
REIHE INFORMATIK
5/95

On the Suitability of Estelle

for Multimedia Systems

Stefan Fischer
Universit�at Mannheim

L 15,16/IV.Stock
D-68131 Mannheim

On the Suitability of Estelle for Multimedia Systems

Stefan Fischer

University of Mannheim, Praktische Informatik IV

D-68131 Mannheim, Germany

Phone: +49 621 292 5053 Fax: +49 621 292 5745

stefis@pi4.informatik.uni-mannheim.de

Abstract

Formal Description Techniques have been widely used for the speci�cation of tradi-

tional networked applications. They have not been applied to the speci�cation of new

applications such as multimedia systems yet. In this paper, we examine the FDT Estelle

with respect to its suitability for multimedia system speci�cation and automatic deriva-

tion of e�cient implementations. We show that it is possible to specify certain aspects of

multimedia systems, but that Estelle is not su�cient for others. The derived implemen-

tations often perform badly. We show the reasons and propose to use a slightly modi�ed

Estelle syntax and semantics to solve the problems. The implemented solution was tested

successfully.

Keywords: Estelle, Multimedia Systems, Quality of Service, Implementation

1 Introduction

Formal Description Techniques (FDTs) have been successfully used to specify protocols for
data communication. Numerous tools have been developed to analyze formally speci�ed proto-
cols and to derive implementations from such speci�cations (semi-)automatically, e.g. [BGS87,
BT82, VLC88, SB90]. For most applications performance was a minor issue in contrast to
reliability, which was perfectly o�ered by FDT implementations. A good example of this class
of applications is electronic �le transfer. It is a major issue that all data are transferred correct-
ly without strict constraints on a certain throughput or delay. Therefore, FDTs were mainly
designed to allow speci�cation of functional behavior.

In recent years, however, the situation has changed dramatically. With the advent of high-
speed networks a new class of applications was found to be implementable that has very special
needs with respect to quality of service (QoS). One of the best-known representatives of this
class, distributed multimedia systems, requires the handling of very di�erent kinds of media
which are all transferred over the same network. For some of these media, connections are
required which o�er the same quality as in earlier networks. Examples include text and data
�les or graphics. However, there are also continuous media with totally di�erent requirements.

These requirements are not expressed as functional properties but are time-related, so-called
non-functional properties.

Existing formal languages are often unable to express those non-functional properties of a sys-
tem, mainly because they have no notion of time. Several ideas were proposed to introduce time
into formal languages. Especially enhancements for LOTOS [ISO87] and di�erent kinds of tem-
poral logic (for an overview see [Got92]) have been discussed intensively. The spectrum ranged
from adding time to the language itself, e.g. [QF87, LL94], to hybrid approaches, i.e. writing
speci�cations in two languages (e.g. LOTOS and temporal logic [BBBC94]).

Logic and algebra{based languages are very well suited for speci�cation purposes. Requirements
may be expressed elegantly. However, it is often di�cult or impossible to derive e�cient
implementations automatically from these speci�cations. For these purposes, automata-based
languages are often better suited [BBBC93]. The derivation of e�cient implementations is an
important issue in protocol engineering. Thus, we concentrate in this paper on the automata-
based language Estelle [ISO89].

We will examine the suitability of Estelle for the formal speci�cation and automatic implemen-
tation of multimedia systems. Estelle already has a concept of time: it is possible to delay
transitions of Estelle modules for a certain amount of time. In traditional applications, this
feature was used to specify timeouts. We will investigate the usefulness of this time concept
for the above-mentioned purposes.

The paper is organized as follows: Section 2 gives a brief overview of characteristics and require-
ments for distributed multimedia system. In Section 3, we show an approach of how to specify
these typical characteristics in Estelle using the language's delay operator. We show that it is
possible to model some of the quality of service aspects, but that many may not be su�ciently
(if at all) speci�ed. In Section 4, we derive implementations from the developed speci�cations
automatically for di�erent architectures to check if at least the set of speci�able characteristics
may be found again in the implementation. Performance measurements show that the intended
behavior is not achieved. We identify several reasons for these results, and give, in Section 5, a
solution for the problem introduced by the language, which only needs relatively small changes
to the language. Measurement results show the usefulness and suitability of the new approach.
Section 6 concludes the paper and discusses some ideas to improve the expressiveness of the
language with respect to the whole set of QoS parameters.

