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Abstract

In this paper we describe the tool{supported speci-
�cation and implementation of a multimedia commu-
nication protocol on parallel hardware. MCAM is an
application layer protocol for movie control, access and
management. We specify the full MCAM protocol to-
gether with ISO presentation and session layers in Es-
telle. Using a code generator, we derive parallel C++

code from the speci�cation. The code is compiled and
executed on a multiprocessor system under OSF/1 and
on UNIX workstations. Measurements show the per-
formance speedup gained by several di�erent con�gu-
rations of parallel units. We also report on experiences
with our methodology.
Keywords: multimedia systems, application layer,
formal speci�cation, parallelization, code generation

1 Introduction

The main purpose of this work is to prove that it is
possible to specify and implement a new application
layer protocol using formal description techniques and
code generators; moreover that it is possible to derive
e�cient implementations for a distributed heteroge-
neous and even parallel environment. Our method
works on a wide range of platforms, from single{
processor workstations from di�erent vendors (DEC,
IBM, Sun) to multiprocessor parallel computers such
as a KSR1 (Kendall Square Research [8]). The inclu-
sion of a multiprocessor system enables us to increase
the performance of our system by exploiting internal
parallelism in protocols and by handling several con-
nections in parallel.

There are two factors propelling our work. The �rst
one being that communication software has become
the major bottleneck in high{speed networks, espe-
cially for the upper layers of the protocol stack [3].
The second involves the hard requirements in terms
Quality of Service guarantees which must be ful�lled

in distributed multimedia systems. Take, for example,
a digital video{on{demand service. Current high{end
workstations can serve only a small number of clients
simultaneously. But imagine systems in which one
machine has to serve thousands of clients simultane-
ously without noticeable performance degradation as
customers would be paying for the service and expect-
ing a good quality. We investigate the use of parallel
computers for this purpose.

It can be expected that the performance di�erence
between high{speed transmission systems and com-
munication software will not shrink (rather, will prob-
ably even increase) within the next few years. Several
lightweight protocols for faster computation have been
designed and implemented [4]; but the speedup achiev-
able with this method is limited. Also implementa-
tion code was �ne{tuned by experts to improve per-
formance [18]; our impression is that existing protocols
are so well understood now that further improvements
will be very di�cult. A much greater speedup can
be gained by using several processors to do the same
work. Earlier work on the parallel execution of lower
layers has resulted in a promising speedup [1, 26].

This paper is organized as follows. In Section 2, we
present the architecture of MCAM, our example pro-
tocol. Section 3 describes our experimental setup. Our
implementation methodology is the subject of Section
4. In Section 5, we present preliminary performance
measurement results gained by the use of parallelism.
We also report on experiences with our methodology.
Section 6 concludes the paper.

2 MCAM Architecture

MCAM is an application layer architecture, service
and protocol for Movie Control, Access, and Manage-
ment in a computer network [19]. Our architecture
allows a user to access (create, delete and select), man-
age (query and modify attributes), and control (play-
back or record) movies.



control CM stream
protocol protocol

data rates low high
reliability 100% � 100%
error yes lightweight
correction or none
timing
relations

asynchronous isochronous

delay and jit-
ter control

no yes

) protocol OSI or XMovie/MTP
stack TCP/IP

Table 1: Di�erent requirements of the protocol types

From ongoing work on our XMovie project [21] we
have gained experience in implementing CM{streams
(continuous media streams, e.g. video) in a network.
We have learned from XMovie and other projects that
while low{level stream services can be implemented on
today's computers successfully, they are currently lim-
ited by severe bottlenecks [20]. For the realization of a
practical multimedia service in a distributed environ-
ment, two additional support services are absolutely
necessary: movie directory and CM equipment con-
trol.

The movie directory is used as a repository for
movie information, such as digital image format and
storage location. The equipment control service en-
ables the user to control CM equipment attached to
remote computer systems, e.g. speakers, cameras, and
microphones.

In contrast to other well known architectures such
as the Lancaster architecture and Bellcore's Touring
Machine [24], we separate the control protocol from
the CM stream protocol incorporating the two new
support services into the control protocol. This sepa-
ration better accommodates the varying requirements
for stream protocols for continuous media streams and
control protocols in terms of data rate, reliability, er-
ror correction, timing relations, delay and delay jitter
control (see Tab.1).

