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Abstract

With the increasing role of electronic commerce in business applications, much attention is
paid to online-auctions. As auctions become more and more popular in electronic commerce,
agents face the problem of participating in multiple independent auctions simultaneously or in
sequence. Decision making of agents becomes difficult when they have to buy bundles of goods.
In this case the agents have to cope with substitutable or complementary effects between the
single goods. In this paper we analyse existing approaches of tackling the problem of decision
making in multiple, heterogeneous auctions and develop a flexible Dynamic Programming-based
decision-making framework for agents, participating in multiple auctions. This work extends
existing Dynamic Programming-approaches in this field.

1 Introduction

With the increasing role of electronic commerce in business applications much attention is paid to
online-auctions. As auctions become more and more popular in electronic commerce, agents face the
problem of participating in multiple independent auctions simultaneously or in sequence [7, 1]. From
a decision-theoretic point of view one faces a dynamic decision-problem under uncertainty. The
task of decision making becomes complex, if the agents are supposed to buy bundles of goods with
components, which are sold in multiple independent auctions. In this case the agent cannot assign
a value to a single good but only to the whole bundle. Thereby, complementary and substitutable
effects between goods may arise. In such cases, strategies developed in auction-theory cannot be
applied, because of their assumptions concerning the internal valuation of goods, the amount and
types of players [15, 16]. Therefore bid distributions are usually learned from historical data and
represent an external, given factor. In this paper we focus on the decision making part. For the
learning aspect see for example [10, 4].

In this paper, first, we provide a brief review of approaches dealing with bidding strategies
in multiple auctions. Our main focus will be on agents which want to buy bundles of goods.
Second, we develop a conceptual decision-making framework for agents that participate in multiple
auctions and whereas the agents value whole bundles of goods. Our framework is modeled with
Markov Decision Processes (MDPs) and extends the work of [4] and [5].

The remainder of this paper is organised as follows. In section 2 we give a brief overview of
related work in the field of bidding strategies for agents. In Section 3 we develop our MDP-Model.
The conceptual framework incorporates several different auction protocols as well as sequential and
overlapping auctions. In Section 4 we summarise our findings an give an outlook on future research
in the field of MDP-based bidding models in trading-agent scenarios.



2 Related Work

In decision theory, one can distinguish between decision problems under certainty and risk. Fur-
thermore, problems can be divided into static and dynamic problems. In static problems, time does
not play any role. Dynamic problems explicitly deal with time, i.e. actions taken in the present
may have consequences for decisions in the future [2].

Most of the existing approaches have in common, that they do not explicitly incorporate time in
the decision models. Rather, the dynamic decision problem is modeled as a static problem, which
means a simplification. We first focus on approaches which deal with the purchase of a single good as
well as with the purchase of multiple goods, where the reservation-price of each good is independent
of the amount of goods the agent holds. A static decision model for multiple overlapping English
auctions is provided in [20, 19, 6, 5]. In this case, the agent determines whether to bid in an English
auction or not, by taking into account the expected utility of bidding for the desired good in an
auction which closes later. An approach without explicit decision-theoretic background is presented
in [1]. In this approach the agent determines maximum bid values at a given time as a polynomial
function, as proposed in [11]. The maximum bid value depends on characteristics of the current
state. The agent combines several tactics, which express for example a bid value as a function
of the remaining time, or number of remaining open auctions. The weights of the single tactics,
as well as the parameters of the polynomial functions are optimised with genetic algorithms for
different environments. Dumas et al. [10] present an approach where no explicit utility functions
are given. In this work, the user has to provide the agent a desperateness-factor, which specifies the
probability with which the agent has to acquire the good. The agent has to compute a bid, which
it is willing to place in several, sequential auctions. The probability of winning at least one auction
with that bid has to be equal to the desperateness-factor announced by the user. An approach
which is beyond classical decision- and probability theory is developed by Garcia et al. [12]. The
core of this approach is the possibility theory [9]. This theory orders the utility of consequences
on an ordinal rather than on a cardinal scale (like in classical utility theory). Furthermore, no
distribution functions are used. Consequences are ranked on an ordinal scale, which denotes the
degree of plausibility of occurrence.

