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Abstract

Object oriented databases provide rich structu-

ring capabilities to organize the objects being re-

levant for a given application. Due to the possi-

ble complexity of object structures, path expres-

sions have become accepted as a concise syntac-

tical means to reference objects. Even though

known approaches to path expressions provide

quite elegant access to objects, there seems to be

still a need to extend the applicability of path ex-

pressions. The rule-language PathLog proposed

in the current paper generalizes path expressions

in several ways. PathLog adds a second dimen-

sion to path expressions which makes it possible

to use only one path in situations where known

one-dimensional path expressions require a con-

junction of several paths. In addition, a path

expression can also be used to reference virtu-

al objects. This general use of path expressions

gives rise to many interesting semantic implica-

tions.
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1 Introduction

Many applications demand for data models

with richer structuring capabilities than the

relational model, because using the relatio-

nal model we are forced to organize the ap-

plication structures by a set of 
at relations.

The missing concepts seem to be o�ered by

the object oriented data model. Here, data is

structured by means of objects which are as-

signed to classes which in turn are arranged

hierarchically to o�er an inheritance mecha-

nism. Each object has a systemwide unique

identi�er, typically called oid, which is the

basis of a reference-based access to the ob-

jects. Such references usually are obtained

as the result of applying a method.

The complexity of the object structures

�nds its counterpart in the languages pro-

posed to manipulate objects. To ease the

task of accessing objects path expressions

have been proposed. The idea here is to

follow a link between objects without ha-

ving to write down explicit join conditions.

This idea has appeared several times befo-

re. While one of the �rst approaches, GEM

([Zan83]), was based on QUEL, most ap-

proaches discuss possible extensions of SQL

(e.g. XSQL [KKS92], O2SQL [BCD92], ES-

QL [GV92] and OSQL [Fis87]).

To give a �rst 
avor of path expressions
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let's go through some examples. For the ti-

me being we are interested in the color of the

automobiles belonging to certain employees.

We further assume, that a link between em-

ployees and their vehicles is established via

a set valued method (attribute) vehicles and

that automobiles are a special kind of vehic-

les.

In O2SQL we would write the following

query:

SELECT Y.color

FROM X IN employee

FROM Y IN X.vehicles

WHERE Y IN automobile

(1.1)

Here, the variables are ranging over objects;

X.vehicles is a path expression which can be

read as \apply method vehicles on object X".

In general, a path may have arbitrary length.

XSQL contributes to this kind of langua-

ges the concept of selectors, which may be

used to specify intermediate result in a path.

Using selectors we can write more concisely:

SELECT Z

FROM employee X, automobile Y

WHERE X.vehicles[Y].color[Z]

(1.2)

In this example, the selectors [Y] and [Z] are

used to restrict an intermediate result (vehic-

les have to be automobiles) and to provide

a result-position for the query (the color is

placed in Z).

A more calculus oriented proposal for path

expressions is given in [VV93]. Here the usa-

ge of class names in a path is allowed making

possible the following query:

f Z j employee.vehicles.

automobile.color[Z]g
(1.3)

Even though the above approaches provi-

de quite elegant techniques to access objects,

we can observe certain limitations, as far as

path expressions are concerned.

Path expressions in all languages we are

aware of can only be applied in one dimensi-

on. Starting from a certain object, a compo-

sition of method applications can be speci-

�ed, where each application, if the respective

method is de�ned, references result objects.

It would be nice, if we could also refer to

other methods of such an object as part of

the same path. For example, in XSQL, if we

want to specify that the vehicles of interest

should have 4 cylinders, to our knowledge,

there is no way to express this in the same

path. Instead, we have to break one path

into two and in general, into many pieces,

which leads to the following solution:

SELECT Z

FROM employee X, automobile Y

WHERE X.vehicles[Y].color[Z]

AND Y.cylinders[4]

(1.4)

What is missing is a second dimension which

would allow us to refer to the properties of

any object that is referenced in a path wi-

thout having to leave that path. While the

�rst dimension goes into depth, this second

dimension would go into breadth.

