RETHE INFORMATIK
5/93
An Estelle Compiler for Multiprocessor Platforms
S. Fischer und B. Hofmann
Universitat Mannheim

Seminargebaude A5
68131 Mannheim

An Estelle Compiler for Multiprocessor Platforms

Stefan Fischer and Bernd Hofmann

University of Mannheim, Praktische Informatik IV, P.O. Box 10 34 62,
D-68131 Mannheim, Germany

[fischer, hofmann]@pi4.informatik.uni-mannheim.de

Efficient implementation of communication software is of critical importance for high-
speed networks. Parallelism can improve the runtime performance of implementations
gained by code generation. Therefore, we have modified an existing Estelle compiler to
run under OSF/1. It exploits parallelism not only in the actions of the FSMs, but also in
the runtime system of the protocol stack.

Keyword Codes: C.2.2; D.1.3; D.2.2

Keywords: Computer—-Communication Networks, Network Protocols, Protocol Implemen-
tation; Programming Techniques, Concurrent Programming; Software Engineering, Tools
and Techniques

1. Introduction

Existing protocol suites such as the [ISO/OSI [19] or the INTERNET protocols [7] were
designed with relatively slow networks in mind. The end systems were fast enough to
process complex protocols because the data transmission time was long compared to the
time needed for protocol execution.

Given the fast transmission media based on fiber optics that are now available, current
end systems are too slow for high performance communication. Communication software
has become the major bottleneck in high speed networks [6, 36]. Efficient implementation
of the protocol stack is of crucial importance for the networking future.

For specification purposes, three formal description techniques — Estelle, SDI. and LO-
TOS — were standardized [5, 22, 25]. They improve the correctness of specifications by
avoiding ambiguities and by enabling formal verification. In addition, they allow semiau-
tomatic code generation.

This technique has several advantages: The code can be maintained more easily since
the system is specified in an abstract, problem—oriented language. It is also much easier
to port an implementation to another system. But one of the major problems is the
performance of implementations produced automatically from a formal specification.

Existing code generators were made to easily get rapid prototypes for simulation pur-
poses [2, 3, 10, 33, 34, 38]. Executable specifications lead to a better understanding of
protocol behaviour. Since performance aspects are not essential for such a simulation,
existing Estelle tools are designed for validation rather than for the generation of efficient
code for high performance implementations.

A considerable amount of the runtime of automatically generated implementations is

spent in the runtime system. This gives rise to hopes that much more efficient imple-
mentations can be created by code generators if the runtime system can be improved,
especially by the use of parallelism.

At the moment, there are different approaches to improve the performance of protocol
execution by parallelism [1, 4, 14-16, 31]. But they either need special hardware or do
not use formal description techniques. There do exist code generators for deriving parallel
implementations but they mainly were intended for simulation and validation purposes
[30, 35] or an intermediate technique between simulation and prototype implementation
called experimentation [26]. In this paper, we describe a more efficient runtime system
for one of them, the PET/DINGO, which avoids some of the weak points of the original
runtime system [12]. It makes use of parallelism and is intended to run under the operating
system OSF/1* [29].

This paper is organized as follows: Section 2 describes the different forms of parallelism
resulting from Estelle specifications. Sections 3 and 4 show how this parallelism can be
mapped to OSF/1 structures, focussing on parallel decomposition and synchronization
aspects. Section 5 presents some results concerning the speedup we obtained with the
compiler. Section 6 concludes the paper and gives an outlook on further work on the
compiler.

2. Parallel Execution of Estelle Specifications

The use of a code generator for implementing Estelle specifications allows two sorts of
parallelism:

1. Parallel execution of the protocol machines, and
2. Parallel execution of the runtime system.

Ad 1: Estelle itself provides syntactical constructs for expressing parallelism: It is
possible to specify parallelism explicitly by decomposing the parallel tasks into separate
Estelle modules.

Estelle precisely defines which modules can be processed in parallel. For this purpose,
active modules are attributed with the keywords process, activity, system processor
system activity. Modules attributed as system process or system activity can be
processed concurrently with other modules. Child modules of a process module can be
active at the same time, whereas child modules of an activity module must be processed
sequentially. Modules in an ancestor/descendant relationship must not execute in parallel;
a parent module takes precedence over its child modules.

