Optimization Heuristics for the Combinatorial Auction Problem

Michael Schwind, Tim Stockheim and Franz Rothlauf

Working Paper 13/2003
October 2003

Working Papers in Information Systems 1

University of Mannheim
Department of Information Systems 1
D-68131 Mannheim/Germany
Phone +49 621 1811691, Fax +49 621 1811692
E-Mail: wifol @uni-mannheim.de
Internet: http://www.bwl.uni-mannheim.de/wifol

Optimization Heuristics for the Combinatorial
Auction Problem

Michael Schwind
Dept. of Economics, esp. Information Systems
Mertonstr. 17
D-60054 Frankfurt, Germany
schwind @wiwi.uni-frankfurt.de

Tim Stockheim Franz Rothlauf
Dept. of Economics, esp. Information Systems Dept. of Information Systems 1
Mertonstr. 17 University of Mannheim
D-60054 Frankfurt, Germany D-68131 Mannheim/Germany
stockheim @wiwi.uni-frankfurt.de rothlauf @uni-mannheim.de
October 3, 2003
Abstract

This paper presents and compares three heuristics for the combinatorial auction
problem. Besides a simple greedy (SG) mechanism, two metaheuristics, a sim-
ulated annealing (SA), and a genetic algorithm (GA) approach are developed
which use the combinatorial auction process to find an allocation with maximal
revenue for the auctioneer. The performance of these three heuristics is evaluated
in the context of a price controlled resource allocation process designed for the
control and provision of distributed information services. Comparing the SG and
SA method shows that depending on the problem structure the performance of
the SA is up to 20% higher than the performance of the simple greedy alloca-
tion method. The proposed GA approach, using a random key encoding, results
in a further improvement of the solution quality. Although the metaheuristic ap-
proaches result in higher search performance, the computational effort in terms of
used CPU time is higher in comparison to the simple greedy mechanism. How-
ever, the absolute overall computation time is low enough to enable real-time
execution in the considered IS application domain.

1 Introduction

Price-controlled resource allocation in IT systems is a common research topic since
the use of distributed information systems became more widespread [1]. One way
of achieving an optimal allocation of the resources needed to provide information
services is to use auction mechanisms [2]. A crucial problem in this context is the
nonlinear valuation of the requested resource bundles due to technological interdepen-
dencies. These interdependencies can be addressed by the formulation of appropriate
bid prices for resource bundles depending on the usability of a specific factor com-
bination in the service provision process. The allocation of the constrained resources

is then accomplished by a combinatorial auction (CA). The underlying combinatorial
auction problem (CAP) is NP-hard [3]. Therefore, CAP-algorithms dealing with time
critical applications, such as the provision of distributed IT services, rely on the use of
heuristics and metaheuristics.

In this work we develop three (meta)heuristics for the CAP and evaluate their
performance in a price controlled resource allocation scenario (PCRAS). The sce-
nario emulates resource requirements occurring, for instance in connection with the
provision of distributed information services and information production (ISIP), such
as the simultaneous usage of network and computing capacity to enable web-based
video conferencing and telecommunication applications between corporations. Alter-
natively, the supply and accounting of video-on-demand has similar application prop-
erties. The time-delayed transfer of data, which is collected during daily business
activities in large corporations, could be seen as a further instance of an IT prob-
lem where optimal automated resource allocation is necessary. As a first solution we
present a simple greedy heuristic that is based on a bundle price-resource load ratio.
Based on this bid selection strategy we also propose a simulated annealing (SA) al-
gorithm and a genetic algorithm (GA) using the random key encoding. Both methods
improve the solution quality for the CAP.

2 Solving the Combinatorial Auction Problem

Performing CAs in a PCRAS context means that a bidder agent a; submits bid bundles
b; ; which include the requests g; ;(7,t,) for the resources r of type s in a specific
quantity g at a particular point of time ¢,. ¢ denotes the number of agents, j the number
of bids per agent, and [= 7 * j is the total number of bids.

