
REIHE INFORMATIK
015/94

eXtended Color Cell Compression { A Runtime-e�cient
Compression Scheme for Software Video
Bernd Lamparter und Wolfgang E�elsberg

Universit�at Mannheim
Seminargeb�aude A5
D-68131 Mannheim



eXtended Color Cell Compression {

A Runtime-e�cient Compression Scheme

for Software Video

Bernd Lamparter and Wolfgang E�elsberg

Praktische Informatik IV
University of Mannheim

68131 Mannheim, Germany
flamparter, effelsbergg@pi4.informatik.uni-mannheim.de

Abstract. Multimedia applications require a compression and decom-
pression scheme for digital video. The standardized and widely used tech-
niques JPEG and MPEG provide very good compression ratios, but are
computationally quite complex and demanding. We propose to use an
extension to the much simpler Color Cell Compression scheme as an al-
ternative. Our extension includes the use of variable block sizes, the reuse
of color index values from previously encoded blocks, and Hu�man en-
coding of the stream of blocks. We present experimental results showing
that our scheme provides much better runtime performance than MPEG,
at the cost of a slightly inferior compression ratio. It is thus especially
suited for software videos in high-speed networks.

Keywords: multimedia, movie compression, block encoding, software
video.

1 Introduction

The standardized compression techniques JPEG [12] for still images and MPEG
[3] for motion pictures both include a Discrete Cosine Transform (DCT). This
is a complex and computationally very demanding mathematical function. As a
consequence, software motion pictures based on JPEG or MPEG are slow, even
on the most powerful CPUs available today, and it is generally assumed that
these compression schemes will only work well with special hardware. However,
special hardware makes a movie system much less 
exible and portable. It is
thus desirable to develop alternative compression/decompression algorithms for
movies which are optimized for computation in software on general purpose
CPUs.

We propose an extension to the Color Cell Compression scheme for use in
multimedia workstations. After a short introduction into Block Truncation Cod-
ing for monochrome images and Color Cell Compression for color images, we
describe our eXtended Color Cell Compression (XCCC) scheme in detail. We
have implemented XCCC and present experimental results on runtime perfor-
mance and compression ratios.



2 Block Truncation Coding and simple Color Cell

Compression

Our eXtended Color Cell Compression (XCCC) algorithm belongs to the family
of block compression algorithms. Earlier examples from this family include Block
Truncation Coding (BTC) and Color Cell Compression (CCC), brief descriptions
of which preface the discussion of our algorithm.

2.1 Block Truncation Coding (BTC)

The Block Truncation Coding Algorithm [2] is used in the compression of mono-
chrome images. When compressing color images, it can be applied separately to
the three color channels.

The �rst step of the algorithm is the decomposition of the whole image into
blocks of size n�m pixels. Usually these blocks are quadratic with n = m = 4.
For each block P the mean value � and the standard deviation � is computed:

� =
1

nm

nX
i=1

mX
j=1

Pi;j

� =

vuut 1

nm

nX
i=1

mX
j=1

P 2
i;j � �2

where Pi;j is the brightness of the pixel.
In addition a bit array of size n �m is calculated for each block. A one in

this bit array indicates that the gray value of the corresponding pixel is greater
than the mean value, a zero indicates that the value is smaller than the mean
value:

Bi;j =

�
1 if Pi;j � �
0 else

The decompression algorithm knows out of the bit array whether the pixel is
darker or brighter than the average. Last we need the two gray scale values for
the darker and for the brighter pixels. These values (a und b) are calculated
with the help of the mean value and the standard deviation, and are then stored
together with the bit array:

a = �+ �
p
p=q

b = �� �
p
q=p

Here p and q are the number of the pixels having a larger resp. smaller
brightness than the mean value of the block.

During the decompression phase each block of pixels is calculated as follows:

P 0
i;j =

�
a if Bi;j = 1
b else



e. g. where the bit array shows a 1, the gray value a is used, where it shows a 0
the value b is used.