Another way to increase the 
exibility of

object oriented models is to introduce virtu-

al objects or classes ([AB91, KLW93]) which

correspond to views in the relational model.

While the technique used in XSQL builds
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on function symbols in a way proposed in

[KW93], [AB91] propose a referencing tech-

nique based on methods (attributes). The

latter approach seems to be more natural for

path expressions; however no formal seman-

tics of this approach has been presented. In

the current paper we use methods to de�ne

and reference virtual objects and give for-

mal semantics to this technique. Moreover,

because methods can be controlled by signa-

tures, virtual objects may be de�ned w.r.t.

given type restrictions.

In this paper we propose a language cal-

led PathLog, which, on the one hand, gives

interesting solutions to the above mentioned

problems, and, on the other hand, extends

the application area of path expressions to

rule languages. The techniques we shall pro-

pose are applicable for di�erent kinds of rule

languages, e.g. deductive, production or acti-

ve rules. This generality holds because path

expressions are a convenient tool to reference

objects; the way in which a set of rules is

being evaluated is an orthogonal issue.

Despite the independence from certain

evaluation paradigms, we discuss our techni-

ques in a deductive framework. This provi-

des us with a generally accepted terminology

and a rigorous basis of semantics. Moreo-

ver, this decision is quite natural for us, be-

cause PathLog builds upon F-logic [KLW93].

PathLog extends the syntax of F-logic by

path expressions and proposes a direct se-

mantics for the enhanced syntax. As only a

small subset of F-logic is relevant for the ex-

position of PathLog, the current paper still

is self-contained.

The structure of the paper is as follows.

We �rst present some characteristic features

of PathLog (section 2). Next we introduce

the main terminology used throughout the

paper (section 3). Syntax and semantics of

PathLog follow in section 4 and section 5.

Section 6 contains a discussion of interesting

properties of PathLog. Section 7 �nally gives

a conclusion.

2 A First Look at PathLog

One striking characteristic of PathLog is

its convenient, concise syntax. We extend

path expressions by a general means to spe-

cify properties of objects referenced within a

path. For example, for each employee X, the

path

X:employee[age!30; city!newYork]

..vehicles:automobiles[cylinders!4]

.color[Z]

(2.1)

provides us with a reference to the colors of

the vehicles of X, which are automobiles with

4 cylinders, if X is 30 years old and lives in

newYork. If such a car indeed exists for em-

ployee X, variable Z will contain the corre-

sponding color. As usual, variables are capi-

talized.

Note that in this kind of path expressi-

ons we can distinguish two dimensions. The

�rst dimension is given by the composition

of method-applications syntactically expres-

sed by . (scalar methods) and .. (set valued

methods). The second dimension allows to

de�ne properties of the objects referred to

inside a path; only those objects are refe-

renced, which ful�ll the speci�ed properties.
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To see that our syntax could also be used

in a SQL-style, putting (2.1) in XSQL-style

gives

SELECT Z

FROM employee X, automobile Y

WHERE X[age!30; city!newYork].

vehicles[cylinders!4][Y].color[Z]

(2.2)

The reader may have already noticed the si-

milarity to molecules as they are used in F-

logic. Here the question arises, how much

PathLog does add to the known languages,

if we abstract from syntax.

Two observations are worth to notice. On

the one hand, in the setting of PathLog a

path may be treated as a reference to ob-

jects. As a consequence of this �rst view,

in PathLog a path may be used wherever

we expect an object. Therefore, we can ex-

tend molecules by allowing path expressi-

ons also inside molecules. For example, in

(2.2) we can replace in the above example

[city!newYork] by

[city!X.boss.city], (2.3)

to indicate that we are only interested in the

color of those vehicles, whose owner lives in

the same city as the respective boss.

