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Non-Technical Summary

Job creation schemes (JCS) are a form of subsidised employment and aim at the stabilisation

and qualification of unemployed persons with disadvantages on the labour market. They are

often criticised because they lack explicit qualification of the participants and only promote

jobs that are not in line with the market. Recent empirical studies of JCS in Germany have

shown that the average effects for the participating individuals are negative. There may be two

possible reasons for this ‘ineffectiveness’: On the one hand it may be due to the poor quality of

programmes in conjunction with often cited stigma- and ‘locking-in’ effects, on the other hand

inefficient allocation of participants may be the reason. Hence, negative mean impacts may not

apply to all strata of the population since treatment effects are heterogeneous.

In this paper we analyse if individuals gain from participation in terms of employment. To

do so, we apply matching methods to estimate the average treatment effect on the treated with

respect to gender-specific and regional differences in a first step. In a second step, we examine

three sources of effect heterogeneity: We start with a selection of special problem-groups of the

labour market, followed by a simple indicator based on the individual’s number of disadvan-

tages (target score) to analyse whether programme effects differ corresponding to the individual

labour market hindrances. At least we use the estimated participation probability to answer the

question whether a higher participation probability correlates with a higher programme impact.

We use data on all participants in JCS, who have started their programmes in February 2000,

and a comparison group of nonparticipants, who have been eligible for participation in January

2000 but have not participated in February.

Our results refer to December 2002. We find positive employment effects for women in West

Germany, whereas the results for men in that region are insignificant. In East Germany men

and women are harmed by programme participation. Our findings for the selected target groups

of the labour market show that JCS do neither harm nor improve the labour market chances for

most of the groups. Persons who benefit from participation are long-term unemployed men in

West Germany and long-term unemployed women in both regions as well as older women and

women who are hard-to-place in West Germany. Referring to the results of the target scores the

expected tendency that higher impacts correlate with higher target scores is observable; unfor-

tunately, most of the estimates are insignificant and one has to be cautious with interpretation.

The results of the stratification matching for the correlation between participation probability

and programme impacts reveal no clear pattern. Even though the results could not confirm

some of our hypotheses, they show that heterogeneity in treatment effects is an important topic

which has to be considered accurately in further research. We also show that this might be a

way to improve efficiency of ALMP and hence allocate scarce resources more effectively.
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1 Introduction

The permanent integration into regular employment is the primary purpose of active labour

market policy (ALMP) in Germany. To achieve this goal, the Federal Employment Agency

(FEA) spends substantial amounts on measures like vocational training programmes (VT), job

creation schemes (JCS) and special promotion for disabled people and aspirants for vocational

rehabilitation. ALMP was first introduced in Germany in the late 1960s. Since then, the

labour market experienced several important changes, caused by the oil price shocks during the

1970s and the growth of the labour market after the German Unification in 1990. The set of

programmes was gradually adjusted to these changes. Despite these reforms and large spending

on ALMP, the German labour market is still plagued by high and persistent unemployment.

Therefore, evaluating ALMP has become a major topic and was also legally anchored in the

reformed legal basis for ALMP in 1998 (Social Code III). The main question to be answered is,

if programmes improve the employment chances of participants.

In this paper we evaluate the effects of JCS for the participating individuals. JCS, which

have been one major element of ALMP in Germany over the last years, are a form of subsidised

employment and aim at the stabilisation and qualification of unemployed persons with disad-

vantages on the labour market. The main purpose of these programmes is the (re-)integration of

unemployed persons into the first labour market.1 Recent empirical studies of JCS for Germany

have shown that the average effects for the participating individuals are negative (see for exam-

ple Hujer, Caliendo, and Thomsen (2004)).2 The reasons for these findings have to be analysed.

One possible explanation may be the poor quality of programmes in conjunction with often

cited stigma- and ‘locking-in’-effects. But leaving this argument aside for a moment, the results

may also come from inefficient allocation mechanisms. The central motivation in this context

is that programme impacts are heterogeneous (Manski, 1997 and 2000) and therefore negative

average effects may not apply for all strata of the population. As Heckman, LaLonde, and Smith

(1999) point out, negative mean impacts may be acceptable if most participants benefit from

participation. Abandoning the ‘common effect’ assumption of treatment effects and identifying

the individuals who gain from the programmes is an obvious opportunity to improve their future

efficiency. If we are able to identify the personal characteristics which are responsible for the ef-

fect heterogeneity in individual impacts, we can use this knowledge for a better future allocation
1 Other enacted purposes like the relief of the stock of unemployed in regions with great imbalances of the

labour market are secondary only and will not be evaluated here.
2 This is also a common finding in the recent evaluation literature of ALMP programmes in Europe. Whereas

ALMP were seen as a reasonable opportunity to reduce and avoid unemployment for a long time, the interna-
tional experiences with the implemented programmes show a mixed picture. The majority of programmes seems
to be ineffective in terms of their aimed at goals. As the overviews by Martin and Grubb (2001) for OECD
countries and Calmfors, Forslund, and Hemström (2002) for Sweden clarify, ALMP are in their present design
and implementation not able to achieve a lasting reduction of unemployment.
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of individuals to programmes. A good example is a situation where we find e.g. that a certain

programme works for older participants but does not work for younger participants at all. If in

the past more younger individuals have been allocated to the programme, the average effect of

the programme may have been negative. However, knowing the sources of effect heterogeneity

helps to achieve a better allocation of unemployed persons to programmes in the future, i.e.

assign only older people in our example.

Our evaluation focuses on two main issues: First, we analyse if individuals gain on average

from participation. To do so, we use matching methods to estimate the average treatment effect

on the treated. Thereby we take gender-specific and regional differences into account. Since

the average effects may not apply to all strata of the population, we examine different sources

of effect heterogeneity in a second step. We start with a selection of special problem-groups of

the labour market like long-term unemployed or individuals without professional training and

estimate their treatment effects separately. After that, we construct a simple indicator, which

we call target score, based on the individual’s number of disadvantages on the labour market,

to analyse whether programme effects differ corresponding to the individual labour market

hindrances. If programmes are tailored to the needs of the most-disadvantaged, one would

expect stronger effects for persons with a higher target score. Finally, we use the estimated

participation probability to answer the question, whether a higher participation probability

correlates with a higher programme effect. We use data on participants, who started their JCS

programme in February 2000, and on a comparison group of nonparticipants, who were eligible

for participation at the end of January 2000, but did not participate in February. We observe the

employment status of our sample until December 2002, i.e. almost three years after programmes

have started.

The paper is organised as follows: In the following section we briefly review some stylised

facts of ALMP and JCS in Germany. We present the data used in section three and introduce

the econometric methodology in section four. In section five we discuss the results for the main

population. After that, we present the results of the target approaches. Finally, section seven

concludes.3

2 Some Stylised Facts of Active Labour Market Policy and

Job Creation Schemes in Germany

The legal basis for ALMP in Germany is the Social Code III. ALMP are part of the employment

promotion and primarily aim at the permanent (re-)integration of unemployed persons into
3 Additional information to the estimations is provided by an ancillary appendix that can be downloaded from

the internet: http://www.wiwi.uni-frankfurt.de/professoren/hujer/papers/identifying anc appendix.pdf
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regular employment. According to Social Code III, employment promotion should help to achieve

the balancing of labour demand and supply. Therefore, unemployment should be circumvented

by an efficient filling of vacancies and the increase of the individual employment chances due to

an upgrade of the worker’s human capital. Although ALMP have a long tradition in Germany,

their importance increased after the German Unification in 1990. Especially in the eastern part,

ALMP were implemented on a large scale to cushion the strong employment reduction in the

first years of the transition process. During the last decade two major instruments characterised

German ALMP: First, VT programmes that aim at a qualification transfer to circumvent and

solve structural problems on the labour market. Second, JCS whose main purpose is to stabilise

and qualify unemployed workers for later re-integration into regular employment, but which are

also used to relive tense labour market situations in regions with high unemployment rates.

Promotion of JCS4 can be authorised if they support activities which are of value for society

and additional in nature. Furthermore, individuals have to be placed, whose last chance to

stabilise and qualify for later re-integration into regular employment is participation in these

schemes. Additional in nature means that the activities could not be executed without the

subsidy. Measures with a predominantly commercial purpose have been excluded explicitly up

to January 2002. The majority of activities is conducted in the public and non-commercial

sector. Financial support for JCS is obtained as a wage subsidy to the employer. Even though

JCS should be co-financed measures where between 30 and 75 percent of the costs are subsidies

by the FEA and the rest is paid by the supporting institution, exceptions can be made in the

direction of a higher subsidy-quota (up to 100 percent). The legal requirements for individuals

to enter JCS are relaxed by the Social Code III amendment (Job-AQTIV-Gesetz) in January

2002. Before that time, potential participants had to be long-term unemployed (more than one

year) or unemployed for at least six months within the last twelve months. Furthermore, they

had to fulfil the conditions for the entitlement of unemployment compensation. In addition, the

local placement officers were allowed to place up to five percent of the allocated individuals who

did not meet these conditions (Five-Percent-Quota). Further exceptions are made for young

unemployed (under 25 years) without professional training, short-term unemployed (with at

least three months of unemployment) placed as tutors, and disabled who could be stabilised or

qualified.5 The subsidy is in general paid for 12 months, but may be extended up to 24 months

or even 36 months under special circumstances. Participants are allowed to do a practical
4 The legal basis for JCS is §§ 260–271, 416 Social Code III. They have been the second most important

instrument of ALMP in Germany in respect of the fiscal volume and the number of promoted individuals. For
2002 the number of promoted individuals in JCS amounts to 112,462 in East and 52,229 in West Germany. These
figures correspond to spendings from 1,639.5 million euro in East and 693.5 million euro in West Germany.