2 Characteristics of Multimedia Systems

Multimedia systems are characterized by the use of very di�erent kinds of media. Apart
from time-independent media like text or graphics, continuous media play an important role,
e.g. video and audio, where parts of the data stream (e.g. pictures of a movie) are related to
each other in the time dimension. Human senses, namely visual and audial perception, impose
strict constraints on their transfer and presentation. A video has to be transferred and present-
ed to the user at a rate of at least 16 to 25 pictures per second to create the impression of a
movie. The intervals between one picture and the next should be nearly equal for all pictures
to create the impression of uniform progress.

2

To express these new requirements in a machine-readable form, new quality of service parame-
ters have been developed, e.g. [HSS90]. A user may express his requirements on media transfer
or presentation by specifying values for the QoS parameters. The most important of these
parameters are:

� Throughput

Movies consist of a sequence of pictures. In distributed systems, these pictures have to
be transferred subsequently from the source to the sink computer. Even a single colored
picture occupies a large amount of memory. In addition, 25 pictures have to be transferred
every second. Considering a picture size of 640�480 pixel with 24 bit/pixel representing
the color of the pixel, a throughput of about 175 MBit/s will be necessary. Even when
this high value is reduced by data compression, the system needs a guaranteed throughput
of several MBit/s.

� Transfer Delay

In some applications, the time between the production of data at the source and its
presentation at the sink is subject to very stringent bounds. These bounds are expressed
by the transfer delay. An important example is a telephone call. Delays longer than
several tenths of a second are unacceptable as they make conversation impossible.

� Jitter

The jitter expresses the variance of the transfer delay. For movie presentation, jitter
should be very slight to create the impression of uniform progress of the movie. Jitter
can be reduced in the end systems by the use of bu�ers. However, these bu�ers have to
be quite large, thereby requiring large memory resources. Thus, it is better to have the
jitter already controlled by the network itself [Fer92].

� Error Rates

The transfer reliability for continuous media may be lower than 100%, as pixel or block
errors or even whole missing pictures will not be noticed by the user while watching a
movie. Missing blocks in an audio transfer result in a short noise. Retransmission of
missing blocks is often not useful. By the time of the arrival of the retransmitted data,
its presentation time has already passed.

Apart from these parameters, new service semantics have been found to be necessary [DBLL92,
Fer90, Kur93]. For data communication, only best-e�ort services have been o�ered, where the
service provider tries to do its best to maintain the requested service but cannot give any
guarantees. In the guaranteed service, the service user can rely on the initially negotiated
service characteristics. Apart from that, a statistical service has also been discussed that gives
guarantees like \Not more than 10% of all packets will have a delay longer than 10 milliseconds."

In the next section, we will try to express the provision of a certain quality of service and
the related service semantics in Estelle. We examine the parameters and semantics introduced
above.

3

3 Speci�cation of Multimedia Systems in Estelle

To allow the speci�cation of non-functional behavior, formal techniques need a notion of time.
In Estelle, the only way to express time relations is the delay operator. Informally, the semantics
of delay(E1,E2) in a transition t are described roughly as follows in [ISO89]:

1. Once newly enabled, t cannot be executed until it remains enabled for at least E1 time
units.

2. If t remains enabled but is not �red for E time units, E1 � E � E2, then even if t is the
only enabled transition within a module instance at the moment, t still may or may not
be executed.

3. If t has been enabled for E time units, E � E2, then if t is the only enabled transition, t
will �re. Of course, any other enabled transition may �re, too.

It is possible to omit the second parameter: delay(E1) is equivalent to delay(E1,E1).

To assess the suitability of the delay operator, we consider a sample speci�cation of a multimedia
system. It consists of a sender and a receiver connected through a channel. The sender is
required to send a data stream with a throughput of 3:2MBit=s isochronously, corresponding
to one message of 4k size every 10 milliseconds. For this purpose, we use the leaky-bucket
algorithm known, for example, from the XTP protocol. The receiver is required to receive
the data stream with a jitter of at most 2ms. We leave out the channel speci�cation in this
example. The sender and receiver speci�cation may be found in Figure 1. Within the context
of the Tempo project at the University of Lancaster [BBBC93], Estelle has already been brie
y
examined for its suitability for specifying multimedia systems. Parts of the example are based
on these ideas.

The new QoS parameters introduced in Section 2 have been modeled in the following way:

� Throughput

The provision of a certain throughput is expressed by a periodically selected and executed
transition. The transition is prioritized, ensuring its selection when other transitions are
enabled. In the example, the send transition always has priority over the transition
receiving input from a higher layer. It should be selected every 10ms. Thus, a possibly
bursty user input is smoothed by the algorithm. By following this approach, however,
we can, due to the semantics of the delay operator, only introduce an upper bound on
the throughput. The transitions will not �re more frequently than every 10ms. As a
consequence of item (3) in the description of the delay operator, the transition may also
�re after a longer delay without violating the speci�cation. Thus, Estelle does not allow
to express an exact intended timing behavior for the throughput. The speci�er cannot
express his needs exactly. In addition, there is no way to �nd out how long the delay
really was as no time variables exist.