If the original image used one byte per pixel, we had a storage requirement
of 128 bits for each 4�4 block. The compressed block can be stored with 16 bits
for the bit array plus one byte for each of the values a und b. Hence we have a
storage reduction from eight bits to two bits per pixel.

This basic version of BTC can be improved with a number of tricks [9].
Additionally, [10] describes a hierarchical version of BTC.

2.2 Color Cell Compression (CCC)

If BTC is to be used for color images rather than for gray scales, the components
(red, green, and blue, resp. chrominance and luminance) may be compressed sep-
arately. However, the CCC method promises a much better compression rate [1].

Similar to BTC, the image is divided into blocks called "color cells". The
two values a and b are now indices into a color lookup table (CLUT). The
criterion for the bit array values is now the brightness of the corresponding
pixel. The brightness of a pixel is computed in the following way, taking the
human reception into account:

Y = 0:3Pred + 0:59Pgreen + 0:11Pblue

The mean value of each block can now be computed out of these brightness
values (analogous to the BTC method).

Let us de�ne Pred;i;j as the red component of Pi;j , Pgreen;i;j the green com-
ponent and Pblue;i;j the blue component. The next step is then to compute the
color values ared, agreen, ablue as well as bred, bgreen, bblue:

ac =
1

q

X
Yi;j��

Pc;i;j bzw. bc =
1

p

X
Yi;j<�

Pc;i;j with c = red, green, blue

Again p and q are the number of pixels with a brightness larger resp. smaller
than the mean value. The bit array is computed as for BTC.

The color values a = (ared; agreen; ablue) und b = (bred; bgreen; bblue) are now
quantized onto a color lookup table. In this way we get the values a0 und b0.
These values are stored together with the bit array (Fig 2.2).

The decompression algorithm works analogous to the BTC method:

P 0
i;j =

�
CLUT[a0] if Bi;j = 1
CLUT[b0] else

(CLUT is the color lookup table.)
The two values a0 und b0 can each be stored in one byte if the CLUT has 256

entries. Hence the storage needed for one block of size 4� 4 is two bits per pixel
as with the BTC (to be more exact we would have to add the storage needed by
the CLUT (256�3 Bytes for the full image)).



RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

RGB

-

a0

b0

-

-

RGB

RGB

RGB

RGB

RGB

Fig. 1. Red-Green-Blue block and its CCC encoding

Color Cell Compression is not only one of the best compression algorithms, it
is also one of the fastest [9]. All calculations can be done without 
oating point
operations, and the asymptotic complexity is O(N �M � (1 + log k

n�m
)) (image size

N �M , size of the block n�m, size of the CLUT k). The decompression is also
done without 
oating point operations with a complexity of O(N �M).

As in the case of the BTC algorithm, a number of possible improvements
exist here as well [9]:

{ If the two colors a and b are nearly equal, or one color dominates in frequency
of occurrence, only one color is stored, and no bit array is needed.

{ If an image contains large areas with only small di�erences in color, those
areas may be encoded with larger blocks.

{ For movies cuboids may be used, with time being the third dimension, if the
changes from frame to frame are small enough.

Our algorithm \XCCC" is based on the second idea. It uses 4 � 4, 8 � 8,
and 16�16 blocks. Larger blocks, tested in an earlier version, yielded no further
improvement.

2.3 The DeltaCLUT-Technique

CCC (and XCCC) both use a color lookup table for storage-e�cient color repre-
sentation. The color lookup table typically has 256 entries, with the red, green,
and blue components stored in one byte each. The color value of a pixel is then
encoded as an index into the color lookup table, with one byte per pixel. Most of
the color display adapters today use the color lookup table. The decompressed
image already consists of index entries into the CLUT, hence the decoder does



not have to map the 24 bit colors onto 256 CLUT entries (That is a very expen-
sive step for MPEG decoders [8]). Moreover, we get a better compression ratio
for a and b because of the reduction from 24 bits to 8 bits per color.