5 With the 2002 amendment, unemployed individuals whose only occupation opportunity is participation in
JCS can be placed in programmes independently of the preceding unemployment duration. In addition, the
Five-Percent-Quota was augmented up to ten percent.
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training up to 40 percent of the time and a VT up to 20 percent, together no more than 50

percent of the programme duration. Priority should be given to projects which enhance the

chances for permanent jobs, support structural improvement in social or environmental services

or aim at the integration of extremely hard-to-place individuals. Participation in JCS results

from placement by the local labour office. Unemployed individuals who cannot be integrated

into regular employment or do not fit the conditions for another instrument of ALMP may be

offered a place. The responsible caseworker may cancel a running programme at any time, if the

participant can be placed into regular employment. If an unemployed person rejects the JCS

offer or if a participant denies a career counselling by the placement officer, the labour office can

stop the payment of unemployment benefits for up to twelve weeks.

3 Data Set

The data used for the empirical analysis contain information on all participants, who were placed

in a JCS in February 2000, and on a comparison group of nonparticipants, who were eligible

for participation in January 2000, but did not enter those schemes in February. Information on

nonparticipants and participants were merged from several sources of the FEA. Central source

for the information derived on participants is a prototype version of the programme participants

master data set (‘Maßnahme-Teilnehmer-Gesamtdatei’, MTG). This data set includes informa-

tion from the job-seekers data base (‘Bewerberangebotsdatei’, BewA), an adjusted version of

this data set for statistical purposes (ST4) and the particular information of subsidised employ-

ment programmes (ST11TN). For this reason, the MTG contains a large number of attributes to

describe individual aspects on the one hand and on the other hand provides a reasonable basis

for the construction of the comparison group. The included attributes can be split into four

classes: socio-demographic and qualification information, labour market history and particular

programme information.6 The information on the comparison group is derived from the BewA

with the additional attributes of the ST4. Therefore, almost all characteristics in the analysis

for the comparison as well as for the treatment group originate from the same data sources (see

Appendix B for more details). The information is completed by a characterisation of the regional

labour market situation by a classification of similar and comparable labour office districts (see

Blien et al. (2004) and appendix C).7

For the outcome variable we use information from the Employment Statistics Register (‘Be-
6 The final version of the MTG includes information on all ALMP programmes of the FEA.
7 The value of good data is an essential building block for a valid evaluation. As for example Heckman, Ichimura,

Smith, and Todd (1998) mention, having access to a geographically-matched comparison group administered
the same questionnaire as programme participants matters in devising effective non-experimental estimators of
programme impacts.
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schäftigtenstatistik’, BSt), which includes information on the total population of persons who

are registered in the social security system. These are employees and participants of several

ALMP programmes, but no self-employed or pensioners. We define only regular employment as

a success, whereas all kinds of subsidised employment or participations in ALMP programmes

are defined as a failure. While this definition might conflict with the institutional setting, it

reflects the economic point of view to measure the integration ability of JCS into non-subsidised

employment.8 To identify spells of regular employment without further promotion, we use the

excerpted information of the final version of the MTG on the individual’s time spent in ALMP

programmes. We observe the labour market outcome for the participating and nonparticipating

group until December 2002. Our analysis in the following parts refer to this last month of the

observation period. So, all employment effects of JCS are estimated for December 2002, that is 35

months after programmes have started. We exclude information on participants in Berlin.9 Our

final sample consists of 11,151 participants and 219,622 nonparticipants. Previous empirical

findings have shown that the effects of JCS differ with respect to region and gender (Hujer,

Caliendo, and Thomsen, 2004). Therefore, we separate our analysis by these characteristics, i.e.

we separately estimate the effects for men and women in East and West Germany.

4 Econometric Methodology

Estimation of treatment effects based on non-experimental data requires consideration of some

identifying issues. As we want to compare participation in one specific programme with non-

participation, we can use the potential outcome framework with two potential outcomes Y 1

(individual receives treatment) and Y 0 (individual does not receive treatment). The actually

observed outcome for any individual i can be written as: Yi = Y 1
i · Di + (1 − Di) · Y 0

i , where

D ∈ {0, 1} is a binary treatment indicator. The treatment effect for each individual i is the

difference between her potential outcomes ∆i = Y 1
i −Y 0

i . Since one of the outcomes is unobserv-

able for each individual, there is no opportunity to calculate individual effects directly. Thus,

we have to concentrate on population averages of gains from treatment. A common evaluation

parameter is the average treatment effect on the treated (ATT), which focusses explicitly on the

effects of those for whom the program is actually intended. It is given by:

∆ATT = E(∆ | D = 1) = E(Y 1 | D = 1)− E(Y 0 | D = 1). (1)
8 Only the first programme participation is evaluated, any participation in later programmes is viewed as an

outcome of the first treatment and is defined as a failure.
9 The special situation of the labour market in the capital city requires a separate evaluation of the integration

effects of JCS into regular employment. The small number of participants aggravates the interpretation of the
results.
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Given equation (1) the problem of selection bias is straightforward to see, since the second term

on the right hand side of equation (1) is unobservable.

If the condition E(Y 0 | D = 1) = E(Y 0 | D = 0) holds, we can use the nonparticipants as an

adequate control group. However, this identifying assumption is likely to hold only in randomised

experiments. Consequently, estimating the ATT by the difference between the subpopulation

means of participants E(Y 1 | D = 1) and nonparticipants E(Y 0 | D = 0) will lead to a selection

bias, which may be caused by observable (e.g. age, skill differences) or unobservable factors

(e.g. motivation). For both cases different estimation strategies are available.10 If we are willing

to assume that all relevant attributes for selection are observable, the matching estimator is

an appealing choice. It is based on the idea that if individuals are similar conditional on all

relevant variables, further differences in the labour market outcome between participants and

nonparticipants result from the programme only.11 It is well known that matching on X can

become hazardous when X is of high dimension (‘curse of dimensionality’). To deal with this

dimensionality problem, Rosenbaum and Rubin (1983) suggest the use of balancing scores b(X),

i.e. functions of the relevant observed covariates X such that the conditional distribution of X

given b(X) is independent of the assignment to treatment. For participants and nonparticipants

with the same balancing score, the distributions of the covariates X are the same, i.e. they are

balanced across the groups. The propensity score P (X), i.e. the probability of participating in

a programme, is one possible balancing score. It summarises the information of the observed

covariates X into a single index function. Rosenbaum and Rubin (1983) show that if treatment

assignment is strongly ignorable given X, it is also strongly ignorable given any balancing score.

Since we focus on ATT, it is sufficient to assume that (in the notation of Dawid (1979)):

Y 0 qD|P (X). (2)

Similar to randomization in a classical experiment, matching balances the distributions of all

relevant12 pre-treatment characteristics X in the treatment and comparison group, and thus

achieves independence between the potential outcomes and the assignment to treatment. Hence,

if the mean exists, E(Y 0 | P (X), D = 1) = E(Y 0 | P (X), D = 0) = E(Y 0 | P (X)) and the

missing counterfactual mean can be constructed from the outcomes of nonparticipants. In order

for both sides of the equations to be well defined simultaneously for all P (X) it is usually

additionally assumed, that

Pr(D = 1 | X) < 1. (3)
10 See for example Heckman, LaLonde, and Smith (1999), Angrist and Krueger (1999) or Blundell and Costa-

Dias (2002).
11 See Imbens (2004) or Smith and Todd (2005) for a recent review regarding matching methods.
12 Relevant variables are all those covariates that jointly determine assignment to treatment and the potential

outcomes.
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for all X. This implies that the support of X is equal in both groups, i.e. S = Support(X|D =

1) = Support(X|D = 0). These assumptions are sufficient for identification of (1), because the

moments of the distribution of Y 1 for the treated are directly estimable.

Several matching methods have been suggested in the literature. Good overviews can be found

in Heckman, Ichimura, Smith, and Todd (1998) and Smith and Todd (2005). The choice of the

matching method usually involves a trade-off between matching quality and variance. First, one

has to decide on how many nonparticipating individuals to match to a single treated individual.

Nearest-neighbour (NN) matching only uses the participant and its closest neighbour. Therefore

it minimises the bias but might also involve an efficiency loss, since a large number of close

neigbours is disregarded. Kernel-based matching on the other hand uses more nonparticipants

for each participant thereby reducing the variance but possibly increasing the bias. Finally,

using the same nonparticipating individual more than once (NN matching with replacement)

may possibly improve the matching quality, but increases the variance. In a companion paper

we have used the same data and tested the sensitivity of the results with respect to different

matching methods (Caliendo, Hujer, and Thomsen, 2005). It turns out, that the results are not

sensitive to the choice of the matching estimator and therefore we will use and present only one

matching strategy, namely nearest-neighbour (NN) matching without replacement and a caliper

of 0.02. (See appendix A for technical details.)