Due to the bidders time-dependent nonlinear valuation of the resource allocation,
especially the complementary property of the bidders utility function v;({b; ;}), the
CAP is NP-hard [3, 4]. For the PCARS the valuation of two bids (j = 1, 2) submitted
by an agent i is super-additive if technological complementarities exist: '

vi({bi1}) +vi({bi2}) < vi({bia} U {bia}) (1)

The CAP is often denoted as the winner determination problem (WDP) according to
the traditional auctioneers task of identifying the winner. The formal description of
the CAP could be considered as a special variant of the weighted set packing problem
(WSPP) [5] and is formulated as:

The bidder (producer) applies for a particular combination of resources at a specific point of time
tn. If not all requested resources are assigned to him, the partial acquisition of the resources has much
less value because of production delays or even production failures. This results in the higher than linear
(superadditive) valuation of the bundled goods compared to the single items valuation.

I J
max E , E :pz}j Li,j

i=1 j=1
subject to

I J
Z Z qij (T7 t) T 5 < dmazx (T, t)? (2)

i=1 j=1
where r € {1,...,S},t€{1l,...,N} and

J
me <1, whereie{l,...,I}.
j=1

Resources: 1.8 € R
Time slots: t1..N e T
Resource requests: ¢j(r,t) € N
Price for bid b; ;: Pij € RT
Acceptance variable: z; ; e {0,1}
Bid j of agent i: b ; € B

The goal is to maximize the auctioneers income. @q.(7,t) is the maximum ca-
pacity of resources at time ¢ available to the auctioneer and B is the set of all bids b; ;.
Furthermore, we refer to the set of accepted bids as B, (With By, C B).

The search for an optimal, or at least near optimal, solution to the CAP is mainly
done by approaches like integer programming [6, 7] or branch and bound [8, 9]. Due
to the high computational effort of such approaches, heuristics based on greedy alloca-
tion strategies are employed to solve the CAP, accepting a trade-off between solution
quality and computational effort. Mostly, a simple greedy CA algorithm (SG-CAA)
consists of two steps:

e According to a revenue oriented criteria (e.g. average price per bid-bundle,
single-item respectively) submitted bids are sorted in an ordered list.

e CA allocation is done by adding ordered bids from the list as long as they are
not ruled out by bids which are already included.

The allocation quality achieved with the SG-CAA usually depends on the sorting
criteria and the bidder’s utility function. Many approaches combine greedy allocation
with more sophisticated heuristics like SA [10]. [11] presented an SA-based approach
to solve the CAP in a supply chain setting, where contracts for task allocation are
negotiated based on temporal and precedence constraints. The use of a GA as a meta-
heuristic to solve the CAP is proposed by [12]. In this work tasks are matched to
a service provider using a fitness function based on criteria such as bandwidth and
server capacity. Other GA approaches addressed the WSPP to find an optimal solution
for real-world problems like flight crew scheduling [13]. [14] implemented a parallel
GA, which uses up to 128 subpopulations. Although this approach is able to handle
a large number of bundles, the algorithm has difficulties when dealing with highly
constrained set partitioning problems.

3 Price-Controlled Resource Allocation Scenario

In the following section we propose a general price-controlled resource allocation
scenario for evaluating and comparing the performance of the three heuristics.

A request b; ; is formulated as a 2-dimensional bid matrix (B M) describing which
resource’® r;, where i € {1,..., S}, is requested at time ¢,,, where t,, € {1,...,N}. A
simple example for a PCRAS request is presented in Table 1. Each entry of the BM
denotes the amount g; j(r,t) of resource units needed. To every bid matrix a bid price
p belongs which indicates the bidders willingness-to-pay.

After describing the load request on the demand side, the resource allocation on
the supply side should be modeled. In our scenario this is done by employing an
allocation matrix (AM), which has the same structure as BM. Integrating a task into
the schedule of the resource provider is done simply by aggregating the current BM
into the AM. A violation of a resource load constraint can be detected by comparing
the AM with the constraint ¢, (Which is equal for all resource types over all time
slots).