� Transfer Delay

For controlling the provision of a certain transfer delay, one has to relate two events,

4

i.e. the sending of the data from the source, and its arrival at the sink. In an Estelle
speci�cation, these two events take place in two di�erent modules. They may not be
related to each other as the delay operator can only refer to one transition in one single
module. We note that, in general, it is impossible to describe timing relations between
events in di�erent Estelle modules. This is an important disadvantage of the language.

ip up: up_channel(provider);

 down: down_channel(user);

end;

body sender_body for sender_type;

var

 buffer : array[1..maxContent] of Message;

trans

 priority LOW

 when up.msg

 provided buffer_not_full begin

 insert_into_buffer(msg);

 end;

 priority HIGH

 delay(10)

module receiver_type

ip down: down_channel(user);

end;

module sender_type process;

body receiver_body for receiver_type;

end;

state WAITING, RECEIVE, ERROR;

trans

 from WAITING TO RECEIVE

 delay (10)

 begin end;

 from RECEIVE TO WAITING

 when down.msg begin

 use_msg;

 end;

 from RECEIVE TO ERROR

 delay (2) begin

 (* message arrived too late *)

 end;

 output down.msg(buffer[first]);

 remove_msg_buffer;

 end;

Figure 1: Speci�cation of sender and receiver in the example

� Jitter

The jitter in the receiver module is controlled in the following way: 10ms after receipt of
the last message, the module enters the receive state again, waiting for the next message.
If no message arrives after another 2ms, the module enters en error state as the message
has not arrived during the speci�ed period.

� Error Rates

Certain speci�ed error rates, e.g. \No more than 10% of all packets should be lost.", may
be expressed by two counters, one for the packets arrived and one for those lost. Every
time a packet arrives in order or does not arrive, the respective counter is incremented.

5

The relation of both counters models the error rate and may be checked in a provided

clause of the transitions.

Speaking in terms of service semantics, Estelle can only provide best-e�ort service. Leaving
out any delay clauses in the transition descriptions enables fast transition execution but it is
not possible to give any guarantees on lower bounds for throughput or upper bounds for jitter.
However, in some cases it is possible to check if speci�ed values have been maintained and
to signal violations to the user (see the item on error rates). Thus, it is possible to specify
enhanced best-e�ort services in Estelle, but no guaranteed services.

How useful are the modeling possibilities for important aspects of speci�cation language usage?
We consider the following aspects: clearness and correctness, validation and veri�cation and
automatic implementation.

� Clearness and Correctness

The delay operator provides the only way to specify throughput and jitter aspects. For
an experienced Estelle reader, the intention of the speci�er may be derived from the
speci�cation. However, the relation between the delay operator and the intended behavior
is not as obvious as it is with other language constructs. In addition, the speci�er is
not able to express more than this intended behaviour. There is no way to enforce
the provision of a guaranteed transition �ring time after the delay timer has expired.
Implementations may thus conform to the speci�cation, but not, on the other hand, really
implement the intended behavior. This is due to the semantics of the delay operator.

� Validation and Veri�cation

The semantics and underlying model of Estelle make veri�cation di�cult, if not impos-
sible. This is also true if time aspects are examined. Validation, however, is easy with
Estelle. The validation of timing aspects adds a further degree of complexity. It is
often necessary to include the protocol's runtime environment characteristics in the ex-
periments. The tester of a multimedia system is often more interested in the protocol's
performance than in its correctness. Most validation tools do not support performance
examinations; often, their code structure prevents rapid execution. Thus, it is often the
tool itself that prevents testing of performance aspects.

� Automatic Implementation

The task of an implementation is to conform to the speci�cation and to be e�cient.
Speaking in terms of the delay operator, it is important that transitions not �re before
the delay time has passed (conformity), but that they �re immediately thereafter (e�-
ciency). In the next section, we will assess implementations with respect to these criteria,
i.e. we �nd out how good the e�orts made by the implementation to achieve the speci�ed
parameter values really are.

To summarize, the use of the delay operator is very limited with respect to multimedia system
speci�cation. In Section 6, we brie
y present some ideas of how to improve the expressiveness of
Estelle speci�cations concerning timing requirements. In the remainder of this paper, however,
we concentrate on the given Estelle features.