However, there are at least two points on the way from specification to implementation
where parallelism can get lost:

1. It is the specifier who decides which module attributes are used. Thus, it is possible
that parallel activities are specified sequentially because the parallelism was not
recognized by him or her. This hidden parallelism cannot be detected in a fully
automatic way due to the need of background knowledge [17]. To avoid this problem,
careful training of the specifiers is necessary.

LOSF/1 is an operating system supporting multiprocessor machines based on Mach [37]

2. Even if all inherent parallelism of a specification is described by syntactical elements,
all or part of it can be ignored by a manual implementation. This might be caused
by the lack of experience of the implementor as well as by the fact that the target
machine has fewer processors than needed.

This can be avoided by a code generator. Of course, it cannot solve the problem of
too few processors, but since it maps parallel Estelle elements to parallel processors
according to general rules, the described parallelism is preserved in the implemen-
tation.

Another benefit of code generators is the possibility of being able to describe parallelism
in a problem—oriented, high level language independently of the hardware.

Ad 2: An implementation gained from pure code generation cannot be executed as
it is. Finite State Machines (FSMs) are passive machines which only react on stimula-
tions received from their environments. Since code generation can only map FSMs to
corresponding pieces of code and data structures, code generation requires a runtime sys-
tem as well. Besides routines for queue and buffer management and timers it comprises
in particular a scheduler. This routine determines the set of transitions to be executed
next. Therefore, all queues and state tables have to be examined for each module of the
specification. In general, the following tasks have to be done on each round:

1. Determination of a set of transitions matching two conditions: They must start
from the current state, and their input event must be at the head of a queue of this
module.

2. Further reduction of this set by the evaluation of provided clauses (if present).
3. Consideration of priority clauses.

4. Remaining transitions in the set indicate an indeterminism. In this case, one of
them has to be selected at random.

This procedure can be quite time—consuming. For example, if several transitions with
the same input event are possible in the actual state and — in the worst case — all
transitions have the same priority, all provided clauses have to be evaluated. These
might be complex boolean functions causing lengthy computations.

In addition, the evaluation has to be done for each active module of the specification.
When using only one sequential scheduler the evaluation times add up for all modules.
This can be improved by parallelism: Since the determination of fireable transitions
of a module is completely independent of that for other modules, it can be done in
parallel for all. Furthermore, no synchronization conditions have to be considered since
the determination of fireable transitions is independent of their actual execution.

In this way the runtime behaviour can be improved by replacing the central scheduler
with a parallelized version. Each module now has to determine its fireable transitions on
its own and is thus able to run concurrently to other modules. It is no longer a passive data
structure but has become an active unit. Only the actual firing of transitions requires
synchronization with other modules which can be achieved by semaphores or message
passing.

3. Mapping of Estelle Modules onto OSF /1 Tasks and Threads

Before we can describe how an Estelle specification can be implemented on a parallel
computer, we must briefly introduce parallel hardware.

There is a wide range of parallel computer architectures for which different classifi-
cations have been proposed [13, 18, 32]. The most important criteria are the use of
instruction and data stream (SIMD, MIMD) and the organization of the memory (shared
vs. local). The optimal architecture depends on the problem to be solved; there is no
parallel computer with optimal results for any given problem.

For our purposes it is clear that SIMD architectures (Single Instruction Multiple Data)
are inapplicable. They are well suited to problems which perform the same operation
simultaneously on all data objects, such as vector or matrix manipulation. Since an
Estelle specification never describes a set of identical FSMs, a MIMD structure (Multiple
Instruction Multiple Data) is appropriate.

The question of the memory structure is less obvious. Shared memory can avoid unne-
cessary copying of data. On the other hand, if all the data is stored in shared memory,
and all communication and synchronization is done via shared buffers and semaphores,
memory access becomes the bottleneck. As a consequence, a combination of both local
and shared memory is desirable for the parallel implementation of Estelle specifications.

Multiprocessor systems are best supported by a multithreading operating system such
as OSF/1. It allows creation of light—weight processes (so—called threads) executing in
the same address space defined by tasks. Thus, threads can share variables whereas tasks
don’t have memory in common and have to communicate via message passing?. For
consistency, OSF/1 offers lock mechanisms to synchronize the access of shared data.

