
REIHE INFORMATIK
9/93

Adaptable Forward Error Correction for Multimedia Data Streams

B. Lamparter, Otto B�ohrer, W. E�elsberg, and V. Turau
Universit�at Mannheim
Seminargeb�aude A5
D-68131 Mannheim

Adaptable Forward Error Correction

for Multimedia Data Streams

Bernd Lamparter, Otto B�ohrer

Praktische Informatik IV

University of Mannheim

68131 Mannheim

Germany

Email: lamparter@pi4.informatik.uni-mannheim.de

Wolfgang E�elsberg�, Volker Turauy

International Computer Science Institute

1947 Center Street

Berkeley, California 94707

U.S.A.

Email: e�elsberg@pi4.informatik.uni-mannheim.de

turau@prfhfb.fh-friedberg.de

Abstract

The error handling method in traditional communication protocols is error detection and

retransmission. This method is inappropriate for distributed multimedia systems for two

reasons: It introduces variable delay unacceptable for isochronous streams, and it is very

ine�cient and di�cult to use in the multicast environment typical for many multimedia

applications. We propose AdFEC, an adaptable Forward Error Correction scheme based

on binary polynomial algebra. It produces an adaptable amount of redundancy allowing

di�erent packet types to be protected according to their importance. The scheme was

implemented in the framework of the XMovie project and proved to be very e�cient.

�Permanent address: Praktische Informatik IV, University of Mannheim, 68131 Mannheim, Germany
yPermanent address: Fachhochschule Gie�en-Friedberg, Wilhelm-Leuschner-Str. 13, 61169 Friedberg

1 Introduction

Two di�erent approaches can be used to correct transmission errors in computer networks:
error detection and retransmission of damaged packets (ARQ, Automatic Repeat Request),
or correction of bit errors by means of redundant information (FEC, Forward Error Cor-
rection). Traditional network protocols (HDLC, ISO/OSI-TP4, TCP/IP, etc.) all work
with error correction by retransmission, a solution favored for several reasons:

1. Error detecting codes require less redundancy than error correcting codes and thus
save bandwidth.

2. Error detecting codes require a lower computational e�ort.

3. Retransmission must be implemented anyway in order to recover from loss of complete
packets.

Conversely, the major advantage of FEC (Forward Error Correction) lies in its maintenance
of isochronous
ows. Whereas retransmission of damaged packets introduces considerable
delay jitter, the computational overhead for FEC is the same for damaged as for undama-
ged packets. This is of particular importance for multimedia data streams in high speed
networks [1, 2]. Since damaged data packets are corrected on the
y, time-consuming
retransmission is never necessary. Also, multimedia data streams require high-bandwidth
networks anyway, so increased redundancy can be easily accommodated.

Bit errors rarely occur in modern networks, especially if these are based on �ber optics.
The main source of errors is packet loss in the switches. Current FEC procedures that
focus on the correction of bit errors do not solve this problem.

A popular application of forward error correction is in CD players due to their high rate
of error in reading and the errors imprinted during manufacture memory [5], and most
recently in video coding [6]. The procedures serve primarily to correct individual error
bits. Very few articles address the problem of reconstructing lost packets [12, 10, 1, 11].
These articles deal with packet loss in ATM networks. All packets in the data stream are
protected by means of the same method, and with the same redundancy.

This article introduces a method capable of assigning di�erent priorities to di�erent parts
of the data stream. The amount of redundancy for FEC is chosen according to the priority.
We call the method AdFEC (Adaptable Forward Error Correction).

In Chapter 2 the requirements placed by isochronous data streams on error correction
methods are listed. Chapter 3 describes the generation of redundant information in our

2

system. In Chapter 4 the error correction probabilities are calculated and Chapter 5
reports on our experiences with forward error correction within the XMovie-Project at the
University of Mannheim.

2 Requirements for an Error Correction Method

for Isochronous Streams of Data

A data stream is characterized as isochronous if the variance in the transmission delay of
individual packets is close to zero. The most important requirement is the maintenance
of the temporal relationship between the individual packets, i. e. it is absolutely necessary
to display the data at the correct time. This applies to digital �lms and even more to
audio streams. Isochronous streams of data are thus of major importance in multimedia
applications. The human ear is muchmore sensitive to
uctuations in tone than the human
eye to slight
uctuations in the display of images. In addition parts of images can be lost;
this loss will be registered as only slightly irritating. Whereas slight
uctuations in delay
can be compensated by bu�ering, the range of tolerance by no means extends to include
retransmission. Errors must be corrected without retransmission.