As our experiences shows, one color lookup table for the whole movie results
in poor colors. Updating the CLUT during the replay of the movie may result
in false colors because the old frame is shown with the color table entries of the
new frame for a short time; that has a visually very disturbing e�ect. Loading
the CLUT after loading the frame results in the reverse e�ect: the new frame
is shown with the CLUT of the old. In [7] a method is presented preventing
these problems: DeltaCLUT. The DeltaCLUT algorithm reserves a number of
CLUT entries for color updates, and dynamically loads new colors into the CLUT
while the movie is running. This combines the usage of the full color spectrum
for the movie with the storage-e�cient and widely deployed color lookup table
technology.

3 XCCC: Extensions to CCC

Our XCCC scheme extends CCC in three steps in order to improve compression
ratio and runtime performance.

3.1 First step: Adaptive block sizes

In many cases a image has large areas with small di�erences in colors (i. e. in
the background). These areas can be coded with fewer bits.

We �rst investigate the optional use of large rectangles. If an image contains
large areas with few colors, these areas can be compressed with larger rectan-
gles [11].

In XCCC the images are �rst decomposed into large blocks (16� 16) and, if
necessary, these blocks are then subdivided. The algorithm for each block B is:

1. Calculate the CCC coding of the block
2. If the actual block has the minimal block size, then Done.
3. Calculate the mean di�erence �e of the original pixel values and the values

coded with CCC: �e =
P

B jp � p0j2, where p is the pixel value, p0 is the
value of the same pixel after decompression.

4. If �e is smaller than a given constant, then Done.
5. Divide the block into four subblocks and use the algorithm recursively for

each of these blocks.

The data for simple CCC could be arranged in the data stream without any
structuring information. But the output of the extended algorithm is a quadtree
with color cells for each 16� 16-block. Hence, we have to store a more complex
data structure. This is done by adding a tag for each block. Figure 2 shows an
example of the coding of an XCCC block. The tag is the logarithm of the length
of the edge of the coded block. Blocks of minimal size need only one tag for



four blocks because one minimal block is always followed by three more. After
the tag we store the indices into the CLUT (a and b) and then the bit array. If
the length or width of the image is not divisible by 16, we divide the residual
rectangle into 4� 4 blocks and encode some of these subblocks as rectangles.

1 2

3
4 5

67

)

�
��

Q
QQ

�
�
A
A

1 2 3 ���
Q
QQ

�
�
A
A

4 5 6 7

)

a b 16 bit

a b 16 bit

a b 16 bit

a b 16 bit2

a b 64 bit3

a b 64 bit3

a b 64 bit3

Fig. 2. Coding tree of the XCCC-algorithm

The use of adaptive block sizes introduces a small additional overhead for com-
pression and results in much more e�cient decompression for most images.

3.2 Second step: Single Color and Color Reuse

If an image has a large area with only one color, it is not necessary to store the
bit array at all. XCCC does not store a bit array if the two color indices a and b
are equal. There are two ways to let the decoder know that there is no bit array:
First the encoder can store the two colors and the decoder will know from the
equality that there is no bit array. Second, the encoder can use a special tag and
store only one color. XCCC uses the second method.

If we implement bit array suppression for single color blocks, larger squares
will not always improve the compression ratio. Instead of a 32�32 square, XCCC
may use four 16�16 squares. But some of these squares will have no bit array and
hence the total compression ratio may be better. Though this can also happen
with smaller blocks, our experience shows that this is rarely the case.

Colors in the neighborhood are often equal in images. Because of this fact,
we can sometimes reuse colors from the block coded previously. Color reuse is
also stored in the tag.

For each tag we use one byte with the following bit encoding:

7 6 5 4 3 2 1 0
4� 4-block - - - - - - 1 0
8� 8-block - - - - - - 1 1
16� 16-block - - - - - - 0 0
single color - - 1 - - - - -
last dark - 1 - - - - - -
last bright 1 - - - - - - -



The bit for "last dark" indicates that the color value b for the dark pixels
should be reused from the previous block, "last bright" indicates the usage of
value a from the previous block.

