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Abstract

E�cient implementation of communication software is of critical importance for high-
speed networks. We analyze performance bottlenecks in existing implementations and
propose two techniques for improvements: The �rst exploits parallelism not only in the
actions of the FSMs, but also in the runtime system of the protocol stack. The second
integrates adjacent layers leading to considerable savings in inter-layer interface handling
and in the number of transitions occurring in the FSMs. Both techniques are discussed
in the context of OSI upper layers, and are based on protocol speci�cation in Estelle.

1 Introduction

Existing protocol suites such as the ISO/OSI [ISO84] or the INTERNET protocols [Com88]
were designed with relatively slow networks in mind. The end systems were fast enough to
process complex protocols because the data transmission time was long compared to the time
needed for protocol execution.

Meanwhile, fast transmission media based on �ber optics are available, and the end systems
are now too slow for high performance communication. Communication software has become
the major bottleneck in high speed networks [Svo89b, CT90]. E�cient implementation of the
protocol stack is of crucial importance for the networking future.

For speci�cation purposes, three formal description techniques { Estelle, SDL and LOTOS
{ were standardized [ISO89, CCI87, ISO87]. They improved the correctness of speci�ca-
tions by avoiding ambiguities and by enabling formal veri�cation. In addition, they allow
semiautomatic code generation.

This has several advantages: The code can be maintained more easily, since the system
is speci�ed in an abstract, problem-oriented language. It is also much easier to port an

1



2 2 THE NIST ESTELLE-C-COMPILER

implementation to another system. But one of the major problems is the performance of
implementations produced automatically from a formal speci�cation.

Existing code generators (such as the NIST Estelle-C-compiler [FHSW89, NIS89]) were made
to easily get rapid prototypes for simulation purposes. Executable speci�cations lead to a
better understanding of protocol behaviour. Since performance aspects are not essential for
a simulation, these Estelle tools are designed for validation rather than for the generation of
e�cient code for high performance implementations.

Our measurements show that 60{80% of the runtime of automatically generated implemen-
tations are spent in the runtime system of the compiler. This gives rise to hopes that much
more e�cient implementations can be derived by code generators if the runtime system can
be improved.

In this paper, we describe a more e�cient runtime system for Estelle which avoids some of
the weak points of the original runtime system. It makes use of parallelism and therefore is
intended to run under the operating system MACH [Tan92].

Besides improving the runtime system there is another possibility to achieve more e�cient im-
plementations. Almost always layered communication subsystems are implemented according
to the layered structure of the speci�cation. This implies communication overhead, especially
when functions already available in lower layers have to be passed through the layers in be-
tween to make them accessible for the application. In particular, this applies to the upper
layers; they have relatively simple protocol machines and provide complex functions.

We describe a methodology how to integrate adjacent layers in Estelle. Thus, state transitions
as well as communication can be saved leading to better performance.

This paper is organized as follows: Section 2 describes why implementations generated with
the NIST compiler are ine�cient. Results of runtime measurements are presented and possi-
bilities of performance improvements are shown. In section 3, the parallel runtime system is
described. The integration of Estelle modules is shown in section 4. Section 5 concludes the
paper.

2 The NIST Estelle-C-Compiler

Formal description techniques are now widely used for the speci�cation and validation of
standardized communication protocols. They have a well-de�ned syntax and semantics and
allow the precise and unambiguous de�nition of protocol behaviour.

For practical purposes the formal description techniques SDL and Estelle are most popular.
Both are based on the Extended Finite State Machine model (in the following: FSM). Since
our work concentrates on upper layers (i. e. layers 5 to 7 of the Reference Modell) we decided
to use Estelle; a large number of upper layer speci�cations is already available in Estelle,
including Session and Presentation layers, and more are being developed. The implementation
techniques described in this paper are based on Estelle input, and all protocols described in
Estelle can thus bene�t immediately from the performance improvements.
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An Estelle speci�cation describes communicating FSMs which are connected through bidirec-
tional bu�ering channels. FSMs are represented by active modules, which can be de�ned in
a hierarchical manner together with passive ones. Passive modules only de�ne interfaces and
hide underlying modules according to the block structure of Pascal which Estelle is derived
from.