5 Empirical Impacts of Job Creation Schemes

5.1 Estimating the Propensity Score

We have estimated the propensity scores using binary logit models with participation as de-

pendent variable. To take account for regional heterogeneity and to allow for gender-specific

interaction effects, we have estimated separate models for men and women in East and West

Germany.13 Several model specifications have been tested for the selection of variables to be

included in the model. Our final specification contains explanatory variables like age, marital

status, the number of children, nationality and health restrictions that describe the sociodemo-

graphic background of individuals. Furthermore, qualification is included by characteristics like

professional training, the occupational group, the professional rank and work experience. The

influence of the individual labour market history is given by the unemployment duration, the

number of (successless) placement propositions, the duration of the last occupation, the last con-
13 We have also estimated the propensity scores for the two regions using dummy variables for sex. However,

using the results of the two estimations ignores possible gender-specific interaction effects and the fact, that the
coefficients in the estimation differ in their significance and magnitude. This leads to a worse matching quality
in the sense that the balancing of covariates after mathing is reduced, i.e. the standardised bias (see below) is
higher.
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tact to the personal caseworker, whether the person is an aspirant for vocational rehabilitation,

present placement restraints due to health restrictions and information on an ALMP partici-

pation in the past. The regional context is considered by using the classification of the FEA

for comparable labour office districts (see Appendix C). Table 1 presents the estimation results

for the participation probability in JCS for the four main groups. Additionally, the number of

observations in the four participating and nonparticipating groups are included.

It becomes obvious, that allocation differs by regions. The coefficients of the sociodemographic

variables show, that the participation probability of men in West Germany decreases with age,

while in East Germany older men and women are more likely to participate. This indicates the

slightly different purpose of the programmes in East and West Germany. Especially in East

Germany, JCS function as a relief for the labour market and are used as a bridge to retirement.

Furthermore, it has to be noted that German nationals are more likely to participate than

foreigners. This may be due to the fact, that other measures of ALMP (e.g. language courses)

are preferred for foreigners. Independently of region, health restrictions increase the individual

participation probability. This finding indicates an allocation according to the legal basis.

The coefficients for the qualification characteristics emphasise gender specific differences in

the allocation. A higher qualification increases the participation probability in both regions for

women, whereas the coefficients are insignificant for higher qualified men. The positive coeffi-

cients may be seen as an indication that for higher qualified women it is even harder to return to

regular employment and so they are willing to participate in a JCS to finish unemployment. As

expected, work experience reduces the participation probability of all groups. Work experience is

in general an important criterion for placement into regular employment. The finding indicates,

that experienced workers have other opportunities on the labour market. Since unemployment

duration is an eligibility criterion for participation, its influence is of major importance. We

included unemployment duration in three categories, up to 13 weeks, between 13 weeks and

one year, and for more than one year. As expected, participation probability increases with

unemployment duration.
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Tab. 1: Estimation Results of the Logit-Models for the Propensity Score
West Germany East Germany

Men Women Men Women
Variable Coeff. S.E. Coeff. S.E. Coeff. S.E. Coeff. S.E.
Constant -1.1739 0.2731 -3.1254 0.4533 -5.7880 0.3659 -8.0021 0.3944
Socio-Demographic Variables
Age -0.0599 0.0145 -0.0067 0.0235 0.0901 0.0141 0.1702 0.0136
Age(squared) 0.0004 0.0002 -0.0003 0.0003 -0.0008 0.0002 -0.0019 0.0002
Married -0.1676 0.0612 -0.4483 0.0761 0.2683 0.0506 0.1145 0.0344
Number of children 0.0653 0.0281 -0.0183 0.0439 -0.0335 0.0266 -0.0238 0.0184
German 0.4402 0.0683 0.2825 0.1211 0.6284 0.1966 0.7082 0.2432
Health restrictions

No health restrictions Ref. Ref. Ref. Ref.
Acc. DoR1, 80% and over 0.9160 0.1826 1.3404 0.2578 0.5491 0.2758 1.1375 0.2442
Acc. DoR, 50% to under 80% 0.8052 0.1267 0.6433 0.1978 0.4991 0.1270 0.6032 0.1242
Acc. DoR, 30% to under 50% 1.1190 0.3658 1.9871 0.4246 0.5691 0.1925 0.7999 0.1954
Acc. DoR, 30% to under 50%, no equalis.2 0.2757 0.1570 0.0651 0.2685 -0.0708 0.1721 -0.0725 0.1826
Other health restrictions -0.0472 0.0892 -0.0751 0.1390 -0.1918 0.0716 -0.1422 0.0608

Qualification Variables
Professional training

Without compl. prof. training, no CSE Ref. Ref. Ref. Ref.
Without compl. prof. training, with CSE -0.3364 0.0622 0.2294 0.1334 0.1015 0.0823 0.3428 0.0865
Industrial training -0.6738 0.0692 -0.0808 0.1399 -0.1777 0.0748 0.3315 0.0820
Full-time vocational school -0.7639 0.2685 -0.0734 0.2432 -0.3223 0.2594 0.8588 0.1384
Technical school -0.0987 0.1756 0.7183 0.1927 0.2227 0.1231 1.0166 0.0977
Polytechnic 0.3534 0.2009 1.4983 0.2144 -0.0135 0.2058 1.0388 0.1794
College, University 0.2399 0.1577 1.0221 0.1869 0.0810 0.1354 0.9004 0.1272

Occupational group
Plant cultivation, breeding, fishery 0.2222 0.0927 0.2628 0.2501 0.0092 0.0828 0.2370 0.0670
Mining, mineral extraction -0.5605 0.4657 – – -0.7494 0.5154 – –
Manufacturing Ref. Ref. Ref. Ref.
Technical professions -0.5810 0.1544 -0.1609 0.2605 -0.1954 0.0999 0.2149 0.0819
Service professions -0.3077 0.0544 0.3167 0.0995 -0.1739 0.0478 0.0127 0.0406
Other professions 0.1023 0.1533 0.3933 0.2628 -1.1891 0.2170 -1.2092 0.2860

Professional rank
Worker, not skilled worker Ref. Ref. Ref. Ref.
Worker, skilled worker -0.5499 0.0982 -0.1637 0.1944 -0.1811 0.0597 0.0657 0.0525
White-collar worker, simple occupations 0.0163 0.1152 0.1490 0.1256 0.1809 0.1067 0.2197 0.0605
White-collar worker, advanced occupations 0.0877 0.1536 0.5131 0.1624 -0.2838 0.1662 -0.0404 0.1215
Other -0.0112 0.0563 0.1512 0.1054 0.0345 0.0528 0.1004 0.0437

Qualification (with work experience) -0.3397 0.0745 -0.3139 0.1017 -0.2279 0.0695 -0.1175 0.0527
Career Variables
Duration of last employment (months) -0.0046 0.0005 -0.0033 0.0007 -0.0038 0.0004 -0.0028 0.0003
Duration of unemployment (weeks)

Up to 13 weeks Ref. Ref. Ref. Ref.
Between 13 and 52 weeks 0.2055 0.0616 0.0698 0.0889 0.4673 0.0561 0.2509 0.0511
More than 52 weeks 0.3087 0.0678 0.0888 0.0974 0.4498 0.0599 0.1694 0.0509

Number of placement propositions 0.0494 0.0028 0.0530 0.0042 0.0610 0.0030 0.0919 0.0031
Last contact to job center (weeks) -0.0013 0.0125 0.0520 0.0177 -0.1204 0.0114 -0.0644 0.0085
Rehabilitation attendant -0.1533 0.1185 0.0696 0.2039 0.2958 0.0939 0.1535 0.1024
Placement restrictions -0.3396 0.0989 -0.2654 0.1546 -0.3164 0.0870 -0.3000 0.0825
Programme before unemployment

No further education or programme Ref. Ref. Ref. Ref.
Further education compl., cont. education 0.2292 0.0801 0.5301 0.1043 0.4830 0.0628 0.5263 0.0422
Further education compl., voc. adjustment 0.6479 0.2286 0.4613 0.4466 0.6545 0.0893 0.5634 0.0746
Job-preparative measure -0.4764 1.0285 2.6387 0.5245 1.1431 0.4289 0.3364 0.5250
Job creation scheme 2.1463 0.0777 3.0671 0.1141 1.7272 0.0546 1.5382 0.0418
Rehabilitation measure -0.0929 0.2706 0.9368 0.3406 0.4232 0.2273 0.3780 0.2720

Regional Context Variables3

Cluster Ia – – – – -0.1040 0.1291 0.1421 0.1238
Cluster Ib – – – – -0.3077 0.1248 -0.0242 0.1210
Cluster Ic – – – – -0.2838 0.1361 -0.1841 0.1292
Cluster II -0.2225 0.0730 -0.5666 0.0960 Ref. Ref.
Cluster III -0.1841 0.0722 -0.4601 0.0917 – – – –
Cluster IV -0.0080 0.1002 -0.4530 0.1423 – – – –
Cluster V Ref. Ref. – – – –

No. of Part. 2,140 1,052 2,924 5,035
No. of Nonpart. 44,095 34,227 64,788 76,512

Bold letters indicate significance at the 1% level. Italic letters refer to the 5% level. Ref. denotes the reference category.
– not included in the estimation/ no observations.

1 DoR = Degree of restriction
2 People with accepted degree of restriction, but no equalisation to other persons with the same DoR.
3 See appendix C for further information. 10



The number of (successless) placement propositions is an indicator for bad labour market

opportunities. The coefficient affirms allocation according to the law. A last interesting point

to note is, that placement restrictions annotated by the caseworker, harm the participation

probability. This is somewhat surprising, because JCS should even be offered to these groups.

The coefficients for the regional context are in reference to the labour office districts with

the best (in relation to the region) labour market environment. More severe labour market

conditions correlate with a decrease in the participation probabilities in both parts. For men

in East Germany, living in labour office districts with average labour market opportunities

bears the clearest reduction of participation probability, while analogously for West German

women and men living in labour office districts dominated by large cities with a above average

unemployment shows the strongest decrease. The better the labour market conditions in the

respective labour office district, the more likely are the unemployed persons to participate.