A digital data stream for a movie or for audio contains more than just the digitized ima-
ge/audio contents. It also contains information that must not be lost under any circums-
tances, such as control instructions, format data or changes in the color lookup table.
Typically a higher error rate can be tolerated for content parts than for control parts, but
all packets have to arrive on time.

In summarizing it can be stated that multimedia data streams can be reduced to segments
of varying priority, for example:

Priority 1: Segments that may not be lost under any circumstances (e. g. control and
format information as well changes in the color lookup table)

Priority 2: Segments whose loss clearly adversely a�ects quality (e.g. audio)

Priority 3: Segments whose loss is slightly damaging (e. g. pixel data in a video data
stream)

For none of the three priorities is retransmission a tenable option. Starting from an already
low rate of loss, third-priority packets can be transmitted without protection, second-
priority packets should be protected by means of FEC with minimum redundancy, and
�rst-priority packets by means of FEC with high redundancy.

3

3 Creating Redundancy for Forward Error Correc-

tion

3.1 Requirements for a Forward Correction of Errors

Traditional error-correcting codes (e. g. Reed-Solomon) were designed for the detection and
correction of bit errors [9]. Since the demand now exists to also restore entire packets, new
codes must be found. Speci�cally, errors need no longer be located, the lost bits are known.
A feature of traditional error-correcting codes is their ability to locate damaged bits. The
price of this feature is a great deal of redundancy. At issue here is to devise a code that
restores the lost packets at a known error location.

Example 1: Two packets p1 and p2 are to be sent. A redundancy of 100% is taken into
account, i. e. two additional packets may be generated. These additional packets are sent
together with the original packets. In the event of packet loss, the original packets p1 and
p2 must be restored from the remaining packets (see Figure 1). In this case two operations
(labeled � and �) are necessary, with whose help the redundant packets can be generated.

sender -

p1 p2
FEC

p1 p2 p1�p2 p2�p2 �
?

p1 p2�p2

�FEC
p1 p2

�receiver

......................................

Figure 1: Principle of Forward Error Correction for Packet Losses (assume the network
loses the packets p1 and p1 � p2)

We can now de�ne the problems in mathematical terms.

De�nition: Bit sequence IBl = f0; 1gl, for �xed l 2 IN.

given: n packets P = fp1; p2; : : : ; pn 2 IBlg

�xed: n+m packets Q = fq1; q2; : : : ; qn+m 2 IBlg such that upon the arrival of at least n
packets out of Q all packets of the set P can be restored.

4

Example 2: n = 2;m = 1:

Choose q1 = p1; q2 = p2; q3 = p1 � p2

� is the operator for binary exclusive or (XOR). If, for example, q1 is lost, p1 can be
restored with p1 = q2 � q3.

A total of 16 binary operators can be de�ned combining two bits, namely all possible
combinations of zeroes and ones in a four-row value table. In order to construct our packets
for Q, operators are required whose result can be used for the unambiguous reconstruction
of any bit �elds. The only binary operator suitable for this is the XOR-operator and
its negation, the equivalence. Therefore on the basis of just the 1-bit operators only one
redundancy packet can be generated, all other packets would not allow an unambiguous
reconstruction in all cases.

In order to generate additional independent packets, a �eld containing 2n elements (n > 1)
must be sought. Such �elds can be generated with the aid of polynomial algebra [9].
Table 1 shows the operations + and � for a �eld containing four elements.

+ 00 01 10 11
00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

� 00 01 10 11
00 00 00 00 00
01 00 01 10 11
10 00 10 11 01
11 00 11 01 10

Table 1: The operations + and � for a �eld containing four elements

For n = m = 2 the operators � and � can, for example, be de�ned as follows (the �eld is
labeled GF for Galois Field):

a; b 2 GF(22)) a � b = a+ b

a � b = a+ 10 � b

The two redundancy packets are thus de�ned as

c = a+ b

and
d = a+ 10 � b

In the case of loss of two data packets, the calculations in Table 2 are to be carried out.