Thus we propose to run the two application proto-
cols over di�erent protocol stacks. The control pro-
tocol needs a reliable service but generates low data
rates only; we have decided to use the OSI protocol
stack for the control protocol.

In contrast, a CM stream protocol has to be placed
on an isochronous (possibly unreliable) stream service
which provides high data rates; we have chosen the
XMovie stream service developed at the University of
Mannheim.

The functional model of our MCAM architecture
is shown in Fig 1. It consists of four parts: Directo-
ry System, Equipment Control System (ECS), Stream
Provider System (SPS), and MCAM (see [19] for more
details).

3 Experimental Environment

The experimental setup for our performance anal-
ysis is shown in Fig. 2. MCAM clients on di�erent
systems control CM{streams sent by MCAM server
entities. All these server entities can run simultane-
ously on a multiprocessor system.

Our system places the MCAM control protocol on
two di�erent OSI protocol stacks, thereby allowing us
to test conformance, and to compare run{time perfor-
mance. The �rst one generates the presentation and
session layers out of an Estelle speci�cation which can
run in parallel on top of the ISODE transport layer.
The second stack places the MCAM module direct-
ly on top of the ISODE presentation interface. With
these two versions we can measure performance di�er-
ences between generated and hand{written code.

In addition we can compare serial and parallel im-
plementations of our protocol stack by distributing
Estelle modules over a set of parallel processors on
the KSR1 machine. Initial experiments have shown
that connection{per{processor will yield better per-
formance than layer{per{processor [6]. The actual
speedup depends largely on the mapping of modules
to the tasks and threads of the operating system as
described in the next section.

In addition to the two complete control protocol
stacks for MCAM, we have implemented the CM pro-
tocol stack. With a standardized real{time transport
protocol still lacking, we run the XMovie transmission
protocol MTP directly on top of UDP, IP and FDDI.
The experimental protocol stacks described above are
realized in the following hardware/software environ-
ment: The client entities are implemented on one{
processor UNIX workstations (Sun and DEC), while
the server machine is a 32 processor KSR1 running
OSF/1 [22]. All the software is in C++, and we are
using ISODE v8.0.

4 Implementation Methodology

Before implementing a protocol we �rst specify
it formally in a standardized formal description lan-
guage. Formal description techniques improve the cor-
rectness of speci�cations by avoiding ambiguities and
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Figure 1: MCAM functional model

by enabling formal veri�cation. Tools can be used to
verify the correctness of the speci�cation. In addition,
formal speci�cations allow semiautomatic code gener-
ation. Generating code from speci�cations has several
advantages: The code can be maintained more easily
since the system is speci�ed in an abstract, problem{
oriented language. The implementation code has few-
er bugs and is well{structured. It is also much easier
to port an implementation to another system.

We use the formal description language Estelle [17]
which is mainly based on �nite state machines (FSMs).
An Estelle speci�cation consists of a hierarchically or-
dered set of FSMs called modules communicating via
bidirectional links called channels. Estelle modules
can be nested: Within the body of a module, other
modules, called child modules, can be de�ned. Thus
all modules of a speci�cation form a tree.

The execution sequence of the modules is controlled
in two ways: either according to their position within
the tree, or by means of an attribute given to each
module. The basic tree rule is that a parent module
always takes precedence over its children, i.e. a child
can only execute if the parent has nothing to do. A
parent and a child can never run in parallel.

The module attributes control the parallelism be-
tween modules at the same level of the hierarchy.
There are four attributes: systemprocess, system-
activity, process and activity. In the following
we use the term system module for systemprocesses
and systemactivities. Then the following Estelle rules
apply:

� Every active module must have one of the four
attributes.

� A systemmodule cannot be contained in another
attributed module.

� Each process module and each activity module
must be contained (perhaps indirectly) in a sys-
tem module.

� A process module or a systemprocess module
can contain other process or activity modules.

� An activitymodule or a systemactivitymod-
ule can only contain other activity modules.

� Children whose parent module is of type process
or systemprocess may all run in parallel. Chil-
dren whose parent module is of type activity or
systemactivity are mutually exclusive, i.e. only
one of them can run at a time.