The main task in implementing an Estelle code generator for this architecture is the
mapping of Estelle language elements onto the programming level of the operating system.
In this paper we will not deal with all mapping decisions but will concentrate on the
parallelization aspects.

First, one has to deal with the granularity of parallelization. To be independent from an
actual distribution on tasks and threads, we define a PUnit as the unit of execution that
can be processed in parallel with other PUnits. Earlier work suggests that the minimum
unit for parallelization should be an Estelle module [30]. In addition, we have identified
three reasonable logical distributions at the module level (cf. Figure 1):

1. Parallelization of system modules. A module with the attribute systempro-
cess or systemactivity builds a PUnit together with its successors. All subtrees
rooted at system modules may then be executed in parallel. We gain asynchronous
parallelism, as Estelle systems are asynchronous, and thus do not need any synchro-
nization mechanism. Inside these subtrees, modules execute sequentially, i.e. some
of the possible parallelism remains unused.

2. Parallelization of process modules. All modules whose parents have one of the
attributes process or systemprocess run in parallel. The Estelle semantics of pa-
rent /child synchronization has to be obeyed, leading to a synchronization overhead.

ZActually, tasks are passive units while threads are active. I.e. not tasks but threads in different tasks
communicate via message passing.

(c) Parallelization of all modules

Specification module system process module
system activity module activity module

process module L___ PUnit

Figure 1. Logical distribution of Estelle modules

All module subtrees rooted at a module with activity or systemactivity attribu-
te form a PUnit, i.e. all modules inside the subtree are sequentialized. This seems
appropriate, as children of activity modules never execute simultaneously due to
Estelle semantics. However, there is still some sort of parallelism which is not exploi-
ted. As shown in the previous section, transitions offered by children of activity
modules may be selected in parallel by each child module without violating Estelle
semantics. This feature cannot be implemented using this second architecture.

3. Parallelization of all modules. All modules have the ability to execute in pa-
rallel. Not only the parallelism but also the synchronization overhead is at its
maximum because the semantics of Estelle now have to be implemented by explicit
synchronization.

We decided to implement the third variant because it allows for maximum parallelism.
It constitutes an extreme situation for the operating system. However, it would not be
difficult to change our code generator to create code for the other variants.

Having achieved a distribution of Estelle modules to PUnits, we have to decide how to
map these units onto the parallel programming features of OSF/1, i.e. tasks and threads.
From the above, it is quite clear that each module runs in its own thread to allow for
parallel execution. To be independent from the actual architecture, we leave it to OSF/1
to distribute the threads (the number of which depends on the specification) to processors
(the number of which depends on the machine). But how many tasks should be used,
and how should the threads be distributed among the tasks? Again, we identified three
reasonable mappings (physical distribution):

1. One task per module: This mapping — which allows each thread to execute in
its own task — has already been implemented several times [30, 35]. A task with
one thread is nearly the same as a process in a “normal” UNIX system. It is quite
useful for the validation of protocols because it allows for distributed testing. It is
not suitable for the protocol implementation on multiprocessor systems because of
the large message passing overhead. In addition, this solution causes many time—
consuming context switches between tasks.

2. One task for the whole specification: In this variant, where all threads execute
in the same task, there are no context switches nor is there any message passing
between modules; all communication takes place via shared memory and sema-
phores.

3. One task for each system module: Subtrees of modules rooted at a system
module communicate via message passing while modules inside the subtree commu-
nicate via shared memory.

The first variant is certainly not the one to choose for efficient protocol implementation.
From the conceptional point of view, variant 3 is best because Estelle system modules
are executing asynchronously. They have no shared data and may only communicate
via their interaction points. This can be mapped exactly to OSF/1 tasks with message
passing between them. Modules within a system’s subtree often have to synchronize with

others (e.g. parent/child) and have shared data (Estelle’s exported variables). These
may be mapped to threads inside a task synchronized by and communicating via shared
memory.

We decided to implement the third variant®. The second variant may easily be imple-
mented by a simple change to the code generator.

4. Communication and Synchronization

Communication and synchronization of Estelle modules are closely related. Especially
in a parallel environment, the mapping onto the operating system has to be designed care-
fully. We first take a look at communication problems without touching synchronization
aspects. The latter will be covered in detail afterwards.