5

arriving Calculations for reconstructing
Packets a b

a; b - -
a; c - a+ c
a; d - 11 � (a+ d)
b; c b+ c -
b; d d+ 10 � b -
c; d 11 � c + 10 � d 10 � (c+ d)

Table 2: Calculations for Reconstruction of Lost Packets

Returning to our notation above we set p1 = a; p2 = b; q1 = c and q2 = d.

Thus, if any two packets are lost, the contents of p1 and p2 can be reconstructed from the
arriving packets.

Generally speaking, �elds containing pn elements (p is prime, n > 0) can be derived.
The steps necessary for the construction of �elds containing 2n elements follow, prefaced
by a brief introduction to polynomial algebra. A more precise derivation as well as the
corresponding proofs can be found in [9].

3.2 Introduction to Polynomial Algebra

The following provides a general de�nition of groups and �elds, followed by a presentation
of special �elds in polynomial algebra. These �elds (Galois Fields) are then used for the
forward correction of errors. Readers familiar with polynomial algebra can skip this section.

Basic De�nitions

Let IM be a nonempty set of elements and � an inner operation that unambiguously assigns
to each pair a; b of elements in IM an element c = a � b 2 IM.

De�nition 1 A set IM together with a operation � is a group, if the following is valid:

1. The operation � is associative,

2. IM contains a neutral element e, such that 8a 2 IM : a � e = e � a = a

6

3. 8a 2IM 9a0 2 IM : a � a0 = a0 � a = e

Furthermore, a group is commutative if the following is true: 8a; b 2 IM : a � b = b � a. The
number of elements in a group is called order . If the order is �nite, one can also speak of
a �nite group.

The �eld can now be de�ned based on the group. Let IK be a set of elements with two
inner operations, addition (+) and multiplication (�):

De�nition 2 IK is a �eld if the following is true:

1. IK is a commutative group with regard to the addition. The element 0 is the neutral
element of the addition (zero element).

2. IKnf0g is a group with regard to the multiplication. The element 1 is the neutral
element with regard to the multiplication (unit element).

3. The multiplication is distributive over the addition, i. e. a � (b+ c) = a � b+ a � c.

By convention, the inverse element of the addition is labeled �a and the inverse element
of the multiplication is labeled a�1. Since in forward error correction only �nite �elds are
of interest, from here on only such �elds will be considered.

The smallest �eld is the binary �eld, represented by the set IK = f0; 1g and the operators
+ and � (see Table 3, as to the non-ambiguity of the binary �eld see [4]). This �eld is also

+ 0 1
0 0 1
1 1 0

� 0 1
0 0 0
1 0 1

Table 3: Addition and Multiplication in the Binary Field

referred to as GF(2) (Galois Field with the cardinality 2). Generally speaking, there exists
for every prime number p a �eld containing p elements GF(p). Furthermore, from every
GF(p) an extension can be derived: GF(pn). It can also be shown that the cardinality of
every �nite �eld is a power of a prime number [4].

Generally the �eld GF(pn) contains the elements
Pn�1

i=0 ai�
i; ai 2 GF(p). For example

1 + �3 + �7 is an element out of GF(28). The addition can be very simply de�ned: Let
a; b 2 GF(pn), and a = a0 + a1� + � � � + an�1�

n�1; b correspondingly; a + b := a0 + b0 +

7

(a1+ b1)�+ � � �+ (an�1+ bn�1)�n�1. The addition of the respective components follows in
congruence with mod p. In the case p = 2, the addition hence becomes the XOR-operation
(see Table 4).

The de�nition of the multiplication is more di�cult. If the usual polynomial multiplication
is used, elements result that at �rst glance no longer belong to the �eld. If, for example,
one has the �eld GF(24), and the elements 1 + �3 and �2 are multiplied in the usual
manner, the result is �2 + �5. Hence the elements of the �eld are only the representatives
of their equivalence class. With the aid of a generator polynomial the equivalence classes
are formed, and the representatives can be found.

De�nition 3 A generator polynomial q(X) of the class GF(pn) is a polynomial of degree
n over GF(p): q(X) =

Pn
i=0 aiX

i; ai 2 GF(p) for i = 0; : : : n and an 6= 0. � is a zero of
this polynomial, i. e. q(�) =

Pn
i=0 ai�

i = 0

Thus powers of degree greater than n� 1 can be transformed into powers of lower degree.