The agents willingness p; ; to pay for a bid depends on the overall resource load

S N
@ =>" a;(rt) 3)

r=1t=1

and is calculated as
bij = qio,?])'l Pfact- 4

Pfact 18 @ random decimal number from the interval [Dimins Pmaz) and @pmqz denotes
the maximum resource load that can be requested by a bidder for a single B M -element
¢ij(r,t). In our three test instances each entry in the B is occupied with probability
Ptso- This means, b; ; = 0 with probability 1 — pss,. If b; ; # 0, b; ; is uniformly
distributed (in our test scenarios b; ; is uniformly distributed between 1 and 3).

In our work we use three different test instances. Each of them is a representative
instance of relevant real-world scenarios:

e Unstructured Bids: The fist type of BMs contains single resource requests
with a maximum bid length of one time slot associated with a specific resource
load. A BM depicting this bid type is shown in Table 1.

e Substructured Bids: In a more realistic environment, bidder agents require
resources with the same intensity for a longer period of time (up to l,,,4, slots).
This results in continuous bids of varying length, called substructured bids. An
example is shown in Table 2.

e Structured Bids: Some application cases require resources to be allocated syn-
chronously within shifts. The coherent bids must not cross the shift limits, but
may have different constant load intensities for the particular resource types dur-
ing the shift. A sample for such a structured BM is displayed in Table 3.

“Computing power, volatile computer memory, non-volatile storage capacity, and data transfer band-
width are the four resources relevant in our problem.

time slot ¢

resource

1[2]3][4[5]6][7[8][9[10]11]12

71 1 2 3 1 2 2
T 3 1123 1 3] 1
73 1|1 1 2

T4 1 1 1131

Table 1: Example of an unstructured PCRAS bid matrix

resource

time slot ¢

1[2]3][4[5]6][7[8][9[10]11]12

71 31313 2122

T 2122 111

T3 1|1 2122

T4 11111 31313

Table 2: Example of a substructured PCRAS bid matrix

time slot ¢
Ol T2 T34 [5]6 789101112
n [3]3]3 2]2] |2
. |2]2]2 313 |1
rs 111 1[1] |2
r 1] 1]1 22| |3

Table 3: Example of a structured PCRAS bid matrix

| bidor. | 2 | 6 | 4 | 5 [1 | 3|
res. load | 111 | 141 | 133 | 85 | 126 | 93
bid price | 294 | 344 [251 [132 [157 | 104
pig/a?? | 265 | 244 | 1.89 [1.55 | 1.25 | 1.12

Table 4: List of bids

4 Three Heuristics for the Combinatorial Auction Problem

In the following section algorithms for the solution of the CAP in the ISIP resource
bundle allocation context are presented. As mentioned above, they are based on three
common types of heuristics: SG, SA and GA.

4.1 Simple Greedy CA Algorithm

We start with the presentation of a simple greedy CA algorithm (SG-CAA). The SG-
CAA implementation uses a max s-function to sort the bids according to the ratio
fij =i/ q%l (price over the overall resource load). See Table 4 for an example.

The SG-CAA iteratively inserts a bid to the accepted bid set B if no other agent’s
bid is already in B,.. (XOR-condition), and if the resource load constraint is not vio-
lated (compare step 4):

1. Let ¢ = 0, By be an (initially) empty set of accepted bids, and r9 be a sorted
bid list according to the above mentioned criteria (compare Table 4). All bids
b; ; are labeled from 1 to [.

2. Let v be the number at the ¢th position of the permutation 9 and a, the corre-
sponding bidder agent.

3. If By contains a bid of a, continue with step 6.

4. If the insertion of the bid with number v in B,.. would violate the resource load
constraint (>, j 0i,;(r,)xi j < @maaVrer,teT) continue with step 6.

5. Insert the bid with number v in B .
6. Stop, ifi > [.

7. Increment ¢ and continue with step 2.

The results of the SG-CAA are used as a benchmark for the algorithms presented
in the next sections.