Estelle modules have three interfaces available for their communication with other mo-
dules. A description of our implementation for each interface follows:

1. Initialization parameters may be passed from a parent to a child module during
creation time. By this feature, modules can be parameterized. The creation of a
new module must be mapped to the creation of a new thread because each module
runs in its own thread. To start a thread, a generic start routine has to be called
which takes the name of a function as an argument. This name identifies the routine
in which the thread starts its work. As a second argument, the generic start routine
accepts a pointer to arbitrary data. This pointer will be passed to the special
start routine and identifies the parameters of this routine. Thus, to implement
initialization parameters, the code generator has to put them into a data structure
and pass a pointer to this structure to the start routine.

2. Exported variables are variables of a child module accessible by its parent module.
Inside a task, they are simply mapped to shared data and thus can be accessed by
all threads in that task (the synchronization aspects are discussed later). Exported
variables of modules in different tasks need not be implemented, their occurrence
having been precluded by our mapping of modules onto tasks and threads (since
variables can only be exported to parent modules). Both parent and child modules
will always be in the same task as long as both are active, and therefore shared
memory is the appropriate implementation.

3. Interaction points build an asynchronous message interface for modules. Their
message queues are conceptually unlimited in size and can be simply implemented
by a data structure representing a queue. A module wanting to send a message
to another module could simply insert the message at the end of the interaction
point’s queue of the receiving module. The receiving module will eventually remove
the message from the queue and process it.

However, there has to be some kind of timing in accessing the queues. Consider the
following situation: a parent module sends messages to each of its child modules. No
predictions or assumptions about the time delay for passing the messages between

3The decision does not influence any load balancing issues. OSF/1 schedules threads and not tasks. The
number of threads is equal in any of the three possible mappings.

the modules can be made. When child module 1 receives its message and, in reaction
to it, sends a new message to child module 2, this message may arrive earlier at
module 2 than the message from the parent module to this child. Thus, Estelle
semantics would be violated. The solution for this problem is the use of temporary
queues. All messages to be sent will first be put into these queues and will not be
sent until all modules have finished, i.e. processed their part of the current Estelle
cycle. This mechanism was already implemented in the PET/DINGO system and
was adapted to our multithread environment.

Let us now come back to synchronization. The synchronization problem has to be solved
for two different layers. The first layer includes all Estelle synchronization rules, essentially
those for parent/child synchronization. The second layer includes synchronization of
shared memory access, e. g. for interaction point queues.

To implement the Estelle synchronization rules in a concurrent environment, it is ne-
cessary to develop a protocol which defines the synchronization messages exchanged
between threads (i.e. modules) and their possible orderings [30]. In general, there are
three situations in which synchronization has to take place: initialization of a new mo-
dule instance, synchronization during runtime and termination of an instance. We first
present the general protocol in terms of messages and then describe the implementation of
synchronization between threads of the same task. Intertask synchronization has already
been described in earlier approaches [30, 35] and is therefore omitted.

When a parent module starts a new child module, Estelle rules require that the whole
initialization of the child has to be completed before the parent module can continue its
work. The initialization of the child may include further initializations of its own children.
The Estelle init command therefore results in two messages: the parent module starts
its child (which can be seen as an init message) and blocks until it receives an end-of-init
message from its child.

During runtime of the Estelle specification the attributes of the modules determine the
synchronization rules. System modules need not be synchronized as they are asynchro-
nous. However, we have to distinguish process and activity modules. First, consider
a process module that gets a start-erec message and thus has the right to execute a
transition. At the beginning, it checks its own transitions. If it has one, this transition
will be executed. Afterwards, it sends an end-of-exec message to the parent module and
waits for the next synchronization message. If it has no fireable transition, it hands over
the right to its own children. If it has at least one child, it passes a start-erec message
to all of them and then waits for end-of-exec messages from all. Afterwards, it sends the
end-of-exec message to its parent module.

Activity modules are treated in a slightly different way. If they are not able to execute
a transition, they pass the right to exactly one of their children. If the child is not able
to execute, it returns the right immediately. The parent module will then select another
child module. This proceeds until one module has executed or all modules have been
checked.