There is a broad variety of tools for Estelle speci�cations. Besides those for e. g. deadlock
recognition, state minimization, test case derivation, simulation, veri�cation there is a range
of code generators. In the following, we refer to the NIST compiler exclusively.

The main purpose of the NIST compiler is to make an Estelle speci�cation executable.
This is done by generating C code which implements the FSM, predicates and actions of the
protocol. An executable speci�cation allows the protocol designer to \play" with the protocol
machines, to gain experience and �nd bugs. In most cases the designer will generate two FSM
instances from the same speci�cation and execute them back-to-back.

We have extended the NIST compiler to produce implementation code. Compared to
an executable speci�cation, implementation code for a layer must be more e�cient, and
must interface with adjacent layers and the operating system. But of course the FSM is the
same in both cases, and since our implementation code is based on a thoroughly validated
speci�cation it is correct, well structured and portable. The main concern with this approach
is the e�ciency of the generated code.

The NIST Compiler mainly generates two C-�les (besides two header �les) for each module
of an Estelle speci�cation. One �le implements the predicates and actions speci�ed by the
transitions of the underlying FSM. The other one is a template for user-de�ned functions and
types etc.

The FSMs are represented internally in the form of state tables and are mapped to data
structures. A processing unit is missing. Table processing is implemented by the runtime
environment of the compiler. It mainly consists of a scheduler and procedures for enqueueing
events, creating new module entities, evaluating predicates etc. Normally, the scheduler is
called in an endless loop, watching all queues for incoming events and looking up the actions to
be executed in the state tables. If several transitions are possible for a given event, predicates
(derived from the when-clauses in the Estelle speci�cation) have to be evaluated to determine
the transition to be executed.

The interesting question now is: How much time is spent by the actions de�ned by the FSMs
(i. e. the action blocks of the transitions) and how much by the scheduler? To answer this
question, we implemented a tool for runtime measurement of compiled Estelle speci�cations.
The NIST compiler was modi�ed to produce additional code which writes a timestamp on
disk at the beginning and at the end of each generated subroutine. In addition, all runtime
routines were also modi�ed in this way [Lie92].

Thus, runtime measurement is easily possible for existing speci�cations by only recompiling
them with the modi�ed compiler. No changes are necessary neither to the Estelle speci�cation
nor to the handcoded parts. Of course, the writing of the timestamps itself in
uences the
measurement. So, no exact execution times can be taken, but since all routines are in
uenced
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in the same way, a comparison of the runtime of di�erent routines or di�erent versions of the
same speci�cation is possible.

As an example, we used Estelle speci�cations of the ISO Presentation and Session layers.
Both were extracted from a speci�cation described in [Web91] which in turn was derived
from [FLGL89] and [MM89] resp. The Presentation layer consists of the functional unit
kernel without ASN.1-encoding/decoding, the Session layer comprises the Basic Combined
Subset .

Di�erent constellations were measured: Presentation layer alone, Session layer alone, then
the combination of both within one Estelle speci�cation. The results of the processing of a
P-CONNECT.request and a S-CONNECT.request are shown in Tab. 1.

Two facts can be observed from these results:

1. The total execution time (last column) of both events in the combination of Presentation
and Session layer (180 ms) lasts longer than the sum of the times in the single layers
(150 ms).

2. The scheduler needs much more time than the execution of the actions of the FSMs.

Ad 1: As described above, the runtime system must periodically determine the �reable
transitions. This is done by the scheduler, which examines the data structure containing the
state tables. The data structure is organized as a tree re
ecting the hierarchy of the modules.
Since this tree gets more complex with an increasing number of modules, the access time to
the transitions increases also.