In the �rst step the encoder used only one tag for four of the smallest blocks.
But now the tags of these four blocks are possibly di�erent. If one of them has
one of the bits 5, 6 or 7 set, the tag must be stored. The �rst tag is now the
leader tag and the last bits are set to 01 instead of 10. the bits 2, 3 and 4 indicate
which of the three tags are following.

Let us consider an example: 0101 1001 0010 0010 1000 0010. The �rst tag
says, that the last dark color index should be reused, and tags number 3 and
number 4 will follow. Tag 2 is implicit of simple type, 3 uses only one color and
4 reuses the last bright index.

3.3 Third step: Further improvements

Some blocks are encoded in only one ore two bytes, namely the blocks without
bit array. If one of the four subblocks of a 16� 16 block is a single color block,
then it is cheaper in memory to store the four subblocks instead of the 16� 16
block. Some are even stored in one byte only, namely those where a or b are
taken from the previous block.

The remaining redundancy in the bit stream could be further compressed
with Hu�man codes [4]:

{ The bit stream consist of three parts: The tags, the colors and the bit arrays.
All three parts still have redundancy in the stream.

{ Some of the tags are used very often, others never or very seldom. The usage
of a Hu�man code will reduce the total size of the tags to 50%.

{ The colors can be compressed only by about 10% with a Hu�man code
because of the usage of a color lookup table. This table is chosen in a way so
that all colors are used about equally often. Hence only a small redundancy
of about 10% remains.

{ A large redundancy is in the bit arrays, especially in the bit arrays of the
4� 4-blocks. The redundancy can be as large as 60%.

Hence compression with three di�erent Hu�man codes would divide the size
into half, but slow down the decompression.

From frame to frame colors are usually changed infrequently. So we could use
a second "same color" 
ag to signal the reuse of the corresponding color in the
last image.

A third improvement has been implemented: All blocks are test-wise subdi-
vided into 4� 4 blocks. Step 4 of the XCCC algorithms is then changed to the
following:

4. If �e is smaller than a given constant, and encoding of the actual block is
better than encoding of the subdivided block, then Done.



4 Experiences: Compression ratio and decompression

speed

The main goal of the XCCC scheme is to allow rapid decompression with software
decoders. Table 1 shows the decompression speed in images per second. The
measurements of MPEG [3] were done with the MPEG player of the University
of California at Berkeley [8]. We used three movies: The �rst and second movie
(butter
y) is a raytraced sequence of 350 frames sized 320� 256 and 780� 576
resp. The third movie was digitized from an analog video showing the University
of Mannheim. It consists of scenes of buildings of the university (a palace) and
other scenes depicting university life. Due to the analog origin, this movie consists
of many di�erent colors and color shadings. It is 320� 256 in size and has 2000
frames.

The decompression was done on a DEC/alpha workstation with a 133Mhz
CPU. The speeds are the real speeds viewed on the screen. The display adapter
uses a color lookup table with 8 bits per pixel. XCCC uses the same technique
internally thus requiring no conversion. In contrast, MPEG uses full color inter-
nally. Hence, the MPEG player has to dither in real-time. The player has several
built in dithering methods. For the tests we used the fastest color dithering
available ("ordered dithering").

Movie Size MPEG XCCC
(pixels2) (frames/s) (frames/s)

Butter
y 320� 240 10.5 42
Butter
y 780� 576 2.1 6.8
Castle 320� 240 7.8 24

Table 1. Decompression speed of software decoders (in frames/s)

Movie Size MPEG JPEG XCCC

Butter
y 320 � 240 0.80%=̂0.19bpp 2.49%=̂0.60bpp 3.0%=̂0.72bpp
Butter
y 780 � 576 0.53%=̂0.13bpp 1.54%=̂0.37bpp 1.83%=̂0.44bpp
Castle 320 � 240 1.5%=̂0.36bpp 5.9%=̂1.42bpp 6.3%=̂1.51bpp

Table 2. Compression ratios (compressed size/full color size and bits per pixel)

The compression speed was measured on a DEC5000/133. For the small
butter
y movie we got about 6.5 seconds per image with MPEG. Before XCCC



can be started, the color lookup tables has to be computed with DeltaCLUT.
This step needs about 7 seconds per image. XCCC then needs about 2 seconds
per image. Together our compressor uses about 10 seconds per image.