Having briefly described approaches which assign values to individual goods, we now turn
attention to the more complex case, where goods are valued in bundles. When an agent values
goods in bundles, no reservation price can be assigned to individual goods. In fact, the agent has
to distribute the value of the bundle over the individual goods [4]. Byde et al. [7] provide a generic
framework for agents that operate in multiple heterogeneous auctions. Different auction protocols
are modeled within this framework. The agent can purchase multiple items of one good, where the
agents’ utility is expressed as a function of the amount of goods the agent owns. Heuristics, based on
thresholds for maximum bids in each auction, are presented. The purchase of bundles of different
goods is addressed in [21, 18]. In this work, only English-auctions are addressed. Beside these
general generic decision frameworks, domain-specific approaches emerged from the Trading Agent
Competition (TAC) [13]. TAC describes a scenario where agents, which represent travel agencies,
have to purchase trips for eight clients. The single components of the trips - i.e. flights, hotel rooms,
and entertainment tickets - are traded in separate auctions, causing complementary and substitution
effects between the goods. Most approaches in the TAC-field model the stochastic dynamic problem
as a static problem under certainty, which means a rough simplification of the problem. Probability
functions, as for the expected closing price, are reduced to deterministic expected values, which
enter in an optimisation model. It is therefore a challenging task to accurately predict closing
prices of auctions [24]. Different approaches to predict closing prices of hotel-room auctions have
been undertaken. Besides simple historical averaging [24] there exist more sophisticated approaches
based on logistic regression [23], fuzzy-logic [14] and competitive equilibrium analysis [8].



3 A Dynamic Decision-Framework for Multiple Auctions

In this section, we develop a dynamic decision-framework that is based on Markov Decision Pro-
cesses (MDPs) and can be solved via Dynamic Programming (DP) [22]. So far, only a few MDP-
approaches for the determination of bidding strategies in online auctions exist. Byde [5] develops
an Dynamic Programming approach for agents that bid in multiple overlapping English auctions, in
which the agent wants to buy a single item of a good. Boutilier et al. [4] present an approach where
an agent wants to buy a bundle of goods, which components are sold in strictly sequential first-
price-sealed-bid auctions. Based on these approaches, we develop a generalised decision-framework,
which incorporates different auction protocols. Furthermore different start and closing times are
possible. We will describe our model in the remainder of this section.

3.1 Assumptions

We assume that the agent may bid in a heterogeneous auction scenario. Therefore, we want to
incorporate English, Dutch, first-price-sealed-bid and Vickrey auctions. In the case of English and
Dutch auctions we consider auctions, in which the ask-price increases respectively decreases by a
fixed increment at every time step. Further the agents have to decide whether they want to continue
to bid. Only one agent can hold the active bid in English auctions. Further, we assume, that the
agent has beliefs about the distributions of closing prices of the auctions. Finally, for computational
reasons, we assume that the agent has quasi-linear preferences concerning the amount of money it
holds, and that the agent has no budget constraint. Based on these assumptions we describe the
decision model in the next section.

3.2 The Model

In this section we develop a MDP-based model for the heterogeneous auction scenario. To this end,
we model decision-stages, the state- and action-space, the transition probabilities and the rewards
and costs. Finally, we present the derived functional equations.

Stages, states and actions

We introduce the decision-stages ¢, which are synchronisation time points. At these discrete time
points ask-prices in English and Dutch auctions change, and sealed-bid auctions may close. Let F,
D, F and V denote the sets of English, Dutch, sealed-bid-first-price and Vickrey auctions. Let Z
denote the space of states. Every state z € Z consists of the actual holdings h in every auction and
the status s, which denotes the status of every auction. The set of possible statuses S contains the
statuses open (op), closed (cl), active (ac), and inactive (in). Let s* denote the vector of statuses
of auctions, and h*® the vector of holdings in every auction in state z. s*(i) denotes the status of
auction i in state z, whereas s*(i) € {ac,in,cl}Vi € E and s*(i) € {op,cl}Vi € D, F,V. Therefore

z = (h,s)".

The action space A is given by the possible actions, which are represented by bids the agent can
submit at every decision stage. In English and Dutch auctions the agent only can decide to bid or
not to bid. Therefore Bid(i) € {bid, nobid}Vi € E, D, where Bid(i) denotes the bid in auction i.
In sealed-bid auctions the agent can bid every positive number, therefore Bid(i) € RtVi € F, V.
The agent can only bid in English auctions when its status is inactive.