On the other hand, a path may be treated

as a formula. In (2.2) a path was used in-

side the WHERE-clause and thus is assigned

a truth-value. In fact, PathLog allows these

two views under the same roof: a path may

be treated as a reference and as a formu-

la. Modifying (2.2) according to (2.3), the

sub-path X.boss.city is treated as a reference

while the whole path in the WHERE-clause

corresponds to a formula.

To further demonstrate the impact of

the second dimension in path expressions

in PathLog, we discuss one more example.

Consider the following O2SQL query which

asks for those managers X who have a red

vehicle produced by a company located in

Detroit where X itself is the president of that

company.

SELECT X

FROM X IN manager

FROM Y IN X.vehicles

WHERE Y.color = red

AND Y.producedBy.city = detroit

AND Y.producedBy.president = X

This query in O2SQL requires several

FROM- and WHERE-clauses. The result of

the set valued path X.vehicles is treated li-

ke a class; hence the second FROM-clause is

necessary to 
atten this set of objects expli-

citly.

In PathLog, taking advantage of the possi-

bility to nest paths and molecules mutually,

we may combine scalar and set valued paths

in one reference. Thus, this query may be

expressed by a single reference:

X : manager..vehicles[color!red]

.producedBy[city!detroit;president!X]

We are not aware of any other language,

which allows path expressions in a compara-

ble generality. In O2SQL a path can only be

used as a 1-dimensional reference. In XSQL

a path can be used as a 1-dimensional refe-

rence or formula, however semantics is on-

ly sketched by a transformation into F-logic,
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while we will give a direct semantics in this

paper. In fact, this direct semantics of paths

in PathLog gives rise to many interesting se-

mantic implications.

Our direct semantics allows to use a path

also to reference virtual objects. Adopting

an example from [AB91], the following rule

de�nes addresses as virtual objects for per-

sons with given attributes city and street:

X.address[street!X.street;

city!X.city]  X : person.
(2.4)

In this example, address-related attributes

of persons are restructured into one new ad-

dress object for each person. For each person

X, X.address is used as a reference to the vir-

tual address-object de�ned for X. Here we

use methods (like address) to reference virtu-

al objects; we do not need function symbols

as in F-logic, or, with a similar aim, virtu-

al class-names as in XSQL. Our approach

has two bene�ts. First, our framework is

much simpler than it is in F-logic, because

methods can do the same job function sym-

bols had to do in that framework.1 Second,

the usage of methods can be controlled by

signatures in the same way as in [KLW93],

which makes type checking techniques app-

licable.

3 Basic Terminology

For the purposes of this paper an object is

su�ciently described by its identity, its state

1In fact, it is possible to replace the usual type

constructors, e.g. cons by methods. A discussion of

this aspect, however, is beyond the scope of the cur-

rent paper.

and its class-membership. The object identi-

ty is a property distinguishing objects from

each other. The state may be de�ned ex-

tensionally, i.e., by a given set of objects to-

gether with their (stored) attributes, or in-

tensionally, by de�ning results of methods

using rules. A virtual object in this setting

is an object not given in the extensional part,

but existing in the intensional part only.

On the language level there is no need to

distinguish between extensional and inten-

sional information, as may be seen in exam-

ple (2.4), where one mechanism is su�cient

to reference both the (intensional) address

and the (extensional) city of a person. For

this reason, we do not stress the di�erence

between methods and attributes. Both may

be scalar or set valued, and may have argu-

ments.

To simplify the framework, objects also

denote classes and methods. As a direct con-

sequence, class-membership reduces to a bi-

nary relation on objects.

Our simple setting can now be summari-

zed as follows (cf. [KLW93]). Let N be a

set of names. For simplicity, we don't di-

stinguish between objects and values, thus

N also includes integer numbers and strings.

Note that only these names are directly ac-

cessible to the user, in contrast to the ob-

jects' identity, which is a storage level con-

cept. The alphabet of PathLog then consists

of N , a set of variables V, auxiliary symbols,

logical connectives and quanti�ers. Formu-

las in PathLog, e.g. rules, are then de�ned as

usual, the only di�erence here is that the lite-

rals are built out of path expressions, which
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will be de�ned formally in section 4.