Example 3: GF(22),
Elements of the �eld: GF= f0; 1; �; 1 + �g
generator polynomial: p = 1 + � + �2 = 0.) �2 = 1 + �
Derivation of the Multiplication Table:

1. The multiplication by 0 resp. 1 is trivial.

2. � � � = �2 = 1 + �

3. � � (1 + �) = �+ �2 = 1 + � + � = 1

4. (1 + �) � (1 + �) = 1 + �+ �+ �2 = 1 + �2 = �

All possible multiplications of GF(22) using the generator polynomial p(�) = 1 + � + �2

are shown in Table 5.

Not all polynomials of degree n are admissible generator polynomials. For a given poly-
nomial it must be tested whether the conditions attached to a �eld are satis�ed (see De-
�nition 2). For example, the polynomial 1 + �2 is not a generator polynomial for GF(22)
since (1 + �) � (1 + �) = 0, which would imply that (1 + �) is a zero divisor of GF(22).

By means of suitable generator polynomials then, �elds with the cardinality pn can now
be constructed. Of particular interest to the computer scientist are of course those with
p = 2. For this reason only such �elds will be considered in the following. The book by
Lin and Costello [9] provides in its appendix a list of the possible generator polynomials
for GF(2n) to n = 10.

8

+ 0 1 � 1 + �

0 0 1 � 1 + �
1 1 0 1 + � �
� � 1 + � 0 1

1 + � 1 + � � 1 0

Table 4: Addition in GF(22)

� 0 1 � 1 + �

0 0 0 0 0
1 0 1 � 1 + �
� 0 � 1 + � 1

1 + � 0 1 + � 1 �

Table 5: Multiplication in GF(22)

3.3 The Power of Polynomial Algebra for Forward Error Correc-

tion

The �elds constructed in the preceding section are to be examined regarding their power
for generating redundant packets. Of particular interest is the number of independent
packets that can be generated. Given the two packets a and b, generation occurs in the
form �a+ �b, with �; �; a; b 2 GF(2n).

Thus, given a �eld GF(2n) and a number of packets a1; : : : ; ak, the question is: How many
independent packets l can be generated by the given �eld from k packets? The more
packets generated and transmitted, the greater the probability that the recipient will be
able to reconstruct the packets sent from those that arrived. It has already been explained
in Chapter 3 that by means of a �eld GF(2) only one single additional packet can be
generated, independent of the number of given packets. The extension to the �eld GF(2)
apparently is of little use in this respect. For this reason the �elds GF(2n) are examined.

Generally the contents of the output packets for two input packets a and b adheres to the
following scheme:

Output Packets:

pij = � � a+ � � b with i; j = 1 : : : 2n and �; � 2 GF(2n) (see Table 6)

Some of the packets generated in this manner are linearly dependent and their transmission
thus a�ords no advantage for reconstruction. The transmission of the �rst packet is ob-
viously useless because it is always equal to zero. The pairs of linearly dependent packets
can now be combined into classes. n � 1 elements belong to every class, in the example
three elements of the table. The result yielded here is the set IR = ffb; �b; (1 + �)bg;
fa+ b; �a+ �b; (1 + �)a+ (1 + �)bg; fa+ �b; �a+ (1 +�)b; (1 + �)a+ bg; fa+ (1 + �)b;
�a+ b; (1 + �)a+ �)bg; fa; �a; (1 + �)agg

9

1. 0 + 0
2. 0 + b
3. 0 + �b
4. 0 + (1 + �)b
5. a+ 0
6. a+ b
7. a+ �b
8. a+(1 + �)b

9. �a + 0
10. �a + b
11. �a + �b
12. �a +(1 + �)b
13. (1 + �)a+ 0
14. (1 + �)a+ b
15. (1 + �)a+ �b
16. (1 + �)a+(1 + �)b

Table 6: Generateable Packets in GF(22)

Generally the following applies:

Theorem 1 In a �eld GF(2n), and for two packets a and b, exactly 2n+1 pairs of linearly
independent packets in the form �a+ �b, whereby �; � 2 GF(2n), can be generated.