Ad 2: The fact that approx. 60-80% of the execution time are spent by the scheduler shows
that it is much more important to improve the e�ciency of the runtime system than to speed
up the FSMs. If we assume in the best case a portion of only 60% for the scheduler the speedup
gained by only parallelizing the FSMs is limited to 1.67 (= 1

60%). This is a consequence of
Amdahl's law [Qui88]: If f is the inherently sequential fraction of a computation to be solved
by p processors, then the parallelization speedup s is limited according to

s �
1

f + 1�f
p

Table 1: Execution times of P-CONNECT.request
and S-CONNECT.request (in ms)

Actions of FSM Scheduler �

Session alone 20 80 100
Presentation alone 20 30 50

� 40 110 150

Combined Pres. & Session 40 140 180
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The maximum speedup smax can be estimated by letting p grow to in�nity:

smax = lim
p!1

1

f + 1�f
p

=
1

f

Two conclusions can be drawn from our observations:

1. The main problem opposing an e�cient implementation is the runtime system. Hence,
the main emphasis should be put on speeding up the runtime system before trying to
speed up the FSMs.

2. The scheduler should process small and simple data structures.

How these postulations can be achieved is described in the next section.

3 Parallelism

One promising approach for improving the performance of a system is the use of parallelism
[HE92, HEHK92, RDF89, UD90, Zit92]. For the implementation of Estelle speci�cations
using the NIST compiler, there are two ways of using parallelism:

1. Parallel execution of the runtime system. The determination of executable tran-
sitions in one (active) module depends only on the elements of the input queues and
the value of the state variable of this module and is therefore independent of all other
modules, i. e. can be done in parallel for all modules.

Then each module has its own scheduler. All schedulers operate in parallel. Each
scheduler also operates much more e�ciently than the original scheduler since the data
structures to be searched are much smaller.

2. Parallel execution of the speci�cation. Another potential of parallelism is pro-
vided by the language Estelle itself: It is possible to specify parallelism explicitly by
decomposing the parallel tasks into separate Estelle modules.

Estelle de�nes precisely which modules can be processed in parallel. For this purpose,
active modules are attributed with the keywords process, activity, system process or
system activity. Modules attributed as system process or system activity can be pro-
cessed concurrently with other modules. Child modules of a process module can be
active at the same time whereas child modules of an activity module must be processed
in a sequential way. Modules in an ancestor/descendant relationship must not execute
in parallel; a parent module takes precedence over its child modules.

Before we can describe how an Estelle speci�cation can be implemented on a parallel com-
puter, we give a brief introduction into parallel hardware.
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There is a wide range of parallel computer architectures, and di�erent classi�cations have
been proposed [Fly66, HB84, Qui88]. The most important criteria are the use of instruction
and data stream (SIMD, MIMD) and the organization of the memory (shared vs. local). The
optimal architecture depends on the problem to be solved; there is no general-purpose parallel
computer.

For our purposes it is clear that SIMD architectures (Single Instruction Multiple Data) are
inapplicable. They are well suited for problems which need the same operations on all data
objects simultaneously such as vector or matrix manipulation. Since an Estelle speci�cation
never describes a set of identical FSMs, a MIMD structure (Multiple Instruction Multiple
Data) is appropriate.

The question of the memory structure needs further discussion. Shared memory can avoid
unnecessary copying of data. On the other hand, if all the data is stored in shared memory, and
all communication and synchronization is done via shared bu�ers and semaphores, memory
access becomes the bottleneck. As a consequence, a combination of both local and shared
memory is desirable for the parallel implementation of Estelle speci�cations.

Multiprocessor systems are best supported by a multithread operating system such as MACH
[Tan92, Loe92]. It allows to create light-weight processes (so-called threads) executing in the
same address space de�ned by tasks . Thus threads can share variables whereas tasks don't
have memory in common and have to communicate via message passing.