To de�ne a formal semantics we need a se-

mantic structure, I, which can be perceived

as a set of objects and their properties. From

I we can obtain all the needed information

about this set of objects. As usual, the set

of all objects U is called the universe. Then,

a semantic structure I is a tuple

I = (U;2U ; IN ; I!; I!!):

Here, the function IN : N 7! U mapping

names to object shows which objects are de-

noted by the names. The class hierarchy

2U � U � U is a partial order telling us

how objects are related to classes. I!; I!! in-

terpret methods, i.e., de�ne the state of the

respective objects. I! is a function which

assigns to elements of U a partial function

Uk p
7! U , when used as a scalar method with

k � 1, k � 1, arguments, I!! is a function

which assigns to elements of U , when used

as a set valued method with k � 1, k � 1,

arguments, a function Uk 7! 2U .

4 Syntax of PathLog

In this section we will formally de�ne the

syntax of PathLog. We will introduce paths

and molecules. Since paths as well as mole-

cules are means to denote objects, they can

be mutually nested in a very liberal way: in

a molecule, wherever a (sub-) molecule is al-

lowed, we can also use a path; in a path,

wherever a (sub-) path is allowed, a mole-

cule can be used. Therefore, both kinds of

expressions are called references. References

are distinguished according to their scalarity,

i.e., they are either set valued or scalar.

4.1 References to Objects

The most simple form of a reference are na-

mes and variables. Such simple references

act as starting points for more complica-

ted references. A path consists of a refe-

rence followed by a method call like .spou-

se, while a molecule consists of a reference

followed by a �lter like [boss!mary]. No-

te how paths and molecules may be mu-

tually nested: a path mary.spouse is a

reference and may therefore be used in

the moleculemary.spouse[boss!mary], which

in turn may again be used in the path

mary.spouse[boss!mary].age to access the

age of the object. It is also possible to

nest terms inside the �lter, e.g. the na-

me mary may be further speci�ed as in

mary.spouse[boss!mary[age !25]].

De�nition 1 Given an alphabet, references

can now be de�ned inductively as follows.

� A name n 2 N and a variableX 2 V is a

reference, also called a simple reference.

� If t is a reference, then the expression

(t) is a reference, also called a simple

reference.

� If ti (0 � i � k), t0j (1 � j � l) and

tr are references, and if m; c are simple

references,

{ then the expressions

t0:m@(t1; : : : ; tk) and

t0::m@(t1; : : : ; tk) are references,

also called paths.

{ then the expressions

t0[m@(t1; : : : ; tk)!tr],
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t0[m@(t1; : : : ; tk)!!ft
0
1; : : : ; t

0
lg],

t0[m@(t1; : : : ; tk)!!tr], and

t0 : c are references, also calledmo-

lecules.

The terms ti; t
0
j;m; c are the sub-

references of the respective references.
2

Methods may be called with parameters,

e.g. john.salary@(1994), denoting john's sala-

ry in 1994. When methods are called wi-

thout parameters, we will omit the brackets

and the @-symbol, i.e., write mary.boss

instead of mary.boss@(). In a sequence

of �lters, e.g. mary[age!30][boss!peter],

all elements are applied to the �rst re-

ference, which is mary in this case. To

stress this fact we write as a shorthand

mary[age!30;boss!peter], i.e., a reference

with a list of �lters is a molecule as well.

The XSQL-style of selectors e.g. in

X..vehicles.color[Z] is used as an abbreviati-

on for a �lter specifying the built-in method

self; the above example therefore is interpre-

ted as X..vehicles.color[self!Z]. For every ob-

ject the method self yields the object itself.

Bracketed references are used to change

the usual left-to-right evaluation sequence of

a reference. To give an example, let list be a

method that yields for any class c the corre-

sponding class \list of c". For example, in-

teger.list denotes the class of all lists of inte-

gers. The membership of an object L in this

class then is expressed by L : (integer.list).