As a consequence, a module containing a system

module must be inactive; it is typically located at the
root of a tree. Also, in each path of the tree, from
the root to a leaf, there is exactly one system module,
i.e. each active module belongs to exactly one system
module.

The dynamics are as follows. At runtime, a mod-
ule instance can only be dynamically created and
destroyed by its parent module. Thus the number
of module instances can vary at runtime, but their
relative position within the tree is predetermined.
When the system is initialized, exactly one instance
of each system module is created. As opposed to
the activity modules and the process modules,
the structure of the systemactivity modules and
systemprocess modules is static at runtime. The
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Figure 2: An example con�guration

system modules themselves are mutually independent
and can run asynchronously and in parallel.

The motivation behind these semantics is that a
typical communication system has static parts and dy-
namic parts (to be created at runtime). For example
a protocol entity implemented as a process can ac-
cept a new CONNECT request and then create a new
child module to handle the new connection. All child
module instances for parallel connections will then be
independent of each other and able to execute in par-
allel.

The way to an implementation of MCAM is a four{
step process:

1. Speci�cation in Estelle

2. Code Generation (C++)

3. Inclusion of hand-coded parts

4. Compilation of C++ modules

Each of these steps is described in detail in the follow-
ing subsections.

4.1 Speci�cation and Initialization

Each MCAM instance consists of four modules:
Movie Control Agent (MCA), Directory User Agent
(DUA), Stream User Agent (SUA) and Equipment Us-
er (EUA). Therefore the mapping of MCAM modules

to Estelle modules is straightforward (see Fig. 3). On-
ly the MCA module is completely written in Estelle
(header and body), whereas the three remaining ones
describe only their interface in Estelle with their mod-
ule body written in C or C++. So we can very easily
access existing services such as the movie directory out
of our Estelle speci�cation.

The application interface shown in Fig. 3 provides
a set of procedures to the MCAM user. The presenta-
tion interface connects the MCAM speci�cation to the
lower layers, which are in our case provided by ISODE,
the ISO Development Environment [23] or alternative-
ly by Estelle implementations of ISO presentation and
session layers.

The whole system is speci�ed as follows: for the
server and for each client, we generate an Estelle
systemprocessmodule. In comments, we declare the
location (i.e. a machine name) where the module will
be placed in the implementation. Such modules may
run in parallel, following the Estelle semantics. How-
ever, the number of systemprocess modules cannot
be changed at runtime, so the number of clients is
�xed. Each client can open several connections to the
server, but it is not possible to dynamically generate
new clients on other machines.1 This disadvantage
is compensated by the 
at structure of the speci�ca-

1An Estelle enhancement enabling dynamic generation of
clients is described in [2].
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tion, making the implementation faster. Client and
server modules have the ability to create submodules,
which implement the protocol. Each client module
creates an application module, which allows a user to
send requests to and receive answers from the MCAM
system. When a connection request is received from
the application module, a client module will create an
MCAM module and either presentation and session
modules2 or an ISODE interface module. The con-
nection request will be transmitted to the server, who
then creates the same Estelle modules. The new mod-
ules are connected by an Estelle channel. In the case
of Estelle presentation and session, the corresponding
session modules are connected to each other, while in
the ISODE, the two interface modules are connected.
Then, the MCAM connection is set up, and the client
application may start its communication with the new
server entity.

4.2 Code Generation

As already mentioned, it is possible to semi{
automatically generate code from formal speci�ca-
tions. However, one of the major problems of gen-
erated code has been performance. Existing code gen-
erators were made to easily get rapid prototypes from

2The Estelle sources for the presentation and session layers
were provided by the University of Bern, Switzerland.

Estelle speci�cations; the goal of these generators was
to create an executable version of the speci�cation for
validation purposes, rather than to produce e�cient
runtime code. Use of parallelism was limited to val-
idation and simulation purposes. We implemented a
modi�ed code generator based on the Pet/Dingo sys-
tem [25] that reads an Estelle speci�cation and pro-

duces C++ code for parallel programs running under
OSF/1 [6]. It maps Estelle modules onto OSF/1 par-
allel processes, i.e. tasks and threads (lightweight pro-
cesses). In its current version, the generator's runtime
system produces one thread for each Estelle module,
creating the maximum degree of parallelism allowed
by Estelle semantics.