6

4 Implementation Problems with the Delay operator

In this section, we answer the question whether automatic implementations of multimedia sys-
tems speci�ed with Estelle's delay operator do indeed implement the intended behavior. We
do this by deriving code from the speci�cation outlined in Figure 1 and by measuring its per-
formance. We concentrate on throughput as our main evaluation focus. To get a characteristic
impression, we perform the measurements on a variety of hardware architectures and use, where
possible, di�erent Estelle code generators, resp. runtime environments.

Our speci�cation consists of a root module and a number of children modules. One half of the
children modules is sending messages of a certain size with a certain delay while the other half
is receiving the messages. A single sender looks like the one in Figure 1, while the receiver is
simpli�ed by not controlling the jitter. We call a pair comprising a sender and a receiver a
connection. The sender module mainly executes one transition in which messages of maxData
size are output sequentially:

MessageType = array[1..maxData] of char;

...

from sending to same

delay (x)

begin

output port.msg(message);

end;

This means that a message of a size of maxData bytes is sent every x milliseconds to achieve a
throughput of maxData � 8� 1000

x
Bit=s. From the Estelle semantics of the delay operator, it

is clear that this is an upper bound for the throughput, because the transition becomes �rable
after x milliseconds have elapsed. However, it is intended that the transition should �re as
quickly as possible after becoming �rable. The goal of our measurements was to �nd out how
long it took to select and execute the \right" transition, i.e. the period of time between x and
the actual �ring time.

We performed several measurements with one, two and three connections on di�erent architec-
tures. Our machines were a DECstation 5000/133 running Ultrix 4.3, an Intel PC 486DX33
running Linux 1.0.9, an IBM RS/6000 running AIX 3.2, a SUN SPARC 10 running Solaris
2.3 and a KSR1 [FBR93] equipped with 32 processors running OSF/1 1.3. Our software was
the Pet/Dingo System from NIST [SS93], the EDT [Bud92]1, and, for the parallel machine,
our modi�ed Pet/Dingo [FH94]. For the delay parameter, we used the values 0, 10 and 20
milliseconds. The results of our measurements are given in Table 1.

For two of the machines, the SUN Sparc and the KSR, we performed some additional mea-
surements to show the e�ects more clearly and in graphical form. We varied the delay from 0
to 40 milliseconds and the message load from 1024 to 9216 Bytes. The results may be seen in
Figures 2, 3 and 4. The dotted lines show the optimal results, i.e. what was intended by the
speci�cation; the normal lines show the measured results.

1Those measurements were not possible when using delays, as in the current version of EDT, it is not possible

to specify delays less than 1 second. So, EDT was only used for measurements without delays.

7

speci�ed Pet/Dingo EDT

delay
connections

DEC 486 DX33 IBM SPARC with PD KSR1-32 SPARC

1 7.2 5.6 25.0 2.9 10.2 0.5
{ 2 14.1 10.8 42.3 5.8 11.8 0.9

3 21.5 16.3 60.1 8.6 13.8 0.12
1 17.3 20,2 32.1 13.0 20.0 {

10 2 21.6 30.4 50.0 15.5 20.1 {
3 24.1 40.3 68 17.6 29.6 {
1 25.7 30.0 47.1 24.5 31.7 {

20 2 32.2 40.3 51.5 27.5 31.9 {
3 33.1 50.4 68.4 30.4 42.5 {

Table 1: Measured delay compared to speci�ed delay (in ms/transition)

Obviously, the intended behavior is not at all achieved by all the implementations. Even with
the fastest machine, the SUN Sparc, a further delay of at least 3 milliseconds per transition
is introduced by the implementation. As a result, we get a throughput which is at least 23%
less than intended in the case of a speci�ed throughput of 100 messages per second (x=10).
Comparing the lines in the tables for an increasing number of connections and Figures 2 and
3, we see that the situation becomes even worse.

Sparc 10: 1 connection

specified delay

0
5

10
15

20
25

30

2000
3000

4000
5000

6000
7000

8000
9000

0

5

10

15

20

25

30

35

specified delay (ms)

workload (PDUsize in Bytes)

real delay (ms)

measured delay

Figure 2: SPARC10 - 1 connection

Sparc 10: 3 connections

specified delay

0
5

10
15

20
25

30

2000
3000

4000
5000

6000
7000

8000
9000

0
5

10
15
20
25
30
35
40
45

specified delay (ms)

workload (PDUsize in Bytes)

real delay (ms)

measured delay

Figure 3: SPARC10 - 3 connections

Other problems are introduced by drawbacks of the operating system. This can be seen in
Figure 4. To implement delays, one has to measure the elapsed time. In Unix systems, this
is usually done by calls of the routine gettimeofday() (or similar). Unfortunately, the imple-
mentation on some systems (here in OSF/1 on the KSR) has a very coarse granularity of about
20 ms. This results in the typical shape of the curve in Figure 4.