Note the di�erence to writing L : integer.list;

here we express that L is an integer, on which

method list has to be applied.

4.2 Scalarity and Well-formedness

A path may be used to either reference ex-

actly one object, or to reference a set of ob-

jects. While a path like

p1.age

denotes the invocation of the scalar method

age, the path

p1..assistants (4.1)

denotes the result of the application of the

set valued method assistants on p1, i.e., the

set of all assistants of p1. With an additio-

nal molecule this set can be restricted. For

example,

p1..assistants[salary!1000] (4.2)

denotes the set of all assistants of p1 whose

salary is 1000. Such set valued references can

now be used in the same way as explicitly

given sets of objects, e.g. in

p2[friends!!fp3,p4g] (4.3)

where the result of the set valued method

friend is speci�ed; we may replace the explicit

set by a set valued reference:

p2[friends!!p1..assistants] (4.4)

This formula states that the assistants of p1

are friends of p2. Note that in contrast to

(4.2) the formula (4.4) does not denote a set

of objects, it is merely the speci�cation of a

property of one object, p2, although it con-

tains the set valued reference p1..assistants.

But this sub-reference does not determine

the scalarity of the molecule, because for mo-
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lecules, only the �rst sub-reference, here p2,

determines the scalarity of the entire mole-

cule.

De�nition 2 A reference t is set valued, i�

� it is a path of the form

t0::m@(t1; : : : ; tk); or

� it is a path of the form t0:m@(t1; : : : ; tk)

where (at least) one of the references ti

(0 � i � k) or m is set valued.

� it is a molecule t0[: : :] or t0 : c where the

reference t0 is set valued; or

� it is a simple reference of the form (t0)

where the reference t0 is set valued.

Otherwise, a reference is scalar. 2

Note that a path like p1..assistants.salary

also is set-valued, because the scalar method

salary is invoked on the set of assistants of p1.

Thus, this path denotes the set of salaries of

p1's assistants.

Certainly, a set valued references cannot

be used at every syntactical position in a re-

ference, e.g. in formula (4.5) it is obviously

incorrect to assign a set valued reference as

result to a scalar method.

p2[boss!p1..assistants] (4.5)

De�nition 3 A reference t is well-formed

i� every sub-reference occuring in t is well-

formed and the following holds:

� if t is a molecule t0[m@(t1; : : : ; tk)!tr],

then m, all ti (1 � i � k) and tr are

scalar references; and

� if t is a molecule t0[m@(t1; : : : ; tk)!!s],

then m and all ti (1 � i � k) are scalar

references and s is either a set valued

reference or an explicit set ft01; : : : ; t
0
lg

where all t0j (1 � j � l) are scalar refe-

rences; and

� if t is a molecule t0 : c, then the class c

is a scalar reference.
2

In other words, the scalarity of references

at the result position has to agree with the

scalarity of the corresponding methods; fur-

thermore, it is not allowed to use set valued

references as methods, arguments or classes

in molecules.

The set of all well-formed references is de-

noted with T . These references may be used

as atomic formulas, which in turn may serve

as a basis to build literals, clauses and rules

in the usual way.

Note that well-formedness only restricts

the usage of set valued references in mole-

cules, but not in paths. This interesting fea-

ture of PathLog is further demonstrated by

the following examples.

It is allowed to compose a path using a set

valued reference and a scalar method, like in

p1..assistants.salary

Here we apply method salary on all the assi-

stants of p1. The result is a set of salaries.

We can also apply a set valued method,

e.g. projects, to a set valued reference:

p1..assistants..projects

The result is the set of projects of all the

assistants of p1.



9

Finally, let paidFor be a method by which

we can compute the price a person paid for

a vehicle. Here, this method is applied on a

set of vehicles which is passed to the method

as a parameter.

p1.paidFor@(p1..vehicles)

denotes the set of prices which p1 paid for

all her vehicles.