Implementing this procedure in exactly this manner would not make use of all possible
parallelism. It is not against Estelle semantics to let all modules choose a transition
and then select one of the modules with an enabled transition (= offering module) for

execution. On a sequential machine, that would result in longer execution times, as all
modules will have to work, one after the other. On a parallel machine, however, the
selection of transitions may be done fully in parallel (if there are enough processors), and
afterwards, only one module has to execute its selected transition. The protocol used with
activity modules thus works as follows: an activity that is unable to execute sends
an offer-request message to all its children. Then, it waits for all offer-response messages
(telling whether the corresponding child has a fireable transition or not). It now has to
select at random one of the offering children and send a start-exec message to it. Again,
the parent module blocks until it receives an end-of-exec message from this child.

Estelle modules are terminated by their parent module using the terminate or release
statement. In the protocol, the parent module sends a terminate-request to the corres-
ponding child module and blocks until it receives a terminated message from that child.
The terminated message is the last message from the child before it ends.

In general, the implementation of the synchronization messages is done via shared
memory. We use one (in case of start and termination of modules) or two (in case of
runtime synchronization) shared integer variables for synchronization between a parent
module and some child module threads. These shared variables are protected by a lock
variable*. A condition variable® is used to implement the non-active waiting of threads
for the change of values in the shared variables. To start a module, the init message is
simply implemented by the call to the pthread_start () routine which allows one thread
(in this case the parent thread) to start another one (the child). The parent thread sets
the shared variable response to 1 and then waits until it is reset to zero by the child (this
is the end-of-init message).

For synchronization during runtime, we use the two variables command and response.
Via the command variable, the parent thread specifies the kind of message, e. g. start-exec
or offer-request (for activities). Before it passes the right to execute to its child(ren), it
assigns the number of executable children to the variable response. Then it wakes up
the children using the condition variable and waits until the response variable is reset to
zero. This will be the case when all modules have completed execution. When they are
ready, they will decrement the value of response by 1 (after having locked the variable for
their exclusive use). The corresponding end-of-... messages are thus implemented by this
decrement operation.

To terminate a module, the parent thread specifies the value for terminate in the com-
mand variable. In this case, it does not check the response variable to wait for completion
but waits for the end of the child’s thread by calling the function pthread_join(). When
the child gets the terminate command, it terminates all of its children and then calls
pthread exit (), which can be seen as a kind of suicide.

An example of the implementation is shown in Figure 2. We have a parent module M,
of type process that has three child processes M;, M; and M3. Child module M; itself
has two further children: My and M5 (Figure 2(a)). Figure 2(b) shows the parallelization
of the corresponding threads ¢; when M issues a start-exec message.

The second layer of synchronization is shared data access. Shared data are mainly the

4Lock variables are provided by OSF/1 and can be used to implement mutual exclusion.
5 Condition variables, also provided by OSF/1, allow for restarting threads depending on a change of
variable values.

10

t —_—
MO 5 rs =0
4 —_—
| rg =1
t
Ml M2 M3 3 c3 =startexec +TD =0
t ry =2
/ \ 2 rg =1
, t .
M, M; tof — - > —
cg =startexec
g =3 »
— thread is running
(a) module hierarchy (b) thread synchronization

Figure 2. Thread synchronization example

implementation of exported variables and interaction point queues. Access to exported
variables can be handled easily. It is always only the module itself and its parent module
that have access to exported variables. As we saw above, parent and child threads will
never run in parallel and therefore will not try to access the data simultaneously. The
interaction point queues are a bit more difficult. We already implemented temporary
queues to adhere to Estelle semantics. These queues, together with a 2-phase distribu-
tion algorithm for interactions (which was already used in the PET/DINGO Toolkit [35]),
avoid the simultaneous access of an interaction point queue by two threads®. The most
important result of our work on this layer was that an explicit synchronization by lock
variables is unnecessary for shared data structures. The synchronization is already achie-
ved by the implementation of Estelle semantics and by means of the existing interaction
distribution algorithm.

5. Results

The code generator described in this paper was implemented on a parallel computer
manufactured by KENDALL SQUARE RESEARCH, KSRI1, running OSF/1 [27]. Our ma-
chine has 32 processors with a performance of 1.28 GFlops and 1 GByte virtual global
memory. The processors have a wordlength of 64 bits, operate at a clock rate of 20 MHz
and can execute two instructions per cycle. They are connected to a ring—shaped bus wi-
th 1 GB/s bandwith and have 32 MB local memory besides 256 KB cache memory each
for data and instructions. All local memories together form the above—mentioned global
memory of 1 GB, the consistency of which is guaranteed by an appropriate protocol on
the ring.