Our experiments show that XCCC can decompress images very fast. The
quality of the XCCC compressed images is comparable to the quality of MPEG
compressed images. The great advantage of MPEG is the bit rate of the com-
pressed movie. The size of XCCC compressed movies is about three to four times
larger than the size of MPEG movies. Hence the domain of XCCC are local area
networks with color workstations using the color lookup table technique. In this
environment XCCC performs signi�cantly better than MPEG.

5 Conclusions and Outlook

We have presented XCCC, an algorithm to decompress and play digital movies
on standard color workstations at a reasonable speed without special hardware
for the decompression. We have shown, that our algorithm is much faster in
decompression than MPEG when implemented in software. On the other hand,
MPEG gives a better compression ratio.

The next step will be experiments with Hu�man tables for the three parts
of the compressed data streams (tags, colors and bit arrays). We expect better
compression, but we will have to pay the price of slower decompression.

The XCCC decompressor has been integrated into the XMovie system [6, 5],
a test bed for the transmission and display of digital movies developed at the
University of Mannheim. It is based entirely on standard hardware, and uses
standard network technology and standard graphics adapters with color lookup
tables.

References

1. G. Campbell, T. A. DeFanti, J. Frederikson, S. A. Joyce, A. L. Lawrence, J. A.
Lindberg, and D. J. Sandin. Two Bit/Pixel Full Color Encoding. Computer Graph-
ics, 1986.

2. E. J. Delp and O. R. Mitchell. Image Compression using Block Truncation Coding.
IEEE Transactions on Communications, 1979.

3. D. Le Gall. MPEG: A Video Compression Standard for Multimedia Applications.
Communications of the ACM, 34(4):46{58, 1991.

4. D.A. Hu�man. A method for the construction of minimum reduncancy codes.
Proceedings IRE, 40:1098{1101, 1962.

5. R. Keller, W. E�elsberg, and B. Lamparter. Performance Bottlenecks in Digital
Movie Systems. In D. Shepherd, editor, 4th International Workshop on Network
and Operating System Support for Digital Audio and Video, Lancaster, November
1993, pages 163{174, 1993.

6. B. Lamparter and W. E�elsberg. X-MOVIE: Transmission and Presentation of
Digital Movies under X. In R. G. Herrtwich, editor, 2nd International Workshop
on Network and Operating System Support for Digital Audio and Video, Heidelberg,
November 1991, volume 614 of Lecture Notes in Computer Science, pages 328{339.
Springer-Verlag Berlin Heidelberg, 1992.



7. B. Lamparter, W. E�elsberg, and N. Michl. MTP: A Movie Transmission Protocol
for Multimedia Applications. In Multimedia92, 4th IEEE ComSoc International
Workshop on Multimedia Communications, Monterey, California, pages 260{270,
April 1992.

8. K. Patel, B. C. Smith, and L. A. Rowe. Performance of a Software MPEG Video
Decoder. In P. Venkat Rangan, editor, Proceedings of ACM Multimedia 93, pages
75{82. Addison-Wesley, Aug 1993.

9. M. Pins. Analysis and choice of algorithms for data compression with special re-
mark on images and movies (In German). PhD thesis, University of Karlsruhe,
Germany, 1990.

10. J. U. Roy and N. M. Nasrabadi. Hierarchical Block Truncation Coding. Optical
Engineering, 30(5):551{556, May 1991.

11. A. Urban. ECCC - Implementation of extensions to the Color-Cell-Compression
(In German), 1993.

12. G. K. Wallace. The JPEG Still Picture Compression Standard. Communications
of the ACM, 34(4):31{44, April 1991.

This article was processed using the LATEX macro package with LLNCS style