4.2 Simulated Annealing CA Algorithm

Due to its simple functionality the greedy strategy implemented in the SG-CAA is not
very promising. One possibility to enhance the efficiency of the greedy strategy is to
apply a stochastic improvement process on the initial allocation, trying to remove sub-
optimal bids from the AM and to replace them by bids which result in a higher reward
for the auctioneer. We want to use a simulated annealing approach, which is based
on the original proposal of [15]. The fitness function used is the expected income of
the auctioneer. The acceptance probability of a worse solution is controlled by the
temperature 7.

The simulated annealing CA algorithm (SA-CAA) proceeds as follows: Starting
with an empty AM, the auctioneer tries to add a bid which is submitted by an agent
that has none of its bids accepted. If the resulting allocation AM violates the resource

allocation constraint, the new allocation is discarded and another bid is tried. The
fitness of an allocation is the auctioneer’s income.

Besides adding and removing bids from the AM, the SA algorithm can also handle
both operations simultaneously to obtain a new solution. The probability of accepting
a new solution P,.. is determined by the metropolis probability [16], which depends
on the temperature 7.

Pueoe(AE) ~ exp (A—TE> .

AFE denotes the change in the auctioneers income due to the insertion/removal step.
The SA-CAA algorithm used for our experiments can be summarized as:

1. Let¢ = 0, By be an empty set of accepted bids, and b,,; and b;;,, be empty.
2. With a probability of 0.25 continue with step 4.

3. Select a bid b;;,, randomly from B\ By.. Continue with step 5 with a probability
of 0.33.

4. Select a bid b, randomly from Bg...

5. If the insertion of b;, and removal of b,,; from B,.. would violate the resource
load constraint, continue with step 9.

6. If the insertion of b;,, and removal of b,,; from B,.. would increase the auction-
eer’s revenue, or if random(0, 1) < P,.. (AE;), continue with step 8.

7. Insert by, into B, and remove b,,; from B,..
8. If ¢ > maxSteps stop optimization.
9. If ¢ mod 100 = 0, decrease temperature.

10. Increment ¢, let b,,; and b;,, be empty, and continue with step 2.

When using SA, the starting temperature and cooling rate are essential for the
performance of the algorithm. However, optimizing these parameters manually seems
to be unpromising. Therefore, we decided to employ a temperature control technique
proposed by [17]. This determines the starting temperature such that the algorithm
accepts about 80% of exchange operations leading to a deterioration of the fitness
function:

N
1 AE;
;NGXP< T >—0.8

yielding ' = 5/N % sz\i | AE; after Taylor expansion.

The annealing process is executed in stages awaiting the occurrence of a thermo-
dynamic equilibrium indicated by a constant Zf\i 1 AE;/N. The temperature between
successive annealing stages is decreased by a cooling factor o = 0.995, which is a suit-
able rule of thumb. The annealing process can be stopped if lowering the temperature
does not significantly change the average energy difference.

Figure 1 shows the increasing fitness of the SA-CAA during the annealing pro-
cess averaged over 50 runs. The regression line has the typical shape of an annealing
process. Initially, the temperature is high. Therefore, there is a random walk and
no increase in the fitness of the solutions. This is followed by an accelerating, and
later decelerating, increase in fitness. Finally, when the temperature is low enough the
fitness is fixed in a (local) optimum.

SA Unstructured Bids

1200

800— o O ©

Income

400

o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
o o o o o o o o o o
N < «© @ o N < o [se) o

-~ — - - -~ 3

Iteration

Figure 1: Fitness (auctioneer’s income) when using SA-CAA for unstructured bids

4.3 Genetic CA Algorithm

The third approach is a standard generational GA using the random key (RK) encod-
ing. The RK encoding was introduced by [18] and can advantageously be used for
ordering and scheduling problems if the relative ordering of tasks is important. Using
the RKs for the combinatorial auction problem allows us to incorporate the resource
load constraint into the random key encoding and to generate and process only valid
solutions. Therefore, no additional penalties for invalid solutions are necessary.

Later, the encoding was also proposed for single and multiple machine scheduling,
vehicle routing, resource allocation, quadratic assignments, and traveling salesperson
problems [19]. Norman and Bean [20] refined this approach [21] and applied it to
multiple machine scheduling problems [22]. An overview of using random keys for
scheduling problems can be found in the (unpublished) PhD thesis of Norman [23].
Norman, Smith, and Arapoglu [24, 25] applied random keys to facility layout prob-
lems. Rothlauf et al. [26] used random keys for the representation of trees.