What are the reasons for the performance problems? We identi�ed two main reasons: the
implementation environment and Estelle itself.

8

KSR1: 1 connection, 3 processors

specified delay

0
5

10
15

20
25

30
35

40

2000
3000

4000
5000

6000
7000

8000
9000

0

10

20

30

40

50

specified delay (ms)

workload (PDUsize in Bytes)

real delay (ms)

measured delay

Figure 4: KSR1 - 1 connection, 3 processors

We already pointed out the problems introduced by some operating systems. Sometimes they
can be solved by using other routines for time measurement. The KSR, for example, o�ers a
better call which directly accesses the hardware. Other problems are often insoluble. When
interprocess communication is used, one has to use the Unix select() call. On some systems,
this call performs poorly, too.

A typical problem for currently available FDT compilers and runtime systems is their orienta-
tion towards simulation. In addition, many features are programmed ine�ciently to allow for
a closer mapping of Estelle to the target language. A typical problem is the implementation of
the transition selection algorithm. This may be done by programmed access using hard-coded
if-statements or by table-controlled access. The latter is very di�cult to read but is very e�-
cient [HK94]. Minor problems are introduced by the use of object-oriented languages like C++,
which often need more processing power.

The second, more important, point is the problem introduced by the language Estelle itself. In
principle, we identi�ed two main problems.

The �rst problem (which we already encountered in the speci�cation phase) is introduced by the
semantics of the delay operator. Let us recall: when a transition t is guarded by the expression
delay(a,b), then it may not �re between the time e when t became enabled and e + a. It may
�re between e + a and e + b and it has to �re after e + b, at least, if no other transition is
enabled. However, the semantics give no statement about the exact point in time when the
transition has to �re. This is considered to be implementation-dependent.

To understand the consequences for the implementation, we look again at our sample speci�ca-
tion from the beginning of this section. We consider a speci�cation consisting of a root module
and two connections. The delay value in the sender module is 10ms. We assume the following
times needed for module execution: the root module r needs 3ms to select a transition (it
never executes a transition, as all the work is done in the children). The sender modules s1 and
s2 need 3ms for transition selection and 8ms for transition execution. The receiver modules
r1 and r2 need 4ms for selection and 6ms for execution. We assume the whole speci�cation

9

is running on a single processor machine. A possible execution trace is depicted in Figure 5.
The trace tells us when transitions may be �red in Estelle terms and when they are actually
�red in \real time" terms. We are only considering the sender transitions. In the �rst Estelle
cycle beginning at 0ms, the two sender transitions become enabled (depicted by the two dots).
They cannot be �red as they are guarded by a 10ms delay. This �rst cycle lasts 17ms until all
modules have executed their part of the cycle. After 10ms during this time, the two enabled
transitions should be executed speaking in terms of \real time" (dots at 10ms). However, they
may not be �red now, as (1) the sender modules do not have control, and (2) following Estelle
semantics, the modules do not "know" that some time has already passed. Due to the notion
of a system snapshot, they are all working with the same time for one cycle, which is, in this
case, still 0ms. One of the consequences of this time concept is that delayed transitions may
only be �red every other cycle, independent of the speci�cation structure.

searching transition

First Estelle Cycle Second Cycle

root

s1

s2

r1

r2

5 10 15 20 25 30 35 40 45 50 55

Transition executed

0 ms 17 ms

Transition enabled
should be fired

Transition Transition
firable

Third Cycle

Transition enabled

time (in ms)

51 ms

module

executing transition

Figure 5: Time diagram for a sample speci�cation

At 17ms, the second Estelle cycle starts. All modules know that 17ms have passed since the last
cycle. That means that the two sender transitions may now be �red (dots at 17ms). However,
the two sender modules do not have control. They have to wait another 7ms resp. 18ms until
they may �re their transition. Afterwards, this Estelle cycle lasts another 16ms before a new
cycle starts and the transitions become newly enabled.

Obviously, the semantics of the delay operator are correctly implemented, but this does not
result in the intended behavior. We conclude that the contrast between the concept of a constant
time during one system snapshot and the passage of real time during this cycle prevents the
implementation of real-time characteristics.