As an example we used Estelle specifications of [SO presentation and session layer

In the first phase, the algorithm collects all interactions from bottom-up. In the second phase, the
collected interactions are redistributed over the modules until they reach their destination interaction
point.

11

[20, 21, 23, 24] described in [11, 28, 39]. The session layer comprises the basic combined
subset, whereas the functionality of the presentation layer is restricted to the functional
unit kernel.

These specifications were enhanced by modules for the transport service and the simu-
lation of presentation service users initiator and responder (cf. Figure 3).

@ Start Stop @ Root Module

Session Session
Entity Entity

Initiator Responder
Initiator Responder
Presentation Presentation
Entity Entity
Presentation Presentation
Entity Entity
Session Session
Entity Entity
]

Figure 3. Specification used for the measurement

Several instances of these stacks can be created at runtime, thus allowing for experience
with parallelism introduced by different connections. The root module triggers the mea-
surement by sending a Start message to all initiators and starting a timer. Those in turn
establish a connection to their peer responders, hand over a number of P-DATA .requests
to their presentation entity (depending on a runtime parameter) and release the connec-

12

tion. After connection establishment, the data packets are sent in only one direction
without waiting for any acknowledgements. Eventually the initiators send a Stop messa-
ge to the root module which stops the timer after having received this message from all
of them.

From this specification four variants were generated:

A: Sequential with one connection,
B: Sequential with two connections,
C': Parallel with one connection,

D: Parallel with two connections.

The sequential variants A and B were generated with the original PET /DINGO system,
the parallel variants C' and D with the modified version. In the parallel case each module
entity is mapped to a thread and, since there is only one system module — the root
module —, all threads run within the same task. Thus the version with one connection
consists of eight threads, whereas the one with two connections comprises fifteen; of course,
both sequential variants are represented by only one thread within one task.

All measurements took place on a closed set of sixteen processors with exclusive access
only for the measured threads. Thus each thread was executed on its own processor. The

average values of five series are depicted in columns A-D of Table 1.

Table 1
Runtimes and resulting speedup of the four variants
DATA- sequential [s] parallel [s] speedup
requests | 1 conn. 2 conn. | 1 conn. 2 conn.
A B C D A/C B/D
10 1.9 3.2 1.7 2.7 .12 1.19
50 4.7 8.6 3.4 5.1 1.38 1.69
75 6.7 11.6 4.7 6.2 1.43 1.87
100 8.2 14.8 5.4 8.4 1.2 1.76

250 18.5 35.7 12.6 16.9 1.47 211
500 35.3 66.5 22.8 32.2 1.55 2.07
750 33.5 101.8 33.7 47.0 1.59 217
1000 69.8 137.4 44.9 60.0 1.55 2.29

Two conclusions can be drawn from these results:

e A comparison of variants A and (' yields the speedup based on a layer—oriented
parallelism. Since each layer entity is specified by exactly one module and our code
generator maps each module to exactly one thread, a pipelining effect is realized
by variant ', with each layer being processed by its own processor. The resulting
speedup is shown in column A/C.

13

e The speedup introduced by the combination of this parallelism and the one enabled
by the concurrent execution of two connections can be evaluated with variants
B and D and is shown in the last column of Table 1.

Both speedups are shown in Figure 4. As can be seen, from 100 DATA requests on the
values stabilize at about 1.5 for the layer—oriented speedup and at ca. 2.2 in the combined
case.

2.4

2.2+

2.0

=
Wi
T¢

1.8+
Speedup

1.6

1.4+

1.2

1.0 T T T T | | T T |
0 100 200 300 400 500 600 700 800 900 1000

Number of P-DATA .requests

Figure 4. Speedup

At first sight the speedup is disappointing. However, the values shown here cannot
be generalized. They are specific for the underlying protocols (presentation and session
layer), which were not designed particularly for parallel execution. Protocols especially
developed with parallelism in mind can be expected to yield better values.