In addition, MACH is part of the kernel of the OSF operating system OSF/1 [OSF91] and
therefore a general platform for multiprocessor machines from di�erent vendors. Applications
developed under MACH are easy to port and not bound to speci�c hardware.

An Estelle speci�cation can now be implemented under MACH as follows:

� All active modules are implemented as threads.

� Each system module is mapped to a task under which all descendant modules are
running as threads. System modules describe autonomous, closed subsystems of a spe-
ci�cation which communicate over message passing. Since they don't share variables
with other modules, they can be implemented as tasks.

Compared with the original NIST approach the runtime system now has completely changed:
There is no central scheduler any more; each module has its own scheduler. Thus each module
executes in a thread in parallel with other modules. The concurrency restrictions as pointed
out in the last section (ancestor/descendant con
ict, activities) are guaranteed by semaphor
variables.

We are currently adapting the Estelle runtime system to the MACH multithread architecture.
This leads to a library of functions which can be linked to the generated code. In the moment,
we are also modifying the NIST code generator itself to map Estelle modules to threads and
tasks according to the rules stated above. This will allow the automatic generation of an
implementation from an Estelle speci�cation under MACH.
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4 Integration

In the previous section we have proposed a parallel implementation of Estelle modules for
performance improvement. Another approach to more e�cient implementation is the inte-
gration of adjacent layers. Layered implementation is considered to be an obstacle to higher
performance [Svo89a, Haa90].

Traditionally, there are two methods of implementing a layered communication subsystem:
the server model and the activity thread model [Svo89a]. In both cases, the interfaces between
the layers are kept, and inter-layer communication occurs according to the standards, either
by interprocess communication or by procedure calls.

While this may be acceptable for lower layers where natural boundaries between a user process
and the operating system or the host computer and an adapter card have to be observed,
strict layering introduces unnecessary communication overhead in the application-oriented
upper layers. The transport service o�ers a one-to-one-connection regardless of the underlying
network. In all layers above, this communication structure remains unchanged. They only add
more functionality (i. e. dialogue management, synchronization points, encoding/decoding of
di�erent data representations etc.) to the transport service.

Some of these functions (e. g. normal data transfer) are available in layer four already. Because
of the layered structure, they must be handed over layer by layer, up to the application. This
passthrough mechanism produces both additional transitions as well as communication and
synchronization overhead which can be avoided by the integration of upper layers, i. e. the
integration of the FSMs of these layers into one common FSM.

In principle, an integrated FSM is the product automaton of the FSMs to be integrated.
However the product automaton can be simpli�ed as we will show below.

De�nition 1 (Product automaton) Let Aj = (Sj; Ij ; Oj; �j ; �j; rj), j 2 f1; 2g be two �-
nite state automata with the state sets Sj, the input alphabets Ij with I1 \ I2 = ;, the output

alphabets Oj, the transition functions �j : Sj�Ij ! Sj, the output functions �j : Sj�Ij ! Oj

and the initial states rj. Then we de�ne the product automaton as

A1 �A2 := (S1 � S2; I1 [ I2; O1 [O2; �; �; (r1; r2))

with
� : (S1 � S2)� (I1 [ I2)! (S1 � S2);

�((s1; s2); i) :=

(
(�1(s1; i); s2) : i 2 I1
(s1; �2(s2; i)) : i 2 I2

and
� : (S1 � S2)� (I1 [ I2)! (O1 [O2);

�((s1; s2); i) :=

(
�1(s1; i) : i 2 I1
�2(s2; i) : i 2 I2

:
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If the two automata are protocol machines of adjacent layers, a transition of one automaton
can directly cause a transition of the other one. This occurs if the output element of the �rst
transition and the input element of the second transition are identical. These two transitions {
which are connected by a state in the product automaton { can be replaced by one transition:

Lemma 1 Let A1, A2 be two �nite state automata with O1 \ I2 6= ;. Let further be

s1
i1=�1(s1;i1)
�! �1(s1; i1)

a transition of A1 and

s2
i2=�2(s2;i2)
�! �2(s2; i2)

a transition of A2, then

(s1; s2)
i1=�1(s1;i1)
�! (�1(s1; i1); s2)

i2=�2(s2;i2)
�! (�1(s1; i1); �2(s2; i2))

is a sequence of transitions of A1 � A2.