Remark: From every packet in the form �a + �b 6= 0, 2n � 1 linearly dependent packets
can be generated respectively: x(�a+ �b); x 2 GF(2n)n0

Proof 1 Given: Packets a; b 2 GF(2n). Then there exist 22n packets in the form �a+ �b,
�; � 2 GF(2n). By means of the zero vector (0a+0b) there can be no generation of a linearly
independent packet, thus 22n�1 packets remain. Of each of these, 2n�1 packets are linearly
dependent upon one another. Thus (22n�1)=(2n�1) = 2n+1 linearly independent packets
remain. 2

Up to now it has been assumed that in each case two packets are combined by a binary
operation for forward error correction; however, it goes without saying that there can be
any number of packets m > 2. The number of possible redundancy packets increases
correspondingly. Unfortunately, the demand for pairs with linear independence no longer
su�ces. Rather all combinations of m packets must be linearly independent of one another.

Theorem 2 In a �eld GF(2n) consisting of t packets a1 : : : at (t > 1) exactly
2n(t�1) + 2n(t�2) + � � � + 2n + 1 pairs of linearly independent packets in the form
�1a1 + � � �+ �tat with �i 2 GF(2n) can be generated.

10

The proof follows the proof of theorem 1.

The following example demonstrates the meaning of the terms in the sum. We consider that
\3 out of n" in the �eld GF(28). The sum in this case is: 216 +28 + 1 = 65793. The set of
representatives of the respective equivalence class is as follows: f(0; 0; 1); (0; 1; i); (1; i; j)g
with i; j 2 GF (28). All elements of the form (0; 0; k) have (0; 0; 1) as representative.
Elements of the form (0; k; l), k > 1 are multiples of (0; 1; i) and vectors of the form
(k; l;m), k > 1 are multiples of an element of the form (1; i; j).

Unfortunately, this statement is of little use because the packets used in reconstruction
must all be mutually independent, not only just as pairs. That is, a set IM of three
elements must be found so that in each instance three elements are linearly independent.
A formal description of the problem follows:

If An is the set of all sets containing three elements over GF(2n):
An := f(x; y; z) : x; y; z 2 GF (2n)g
then the set IMn is de�ned as follows:
IMn := fa 2 An : 8a; b; c : a 6= b 6= c 6= a;det(a; b; c) 6= 0g
det(a; b; c) is the determinant of the matrix (a; b; c). If this determinant is not equal to
zero, the three vectors are linearly independent. From here an algorithm can be easily
derived for �nding the set IMn:

Algorithm 1

Algorithm for �nding the set of linearly independent triples over the set GF(2n):

1. IMn := fa; bg; a; b 2 (GF(2n))3, a; b linearly independent.

2. For all elements a out of (GF(2n))3:
In the event that for all pairs of elements b; c (b 6= c) out of IMn: det(a; b; c) 6= 0

then IMn := Mn [fag

For GF(22) this algorithm can still be carried out by hand. The result can consist of the
following vectors:
IM2 = f(0; 0; 1); (0; 1; 0); (1; 0; 0); (1; 1; 1); (1; �; 1 + �); (1; 1 + �;�)g.
If the original set A2 is sorted di�erently, the set IM2 contains other elements; their cardi-
nality, however, remains the same (without proof). Using algorithm 1 ten elements were
found for GF(24), and 66 elements for GF(28).

The algorithm can be drastically accelerated with the aid of theorem 2: Instead of taking
the elements a in step 2 of algorithm 1 out of the set GF(2n)3, these can be taken from

11

the set of their representatives. For GF(28) this set has only 65 793 elements as opposed
to over 16777216 elements in GF(28)3.

Let us now consider the corrective power and the overhead of our scheme. The more
linearly independent packets we include in the transmission, the higher the corrective
power (i. e. chance of restauration), but the higher also the overhead. For example, only
minimal protection is provided by a single additional packet for every ten data packets.
This results in a redundancy of only 10 percent. The disadvantage is that in the event
of a lost packet the recipient must have all of the other ten packets at hand before the
lost packet can be restored. This would lead to an increased delay in transmission. But
with our scheme it is now easy to generate a larger number of redundant packets, thereby
strongly increasing the reconstruction probability. For example, using a code out of the
�eld GF(28), 257 pairs of linearly independent packets could be generated out of only two
data packets. This goes to the other extreme in increasing the data rate, but providing
much better correction probability.

As we have seen, the method described enables the generation of an adaptable redundancy.
Using the same method of calculation at the sender and recipient, the di�erent segments
of the data stream can be protected with varying degrees of correction probability and
overhead. Therefore we call our method AdFEC (Adaptable Forward Error Correction).