5.2 Matching Quality and First Results

Quality of Propensity Score Estimation and Matching Before we present the results,

we first have to check the quality of our propensity score estimation and second, the success of

the matching procedure in balancing the covariates between treatment and comparison group.

Our model specification for the propensity score estimation was based on specification tests to

identify the relevant variables.14 One simple method to validate the ability of a good prediction

is the computation of hit-rates, i.e. the proportion of persons with a correct prediction of their

status (participation and nonparticipation). As becomes obvious from table 2, these hit-rates

lie between 70.6 percent for men and 75.7 percent for women in West Germany. For East

Germany the hit-rates are 74.2 for men and 72.2 percent for women. This implies a quite

accurate underlying model. However, the aim of propensity score matching is not to maximise

the hit-rate, but to balance the covariates between treatment and comparison groups. Since we

do not condition directly on all covariates but on the propensity score, we have to check the

ability of the matching procedure to balance the relevant covariates. We do so by comparing the

absolute bias between the respective participating and nonparticipating groups before and after

matching took place. One suitable indicator to assess the distance in the marginal distributions

of the X-variables is the standardised bias (SB) suggested by Rosenbaum and Rubin (1985).

For each covariate X it is defined as a percentage of the quotient between the difference of the

sample means in the treated and (matched) comparison subsamples and the square root of the
14 See Caliendo (2005) for an overview regarding such specification tests and other issues concerning the imple-

mentation of matching estimators.

11



average of the sample variances in both groups. The SB before and after matching are given by

SBbefore = 100 · (X1−X0)√
0.5·(V1(X)+V0(X))

, SBafter = 100 · (X1M−X0M )√
0.5·(V1M (X)+V0M (X))

, (4)

where X1 (V1) is the mean (variance) in the treated group before matching and X0 (V0) the

analogue for the comparison group. X1M (V1M ), X0M (V0M ) are the corresponding values after

matching. This is a common approach used in many evaluation studies, e.g. by Sianesi (2004).

To abbreviate the documentation we present only the means of the SB before and after matching

for the four main groups (Table 2). While the mean SB lies between 10.83 and 14.62 percent

before matching, it reduces to 1.60 to 3.20 percent after matching.

Tab. 2: Some Quality Indicators

West Germany East-Germany
Men Women Men Women

Before Matching

Observations1 46,235 35,271 67,712 81,505
Hit-Rate2 70.6 75.7 74.2 72.2
Pseudo R2 0.1389 0.1775 0.1225 0.1144
F -Test 2,406.8 (41) 1,679.4 (40) 2,951.3 (41) 4,323.3 (40)
Mean of Standardised Bias (in percent)3 14.62 16.08 12.01 10.83

After Matching

Observations4 4,246 1,960 5,846 10,054
Pseudo-R2 0.006 0.009 0.004 0.003
F -Test 38.0 (41) 23.4 (40) 35.3 (41) 39.2 (40)
Mean of Standardised Bias (in percent)3 2.51 3.20 1.78 1.60

1 Observations are the sum of participating and nonparticipating individuals.
2 Hit-rates are computed as follows: If the estimated propensity score is larger than the sample proportion of

persons taking treatment, i.e. P̂ (X) > P̄ , observations are classified as ‘1’. If P̂ (X) ≤ P̄ observations are
classified as ‘0’.

3 Mean of Standardised Bias calculated as mean of the single characteristics’ standardised biases.
4 Since we apply NN-matching without replacement and a caliper of 0.02 the number of treated individuals is

reduced after matching by observations off support. The numbers of the treated individuals can be calculated
by dividing the number of observations by 2.

Sianesi (2004) additionally suggests to re-estimate the propensity score on the matched sample,

that is only on participants and matched nonparticipants and compare the pseudo-R2’s before

and after matching. The pseudo-R2 indicates, how well the regressors X explain the participation

probability. After matching there should be no systematic differences in the distribution of the

covariates between both groups. Therefore, the pseudo-R2 after matching should be fairly low.

As the results from Table 2 show, this is true for our estimation. The results of the F -tests (with

degrees of freedom in brackets) point in the same direction indicating a joint influence before

and no joint influence after matching.
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First Results All estimated effects in the later sections of this paper correspond to December

2002, the last month of our observation period. We are aware of the fact, that consideration

of only this month bears some shortcomings for a valuable interpretation of the programme

effects. Since December 2002 is almost three years after programmes have started and with

respect to the average duration of programmes of twelve months for the majority of participants

almost two years after the programmes have ended, there may be other events influencing the

labour market status of participants and nonparticipants at that time. As we do not consider

further participation and assignment to other ALMP programmes explicitly in our estimation,

possible influences have to be mentioned. Apart from that criticism, our analysis focusses on

the mid-term effects of job creation schemes and therefore requires this time horizon.

To give an idea of the time path of the effects, figure 1 presents the estimated effects for the four

main groups between February 2000 and December 2002. At the beginning of the observation

period, the programme effect is expected to be overlayed by so-called ‘locking-in’-effects (van

Ours, 2004) due to a reduced search intensity of the participants. This reduced search intensity

is plausible for participants, since they are occupied by participation and spend less time on

job search. Thus, a valid interpretation of the programme effects on the employment rates

should start after the majority of participants has left the programmes, i.e. after twelve months.

Since the purpose of JCS is to stabilise and qualify unemployed persons for the re-integration

into regular employment, we would expect increasing employment rates after the programmes

have ended. We find these ‘locking-in’-effects for all groups (see figure 1). After this initial fall

there is a clear rising tendency for the groups in West Germany and a moderate rising tendency

for the groups in East Germany. For the smallest group, women in West Germany, there is

the strongest rise in the employment rates with significant positive effects at the end of the

observation period in December 2002. The effects for men in West Germany are also rising,

but the effects are insignificant in the end, i.e. an increase in the employability by participation

cannot be established. While the effects in West Germany are clearly rising, we find a stepwise

increase with relatively constant levels over one-year-periods in East Germany. Besides that, the

‘locking-in’-effects during the first year after programmes start are not as strong as in the West.

This finding can be interpreted as an indication of worse outside options for the nonparticipants.

Although the effects show a rising tendency for all groups, a significant increase of the em-

ployment rates due to participation can only be stated for women in West Germany, who have a

significant positive effect of 4.6 percent in December 2002. For men in West Germany we do not

find any significant effects in December 2002, whereas men in East Germany have a significant

negative effect of -2.9 percent. For women in East Germany the effect is slightly better but

still significantly negative at -1.4 percent. So it seems, that JCS rather decrease than increase

the employment prospects of participants. Of course, due to the strong ‘locking-in’-effects, the
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Fig. 1: ATT (Employment) between February 2000 and December 2002
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starting position for the participants is on average lower than for nonparticipants. However,

since we observe the outcomes until 35 months after start of the programmes and almost two

years after the majority of the individuals has left the programmes, a successful programme

should overcompensate for this initial fall.
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6 Targeting

Clearly, as already mentioned, one possible explanation for the discouraging results in the pre-

vious section may be the poor quality of the programmes in conjunction with stigma- and

‘locking-in’-effects. Another possible cause might be an inefficient allocation of participants.

Since programme effects are heterogeneous (Manski, 1997 and 2000) the average effects depicted

in the above section must not apply to all strata of the population. Negative mean impact

results may be acceptable, if the majority of participants gains from the programme (Heckman,

LaLonde, and Smith, 1999). Abandoning the ‘common effect’ assumption of treatment effects

and identifying the individuals that benefit from the programmes is an obvious opportunity to

improve the future efficiency of ALMP. If we are able to identify the individual characteris-

tics, which are responsible for the effect heterogeneity in individual impacts, we can use this

knowledge to suggest allocation rules for a better future allotment of programme participants.

The potential improvement of allocation mechanisms is a much discussed topic in the recent

evaluation literature (see for example Lechner and Smith (2005), Frölich, Lechner, and Steiger

(2003) and Frölich (2001)). An optimal allocation should guarantee the best results according to

the underlying programme goal, where two goals - efficiency and equity - can be distinguished.

If the goal is efficiency, programmes target at the maximisation of the impacts of the outcome of

interest. If the goal is equity, treatment is administered to those individuals identified as ‘need-

iest’, i.e. for example those individuals with the lowest predicted re-employment probabilities

(Plesca and Smith, 2002). Frölich, Lechner, and Steiger (2003) distinguish between statistical

and non-statistical allocation mechanisms.

Caseworker discretion is the most common non-statistical allocation mechanism. Potential

programme participants are interviewed by their personal caseworker and allocation to pro-

grammes depends on the caseworker’s evaluation of the unemployed person’s capabilities, the

individual’s interests and the availability of slots in the particular programmes. The crucial

feature of the caseworker allocation mechanism for an optimal allocation of unemployed persons

to programmes is the knowledge of the characteristics of the unemployed person, the situation

on the local labour market and the programme providers as well as the professional expertise

of the caseworker (Lechner and Smith, 2005). There is only a small literature that examines

the quality of caseworker allocation in Europe. Frölich (2001) analyses the effects of caseworker

allocation in Sweden; Lechner and Smith (2005) and Frölich, Lechner, and Steiger (2003) eval-

uate the effectiveness of Swiss caseworkers in comparison to a simulated targeting system. The

results indicate that caseworker allocation lacks the ability to achieve the expected programme

goals. Reasons for the ineffectiveness of the caseworker allocation may be lack of knowledge

of caseworkers regarding the effectiveness of certain programmes. Caseworkers have to build
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expectations about impacts of programmes on a very uncertain basis. Additionally, the broad

variety of available programmes makes it difficult to select an optimal strategy for a specific

person (Frölich, Lechner, and Steiger, 2003). Another issue concerns possible ‘cream-skimming’.