On a single{processor machine there will obviously
be no speedup. This is true for the two clients in our
experiment. The server, however, runs on the KSR1
machine, and makes use of two forms of parallelism:
�rst, all the layers run in parallel, i.e. the application
layer protocol MCAM, and presentation and session
layer, resp. ISODE. Second, we have a per{connection
parallelism. A discussion of these and other forms of
parallelization of protocols can be found in [15].

The code for the body of the ISODE interface mod-
ule cannot be generated, as the module is not speci-
�ed in Estelle. In the speci�cation, the module body
is declared external which instructs the compiler to
generate only the C++ interface but not the imple-
mentation. The latter has to be added by hand, and
is described in section 4.3.

The body of the application module cannot be ex-
pressed in Estelle either, as it should present an X
interface to the user. However, we implemented a
tool [10, 13] which creates an X interface accepting
the description of the channel between application and
MCAM module as an input. Any message sent by the
application can be invoked via a button{click by the
user; a window is then opened on the screen where
the user may specify details of the message. Incom-
ing messages are displayed in a window at the time of
their arrival.

All MCAM PDUs are speci�ed in ASN.1, an ISO
de�ned data description language [16]. This ASN.1

speci�cation is used to generate C++ data structures
and to create encoding and decoding routines for our
implementation automatically. In order to be able to
use the ASN.1 speci�cations for the MCAM PDUs
within Estelle, we had to implement another trans-
lator [9].
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4.3 Inclusion of Hand-coded Parts

The task of the ISODE interface module is to
get messages from the Estelle interaction point and
map them onto ISODE library calls like PConnect-

request(). Also, it has to look for incoming ISODE
messages, map them onto Estelle interactions and out-
put them on the Estelle interaction point. This pro-
cess is described in more detail in [5]. In principle, the
execution loop of the ISODE interface module has the
following structure:

while true do

if (IP.message) then

encode message in ISODE param. format

call appropriate ISODE function

endif

if (ISODE.message) then

encode message in Estelle param. format

output IP.message

end

end

4.4 Compilation

The code generated from Estelle and the hand{
coded parts of the software are compiled using a
C++ compiler and linked together. For each system-

processmodule and for the speci�cation root module,
we create an executable �le. It is necessary to build
these �les on each target machine, i.e. the speci�ca-
tion and the server executable are built on the KSR1,
while the client executable is built on all machines to
be used as clients.

The speci�cation module is started by hand on the
server machine. It will then start the server itself and
the speci�ed number of clients on the di�erent client
machines. The information on where to start a client is
taken from the comments in the Estelle source. Each
client will start an application module that presents
an X window interface to the user. The user can then
send requests to his client module, e.g. to open and
playback movies.

5 Results and Experiences

The main goal of this project is to ful�ll the QoS
requirements of multimedia applications. Thus, we
have to achieve performance gains by using parallelism
and minimize the di�erence in performance results be-
tween hand-coded and generated software. At the mo-
ment, the environment shown in Fig. 2 is completely

implemented with the exception of the MCAM mod-
ule which is in the debugging phase. We already have
some measurement results on the in
uence of paral-
lelism for the session and presentation layers.

5.1 Sequential vs. Parallel Implementa-
tion

For our �rst measurements we speci�ed a simple
test environment in Estelle with two protocol stacks
connected by a simulated transport layer pipe. Both
stacks consist of presentation and session layers, and
an initiator or responder respectively. It is possi-
ble to create multiple connections. For the tests, we
used presentation and session kernel, without ASN.1
encoding/decoding3, and we transmitted very small
P{Data units. This is the worst case for paralleliza-
tion. Even with this environment, we got a speedup
(in comparison with the sequential version) of 1.4 to 2
with 2 connections, parallel presentation and session
and a varying number of Data requests. Higher per-
formance gains can be reached with full protocols[14].