4 Error Correction Probabilities

In this section we analyze the quality of the AdFEC method. We compare AdFEC with
two alternatives: duplicating each packet, or no redundancy at all (i. e. no error correction).

Let n be the number of packets to be send and m be the number of packets that are added
for error correction. Furthermore, let q be the probability that a packet arrives (i. e. 1� q
is the probability of loosing a particular packet). We assume that the loss of packets is an
independent process. We use the following notation to denote the probabilities that the
original n packets can be recovered:

p(n;m) under the assumption that m additional packets are added;
pd(n) under the assumption that every packet is send twice (duplication);
pn(n) no forward error correction.

To obtain a formula for p(n;m) note that the probability that exactly i out of the n+m

packets get lost is qn+m�i (1 � q)i

n+m

i

!
. In order to reconstruct the original n packets

12

at most m packet losses are tolerable. Taking the sum over all possible cases we get

p(n;m) =
mX
i=0

qn+m�i (1� q)i

n+m

i

!

For the analysis of pd(n) note that the original n packets can be reconstructed only in
the case of least one of the two duplicates arrives. Thus, if i packets are lost, the original

n packets arrived at the receiver if the lost packets were all di�erent. There are 2i

n
i

!

di�erent cases for loosing exactly i di�erent packets. This yields

pd(n) =
nX

i=0

q2n�i (1 � q)i 2i

n
i

!

Clearly for the function pn(n) we have

pn(n) = qn

The overhead in the case of sending every packet twice is 100%. In the case where m
additional packets are send the overhead is 100m/n%.

The following tables characterize the situation for q = 0:9 and q = 0:7. In the �rst case we
have pn(10) = 0:35 and pd(10) = 0:90 and in the second case we have pn(10) = 0:03 and
pd(10) = 0:39.

Probability q = 0:9
numb. of add. p(10;m) overhead

packets in %
1 0.697 10
2 0.889 20
3 0.966 30
4 0.991 40
5 0.998 50

Probability q = 0:7
numb. of add. p(10;m) overhead

packets in %
1 0.113 10
2 0.253 20
3 0.421 30
4 0.584 40
5 0.722 50

Thus, in the case q = 0:9 with an overhead of only 20%, nearly the same arrival probability
can be achieved by our algorithm as in the case where every packet is sent twice (i. e. the
overhead is 100%). In the case q = 0:7 the situation is similar: with an overhead of
only 30% a better result can be achieved than with duplication. Moreover, the arrival
probability with only 10% overhead is 69% (11%) compared to 35% (3%) without error
correction. Hence, our adaptive method is superior to the simple method of duplicating
the packets, and with very little overhead it is possible to improve the arrival probability
by a factor of 5 - 10 over no error correction.

13

5 Experience with Adaptable Forward Error Correc-

tion for a Digital Movie System

We have implemented the AdFEC algorithms described above in the context of a digital
movie system. We decided to use 0, 1 or 2 redundant packets for two packets, depending
on the importance of the segments transmitted. We use the operations � and � introduced
in Section 3.1.

5.1 Structure of the AdFEC Data Stream

In order to carry out the correction of errors, it is necessary to put the segments of the
data stream to be protected and the redundant segments into di�erent packets. The code
described in the preceding section can now, for example, be employed as follows:

� Priority 3 (\loss does no harm"): packets are transmitted without redundancy.

� Priority 2 (\small amount of loss acceptable"): packets are transmitted in such a
manner that for every two data packets A and B a third AdFEC packet A�B is
generated.

� Priority 1 (\loss not acceptable"): packets are transmitted in such a manner that for
every two data packets A and B, two AdFEC packets A�B and A�B are generated
and transmitted.

5.2 Implementation and Performance

AdFEC was implemented within the Movie Transmission Protocol (MTP) [8, 3] in the
framework of the XMovie-Project [7] at the University of Mannheim. It protects the
color lookup table transmission; damage to or a loss of the color lookup table within
a movie data stream would have catastrophic results. In our implementation the �eld
GF(22) was used. Since the size of the color lookup table is only about 1 kbyte per image,
compared to approx. 50 kbytes of pixel data, and a high degree of security is required,
the error protection (2 out of 4) was chosen for the color lookup table packets. Because
reconstruction requires only XOR and multiplication by �, AdFEC could be implemented
with very few machine instructions. The multiplication uses a small table in memory;
table lookup is more e�cient than explicit computation at runtime, and can be carried out
in just a few machine instructions. Since the addition corresponds to the XOR operation

14

which is carried out in hardware, the total e�ciency of AdFEC is very high. AdFEC was
written in C on UNIX workstations (SUN-10 and DEC-5000). Because Standard C was
used exclusively, porting of the error correction procedure onto other architectures is very
easy.