The experiences from the Job Training Partnership Act (JTPA) showed that tying the funding

to the performance of local programmes as measured by job placement rates creates the incen-

tive to serve the most able applicants, without regarding how much different groups might have

benefited from programmes (see for example Bell and Orr (2002)).

Statistical allocation mechanisms avoid these possible problems by relying on some model

indicating the individual gains of participation in a specific programme. Up to now, there

is no consistent classification of statistical treatment rules. OECD (2002) defines ‘profiling’

as ‘a procedure where a numerical score, calculated on the basis of multivariate information,

determines the referral of a job-seeker to further employment services’. Based on this definition,

we will present three approaches to identify potential sources of effect heterogeneity, which could

be used, if successful, for a better targeting in future. At first, we will select target groups with

disadvantages on the labour market, e.g. long-term unemployed persons. In a second step, we

will use these definitions and build a simple index that we call ‘target score’. The target score

simply sums up the number of individual disadvantages. If programmes are tailored to the needs

of the most disadvantaged on the labour market, we would expect higher impacts for persons

with higher target scores. For the evaluation of the effects in the target groups and for the

target scores, we estimate separate propensity scores for each group and category considered.15

Finally, we test whether the effects differ corresponding to different participation probabilities.

To do so, we stratify our sample in 20 sub-samples along the propensity score of the participants

and use a stratification matching estimator.

6.1 Effects for Selected Target Groups

Identifying groups of participants who benefit from programmes is a central purpose of pro-

gramme evaluation. Recent evaluation studies of JCS in Germany (Hujer, Caliendo, and Thom-

sen, 2004) and experiences from abroad (Martin and Grubb, 2001) recommend a tighter target-

ing of programmes to individuals with disadvantages on the labour market. Selecting persons

that are supposed to have a below average employability is a sensible first approach to iden-

tify possible effect heterogeneity due to personal characteristics. Several groups of individuals,

who should be promoted predominantly are defined in the Social Code III. These are long-term

unemployed persons, individuals with health restrictions or persons who aspire for vocational
15 The results of these estimations and the standardised biases before and after matching are available on request

by the authors and ready for download under
http://www.wiwi.uni-frankfurt.de/professoren/hujer/papers/identifying anc appendix.pdf.
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rehabilitation.16 Further target groups are young ond older unemployed as well as workers with-

out any professional training. In addition, JCS should be particularly applied to individuals

with special placement restrictions.

Our selection is oriented on these legal definitions. We estimate the effects for participants

younger than 25 years and for participants older than 50 years respectively. Further groups

are long-term (more than one year when programmes start) unemployed persons, individuals

with special placement restrictions due to health restrictions and aspirants for vocational re-

habilitation. Additionally, we select four groups of persons, who are hard to place. The first

group contains individuals with more than five (unsuccessful) placement propositions by the lo-

cal labour offices, the second group are the persons, who have already participated in an ALMP

programme before unemployment. Group three contains individuals without professional train-

ing and the last group are people without any work experience.

Table 3 contains the shares of individuals in each of the selected groups differentiated by

treatment status. For most of the groups, the results show significant differences of the shares

between treatment and comparison group. Thus, one can assume that these characteristics affect

the allocation decision to some extent. Surprisingly, long-term unemployment (more than 52

weeks) which is expected to be an important selection criterion (in accordance to the law), differs

only for men in East Germany. Additionally the shares of aspirants for vocational rehabilitation

of this group and the proportions of men and women without work experience in the region are

approximately equal for participants and nonparticipants. This shows once again the different

purpose of JCS in East and West Germany.

Further notable findings are the different proportions of participants between the regions.

While the share of younger unemployed (below 25 years) in West Germany is clearly larger in the

participants’ group, the situation in East Germany is the other way round. Older unemployed

are more likely to participate here. These differences have to be interpreted in light of the

different labour market situation in East and West Germany and the consequently different

purpose of JCS in both regions. Placing a larger share of young unemployed into programmes

in West Germany complies to the law that postulates stabilising efforts for later re-integration.

In East Germany, JCS are used to relieve the labour market and therefore older are more likely

than younger unemployed to participate.

Besides the age differences, it has to be mentioned that persons with a larger number of

placement propositions or who have participated in an ALMP programme before unemployment

are more frequently in the participating group. This agrees with the expectation as the number

of successless placement propositions directly indicates the placement difficulties. Furthermore,
16 This are especially persons, who are no more able to work in their profession due to health restrictions, and

therefore should receive a promotion for vocational rehabilitation.
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Tab. 3: Descriptive Statistics for the Selected Target Groups (Par-

ticipants and NonParticipants)

West Germany Men Women

Part. Nonpart. Part. Nonpart.

Variable Shares in percent1

Age < 25 years 21.40 9.30 17.30 7.14

Age > 50 years 16.12 37.27 15.30 35.21

Without professional training 62.62 49.12 45.25 49.94

Without work experience 12.76 7.44 15.11 7.44

Long-term unemployed (more than 52 weeks)2 39.16∗ 40.79∗ 39.16∗ 42.16∗

More than 5 placement propositions 49.21 21.21 42.49 17.05

Vocational rehabilitation3 5.19 6.27 4.18 3.11

Placement restrictions4 16.54 21.58 14.07 17.51

Participation in ALMP before unemployment 28.55 10.05 33.17 8.86

East Germany Men Women

Part. Nonpart. Part. Nonpart.

Variable Shares in percent1

Age < 25 years 8.21 13.49 2.94 6.36

Age > 50 years 38.06 31.05 30.69 35.71

Without professional training 28.63 23.10 22.26 25.85

Without work experience 10.02∗ 10.84∗ 9.89∗ 10.38∗

Long-term unemployed (more than 52 weeks)2 37.55 30.75 49.45 48.89

More than 5 placement propositions 41.24 17.87 37.28 15.32

Vocational rehabilitation3 7.46∗ 7.48∗ 3.10 4.60

Placement restrictions4 13.47 16.16 7.47 11.92

Participation in ALMP before unemployment 47.16 17.08 57.28 27.85

∗ Denotes approximate equality of shares between treatment and comparison group (5% signif-

icance level).
1 Shares are computed with respect to the number of participating/nonparticipating individuals

in the according main group.
2 Unemployment duration for participants and nonparticipants at end of January 2000.
3 Persons in vocational rehabilitation are no more able to work in their profession and have to

be qualified for a new profession.
4 Placement restrictions refer to the assessment of the caseworker that health restrictions of the

job-seeker reduce the number the job opportunities.

earlier participation may identify to so-called ‘programme careerists’, who are assigned to ALMP

programmes subsequently, interrupted by unemployment spells only.

Table 4 presents the employment effects in December 2002 for these nine groups with fur-

ther distinction for gender and region as above. It becomes obvious that programme effects are

heterogeneous across the selected groups. Whereas the results for the four main groups showed
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insignificant effects for men in West Germany, men and women in East Germany suffered from

participation and women in West Germany benefited on average from programmes. Considera-

tion of the effects for the selected groups of male participants in West Germany shows, that the

effects are for almost all groups insignificant, too, but with one exception. The group of long-

term unemployed men benefits from participation and has an employment rate which is 5.03

percent higher compared to the rate of matched nonparticipants in December 2002. The female

counterparts in that region are the only group, who benefited on average from participation.

With regard to the results in table 4, it becomes clear that this finding does not hold for all

groups. While three groups clearly gain from participation, i.e. older (12.67 percent), long-term

unemployed (11.25 percent), and hard-to-place women indicated by the number of placement

propositions (7.79 percent), the others do not experience any enhancement of the employability.

Anyhow, the three significant effects are above the effects for the whole sample of females in

West Germany.

Turning to the estimates for the East German groups reveals a quite similar picture. Again,

most of the estimates are statistically insignificant and participants do neither suffer nor benefit

form participation at all in December 2002. Whereas the results for men in this region have

been significantly negative on average, this finding is confirmed by the result of one group only,

namely participants, who have participated in an ALMP programme before (-3.36 percent).

All other estimates do not show significant differences to the nonparticipants’ outcomes. Re-

garding women, we find long-term unemployed to benefit from participation (2.45 percent). No

significant differences in the employment rates can be established for the remaining groups.

Together with the results for the West German groups, especially long-term unemployed

participants seem to benefit from programmes (except men in East Germany). This finding is

somewhat satisfactory since JCS are especially arranged for this group. Although the effects

refer to one single month only, the results are plausible. Since occupations in JCS have to be

additional in nature, i.e. they do not compete with regular jobs to avert substitution effects, the

qualifying elements for market-competitive jobs have to be assumed to be negligible. Thus, the

stabilising elements in the design of JCS (to keep in touch with the labour market) may be more

important for this group. Furthermore, participation in JCS comes along with a stigmatisation

of the participant, if potential employers suspect a reduced productivity. However, long-term

unemployment is a stigma itself and hence, the additional stigma-effect of JCS might be of

minor importance. In contrast, for these groups participation must be seen as an indicator for

individual motivation to change the personal situation. Hence, the stigma-effect of JCS may be

more important for short-term unemployed and younger persons.

Summarising the findings for the selected target groups leads us to three recommendations.