10

The second problem is related to the �rst, and is due to Estelle's concept of parallelism. Asyn-
chronous parallelism, i.e. modules which may run independently of each other, is only possible
between system modules. However, the number of system module instances is static after
system initialization. Synchronously parallel modules may be initiated during speci�cation
runtime, but they depend on their parent module. When a parent module is active, its children
may not be active, and when the parent module passes the right to execute to its children, it
has to wait until all children have done their work. Thus, the performance of a module is in
u-
enced by its ancestors, i.e. by its position in the module hierarchy, and by the performance of its
siblings. These characteristics make it di�cult to describe typical requirements of high-speed
applications: the performance of one connection should not in
uence the performance (and
thereby the provision of a certain quality of service) of another connection2. This is also true
for the whole system, which means that any other parts somewhere in the hierarchy should not
in
uence a connection. This is, however, the case when we implement the Estelle semantics.

In the next section, we show how the second problem may be solved and that, with this solution,
the �rst problem will, to some extent, disappear.

5 A Solution

A solution to the language problem described in the last section has to take into account the
following points:

1. The position of a module in the hierarchy should have no impact on the module perfor-
mance. The position should be understood as a possibility for the speci�er to structure
his work. The synchronous parallelism stands against that.

2. Parallel modules should not in
uence each other.

Obviously, Estelle in its original form cannot ful�ll both requirements. Thus, one has to think
of either using another language or adapting the language itself. We chose the second option
because of the already mentioned advantages of Estelle. However, any adaptation should be as
minimal as possible and should �t into the current Estelle semantics. Otherwise, the advantage
of using a standardized language is lost. In addition, it is desirable to use an enhancement
which is already well known and part of the current standardization discussion.

Thus, we propose in this paper to use as a solution to the language problem described in Section
4 the concept of asynchronous processes described by Bredereke and Gotzhein [BG94]. In
their work, the authors propose adding the new keyword asynchronous to the language. Estelle
process and systemprocess modules may be attributed additionally with this keyword. The
semantics for asynchronous systemprocess modules are that they have a child module which
is of type asynchronous process. The semantics of asynchronous process modules is that
they are no longer synchronized with their parent module. The e�ect is that these modules

2The problem cannot be solved by specifying each connection as an asynchronousmodule. In this case, the

number of connections would be static, and no new connections could be opened during runtime.

11

actually attain the status of systemprocess modules, with the di�erence that they still may
be created dynamically. They are running their own Estelle cycles.

With these new syntax and semantics, the second problem in the last section is solved. An
asynchronous module is no longer dependent on its ancestors. Parallelism can be used without
the constraints of the synchronous semantics of standard Estelle. Thus, the speci�er is free to
use module hierarchies as a structuring means without having to watch performance aspects.

In addition, we get a partial solution to the �rst problem. All the asynchronous modules
are running their own Estelle cycles. That means that the main Estelle cycle (of the system
module tree) becomes shorter, as the asynchronous modules are excluded. Typically, time-
critical modules will no longer be included in this cycle, so the fact that the latter execute their
own cycle is much more important. When only one module is executed during a cycle, the cycle
will be very short. This has two main bene�ts: �rst, a module runs more often, having the
possibility of �ring more transitions, and second, the checking of delay values can be done at a
much �ner granularity. Modules will not have to wait for other modules to complete. Instead,
they assume much better control of their timers and will be able to react very much faster on
the expiration of a timer.

To make use of the additional performance o�ered by the new concept, it is not useful to
simply add, in the implementation, the asynchronous modules to the list of system modules
and execute this list sequentially. There will be no performance gain at all. Instead, there are
generally two ways to improve performance:

specification
module

... sync_worker
process

sync_worker
process

sender
async process

receiver
async process

Figure 6: Module structure of the example

1. Execute some modules more often than others.

2. Use parallelism in the implementation, too. Single modules or groups of modules will be
mapped onto an operating system (lightweight) process. To in
uence the performance of
the time-critical modules, the implementor has several possibilities. On a multiprocessor
system, processes or threads may be assigned their own processor. A single thread would
then be able to execute its module(s) as quickly as necessary. If there are constraints on
the number of processors, especially, if there is only one processor, one could work with
priorities. Threads executing time-critical modules will have higher priority than others.
A multiprocessor system, however, is the ideal machine for the new parallelism concept.