5 Direct Semantics of

PathLog

For semantics, on the one hand we are intere-

sted, whether certain statements (formulas)

about some objects are true or false under

a given semantic structure I. On the other

hand, for terms specifying the application of

a method (or a composition of applications

of methods) on some object, we like to know,

which objects are denoted by these terms in

I. For these two aspects we need appropriate

notions of entailment and valuation.

In our setting, the semantics covering both

molecules and paths in their various forms is

surprisingly simple, since they may simulta-

neously be considered as a formula, having

a truth value, as well as a term, denoting

an object. For this reason, we regard both

molecules and paths as references. Let's see,

how these two views go hand-in-hand.

Let I = (U;2U ; IN ; I!; I!!) be a seman-

tic structure. If we ask for entailment of a

molecule t = t0[: : :] in I, we have to check

whether the object denoted by t0 ful�lls all

speci�cations given in t.

Consider now the entailment of a molecule

t with an empty list of �lters, i.e., t = t0[ ].

Obviously, no speci�cation has to be ful�l-

led, but t0 has to denote an existing object.

But in case t0 is a path, it can not be taken

for granted that such an object exists. A me-

thod call may be unde�ned for a certain ob-

ject: for a bachelor john the path john.spouse

does not denote an object, consequently, this

path is considered false. Thus, a path is

entailed by I if an object exists denoted by

this path.

The idea that a path denotes certain ob-

jects is re
ected by a valuation. The use of

a valuation function with respect to paths is

motivated by the similarity between a func-

tion symbol in �rst order predicate calculus

and a method, because both are interpreted

by functions. Therefore, a path of the gene-

ral form t0:m1:m2 : : :mk, k � 1, can be con-

sidered as a composition of (partial) functi-

ons mk(: : :m2(m1(t0)) : : :). As a direct con-

sequence, because the interpretation of the

methods can be obtained from I, i.e., is gi-

ven by the respective I!, the compositional

expression can be evaluated by simply in-

specting the given semantic structure I.

Molecules can now be treated in an ana-

logous fashion. Since we may use molecu-

les inside a path or molecule, we are intere-

sted in the objects denoted by this molecule.

Consequently, we also de�ne a valuation for

molecules.

It turns out, that once we have given a se-

mantic structure, we can conveniently switch

from one view to the other. Now we will ma-

ke this introductory discussion more concre-

te. To deal in a uniform framework with re-
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ferences not denoting an object and to deal

with set valued references, we de�ne a va-

luation function to yield sets of objects. In

the case of a scalar reference, these sets are

either a singleton or empty.

As usual, valuation is de�ned for a given

variable-valuation, i.e., a function � : V 7! U

assigning objects to variables. This variable-

valuation is extended to references w.r.t. a

given interpretation, yielding a function �I :

T 7! 2U .

Assume e.g. � assigns the object with na-

me john to the variable X. Then, using the

corresponding valuation function, evaluating

X..assistants yields the set of assistants of

john. Since john was said to be a bachelor,

evaluating X.spouse yields the empty set.

We will evaluate even those sub-references

of a reference using this �I-function, which

are scalar due to the well-formedness of re-

ferences (cf. de�nition 3). Thus, in the fol-

lowing de�nition the evaluation of the scalar

references yields at most a singleton.

De�nition 4 A variable-valuation is a

function � : V 7! U mapping variables to ob-

jects. This valuation is extended for a given

interpretation I to a function �I mapping re-

ferences to sets of objects, i.e., �I : T 7! 2U .

For a well-formed reference t 2 T , the va-

luation �I(t) is de�ned to be the smallest

set ful�lling the following conditions:

1. If t = X 2 V is a variable, then

�I(t) = f�(X)g;

2. If t = n 2 N is a name, then

�I(t) = fIN (n)g;

3. If t = t0:tm@(t1; : : : ; tk) is a path, then

for all objects

ui 2 �I(ti) (i 2 fm; 0; : : : ; kg), such that

I
(k)
!