First, due to the unsatisfactory results for most of the groups, where no differences in the
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Tab. 4: Effects for Selected Target Groups in December 2002

West Germany Men Women

Group Effect Std. Err. No. of

Partici-

pants

Effect Std. Err. No. of

Partici-

pants

Age < 25 years -0.0276 0.0326 440 -0.0679 0.0573 161

Age > 50 years 0.0262 0.0241 344 0.1267 0.0562 159

Without professional training -0.0046 0.0169 1,323 0.0425 0.0297 451

Without work experience -0.0040 0.0414 256 -0.0703 0.0595 128

Long-term unemployed (more than 52 weeks) 0.0503 0.0169 832 0.1125 0.0326 403

More than 5 placement propositions 0.0300 0.0176 1,039 0.0779 0.0302 400

Vocational rehabilitation1 0.0300 0.0603 106 0.0571 0.0845 36

Placement restrictions2 0.0153 0.0287 335 0.1026 0.0562 130

Participation in ALMP before unemployment -0.0323 0.0217 594 0.0541 0.0313 279

East Germany Men Women

Group Effect Std. Err. No. of

Partici-

pants

Effect Std. Err. No. of

Partici-

pants

Age < 25 years -0.0437 0.0503 240 0.0278 0.0589 148

Age > 50 years -0.0130 0.0079 1,109 -0.0020 0.0093 1,529

Without professional training 0.0120 0.0161 833 -0.0215 0.0156 1,119

Without work experience 0.0069 0.0349 292 0.0225 0.0220 495

Long-term unemployed (more than 52 weeks) -0.0018 0.0093 1,097 0.0245 0.0080 2,487

More than 5 placement propositions -0.0264 0.0145 1,201 -0.0054 0.0108 1,869

Vocational rehabilitation1 -0.0140 0.0369 217 -0.0068 0.0418 154

Placement restrictions2 0.0189 0.0254 394 -0.0166 0.0217 368

Participation in ALMP before unemployment -0.0336 0.0114 1,378 -0.0028 0.0079 2,877

Effects are estimated using 1-NN matching without replacement and caliper of 0.02. Bold let-

ters indicate significance on a 5% level. Standard errors calculated by bootstrapping with 50

replications.
1 Persons in vocational rehabilitation are no more able to work in their profession and have to be

qualified for a new profession.
2 Placement restrictions refer to the assessment of the caseworker that health restrictions of the

job-seeker reduce the number the job opportunities.

employment rates between participants and nonparticipants could be established, JCS have to

be reviewed critically in terms of their goals. Nevertheless, they are no complete failure for

some participants as the results especially for long-term unemployed indicate. Second, a tighter

targeting of programmes to persons for whom the possible negative aspects (like stigmatisation,

lack of human capital transfer etc.) are only of minor importance for the individual labour market

prospects, should help to increase programme efficiency. Third, since long-term unemployed

persons are not the majority of unemployed in Germany, the number of promotions should be
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reduced significantly. JCS are definitely sensible for the most disadvantaged workers, but no

means for reducing unemployment permanently for all unemployed persons.

6.2 Effects for Target Groups Using Target Scores

The results in the previous section show that JCS do not work for most of the analysed groups.

Nevertheless, as the estimates are significantly positive especially for the most disadvantaged

persons, the long-term unemployed, the question arises, whether a higher number of explicit

labour market disadvantages correlates with gains from participation. To answer this question

we build a simple index which we call ‘target score’ as the sum of the individual number of

disadvantages from section 6.1. Without any particular weighting, each disadvantage adds one

point to the target score. Persons, who do not belong to any of the categories in section 6.1, have

a target score of zero. The maximum level is eight, since the categories for the age groups are

mutually exclusive. For example, if an individual is below 25 years old and has no professional

training, she is assigned a target score of two. If an individual belongs to three of the target

groups the target score is three, and so on. Due to a small number of individuals with a

target score of more than five, we summarise these persons in one group, i.e. target score five

(and more); the other categories refer to the actual number of disadvantages. We estimate the

programme effect on the employment rates in December 2002 within each category of the target

score.

If programmes are tailored to the needs of the most disadvantaged and if a higher target score

indicates higher need of assistance than we would expect better outcomes for higher scores. The

estimates of the effects in December 2002 are given in table 5. Ignoring the significance of the

estimates at first, the results show non-negative effects for all groups in West Germany with a

target score greater or equal three. For the lower target score groups, the picture is not that

homogeneous. While men in West Germany with a target score of one or two are harmed, women

with the same score seem to benefit. In East Germany, groups with a target score of less than

three have reduced employment rates in December 2002. For women with more disadvantages,

there seems to be no effect, while for men the estimates tend to be negative except for a target

score of three.

The tendencies in the results for West Germany support the hypothesis that a higher target

score coincides with a higher need of assistance and a better fit of programmes for those groups,

but a clear statement is hampered due to the insignificant estimates for most groups. It is self-

evident that our construction of the target score is very simple and is not guided by some strong

theory. First, the different targeting criteria are included with the same weights and clearly

may not have the same importance for the individual employability. Second, the selection of

groups is incomplete. There are other characteristics, that increase or decrease the individual
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Tab. 5: Estimated Effects for the Target Scores1

in December 2002

West Germany Men Women

Target-Score Effect Std. Err. No. of

Partici-

pants

Effect Std. Err. No. of

Partici-

pants

0 0.0182 0.0850 55 -0.0133 0.0789 76

1 -0.0138 0.0363 295 0.0518 0.0401 208

2 -0.0180 0.0212 740 0.0316 0.0474 305

3 0.0256 0.0261 652 0.0276 0.0339 257

4 0.0199 0.0331 274 0.1176 0.0527 100

5 and more 0.1449 0.0591 84 0.0455 0.1033 32

East Germany Men Women

Target-Score Effect Std. Err. No. of

Partici-

pants

Effect Std. Err. No. of

Partici-

pants

0 -0.1014 0.0484 141 -0.0812 0.0333 271

1 -0.0293 0.0198 581 -0.0064 0.0118 1,090

2 -0.0225 0.0155 937 -0.0093 0.0110 1,754

3 0.0013 0.0191 821 0.0112 0.0103 1,289

4 -0.0161 0.0213 322 0.0062 0.0159 508

5 and more -0.0532 0.0448 94 0.0000 0.0393 106

Effects are estimated using 1-NN matching without replacement and

caliper of 0.02. Bold letters indicate significance on a 5% level. Stan-

dard errors calculated by bootstrapping with 50 replications.
1 Target Scores are calculated as the sum of the number of individual

disadvantages from the selection of the target groups.

employability. Third, the construction of the target score leaves room for further effect hetero-

geneity. The target score just notes the number of single targets, but does not identify clear sets

of disadvantages where participation improves the employability.

Unfortunately, considering the significance of the results shows that our assumption cannot

be empirically approved. For each of the West German groups only one estimate for the higher

target scores is significant. For men with a target score of five, i.e. five or more disadvantage

criteria on the labour market, the employment rates increase by 14.49 percent after participation,

for women with a target score of four by 11.76 percent. For the other groups, the estimates

are insignificant, i.e. no clear increase or decrease in the employment rates by participation can

be established. The estimates for East Germany show a slightly different picture. The results

illustrate, that allocating individuals without any of the selected targeting criteria and therefore

a target score of zero to programmes, reduces the employment rates in December 2002 by 10.14
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for men and 8.12 percent for women. Analogously to the finding for West Germany, there are

no further significant results. Since our construction of the target score is very simple, it has

to be reviewed, whether incorporation of further selection criteria and/or a different weighting

of the single targets may improve the significance of the estimates. Although the estimates are

unsatisfying yet, the usage of the target score provides some practical utility to identify possible

sources for effect heterogeneity.

6.3 Targeting by Stratification Matching

The estimated propensity score reflects the individual participation probability conditional on

the relevant observable characteristics. If allocation to the programme is target-oriented, a higher

participation probability should also correlate with a higher impact of treatment. Clearly, this

argument only holds, if the programmes are tailored according to the needs of the participants.

If this is not the case, i.e. if the programmes have the same effects for all participants, individuals

with low participation probabilities may benefit more since a high participation probability can

to some extent be interpreted as an indicator for bad labour market prospects. Furthermore, an

interesting opportunity arises, if the empirical evidence supports a positive relationship between

a higher participation probability and a higher impact of treatment. If this is the case, the

estimated participation probability could be used as an allocation instrument, i.e. persons with

higher propensity score values should be primarily allocated to programmes.

An intuitively appealing method to check this hypothesis is stratification matching, also known

as blocking or subclassification. The idea is to divide the sample of participants and nonpartic-

ipants conditional on the propensity score into several strata. Within these strata, participants

and nonparticipants should have approximately the same probability of treatment. The average

treatment effect is estimated within each stratum as if random assignment holds. Estimation of

the treatment effect for the treated is carried out by weighting the within-strata average treat-

ment effects by the number of treated units. Stratification matching can be interpreted as a

crude form of non-parametric regression where the unknown function is approximated by a step

function with fixed jump points (Imbens, 2004). An important issue in employing this estimator

is to make sure, that the covariates are balanced within each stratum. The distribution among

the treatment and comparison group should be balanced, if the true propensity score is constant.

Comparison of the distribution of covariates of both groups within strata yields a possibility to

assess the adequacy of the statistical model.

To check our hypothesis whether a higher participation probability correlates with a higher

programme impact, we divide our samples into twenty subclasses each. This division is based

on the estimated propensity scores of the participants.17 Therefore, we have the same number
17 Due to the large numbers of observations in our samples, using the whole range of the propensity scores of
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of participants in each stratum, but different numbers of nonparticipants with approximately

the same scores as the participants. Individuals with the lowest participation probabilities are

placed in stratum 1, persons with the highest participation probabilities are placed in stratum

20. It can be seen that this stratification leaves meaningful number of observations in each

stratum except women in West Germany.