The RK encoding uses random numbers for the encoding of a solution. A key
sequence of length [, where [is the number of bids b; ;, is a sequence of [distinct
real numbers (keys). The values are initially chosen at random, are floating numbers
between zero and one, and are only subsequently modified by mutation and crossover.
An example for a key sequence of length [= 4 is » = (0.07,0.75,0.56,0.67). Of
importance for the interpretation of the key sequence is the position and value of the
keys in the sequence. If we assume that Z; = {0, ...,[—1} then a permutation o can be

defined as a surjective function o : Z; — Z;. For any key sequence r = rq, ..., _1,
the permutation o7 of r is defined as the sequence with elements (or); = 74(;). The
permutation r° corresponding to a key sequence r of length [is the permutation o
such that o7 is decreasing (i.e., i < j = (or); > (or);). The ordering corresponding
to a key sequence r of length [is the sequence o(0),...,0(l — 1), where o is the
permutation corresponding to r.

We want to give a brief example for the construction of the permutation r* of bids
from the key sequence r. The positions of the keys in the key sequence r must be
ordered according to the values of the keys in descending order. In our example we
have to identify the position of the highest value in the key sequence (0.75 at position
2). The next highest value is 0.67 at position 4. We continue ordering the complete
sequence and get the permutation 7* = 2 — 4 — 3 — 1. In the context of our
CA problem this permutation can be interpreted as a list of bids that are considered
sequentially by the auctioneer. (The auctioneer starts by accepting bid 2, then accepts
bid 4, bid 3, and bid 1). From a key sequence of length [/, we can always construct a
permutation of [numbers (bids). Every bid number between 1 and [(resp. 0 and [— 1)
appears in the permutation only once as the position of each key is unique.

In a next step the accepted bids are calculated from the permutation r° representing
an ordered list of bids:

1. Let i = 0, By be an (initially) empty set of accepted bids, and r° the permu-
tation of length 2 that can be constructed from the key sequence r. All bids b; ;
are labeled from 1 to z.

2. Let v be the number at the ¢th position of the permutation r* and a, the corre-
sponding bidder agent.

3. If By already contains a bid of a,, continue with step 6.

4. If the insertion of the bid with number v in B, would violate the resource load
constraint, continue with step 6.

5. Insert the bid with number v in B ...
6. Stop, if i > z.

7. Increment ¢ and continue with step 2.

For our experiments we use a simple generational GA [27] with two-point
crossover, no mutation, and tournament selection with replacement of size 2. For
the encoding of the bids we use the RK encoding. The fitness of the individuals is the
resulting income. Due to the use of the RK encoding there are no invalid solutions and
no penalties have to be added to the fitness of the individuals.

Figure 2 shows an example of the increasing fitness of the GA-CAA for unstruc-
tured bids averaged over 50 runs. We plot the averaged best income of the auctioneer
over the number of generations and use a population size of N = 500. The plots show
a continuous improvement in the income of the auctioneer.

GA Unstructured Bids

©°0008808000066060
o O 00
Q o]

1400

12007

Best Income

10007

800 [°

Generation

Figure 2: Best fitness (auctioneer’s income) in the process of the GA-CAA with 500
individuals for unstructured bids

5 Performance of the three CAP solution heuristics

To evaluate the performance of the three solution heuristics we simulated the CAs us-
ing the JAVA Agent Development Environment (JADE). All bidders and the auctioneer
are implemented as agents. After emitting a call for proposals the auctioneer collects
the bids submitted by the agents and calculates the optimal allocation according to the
chosen heuristic. The results of 50 simulation runs (auctions) per parameter setting are
logged and analyzed using SPSS?.