12

We implemented the asynchronous variant on the KSR multiprocessor and performed several
measurements to prove that it is a better solution for the derivation of e�cient multimedia
systems implementations. We made sure of enough processing power and thus avoided priority
issues. For our measurements, we used a slightly modi�ed speci�cation with respect to Sec-
tions 3 and 4. We still have a root module and one of the above connections with real time
requirements, but in addition, we have several modules performing some other work that do
not require such strict timing constraints. These modules may, for example, model connections
for sending or receiving of text or directory services. The real time connection modules were
attributed asynchronous process while the other modules had the normal process attribute.
The example's module structure is visualized in Figure 6. Measurements with this speci�cation
have been done on a SUN Sparc (ignoring the asynchronous keyword) and on the KSR, once
with the standard Estelle and once with new variant. The number of synchronous modules has
been varied between 0 and 6. The results may be found in Figures 7, 8 and 9.

Sparc 10 with synchronous modules

specified delay

0
5

10
15

20
25

30

0
1

2
3

4
5

6

0
10
20
30
40
50
60
70
80

specified delay (ms)

workload (synchronous workers)

real delay (ms)

measured delay

Figure 7: SPARC10: performance of the real time sender with varied other load

Figures 7 and 8 show that without other modules, the performance of the real time modules
is quite good. As soon as we add synchronous worker modules, the synchronization overhead
and the additional work introduce a strong performance decrease for the real time sender.
This supports the measurements made in Section 4. With the new approach (Figure 9), the
addition of new modules has no in
uence at all on the performance of the real time sender3.
The performance of the time-critical module is thus independent of its position in the hierarchy
which was one of our major goals. It is running in its own thread, executing an Estelle cycle
only for itself. The Estelle cycle is thus much shorter than for the whole speci�cation module
tree, resulting in much more timer checking and allowing a �ner granularity for delay value
checking.

3The in
uence of the select() call could not be eliminated from the measurements. Thus, we still have the

typical staircase shape.

13

KSR1 with synchronous modules

specified delay

0
5

10
15

20
25

30

0
1

2
3

4
5

6

0

10

20

30

40

50

60

specified delay (ms)

workload (synchronous workers)

real delay (ms)

measured delay

Figure 8: KSR with synchronous modules:
real time sender performance

KSR1 with asynchronous modules

specified delay

0
5

10
15

20
25

30

0
1

2
3

4
5

6

0
5

10
15
20
25
30
35
40

specified delay (ms)

workload (synchronous workers)

real delay (ms)

measured delay

Figure 9: KSR with asynchronous modules:
real time sender performance

6 Conclusion and Outlook

In this paper, we showed that it is generally possible to specify some aspects of multimedia
systems in Estelle, while others cannot expressed. We derived implementations from a sample
speci�cation automatically. Their runtime results did not match the intended behavior of the
speci�cation. As reasons for this, we identi�ed the language Estelle itself, namely the delay
operator semantics, the synchronous parallelism, and the implementation environment. As
a solution to the parallelism problem, we adopted and implemented the extended version of
Estelle proposed in [BG94] which allows specifying asynchronous process modules and thus
increases the degree of parallelism and independence between Estelle modules. Measurements
on a parallel machine show the suitability of this approach.

In the current version of the implementation environment for asynchronous modules, we assume
the existence of enough system resources to assign a whole processor to a thread running an
asynchronous module. However, that cannot be done in the case of too many modules or too
few processors. To a certain extent, this problem can be solved by the use of operating system
priorities. Threads running modules with real-time requirements should have higher priority
than other threads and thus be assigned the processor more often. A better solution, however,
is the use of a real-time operating system. Using these systems, threads may be assigned
processors when they really need it. The problem of when to execute which thread is solved
by the scheduling strategy. This adds a further requirement to the mapping of Estelle modules
onto the operating system.

To specify all aspects of multimedia systems, the language Estelle does not provide su�cient
means. In this area, much work has yet to be done. One way could be to add to transitions some
sort of pre- and postconditions expressing timing relations. There exists an approach where it
is possible to annotate transitions with minimum and maximum execution times [DB87]. Its
goal, howvever, is simulation and performance evaluation. Another possibility would be to add
constructs for the relation of module states, i.e. to describe timing constraints on state-switching
sequences. Expressing relations between two events in di�erent modules is more di�cult: the

14

information-hiding principle of Estelle modules would be violated, resulting in a deep change
of the language.

References

[BBBC93] G. Blair, L. Blair, H. Bowman, and A. Chetwynd. Formal Support for the Speci�-
cation and Construction of Distributed Multimedia Systems (The Tempo Project).
Technical Report MPG-93-23, Lancaster University, December 1993.

[BBBC94] H. Bowman, G.S. Blair, L. Blair, and A.G. Chetwynd. Time versus abstraction in
formal descriptions. In Tenney et al. [TAU94], pages 467{482.