If i2 = �1(s1; i1) 2 O1 \ I2, this sequence can be replaced by the transition

(s1; s2)
i1=�2(s2;�1(s1;i1))

�! (�1(s1; i1); �2(s2; i2)):

In addition there are some transitions in the product automaton which can never be exe-
cuted: the transitions triggered by events occuring at the layer interface between the two
original FSMs. Since these events are obsolete in the product automaton, the corresponding
transitions can be dropped.

We will use the ISO Presentation and Session layers to clarify this point. At connection estab-
lishment, the Presentation user sends a P-CONNECT.request to the Presentation protocol
machine. That in turn sends an S-CONNECT.request to the Session protocol machine which
creates a T-CONNECT.request for the transport layer (see Fig. 1).

In the product automaton these transitions correspond to the part shown in Fig. 2.

Since S-CONNECT.request is both an element of the input alphabet of the Session proto-
col machine and an element of the output alphabet of the Presentation protocol machine,
transitions 1 and 2 can be replaced according to lemma 1 (see Fig. 3).

Furthermore, S-CONNECT.request is an event of the \inner" interface and thus obsolete.
Since this event cannot be received by the integrated automaton, transition 3 in Fig. 2 will
never be executed and can therefore be dropped. Because of that, state idle/await T-CONcnf
is unreachable and can be removed as well as transition 4. So, Figure 3 shows the �nal
situation. The FSM integration has reduced two transitions to one and saved one synchro-
nization/communication event.

Of course, this is only possible, if no erroneous behaviour is introduced by the integration,
i. e. the input/output behavior of the integrated layers remains unchanged. Because of the
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Figure 1: Connection establishment with separate Presentation and Session layers
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construction method of the integrated automaton it should be clear that the integrated au-
tomaton and the combination of the original automata are equivalent in the sense of automata
theory, i. e. always produce identical output under the same sequence of input events [Sal69].

At the moment we are working on the integration of Presentation and Session layers. It
turns out that there are many passthrough services in these layers, similar to the CON-
NECT.request service. Therefore layer integration will lead to a considerable simpli�cation
of internal structure of upper layer communication software. Since our speci�cation is not
quite complete yet, exact measurements are not possible. But �rst measurements show that a
speedup of at least a factor of 2 can be expected. After the encouraging experience we intend
to also include ACSE [ISO88] into the integrated upper layer FSM.

5 Conclusion and Outlook

We have analyzed the typical bottlenecks in implementation code derived automatically from
an Estelle speci�cation. It is our goal to generate code running (almost) as e�ciently as
hand-written code.

Measurements have shown that up to 80% of the execution time was spent in the scheduling
component of the FSM implementations. Based on these results we propose to exploit paral-
lelism not only for the predicates and actions of an FSM but also in the runtime system. This
is done by mapping the Estelle modules to operating system threads which can be executed
on di�erent processors. Each modules contains its own scheduler.

At the moment, we are working on the parallel runtime system as well as on the necessary
modi�cations to the NIST compiler.

Inter-layer interfaces are another major source of ine�ciency in an implementation. Whereas
the layered approach is well suited for design and speci�cation purposes it is inappropriate to
maintain all layer interfaces in an upper layer implementation. We have presented a method
for layer integration. We �rst compute a product automaton of two adjacent layer entities and
then remove all events, transitions and states related to the former inter-layer interface. This
leads to a much smaller integrated automaton. Based on �rst experience with ISO Session
and Presentation layers we are currently working on a tool automating the layer integration
process.

We believe that the combination of these two methods will enable the automatic generation
of e�cient code directly from Estelle speci�cations.
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