Our experimental setting tried to reach the optimal allocation of ISIP tasks in the
AM (gar = 8) for four basic resources S = 4 and N = 24 time slots. The max-
imum resource request per BM of the agents was limited to gpmq; = 3. Each agent
was allowed to submit four bids J = 4 of which only one could be allocated (XOR-
condition). Bids are generated with time slot occupancy probability p:s, = 0.33. For
the calculation of the bid price we used pp;n = 1 and ppee = 3. The number of
agents varies between I = 5 and = 100 in steps of 5 for each heuristics type as can be
seen in Figure 3.

The plots show that the auctioneer’s income increases with a larger number of
agents. This can be explained as the probability of finding a compact allocation in-
creases with the number of bids the auctioneer can choose from. More interestingly,
the auctioneer’s maximal revenue depends on the structure of the bids and increases
from unstructured over substructured to structured bids. A higher structure in the bids
allows the auctioneer to allocate the bids more efficiently and to gain a higher revenue.

Table 5 to 7 summarizes the results of Figure 3 and compares the three differ-
ent optimization heuristics for 10 (Table 5), 50 (Table 6), and 100 (Table 7) bidding
agents. Comparing the maximal auctioneer’s revenue for different optimization heuris-
tic shows that the SG-CAA is outperformed by the SA-CAA and the GA-CAA. When

3SPSS Statistical Product and Service Solutions http:/www.spss.com

10

bid type ‘ income ‘ time ‘ perf. ‘ stdev. ‘
unstr. 887.28 | 0.007 1.00 | 74.86
SG | substr. 991.82 | 0.011 1.12 | 127.89
Str. 1123.04 | 0.011 1.27 | 162.74
unstr. 960.22 | 48.334 | 1.08 | 68.15
SA | substr. 1048.04 | 84.792 | 1.18 | 75.01
Str. 1200.78 | 84.768 | 1.35 | 110.35
unstr. 961.70 | 9.051 1.08 | 54.98
GA | substr. 1082.50 | 15.067 | 1.22 | 63.77
Str. 1269.04 | 13.455 | 1.43 | 89.80

Table 5: Performance of the SG/ SA / GA CA-algorithm for 10 agents submitting four
bids measured in income and CPU time (sec) for 50 simulations

bid type ‘ income ‘ time ‘ perf. ‘ stdev. ‘
unstr. 1084.98 | 0.049 1.22 | 92.18
SG | substr. 1291.08 | 0.092 1.46 | 99.94
Str. 1602.72 | 0.089 1.81 | 110.11
unstr. 1251.70 | 55.046 | 1.41 | 48.67
SA | substr. 1447.08 | 92.369 1.63 | 62.78
Str. 1718.22 | 92.481 1.94 | 76.38
unstr. 1241.42 | 81.453 1.40 | 44.57
GA | substr. 1474.16 | 139.999 | 1.66 | 50.08
Str. 1766.82 | 132.324 | 1.99 | 74.12

Table 6: Performance of the SG/ SA / GA CA-algorithm for 50 agents submitting four
bids measured in income and CPU time (sec) for 50 simulations

bid type ‘ income ‘ time ‘ perf. ‘ stdev. ‘
unstr. 111436 | 0.114 1.26 | 78.93
SG | substr. 1393.32 | 0.207 1.57 | 79.35
Str. 1831.66. | 0.208 2.06 | 116.46
unstr. 1302.32 | 63.335 1.47 | 47.61
SA | substr. 1531.70 | 100.809 | 1.73 | 66.55
Str. 1876.12 | 100.911 | 2.11 | 117.12
unstr. 128291 | 189.512 | 1.45 | 55.59
GA | substr. 1525.80 | 314.326 | 1.72 | 56.67
Str. 1929.76 | 302.544 | 2.17 | 87.44

Table 7: Performance of the SG / SA / GA CA-algorithm for 100 agents submitting
four bids measured in income and CPU time (sec) for 50 simulations