[BG94] J. Bredereke and R. Gotzhein. Increasing the Concurrency in Estelle. In Tenney
et al. [TAU94], pages 127{141.

[BGS87] G. v. Bochmann, W. Gerber, and J.-M. Serre. Semiautomatic Implementation
of Communication Protocols. IEEE Transactions on Software Engineering, SE{
13(9):989{1000, September 1987.

[BT82] T. P. Blumer and R. L. Tenney. A Formal Speci�cation and Implementation Method
for Protocols. Computer Networks, 6:201{217, 1982.

[Bud92] S. Budkowski. Estelle Development Toolset. Computer Networks and ISDN Systems,
Special Issue on FDT Concepts and Tools, 25(1), 1992.

[DB87] P. Dembinski and S. Budkowski. Simulating Estelle speci�cations with time pa-
rameters. In H. Rudin and C. H. West, editors, Protocol Speci�cation, Testing, and
Veri�cation VII, pages 265{279, Amsterdam, 1987. Elsevier Science Publishers B.V.
(North{Holland), Amsterdam.

[DBLL92] A. Danthine, Y. Baguette, G. Leduc, and L. Leonard. The OSI95 Connection{Mode
Transport Service { The Enhanced QoS. In A. Danthine and O. Spaniol, editors,
hpn'92 { 4th IFIP conference on high performance networking, 14.{18.Dec. 1992,
Li�ege, pages E1{E18. North Holland, 1992.

[FBR93] S. Frank, H. Burkhard, and J. Rothnie. The KSR1: High Performance and Ease
of Programming, no longer an Oxymoron. In H.-W. Meuer, editor, Supercomputer
'93, Informatik aktuell, pages 53{70. Springer Verlag, Heidelberg, 1993.

[Fer90] Domenico Ferrari. Client Requirements for Real-Time Communication. IEEE Com-
munications Magazine, 28(11):65{72, November 1990.

[Fer92] Domenico Ferrari. Real{Time Communication in an Internetwork. Journal of High
Speed Networks, 1(1):79{103, 1992.

[FH94] S. Fischer and B. Hofmann. An Estelle Compiler for Multiprocessor Platforms. In
Tenney et al. [TAU94], pages 171{186.

15

[Got92] Reinhard Gotzhein. Temporal logic and applications { a tutorial. Computer Net-
works and ISDN Systems, 24:203{218, 1992.

[HK94] Thomas Held and Hartmut K�onig. Increasing the E�ciency of Computer-aided
Protocol Implementations. In Proceedings PSTV'94, Vancouver, 1994.

[HSS90] Dietmar Hehmann, Michael Salmony, and Heinrich J. St�uttgen. Transport services
for multi{media applications in broadband networks. Computer Communications,
13(4), 1990.

[ISO87] Information processing systems | Open Systems Interconnection | LOTOS: Lan-
guage for the temporal ordering speci�cation of observational behaviour. Interna-
tional Standard ISO 8807, 1987.

[ISO89] Information processing systems { Open Systems Interconnection { Estelle: A formal
description technique based on an extended state transition model. International
Standard ISO 9074, 1989.

[Kur93] Jim Kurose. Open Issues and Challenges in Providing Quality of Service Guarantees.
Computer Communication Review, 23(1), January 1993.

[LL94] L. L�eonard and G. Leduc. An enhanced version of timed LOTOS and its application
to a case study. In Tenney et al. [TAU94], pages 483{498.

[QF87] J. Quemada and A. Fernandez. Introduction of Quantitative Relative Time into
LOTOS. In Protocol Speci�cation, Testing and Veri�cation VII, pages 105{121.
Elsevier Science Publishers B.V. (North{Holland), Amsterdam, 1987.

[SB90] D. P. Sidhu and T P. Blumer. Semi{automatic Implementation of OSI Protocols.
Computer Networks and ISDN Systems, 18:221{238, 1990.

[SS93] Rachid Sijelmassi and Brett Strausser. The PET and DINGO tools for deriving
distributed implementations from Estelle. Computer Networks and ISDN Systems,
25(7):841{851, 1993.

[TAU94] R.L. Tenney, P.D. Amer, and M.�U. Uyar, editors. Formal Description Techniques,
VI. Elsevier Science Publishers B.V. (North{Holland), Amsterdam, 1994.

[VLC88] S. T. Vuong, A. C. Lau, and R. I. Chan. Semiautomatic Implementation of Pro-
tocols Using an Estelle{C Compiler. IEEE Transactions on Software Engineering,
14(3):384{393, March 1988.

16

