ~HK + 4 ~C <
~HK
~C

~HK

(=

2 + 4 ~C
~HK

< 1
~C
~HK

(=

1 + 1
~H ~C

< ~H ~C

Again, the last inequality is obvious. This completes the second case.

Now consider the last case, where T and D occur in di�erent subtrees.

HHHHHH

������
�

�
�

@
@
@

~S ~T

�
�
�

@
@
@

~C
~S

~D

HHHHHH

������
�
�
�

@
@
@

B ~T

�
�
�

@
@
@

B' ~D

Denote the size of the result of B by ~B and the size of the result of B0 by ~B0.
Further, note that B and B0 arize from S and C

S
by exchanging relations within

the latter two. This gives us

2 ~HK + cost(C 0) + cost(C n C 0) < ~B ~T + ~B0 ~D + cost(B) + cost(B0)
(=

2 ~HK + cost(C 0) + cost(C n C 0) < ~B ~T + ~B0 ~D
(=

2 ~HK + 4 ~C < b ~S ~T + 1
b
~D

~C
~S

(=

2 ~HK + 4 ~C < (b+ 1
b
) ~HK

7

where b is
~B
~S
.

Since all relation sizes are odd primes, and we assume that the right tree is
di�erent from our optimal tree, ~S and ~B must di�er by at least 2. Hence, either
b �

~S+2
~S

or 0 < b �
~S

~S+2
. Since the function f(x) = x + 1

x
has exactly one

minimum at x = 1, and is monotonously increasing to the left and right of this
minimum, we have:

4 ~C < (~S+2)2+~S2�2 ~S(~S+2)
~S(~S+2)

~HK

(=

4 ~C <
~S2+4~S+4+~S2�2 ~S2�4 ~S

~S(~S+2)
~HK

(=

4 ~C < 4
~S(~S+2)

~HK

(=
~C < 2

~S(~S+2)
~H ~C2

(=

1 < 2
~S(~S+2)

~H ~C

The last inequality holds since ~H � ~S and ~C � ~S + 2. This completes the proof.

2

The next corollary follows immediately from the theorem.

Corollary 2.4 Constructing optimal bushy trees for a given join graph is |
independent of its form | NP-hard

Whereas taking the cross product of vast amounts of relations is not the most
serious practical problem, joining a high number of relations is a problem in
many applications. This corollary unfortunately indicates that there is no hope
of �nding a polynomial algorithm to solve this problem.

3 Conclusion

Since there is no hope of a polynomial algorithm for constructing optimal bushy
trees, the only chance is to develop heuristics or to apply probabilistic opti-
mization procedures. Concerning the latter, Ioannidis and Kang [4] make some
important observations. In fact, they conclude that for probabilistic algorithms
producing good bushy trees seems to be easier than constructing good left-deep
trees. If this observation also holds for heuristics to be developed, than our result
may not be as bad as it seems to be at �rst sight. There is some evidence that
this is the case. Even simple greedy algorithms seem to perform quite well [9].
What is needed in the future are careful studies concerning heuristics for the

8

construction of good bushy trees. Only after, the builders of query optimizers
can trust them.

Another way for research is the construction of very fast dynamic programming
algorithms and possible pruning heuristics. The work by Vance and Maier is a
good step in this direction [10].

References

[1] S. Cluet and G. Moerkotte. On the complexity of generating optimal left-
deep processing trees with cross products. In Proc. Int. Conf. on Database
Theory (ICDT), pages 54{67, 1995.

[2] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to
the Theory of NP-Completeness. Freeman, San Francisco, 1979.

[3] T. Ibaraki and T. Kameda. Optimal nesting for computing n-relational joins.
ACM Trans. on Database Systems, 9(3):482{502, 1984.

[4] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees: An analysis of
strategy spaces and its implications for query optimization. In Proc. of the
ACM SIGMOD Conf. on Management of Data, pages 168{177, 1991.

[5] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization of nonrecursive
queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 128{
137, 1986.

[6] C. Monma and J. Sidney. Sequencing with series-parallel precedence con-
straints. Math. Oper. Res., 4:215{224, 1979.

[7] K. Ono and G. M. Lohman. Measuring the complexity of join enumeration in
query optimization. In Proc. Int. Conf. on Very Large Data Bases (VLDB),
pages 314{325, 1990.

[8] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and T. G.
Price. Access path selection in a relational database management system.
In Proc. of the ACM SIGMOD Conf. on Management of Data, pages 23{34,
1979.

[9] E. J. Shekita, K.-L. Tan, and H. C. Young. Multi-join optimization for
symmetric multiprocessors. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 479{492, 1993.

[10] B. Vance and D. Maier. Rapid bushy join-order optimization with cartesian
products. In Proc. of the ACM SIGMOD Conf. on Management of Data,
Toronto, Canada, 1996. to appear.

9