6. Conclusion and Outlook

We have described how code generators can be used not only for simulation but also for
actual implementation of communication protocols. Efficiency at runtime can be achieved
by the use of parallelism. For this purpose, the runtime system of an existing Estelle code
generator, PET/DINGO, was modified to run under the parallel operating system OSF/1.
We emphasize that parallelization of the runtime system is as important as parallelization
of the FSM code.

A main point was to separate the determination of fireable transitions — which can be
done completely in parallel — from their actual execution. In addition, all Estelle modules

14

are processed concurrently, while a synchronization protocol guarantees the adherence to
the semantic rules of Estelle.

The results obtained by the generated software show a considerable speedup of protocol
execution. However, they are not too near to the theoretical upper limit. Currently, we are
working to improve the obtained speedup. We already identified implementation issues
that stand against the optimal performance:

e The synchronization mechanism of our implementation with semaphores is qui-
te complex. KSR-OS offers another mechanism, called barrier synchronization. Its
model of barrier master and slave is very similar to Estelle’s father and child syn-
chronization.

e Often, the synchronization times exceed the time spent on protocol execution.
In this case, a parallelization is not advisable and should be left out.

e The KSR architecture leads to an increase in synchronization and communication
time when more processors than belong to a ring are used. In that case, Estelle
modules belonging to one system module tree should run on processors in the same
ring.

Based on these experiences, we are developing a new strategy for the logical distribution
of modules. It takes into account the runtime of each module, thus leading to a balanced
distribution of modules to processors.

7. Acknowledgements

We would like to thank Prof. Dr. W. Effelsberg and Prof. Dr. R. Gotzhein for their
valuable contributions to this paper as well as B. Weyerer for improving the readability
of the paper.

REFERENCES

1. M. Bilgic and B. Sarikaya. An ASN.l encoder/decoder and its performance. In
L. Logrippo, R.L. Probert, and H. Ural, editors, Protocol Specification, Testing, and
Verifikation, X, pages 141-154. Elsevier Science Publishers B.V. (North-Holland),
1990.

2. T. P. Blumer and R. L. Tenney. A formal specification and implementation method
for protocols. Computer Networks, 6:201-217, 1982.

3. G.v.Bochmann, W. Gerber, and J.-M. Serre. Semiautomatic implementation of com-
munication protocols. [EEE Transactions on Software Engineering, SE-13(9):989-
1000, September 1987.

4. T. Braun and M. Zitterbart. Parallel transport system design. In Danthine and
Spaniol [8].

5. CCITT SG X: Recommendation 7Z.100: Specification and description language SDL.
Contribution Com X-R15-E, 1987.

6. D. D. Clark and D. L. Tennenhouse. Architectural considerations for a new gene-
ration of protocols. In SIGCOMM 90 Symposium Communication Architectures &
Protocols, pages 200-208, Philadelphia, September 1990.

15

7. D. Comer. Internetworking with TCP/IP. Prentice-Hall, Englewood Cliffs, 1988.

8. A. Danthine and O. Spaniol, editors. 4th IFIP conference on high performance net-
working, Liege, 1992.

9. M. Diaz, J.-P. Ansart, J.-P. Courtiat, P. Azema, and V. Chari, editors. The Formal
Description Technique FEstelle. Elsevier Science Publishers B.V. (North—Holland),
Amsterdam, 1989.

10. J. Favreau, M. Hobbs, B. Strausser, and A. Weinstein. User guide for the NIST
prototype compiler for Estelle. Technical Report No. ICST/SNA-87/3, Institute for
Computer Science and Technology, National Institute of Standards and Technology,
February 1989.

11. J.-P. Favreau, R. J. Linn, J. Gargulio, and J. Lindley. A test system for implemen-
tations of FTAM/FTP gateways. National Institute for Standards and Technology,
USA, 19809.

12. S. Fischer. Generierung paralleler Systeme aus Estelle-Spezifikationen. Master’s the-
sis, Lehrstuhl fiir Praktische Informatik IV, Universitat Mannheim, 1992 (in German).

13. M. J. Flynn. Very high-speed computing systems. Proceedings of the IFEFE,
54(12):1901-1909, December 1966.

14. R. Fodisch, T. Held, and H. Konig. A protocol development environment based on
Estelle. In Proceedings of Information Networks and Data Communication, Espoo,
Finland, 1992.