11

SG Unstructured Bids SA Unstructured Bids GA Unstructured Bids

20007 20004 20004
2 15001 £ 1500 2 15001
S S S
o o]
£ £ £
1000+ 10001 1000
500 T T 500 T T T T T 500 T T T T T
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of Agents Number of Agents Number of Agents
SG Substructured Bids SA Substructured Bids GA Substructured Bids
20007 20007 2000+
£ 15007 £ 15004 g
] S]
o o o
£ £ £
10007 10004
500 y T T y T 500 T T T T T 500 y T T T T
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of Agents Number of Agents Number of Agents
SG Structured Bids SA Structured Bids GA Structured Bids
of
20007 20004 20004
£ 15009 £ 15004 1500+
o o
o o
£ £
10004 10004 1000
o
o
500 T T T T T 500 T T T T T 500 T T T T T
20 40 60 80 100 20 40 60 80 100 20 40 60 80 100
Number of Agents Number of Agents Number of Agents

Figure 3: Performance of the SG-CAA, SA-CAA and GA-CAA for unstructured, sub-
structured and structured bids. We show the auctioneer’s income over the number of
bidding agents.

12

using the SA-CAA the auctioneer’s revenue is about 20% higher in comparison to
the SG-CAA. However, computing time increases up to a factor of 10 000. The GA-
CAA performs slightly better than the SA-CAA. However, this increase in perfor-
mance comes with higher computational effort.

6 Conclusions

In this work we developed three heuristics to solve the combinatorial auction problem.
The first heuristic is based on a simple greedy allocation mechanism using the ratio of
bid price over the overall resource load. The second algorithm employs a simulated
annealing procedure to find a high-quality allocation for the CAP making use of a
fitness function which is solely based on the auctioneers income. The third heuristic,
a genetic algorithm, uses a random key encoding to represent the allocation quality
during the optimization process.

Comparing these three heuristics on three different problem instances, which are
related to resource allocation tasks in distributed information services and information
production environments, reveals that the greedy algorithm shows the lowest perfor-
mance. Although simulated annealing demands higher computational ressouces, it
performs considerably better for the three instances (unstructured, substructured and
structured bids) of our test set. The genetic algorithm performs best for the three test
types, however requires the highest computational effort. A further result of our exper-
iments is that the allocation quality increases with a higher number of bidding agents
and also when using better structured bids.

References

[1] J. O. Kephart, T. Hogg, and B. A. Huberman, The Ecology of Computation,
North-Holland, Amsterdam, 1988.

[2] W. E. Walsh and M. P. Wellman, “A market protocol for decentralized task al-
location”, in Revised and extended version of a paper presented at the Third In-
ternational Conference on Multiagent Systems (ICMAS-98), Paris, France, 1998,
pp- 325-332.

[3] D. C. Parkes, “Optimal auction design for agents with hard valuation prob-
lems”, in Agent mediated Electronic Commerce II: Towards Next Generation
Agent Based Electronic Commerce Systems, F. Ygge A. Mouskas, C. Sierra,
Ed., Berlin, 2000, AmECE, vol. 1972 of Lecture Notes in Artificial Intelligence,
Springer.

[4] Y. Fujishima, K. Leyton-Brown, and Y. Shoham, “Taming the computational
complexity of combinatorial auctions: Optimal and approximate approaches”, in
Proceedings of the International Joint Conference on Artificial Intelligence 1999
(IJCAI-99), Stockholm, Sweden, 1999.

[5] S. De Vries and R. Vohra, “Combinatorial auctions: A survey”, INFORMS
Journal on Computing, 2001.

13

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

V. Chandru and M. R. Rao, “Integer programming”, Tech. Rep. T.R.No. IISc-
98-04, Department of Computer Science and Automotion, Indian Institute of Sci-
ence, Bangalore, India, 1998.

Arne Andersson, Mattias Tenhunen, and Fredrik Ygge, “Integer programming
for combinatorial auction winner determination”, in Proceedings of the Fourth
International Conference on Multi-Agent Systems (ICMAS °00), Boston, MA,
2000, pp. 39-46.

Tuomas Sandholm, “Algorithm for optimal winner determination in combinato-
rial auctions”, Artificial Intelligence, vol. 135, no. 1-2, pp. 1-54, 2002.

T. Sandholm, S. Suri, A. Gilpin, and D. Levine, “CABOB: A fast optimal al-
gorithm for combinatorial auctions”, in Proceedings of the International Joint
Conference on Artificial Intelligence (IJCAI-01), Seattle, WA, 2001, pp. 1102-
1108.