(um)(u0; : : : ; uk) is de�ned, holds:

I
(k)
!

(um)(u0; : : : ; uk) 2 �I(t):

4. If t = t0::tm@(t1; : : : ; tk) is a path,

then for all objects ui 2 �I(ti) (i 2

fm; 0; : : : ; kg) holds:

I
(k)
!!

(um)(u0; : : : ; uk) � �I(t):

5. If t = t0 : tc is a molecule, then for

all objects ui 2 �I(ti) (i 2 fc; 0g), such

that

u02Uuc;

holds u0 2 �I(t).

6. If t = t0[tm@(t1; : : : ; tk)!tr] is a

molecule, then for all objects ui 2

�I(ti) (i 2 fm; r; 0; : : : ; kg), such that

I
(k)
!

(um)(u0; : : : ; uk) is de�ned and

I
(k)
!

(um)(u0; : : : ; uk) = ur;

holds u0 2 �I(t).

7. If t = t0[tm@(t1; : : : ; tk)!!tr] is a mo-

lecule, then for all objects ui 2 �I(ti)

(i 2 fm; 0; : : : ; kg), such that

I
(k)
!!

(um)(u0; : : : ; uk) � �I(tr);

holds u0 2 �I(t).

8. If t = t0[tm@(t1; : : : ; tk)!!ft01; : : : ; t
0
lg]

is a molecule, then for all objects ui 2

�I(ti) (i 2 fm; 0; : : : ; kg), such that

I
(k)
!!

(um)(u0; : : : ; uk) � S;
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where S is de�ned below, holds u0 2

�I(t).

S is the set resulting from evaluating the

t0i, i.e., S = fu 2 �I(t
0
j) j j 2 f1; : : : ; lgg:

2

As already mentioned before, the entail-

ment for a reference may then be de�ned

w.r.t. this valuation.

De�nition 5 Let I be a semantic structure,

t a reference and � a variable-valuation. Let

further �I be the valuation function implied

by � and I. t is entailed by I w.r.t. �, i.e.,

I j=� t, i� �I(t) 6= ;. 2

Entailment of literals, clauses and rules is

de�ned as usual.

Let's point out some interesting features

of this semantics. Set valued references are

true, if there is at least one object correspon-

ding to the reference. Thus, this reference

p1..assistants[salary!1000]

denoting all assistants of p1 with salary 1000

is true, if there is at least one such assistant.

It is possible to access successively all as-

sistants in this set by binding them to a va-

riable:

p1[assistants !!fX[salary!1000]g]

This term does not denote a set of objects,

but the semantics de�nes this scalar refe-

rence to be true if X is assigned such an as-

sistant. The variable X is not bound to the

entire set, it ranges only over the universe

of objects. Thus, using such a reference in a

rule body allows to access all such assistants.

The philosophy that a reference evaluates

to the set of all objects denoted by this refe-

rence prevents from having multiply nested

sets, i.e., the path

john..kids..kids

does not denote a set of sets, but simply the

set of john's grandchildren.

6 Programming in PathLog

After having presented the semantics, we

now discuss rules in more detail and give

PathLog solutions to some interesting pro-

blems.

Rules are a means to de�ne intensional

knowledge; here we can distinguish intensio-

nally de�ned methods and virtual objects.

In the �rst example, we use a rule to de�ne

an intensional method for already existing

objects:

X[power !Y]  

X:automobile.engine[power!Y]

The result of this rule is to extend all given

automobile-objects by a method power, de-

rived from their engine's power. Here, exi-

sting objects are equipped with additional

methods | no virtual objects are de�ned.

This is in contrast to the following, where a

path in a rule head may lead to the de�nition

of virtual objects:

X.boss[worksFor!D]  

X : employee[worksFor!D].
(6.1)

This rule states that employees and

their bosses work for the same depart-

ment. Assume that only the information
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p1:employee[worksFor!cs1] is given. Alt-

hough the method boss is not de�ned exten-

sionally for p1, this rule de�nes a virtual ob-

ject, the boss of p1. This virtual object can

be referenced by applying boss to p1.