15. D. Giarrizzo, M. Kaiserswerth, T. Wicki, and R. C. Williamson. High—speed parallel
protocol implementation. In H. Rudin and R. Williamson, editors, Protocols for High—
Speed Networks, pages 165-180, Ziirich, 1989. IFIP WG 6.1/WG 6.4, Elsevier Science
Publishers B.V. (North-Holland).

16. B. Heinrichs. XTP specification and parallel implementation. In International Work-
shop on Advanced Communications and Applications for High Speed Networks, pages
77-84, Munchen, 1992.

17. B. Hofmann, W. Effelsberg, T. Held, and H. Konig. On the Parallel Implementation
of OSI Protocols. In IEEE Workshop on the Architecture and Implementation of High
Performance Communication Subsystems, Tucson, Arizona, February 1992.

18. K. Hwang and F. A. Briggs. Computer Architecture and Parallel Processing.
McGraw—Hill, New York, 1984.

19. Information processing systems — Open Systems Interconnection — Basic Reference
Model. International Standard ISO 7498, 1984.

20. Information processing systems — Open Systems Interconnection — basic connection
oriented session service definition. International Standard ISO 8326, 1987.

21. Information processing systems — Open Systems Interconnection — basic connection
oriented session protocol specification. International Standard ISO 8327, 1987.

22. Information processing systems — Open Systems Interconnection — LOTOS: Lan-
guage for the temporal ordering specification of observational behaviour. International
Standard ISO 8807, 1987.

23. Information processing systems — Open Systems Interconnection — connection orien-
ted presentation service definition. International Standard ISO 8822, 1988.

24. Information processing systems — Open Systems Interconnection — connection orien-
ted presentation protocol specification. International Standard ISO 8823, 1988.

16

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Information processing systems — Open Systems Interconnection — Estelle: A formal
description technique based on an extended state transition model. International
Standard ISO 9074, 1989.

C. Jard and J. M. Jezequel. A multi—processor Estelle to C—compiler to prototype
distributed algorithms on parallel machines. In Ed Brinksma, Giuseppe Scollo, and
Chris A. Vissers, editors, Protocol Specification, Testing, and Verification, IX, pages
161-174. IFIP WG 6.1, Elsevier Science Publishers B.V. (North—-Holland), 1989.
KSR manual set. Kendall Square Research Corp., 1991.

P. Mondain-Monval. Estelle description of the ISO session protocoll. In Diaz et al.
[9], pages 229-269.

A guide to OSF/1: A technical synopsis. O'Reilly & Associates, Inc., 1991.

D. Peter. Entwurf, Realisierung und Integration eines Protokolls zur verteilten
Ausfihrung von Estelle-Spezifikationen. Master’s thesis, Universitat Hamburg, Fe-
bruar 1991 (in German).

T.F. La Porta and M. Schwartz. A high—speed protocol parallel implementation:
Design and analysis. In Danthine and Spaniol [8].

M. J. Quinn. Designing Efficient Algorithms for Parallel Computers. McGraw—Hill,
1988.

J.-L. Richard and T. Claes. A generator of C—code for Estelle. In Diaz et al. [9], pages
397-420.

D. P. Sidhu and T P. Blumer. Semi—automatic implementation of OSI protocols.
Computer Networks and ISDN Systems, 18:221-238, 1990.

R. Sijelmassi and B. Strausser. The PET and DINGO tools for deriving distributed
implementations from Estelle. Computer Networks and ISDN Systems, 25(7):841-851,
1993.

L. Svobodova. Measured performance of transport service in LANs. Computer Net-
works and ISDN Systems, 18(1):31-45, 1989.

A.S. Tanenbaum. Modern Operating Systems. Prentice-Hall, Englewood Cliffs, 1992.
S. T. Vuong, A. C. Lau, and R. I. Chan. Semiautomatic implementation of protocols
using an Estelle-C compiler. IEEFE Transactions on Software Engineering, 14(3):384—
393, March 1988.

S. Weber. Spezifikation und Implementation eines Datenkommunikationssystems mit
Estelle. Master’s thesis, Institut fir Informatik und angewandte Mathematik, Uni-
versitat Bern, April 1991.