The estimated treatment effects for each stratum are presented in table 6 for East Germany

and in table 7 for West Germany. The effectiveness of the programmes can be estimated by

comparing the employment rates of participants and nonparticipants in December 2002 given

by E(Y1) and E(Y0) in the tables. The average treatment effect within each stratum, i.e. the

difference of the mean outcomes of the participants and the nonparticipants, is also given (∆).

The last lines of the tables provide the average treatment effect on the treated. Obviously, these

effects are similar to those estimated with the NN-matching estimators in section 5. In addition

to the mean outcomes and the effects, the tables also present the results of the hypothesis testing

of equal propensity scores in the treatment and comparison group. We tested the null hypothesis

(H0) that the difference of the mean propensity scores in both groups is zero. Therefore, the

alternative hypothesis (HA) imposes inequality of the propensity score. The p-values of the HA

are given in the tables; if we reject the hypothesis due to a larger value than 0.05, we assume

equality of the propensity scores and therefore balancing of the covariates among both groups.18

The results of the hypothesis tests show that the division into twenty strata provides approx-

imately equal propensity scores for most groups. The equality is hampered only for the groups

at the borders of the propensity score range. For men in West Germany, strata 1, 5, 7 and 20

are imbalanced, for women in the same region strata 1, 17 and 19. In East Germany the strata

with lower participation probabilities are imbalanced. For women the propensity scores are not

balanced in 1 and 2, for men in 1 and 3, but also in stratum 19. Although we find significant

treatment effects for several strata, these findings do not assist our hypothesis. Taking a look at

the results for East Germany (table 6), we find that for the first four strata (except for women

in stratum 1) allocation of persons with a low participation probability has a tendential negative

influence on the employment chances in December 2002. For men in this region, this tendency

is stable for participants up to stratum 14; from stratum 15 onwards the direction of the effects

changes to positive. For women we could not establish a clear distinction, since most of the

effects are insignificant. For participants in West Germany (table 7) our hypothesis cannot be

participants and nonparticipants leads to a skewed stratification. Hence, we refer to the propensity scores of the
participants only to reduce this skewness. The choice of twenty strata for each of the four groups emerged from
balancing tests of the propensity score among treated and comparison persons using a smaller number of blocks.

18 We also checked the balancing property of stratification by comparing the means of the incorporated variables
in the logit models for participants and nonparticipants within each stratum as suggested by Rosenbaum and
Rubin (1983). The results for selected variables are available on request by the authors in the ancillary appendix
under http://www.wiwi.uni-frankfurt.de/professoren/hujer/papers/identifying anc appendix.pdf.

24



Tab. 6: Results for Stratification Matching in East Germany
Strata Men Women

No. of
Obs.

p-value
for HA

1
E(Y1),
E(Y0)

∆ No. of
Obs.

p-value
for HA

1
E(Y1),
E(Y0)

∆

1 Participants 146 0.1781 251 0.1355
Nonparticipants 16,171

0.0001
0.2366

-0.0585
18,980

0.0002
0.1221

0.0134

2 Participants 146 0.1781 252 0.1032
Nonparticipants 9,532

0.9303
0.2446

-0.0666
11,309

0.0168
0.1267

-0.0235

3 Participants 146 0.1233 252 0.1190
Nonparticipants 7,657

0.0218
0.2130

-0.0897
7,396

0.1633
0.1458

-0.0267

4 Participants 146 0.1575 252 0.0913
Nonparticipants 5,529

0.3283
0.1923

-0.0347
5,641

0.1581
0.1480

-0.0568

5 Participants 147 0.0816 251 0.1633
Nonparticipants 4,432

0.0537
0.1588

-0.0772
5,098

0.2593
0.1497

0.0137

6 Participants 146 0.1233 252 0.1111
Nonparticipants 3,093

0.2077
0.1478

-0.0245
4,298

0.1555
0.1356

-0.0245

7 Participants 146 0.0822 252 0.1627
Nonparticipants 2,727

0.9609
0.1298

-0.0476
3,852

0.5875
0.1449

0.0178

8 Participants 146 0.0685 252 0.1071
Nonparticipants 2,640

0.4523
0.1182

-0.0497
2,804

0.3221
0.1566

-0.0494

9 Participants 146 0.1027 251 0.1036
Nonparticipants 2,116

0.5098
0.1229

-0.0201
2,785

0.2600
0.1645

-0.0609

10 Participants 147 0.1020 252 0.0952
Nonparticipants 2,037

0.7602
0.1193

-0.0173
2,276

0.1690
0.1375

-0.0423

11 Participants 146 0.0616 252 0.1190
Nonparticipants 1,448

0.4703
0.1057

-0.0440
2,228

0.3124
0.1382

-0.0192

12 Participants 146 0.0959 252 0.1508
Nonparticipants 1,592

0.4960
0.1124

-0.0165
1,665

0.9466
0.1375

0.0133

13 Participants 146 0.0411 251 0.1036
Nonparticipants 1,132

0.3424
0.1140

-0.0729
1,651

0.9627
0.1187

-0.0151

14 Participants 146 0.0616 252 0.1310
Nonparticipants 980

0.8348
0.0990

-0.0373
1,471

0.0541
0.0938

0.0371

15 Participants 147 0.1224 252 0.0992
Nonparticipants 948

0.7724
0.0928

0.0296
1,143

0.2967
0.0866

0.0126

16 Participants 146 0.0890 252 0.1071
Nonparticipants 772

0.8285
0.0738

0.0152
1,124

0.9422
0.0907

0.0164

17 Participants 146 0.0753 251 0.0797
Nonparticipants 600

0.9521
0.0500

0.0253
910

0.3790
0.0868

-0.0071

18 Participants 146 0.0822 252 0.0913
Nonparticipants 645

0.4996
0.0419

0.0403
749

0.6872
0.1041

-0.0129

19 Participants 146 0.0548 252 0.1349
Nonparticipants 479

0.0053
0.0355

0.0193
648

0.7600
0.1157

0.0192

20 Participants 147 0.0748 252 0.1548
Nonparticipants 258

0.6655
0.0504

0.0244
442

0.6248
0.1281

0.0267

ATT: -0.0251 -0.0084

Bold letters indicate significance at the 1% level. Italic letters refer to the 5% level. Subgroups
are constructed using the estimated propensity score of the participants from the logit model
reported in Table 1.

1 Testing H0 : P (Z, D = 1)−P (Z, D = 0) = 0. Corresponding HA: P (Z, D = 1)−P (Z, D = 0) 6= 0
in stratum.

empirically approved either. One can loosely see that higher participation probabilities corre-

late with higher impacts, but these findings may be inconsistent as the balancing tests above

show. It seems that the participation probability is no adequate measure for effect heterogeneity

here and successful integration in regular employment depends on different compositions of the

individual characteristics than selection into programmes.
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Tab. 7: Results for Stratification Matching in West Germany
Strata Men Women

No. of

Obs.

p-value

for HA
1

E(Y1),

E(Y0)

∆ No. of

Obs.

p-value

for HA
1

E(Y1),

E(Y0)

∆

1 Participants 107 0.1869 52 0.3846

Nonparticipants 14,220
0.0000

0.1105
0.0764

12,954
0.0005

0.1197
0.2649

2 Participants 107 0.1963 53 0.3585

Nonparticipants 4,913
0.1905

0.2009
-0.0046

4,119
0.1774

0.2391
0.1194

3 Participants 107 0.2336 52 0.3077

Nonparticipants 4,065
0.2521

0.2303
0.0034

2,754
0.5364

0.2876
0.0201

4 Participants 107 0.2150 53 0.3962

Nonparticipants 3,522
0.8130

0.2504
-0.0355

2,782
0.7943

0.2793
0.1169

5 Participants 107 0.2617 53 0.3019

Nonparticipants 2,403
0.0430

0.2339
0.0278

1,742
0.6186

0.3129
-0.0110

6 Participants 107 0.1682 52 0.2692

Nonparticipants 2,384
0.5197

0.2680
-0.0998

1,556
0.7633

0.3033
-0.0341

7 Participants 107 0.2056 53 0.3585

Nonparticipants 2,331
0.0045

0.2540
-0.0484

1,347
0.9023

0.3215
0.0370

8 Participants 107 0.2056 52 0.2885

Nonparticipants 1,748
0.4353

0.2649
-0.0593

1,366
0.6411

0.3192
-0.0307

9 Participants 107 0.2336 53 0.2830

Nonparticipants 1,533
0.2616

0.2701
-0.0364

1,214
0.9991

0.3311
-0.0481

10 Participants 107 0.2804 53 0.3396

Nonparticipants 1,229
0.3627

0.2799
0.0005

841
0.6523

0.3639
-0.0242

11 Participants 107 0.1963 52 0.3269

Nonparticipants 1,049
0.1798

0.2793
-0.0831

611
0.8903

0.3453
-0.0184

12 Participants 107 0.2991 53 0.2830

Nonparticipants 929
0.5893

0.2648
0.0343

733
0.3965

0.3438
-0.0608

13 Participants 107 0.2617 52 0.3846

Nonparticipants 751
0.6554

0.2690
-0.0073

623
0.2097

0.3949
-0.0102

14 Participants 107 0.2617 53 0.3208

Nonparticipants 684
0.3683

0.2529
0.0088

571
0.3294

0.3468
-0.0260

15 Participants 107 0.2056 53 0.4340

Nonparticipants 661
0.5013

0.2723
-0.0667

447
0.2556

0.3154
0.1185

16 Participants 107 0.2430 52 0.3077

Nonparticipants 551
0.4412

0.1978
0.0452

265
0.0935

0.2906
0.0171

17 Participants 107 0.1402 53 0.3208

Nonparticipants 473
0.8646

0.1734
-0.0332

108
0.0282

0.2593
0.0615

18 Participants 107 0.1308 52 0.3654

Nonparticipants 295
0.0955

0.1186
0.0122

78
0.7560

0.1667
0.1987

19 Participants 107 0.2617 53 0.3396

Nonparticipants 191
0.4283

0.1204
0.1413

70
0.0389

0.1714
0.1682

20 Participants 107 0.2710 53 0.3585

Nonparticipants 163
0.0038

0.1104
0.1606

38
0.1637

0.0870
0.2715

ATT: 0.0018 0.0565

Bold letters indicate significance at the 1% level. Italic letters refer to the 5% level. Subgroups

are constructed using the estimated propensity score of the participants from the logit model

reported in Table 1.
1 Testing H0 : P (Z, D = 1)−P (Z, D = 0) = 0. Corresponding HA: P (Z, D = 1)−P (Z, D = 0) 6= 0

in stratum.