In contrast to (6.1) the following rule ex-

presses that only employees and their alrea-

dy existing bosses work for the same depart-

ment:

Z[worksFor!D]  

X : employee[worksFor!D].boss[Z].
(6.2)

Our approach to virtual objects di�ers

from the view mechanism in XSQL. There, a

new class EmployeeBoss has to be de�ned as

a view (6.3), and the view's name simulta-

neously serves as a function symbol, so the

de�ned object has to be addressed by Em-

ployeeBoss(p1):

CREATE VIEW EmployeeBoss

SELECT WorksFor = D

FROM Employee X

OID FUNCTION OF X

WHERE X.WorksFor[D]

(6.3)

In our setting, using methods instead of

function symbols to de�ne virtual objects

makes function symbols like EmployeeBoss

super
uous, and thus simpli�es the query

language and makes the typing system usual-

ly de�ned for methods (cf. [KLW93]) appli-

cable for virtual objects.

Considering set valued references in a rule

head, we observe that our semantics implies

only the existence of one object described by

that reference. Since in general this object

can not be uniquely determined, the usage

of set valued references in rule heads should

be forbidden.

However, set valued methods may be de�-

ned in rule heads, possibly involving set va-

lued sub-references in a scalar reference like

in (4.4). In the sequel, we de�ne a set valued

method desc, which represents the transitive

closure of a given method kids:

X[desc!!fYg] X[kids!!fYg].

X[desc!!fYg] X..desc[kids!!fYg].
(6.4)

If we want to de�ne the transitive closure in-

dependently of the concrete method kids as a

generic operation (similar to [CKW89]), we

can take advantage of the fact that e.g. kids

in our model itself is the name for an object.

Consequently, we can also apply a method

to this object. For our purpose, we de�ne

a method tc, which, applied to kids, yields a

newmethod, representing the transitive clos-

ure of kids. This new method is denoted by

the path kids.tc. Since a path may be used

at any syntactic position, even at the me-

thod position, we may replace the method

desc in our example by the method kids.tc.

Generalizing from the concrete method kids

by introducing a variable M, we can de�ne

transitive closure as a generic operation:

X[(M.tc)!!fYg]  X[M!!fYg].

X[(M.tc)!!fYg]  X..(M.tc)[M!!fYg].

Now, given the following facts,

peter[kids!!ftim,maryg].

tim[kids!!fsallyg].

mary[kids!!ftom,paulg].

applying kids.tc to peter yields

peter[(kids.tc)!!ftim,mary,sally,tom,paulg].



13

To evaluate rules in PathLog well-known

bottom-up techniques may be applied. In

one situation, where a path is used as a re-

sult of a set valued method in a rule body,

strati�cation of the rules becomes necessary

in a similar way to [NT89]. A rule of the

following structure

: : :  X[friends!!p1..assistants].

should only then be applied, if the set of

p1's assistants is already de�ned. However

we would like to stress that in all other cases

the treatment of sets in PathLog does not

imply strati�cation, similar to e.g. O-Logic

[KW93].

7 Conclusion

This paper presents PathLog, a rule langua-

ge, whose basic building blocks are paths and

molecules. PathLog generalizes path expres-

sions in several ways. A second dimension

is added to path expression which makes it

possible to use only one path in situations

where known one-dimensional path expressi-

ons require a conjunction of several paths. In

addition, a path expression can also be used

to reference virtual objects. We have shown

by several examples how to adopt path ex-

pressions generalized in this way to object

oriented SQL dialects.

Because of the generality in syntax, ex-

pressions in PathLog allow to query objects

in a very compact way; however, PathLog

has a concise direct semantics, such that

even in those cases its use remains trans-

parent to the user. Moreover, even though

we have presented PathLog in terms of a

deductive rule language, the main ideas of

PathLog can be also applied in the context

of other kinds of rule languages, e.g. produc-

tion rules or active rules.
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