Quantifying a critical training set size for generalization and overfitting using teacher neural networks


Lange, Rupert ; Männer, Reinhard


[img]
Vorschau
PDF
TR-95-003.pdf - Veröffentlichte Version

Download (102kB)

URL: http://ub-madoc.bib.uni-mannheim.de/802
URN: urn:nbn:de:bsz:180-madoc-8025
Dokumenttyp: Arbeitspapier
Erscheinungsjahr: 1995
Sprache der Veröffentlichung: Englisch
Einrichtung: Fakultät für Wirtschaftsinformatik und Wirtschaftsmathematik > Sonstige - Fakultät für Mathematik und Informatik
MADOC-Schriftenreihe: Veröffentlichungen der Fakultät für Mathematik und Informatik > Institut für Informatik > Technical Reports
Fachgebiet: 004 Informatik
Normierte Schlagwörter (SWD): Neuronales Netz
Abstract: Teacher neural networks are a systematic experimental approach to study neural networks. A teacher is a neural network that is employed to generate the examples of the training and the testing set. The weights of the teacher and the input parts of the examples are set according to some probability distribution. The input parts are then presented to the teacher neural network and recorded together with its response. A pupil neural network is then trained on this data. Hence, a neural network instead of a real or synthetic application defines the task, according to which the performance of the pupil is investigated. One issue is the dependence of the training success on the training set size. Surprisingly, there exists a critical value above which the training error drops to zero. This critical training set size is proportional to the number of weights in the neural network. A sudden transition exists for the generalization capability, too: the generalization error measured on a large independent testing set drops to zero, and the effect of overfitting vanishes. Thus, there are two regions with a sudden transition in-between: below the critical training set size, training and generalization fails, and severe overfitting occurs; above the critical training set size, training and generalization is perfect and there is no overfitting.
Zusätzliche Informationen:

Das Dokument wird vom Publikationsserver der Universitätsibliothek Mannheim bereitgestellt.




+ Zitationsbeispiel und Export

Lange, Rupert und Männer, Reinhard (1995) Quantifying a critical training set size for generalization and overfitting using teacher neural networks. [Arbeitspapier]
[img]
Vorschau



+ Suche Autoren in

+ Download-Statistik

Downloads im letzten Jahr

Detailierte Angaben



Sie haben einen Fehler gefunden? Teilen Sie uns Ihren Korrekturwunsch bitte hier mit: E-Mail


Actions (login required)

Eintrag anzeigen Eintrag anzeigen