7 Conclusion

Previous empirical studies of JCS in Germany have shown that the average effects for partic-

ipating individuals are negative. Whereas this inefficiency may be due to the poor quality of
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programmes, it may be also driven by an inefficient allocation of potential participants to pro-

grammes. Allocation of individuals into programmes in Germany is accomplished by caseworker

discretion. On the one hand, a positive aspect of this mechanism is that decisions are based on

personal contact. On the other hand, since ALMP consist of very different programmes, case-

workers may lack knowledge regarding programme impacts. Since this problem is not specific to

Germany, the topic of a potential improvement of allocation mechanisms has become important

in recent literature. Broadly, two categories can be distinguished: Non-statistical allocation

mechanisms like caseworker discretion and statistical allocation mechanisms called profiling or

targeting. Since statistical allocation systems are not introduced in the German labour market

yet, there is no empirical evidence for their effectiveness.

In this paper we estimate the average treatment effects for men and women in East and

West Germany participating in JCS. Following that we use three strategies to identify possible

effect heterogeneity. We use data on all participants, who started a JCS in February 2000,

and on nonparticipants from January 2000, who were eligible to participate, but did not enter

those schemes in February. The employment effects of JCS are evaluated in December 2002.

The results show positive effects for women in West Germany and negative effects for men and

women in East Germany, men in West Germany do neither suffer nor benefit from participation.

For the three approaches used to analyse effect heterogeneity we select target groups with

disadvantages on the labour market oriented by the definition of the legal basis in a first step.

Our findings show that JCS do neither harm nor improve the labour market chances for most of

the groups. Exceptions are long-term unemployed men in West Germany, long-term unemployed

women in both regions, older women and women who are hard-to-place in West Germany,

who benefit from participation. Given these results and remembering that (re-)integration into

regular employment is the main purpose, it has to be recommended that JCS should be targeted

to those benefiting groups and should not be used on large scale. In a second step, we use these

definitions to build up a simple indicator (target score) as the sum of the individual number of

disadvantages. If programmes are tailored to the needs of the more disadvantaged persons on

the labour market, we expect positive impacts for groups with a higher score. Unfortunately,

most of the estimates are insignificant and although the expected tendency is observable, one

has to be cautious with interpretation. Finally, we implement stratification matching to analyse

if a higher participation probability also correlates with higher impacts. No clear picture can be

revealed. The estimated participation probability is no adequate measure for effect heterogeneity

here and successful integration into regular employment is determined by different compositions

of the individual attributes than selection into programmes. Even though the results could

not confirm some of our hypotheses, they show that heterogeneity in treatment effects is an

important topic which has to be considered more accurately in further research. We have also
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shown that this might be a way to improve efficiency of ALMP and hence to allocate scarce

resources more effectively.
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A The Matching Estimator

The general form of matching estimators is given by:

∆MAT =
1

N1

∑

i∈I1

[Y 1
i −

∑

j∈I0

WN0(i, j)Y
0
j ], (5)

where N0 is the number of observations in the comparison group I0 and N1 is the number of

observations in the treatment group I1. We estimate the effect of treatment for each treated

observation i ∈ I1 in the treatment group, by contrasting her outcome with treatment with a

weighted average of comparison group observations j ∈ I0. Matching estimators differ in the

weights attached to the members of the comparison group (Heckman, Ichimura, Smith, and

Todd, 1998), where WN0(i, j) is the weight placed on the j-th individual from the comparison

group in constructing the counterfactual for the i-th individual of the treatment group. The

weights always satisfy
∑

j WN0(i, j) = 1, ∀i, that is the total weight of all comparisons sums up

to one for each treated individual. Define a neighbourhood C(Pi) for each i in the participant

sample and denote as neighbours for i those nonparticipants j ∈ I0 for whom Pj ∈ C(Pi).

Individuals matched to i are those people in the set Ai where Ai = {j ∈ I0|Pj ∈ C(Pi)}.
Nearest neighbour (NN) matching sets

CNN (Pi) = min
j
‖Pi − Pj‖, j ∈ N0, (6)

where ‖(.)‖ is obtained through a distance metric. Doing so, the nonparticipant with the value

of Pj that is closest to Pi is selected as the match, therefore:

WNN
N0N1

(i, j) =





1 if ‖Pi − Pj‖ = minj‖Pi − Pj‖
0 otherwise

. (7)

Several variants of NN matching are proposed, e.g. NN matching ‘with’ and ‘without replace-

ment’. In the former case a nonparticipating individual can be used more than once as a match,

whereas in the latter case it is considered only once. Matching with replacement involves a

trade-off between bias and variance. If we allow replacement the average quality of the match-

ing will increase and the bias will decrease. NN matching faces the risk of bad matches, if the

closest neighbour is far away. This can be avoided by imposing a tolerance on the maximum

distance ‖Pi − Pj‖ allowed. This form of matching, caliper matching (Cochrane and Rubin,

1973), imposes the condition:

‖Pi − Pj‖ < ε, j ∈ N0, (8)

where ε is a pre-specified level of tolerance. The weights for caliper matching (CM) are given

by:

WCM (i, j) =





1 if ‖Pi − Pj‖ = minj ‖Pi − Pj‖ ∧ ‖Pi − Pj‖ < ε

0 else
. (9)
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Treated observations for whom no matches within the neighbourhood C(Pi) = {Pj |‖Pi−Pj‖ < ε}
can be found are excluded from the analysis. Hence, caliper matching is one form of imposing

a common support condition.

B Data Sources and Attributes

Table B.1 gives detailed information of the data sources and the included attributes. A selection

of these attributes is used to estimate the participation probability.

Tab. B.1: Data Sources and Attributes

Data Source Attributes

MTG1 BewA and ST42 a) Socio-demographic: age, gender, marital status, number

of children, nationality, health restrictions

b) Qualification: graduation, professional training, occupa-

tional group, position in last occupation, work experience, ap-

praisal of qualification by the placement officer

c) Labour market history: duration of unemployment, du-

ration of last occupation, number of job offers, occupational

rehabilitation, programme participation before unemployment

ST11TN3 d) Programme: institution that receives subsidy, activity

sector, time of qualification and/or practical training during

programme, begin and end of programme (payment of the

subsidy), entry and leave of the participant, duration of pro-

gramme

1 Programme participants master data set (Maßnahme-Teilnehmer-Gesamtdatei, MTG)
2 Job-seekers data base (Bewerberangebotsdatei, BewA) and adjusted version for statistical pur-

poses (ST4)
3 Programme participants of subsidized employment data set (ST11TN)

C Regional Context Variables

The classification of the labour office districts was undertaken by a project group of the FEA.

The aim of the project was to enhance the comparability of the labour office districts for a

more efficient allocation of funds. The 181 labour office districts were split into twelve types

of office districts with similar labour market circumstances. The comparability of the office

districts is build upon several labour market characteristics. The most important criteria are

the underemployment quota and the corrected population density. The underemployment quota

is defined as the relation of the sum of unemployed individuals and participants in several ALMP

programmes to the sum of all employed persons and these participants. The corrected population

density is used to improve the comparability of rural labour office districts with metropolitan
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and city areas. In addition to that, the vacancy quota describing the relation of all reported

vacancies at the labour office, the placement quota, that contains the number of placements

to the number of employments, and the quota of people who achieve maintenance allowance in

relation to the underemployment quota are used. Furthermore, an indicator for the tertiarisation

level built on the number of employed persons in agricultural occupations and an indicator for

the seasonal unemployment are considered.

The twelve types of comparable labour office districts can be summarised into five types for

strategic purposes. Since almost all labour office districts in East Germany belong to the first

of these five strategic types, we use the finer typing of three groups here. For West Germany we

use the remaining four types for strategic purposes. Table C.1 presents the classification used

in the analysis, containing a short description of the clusters and the number of labour offices

in each clusters.

Tab. C.1: Classification of labour office districts in Germany

Cluster Description No.

Ia East German labour office districts with worst labour market conditions 5

Ib East German labour office districts with bad labour market conditions 23

Ic East German labour office districts with high unemployment 5

II Labour office districts dominated by large cities 21

III West German labour office districts with rural elements, medium-sized

industry and average unemployment

63

IV West German centers with good labour market prospects 10

V West German labour office districts with the best labour market

prospects

47

No. describes the number of labour offices in cluster.

Source: Blien et al.(2004)
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