H. Hoos and C. Boutilier, “Solving combinatorial auctions using stochastic local
search”, in Proceedings of the 17th National Conference on Artificial Intelligence
(IAAI), Austin, TX. AAAI 2000, pp. 22-29.

J. Collins, M. Gini, and B. Mobasher, ‘“Multi-agent negotiation using combina-
torial auctions with precedence constraints”, Tech. Rep. T.R.No. 02-009, Uni-
versity of Minnesota, Department of Computer Science and Engineering, Min-
neapolis, MN, 2002.

A. Easwaran and J. Pitt, “A brokering algorithm for cost & QoS-based win-
ner determination in combinatorial auctions”, in Intelligent Problem Solving,
Methodologies and Approaches, 13th International Conference on Industrial and
Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE
2000), New Orleans, LU, R. Loganantharaj and G. Palm, Eds., Berlin, Germany,
2000, vol. 1821 of Lecture Notes in Computer Science, Springer.

P. C. Chu and J. E. Beasley, “A genetic algorithm for the set partitioning prob-
lem”, Tech. Rep., The Management School Imperial College London, 1995.

D. Levine, A Parallel Genetic Algorithm for the Set Partitioning Problem, PhD
thesis, Argonne National Laboratory, Argonne, IL, 1994.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated an-
nealing”, Science, vol. 220, pp. 671-680, 1983.

N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,
“Equation of state calculations by fast computing machines”, Journal of Chem.
Phys., vol. 21, no. 6, pp. 1087-1092, 1953.

E. Sundermann and I. Lemahieu, “PET image reconstruction using simulated
annealing”, in Proceedings of the SPIE Medical Imaging ’95 (Image Processing).
SPIE, 1995, pp. 378-386.

14

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

J. C. Bean, “Genetics and random keys for sequencing and optimization”, Tech-
nical Report 92-43, Department of Industrial and Operations Engineering, Uni-
versity of Michigan, Ann Arbor, M1, June 1992.

J. C. Bean, “Genetic algorithms and random keys for sequencing and optimiza-
tion”, ORSA Journal on Computing, vol. 6, no. 2, pp. 154-160, 1994.

B. A. Norman and J. C. Bean, “Random keys genetic algorithm for job shop
scheduling”, Tech. Rep. No. 94-5, The University of Michigan, Ann Arbor, MI,
1994.

B. A. Norman and J. C. Bean, “Scheduling operations on parallel machines”, IIE
Transactions, vol. 32, no. 5, pp. 449-459, 2000.

B. A. Norman and J. C. Bean, “Operation sequencing and tool assignment for
multiple spindle CNC machines”, in Proceedings of the Forth International Con-
ference on Evolutionary Computation, Piscataway, NJ, 1997, pp. 425430, IEEE.

B. A. Norman, Scheduling Using the Random Keys Genetic Algorithm, unpub-
lished PhD thesis, University of Michigan, Ann Arbor, Michigan, 1995.

B. A. Norman and A. E. Smith, “Random keys genetic algorithm with adaptive
penalty function for optimization of constrained facility layout problems”, in
Proceedings of the Forth International Conference on Evolutionary Computa-
tion, Piscataway, NJ, 1997, pp. 407-411, IEEE.

B. A. Norman, A. E. Smith, and R. A. Arapoglu, “Integrated facility design using
an evolutionary approach with a subordinate network algorithm”, in Parallel
Problem Solving from Nature, PPSN V, A. E. Eiben, T. Bick, M. Schoenauer,
and H.-P. Schwefel, Eds., Berlin, 1998, pp. 937-946, Springer-Verlag.

F. Rothlauf, D. E. Goldberg, and A. Heinzl, “Network random keys — A tree
network representation scheme for genetic and evolutionary algorithms”, Evolu-
tionary Computation, vol. 10, no. 1, pp. 75-97, 2002.

D. E. Goldberg, Genetic algorithms in search, optimization, and machine learn-
ing, Addison-Wesley, Reading, MA, 1989.

15