5.2 In
uence of Mapping Alternatives

In the current version of the code generator, we
map each Estelle module onto a lightweight process in
OSF/1, allowing the maximum degree of parallelism.
However, this is not always the best alternative. Con-
sider the situation in which the number of Estelle mod-
ules exceeds the number of processors. Then, some
modules have to share a processor. We then have
not only the synchronization overhead between the
threads running the modules, but also gain nothing
from the parallelization. Our solution to this prob-
lem is to group certain Estelle modules into one unit,
and run this unit by one thread. We take as many of
these units as there are processors. There will still be
no performance gains by parallelism, as all the mod-
ules in one group are executed sequentially, but this
will avoid synchronization losses. First measurements
with the new grouping scheme show further perfor-
mance gains. Details can be found in [7].

In addition, it may be useful to further parallelize
an existing speci�cation. Modules which perform sev-
eral long{running computations sequentially may be
split in two or more modules resulting in a module
pipeline where data is processed in parallel. The right
decision of whether to integrate modules or split them
depends highly on the module runtime and on the

3One might expect performance gains for parallel encod-
ing/decoding. In [12], we show that by parallelization in this
area, we do not obtain better performance.
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performance requirements of the user. For protocols
with only small processing times, the only useful par-
allelization will be the mapping of one connection to
one processor, as those modules will not exchange data
and thus need no synchronization.

Another important point for modules with large
transition lists is the mapping of transitions. Main-
ly, there are two alternatives: �rst, each transition
may be hard-coded as a C++ code block in a tran-
sition selection function. Prioritized transitions will
have their place at the beginning of the function. Sec-
ond, states and transitions may be mapped to a table.
The current state will be used as an index for the
row which means that only the enabled transitions for
that state will be investigated. As newer performance
measurements show, the table{controlled approach is
signi�cantly better than the hard-coded one [11] when
the number of transitions becomes larger than four.

For protocols with small processing time, the Es-
telle scheduler of many available compilers becomes
the bottleneck for the speedup. Measurements show a
runtime percentage of the scheduler of up to 80%. Our
scheduler shows better runtime behavior, as it is de-
centralized. Each part only has to check the transition
of one module. This can be done in parallel.

5.3 Experiences using Estelle

In section 4, we already mentioned some of the ad-
vantages of using formal languages like Estelle in the
protocol and system speci�cation process. From this
and previous work, we were able to make some experi-
ences with the usage of Estelle compared, e.g., to the
usage of C++.

Estelle is very easy to learn, even for the begin-
ner. From our experiences with students learning Es-
telle, we can say that the period of adjustment is
much less than one month. This is mainly due to
the well{known concept of communicating �nite state
machines. We consider it much more di�cult to learn
process algebra{based languages like LOTOS.

Specifying a whole system or single protocols can
be done much faster in Estelle than in C++. The
language provides all means for de�ning communica-
tion structures and data types. Data type de�nition in
C++ is equally fast, but communication programming
is much more work if done from scratch!

However, one serious drawback of Estelle speci�ca-
tions is their not so well understood integration into
real environments. This includes network attachment
as well as user integration. Therefore, test case gen-
eration and distributed execution of the speci�ed sys-
tem needed some more work. Out of this experience,

we currently develop a methodology of how to auto-
matically integrate Estelle speci�cations in arbitrary
environments.

We conclude that the usage of Estelle as a speci�-
cation language for distributed and parallel system is
well suited, but there has still some work to be done
to simplify real implementations.

6 Conclusion and Outlook

One of the major problems of Estelle in a real{time
environment is that QoS parameters cannot be speci-
�ed. We cannot describe a realtime protocol like the
XMovie stream protocol in Estelle because we cannot
specify the QoS requirements of such a protocol; no
hints are given to the code generator as far as per-
formance is concerned. Non{realtime protocols such
as MCAM also have QoS requirements, e.g. maximum
delay of an interaction, but these are not as critical to
our implementation as the realtime requirements are
to the stream protocol.

One of the �rst lessons we have learned during our
work on this system is that the mapping of Estelle
modules to tasks and threads in
uences the perfor-
mance of the runtime implementation to a great ex-
tent. An algorithm for an optimal mapping is current-
ly under development [7].

As a �nal goal we envision a distributed MCAM
system that is highly portable and runs on a great
number of single- and multiprocessor platforms in an
ATM network, providing a digital movie service in a
heterogeneous environment.
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