6 Summary

With the use of forward error correction several problems arising from the use of traditional
error protection for multimedia data streams can be solved. The principal advantages are
the maintenance of isochronous data
ow, and ease of use in multicast environments.

This paper started with de�ning the requirements of an error correction method for isochro-
nous data streams. It became apparent that only Forward Error Correction methods could
be considered since retransmission destroys the timing relation between sender and recei-
ver. The error correction method must be capable of correcting the loss of entire packets.
Moreover, the same algorithm should be able to work with adjustable redundancy.

For this reason a central part of this paper concentrate on the generation of redundant
information for FEC. Polynomial algebra represents a good source of adequate �elds with
suitable operations according to the expected rates of loss and the required error protection.
It turned out, though, that the generation of several linearly independent packets is not
trivial at all. We have presented an algorithm for this purpose, and investigated its error
correction power and degree of redundancy.

The algorithm requires only very little computation, and therefore can be implemented
very e�ciently. An implementation in hardware directly on the network adapter card is
conceivable. AdFEC was successfully implemented within the XMovie-Project.

References

[1] E.W. Biersack. Performance Evaluation of Forward Error Correction in ATM Net-
works. Computer Communication Review, 22(4):248{257, October 1992.

[2] E.W. Biersack. Performance Evaluation of Forward Error Correction in an ATM
Environment. IEEE Journal on Selected Areas in Communications, Vol. 11, No. 4
(1993), pp. 631-640

[3] O. B�ohrer. Fehlerkorrektur und Flu�kontrolle f�ur multimediale Datenstr�ome. Master's
thesis, Lehrstuhl f�ur Praktische Informatik IV, Universit�at Mannheim, 1993.

15

[4] B. Hornfeck. Algebra. de Gruyter, Berlin, 1976.

[5] S. Kaneda and E. Fujiwara. Single Bit Error Correction Double Bit Error Detecting
Codes for Memory Systems. IEEE Transactions on Computers, C-31(7):596{602, July
1982.

[6] K. Kawashima and H. Saito. Teletra�c Issues in ATM Networks. Computer Networks
and ISDN Systems, 20:369{375, 1990.

[7] B. Lamparter and W. E�elsberg. X-MOVIE: Transmission and Presentation of Digital
Movies under X. In R.G.Herrtwich, editor, 2nd International Workshop on Network
and Operating System Support for Digital Audio and Video, Heidelberg, November
1991, volume 614 of Lecture Notes in Computer Science, pages 328{339. Springer-
Verlag Berlin Heidelberg, 1992.

[8] B. Lamparter, W. E�elsberg, and N. Michl. MTP: A Movie Transmission Protocol for
Multimedia Applications. ACM Computer Communications Review, 22:71{72, July
1992.

[9] S. Lin and J. Costello. Error Control Coding. Prentice Hall, 1983.

[10] A.J. McAuley. Reliable broadband communication using a burst erasure correcting
code. Proc. ACM SIGCOMM '90 Symposium. Communications Architectures and
Protocols, ACM Computer Communication Review, Sept. 1990, vol.20, No.4, pp.297-
306.

[11] H. Ohta and T. Kitami. A Cell Loss Recovery Method Using FEC in ATM Networks.
IEEE Journal on Selected Areas in Communications, 9(9):1471{1483, December 1991.

[12] N. Shacham and P. McKenny. Packet recovery in High-Speed Networks using Coding.
In Proc. INFOCOM 90, San Francisco, June 1990.

[13] L.B. Vries and K. Odaka. Circ | The Error Correcting Code for the Compact Disk.
In The AES Premier Conference | The New World of Digital Audio, June 1982.

[14] L. Zhang and K.W. Sarkies. Modelling of a Virtual Path and its Application for
Forward Error Recovery Coding Schemes in ATM Networks. In Proc. SIGCOM'91
Singapore, September 1981.

16