Transition probabilities

We assume, that the agent has beliefs about the distribution P} (x) of the highest bid of the opposing
players at any time ¢ for every auction ¢, where x denotes the bid. In English and Dutch auctions
the actual bid price is a function of time, thus x = x(t). For the case of English and Dutch
auctions, we assume that the agent has beliefs about probabilities that it does not get the active
bid, respectively does not win (see also [5]). We will denote these as the blocking-probability B! (x)
which denotes the chance that the agent at time ¢ does not get the active bid, or - in dutch auctions
- does not win the good, if he bids x. For reasons of flexibility, we divide the transition-probabilities
into closing-probabilities, which denote the probability that an auction closes at the next time step,
and the winning-probability which denotes the probability of winning any specific goods, given the
referring auction has closed or not. Transition probabilities depend on the type of the auction. We
will derive them in the following paragraphs.

English auctions The closing probability in English auctions is the probability that no agent
wants to place a bid higher than the actual bid. If the agent bids, the closing probability is zero.
Thus
P (@(t+1) =P (2 (1)
Prsit(Bid,z) = 1P (x(1))
0 else.

if Bid(i) = nobid

If the auction closes at t 4+ 1 one can build the winning probabilities for winning the auction:
1 'f Z 3 p—
Prgt(1,l|Bid, z) = if s%(i) = ac
0  else,

Respectively, the probability of loosing the auction is given by:
Prgt*!(0,cl|Bid. z) = {(1) ¥ $*(i) = in und Bid(i) = nobid
else.

If the referring auction does not close, the winning probabilities are related to resulting states.

1 ez YN
W(O,adBid, ) = {(1) - B;T (x(t+1)) if $*(i) = in und Bid(i) = bid
else,

— B (a(t+1))  if 57(i) = in und Bid(i) = bi
P ipia ) = {0 = i) =

1 else.

Dutch auctions For the case of Dutch auctions, transition probabilities may be build very
similar. If the agent bids, the closing probability must be one. Else, the probability is given by the
probability, that the highest opposing bid is higher than the bid price at the next stage. Thus
PITY(a(t))—PI (2 (t+1))
Prst™(Bid,z) = P (x(t)
1 else.

if Bid(i) = nobid

If the auction closes the agent only may win if he did bid in the previous stage. The winning
probabilities are:

1— Bttt 41 i Bid(i) = bid

Prgt(1,el|Bid, 2) = Hle41) if Bid(i) = bi
0  else,

BifY(t+1)  if Bid(i) = bid

Prg;*(0,cl|Bid, 2) = o .
1 if Bid(i) = nobid.



If auction 7 does not close at the next stage the only possible resulting status of the auction is open:

Prgtt1(0,0p|Bid, z) = 1.

Sealed bid auctions In sealed bid auctions it is usually known when the auction closes. At any
state the closing probability is therefore zero or one. In our approach, we want to allow that one
can specify closing probabilities for sealed bid auctions. Thus the closing probability for sealed bid
auctions is always given. The winning probability of an auction, when it closes, is given by the
probability, that the Bid is higher than the highest opposing bid. Thus

Prgi™(1,cl|Bid) = Pr[Bid(i) > x;(t + 1)] = P/ (Bid(i)).

Rewards and costs

Now we want to focus on rewards and costs that are generated through the bids. The agent is only
rewarded at the end of the planning horizon T', as it is not able to assign a value to immediately
won goods. Thus, for every possible state at the end of the planning horizon the agent is rewarded
the value of the bundle that he holds in this state [see also 4]:

e = u(h(z)),

where u(h(z)) denotes the value assigned to holdings in state z. The agent is assigned the price for
every good the agent wins. One has to distinguish between different auction types. For the case of
English and Dutch auctions the cost in case the agent is winning the auction is given by

cC; = l’i(t),

where z;(t) is the ask-price of auction i at stage t. Remember that we assumed English and Dutch
auctions with fixed increments at every decision stage, thus the ask-price is a deterministic function
of time.

For the case of sealed-bid-first-price auctions the immediate cost of winning a good results as

c;, = BZd(Z)

As the cost assigned with the purchase of a good in a Vickrey auction equals the highest bid of an
opponent player, the cost is given by the expected value of the opponent highest bid. If the agent
wins the auction the expected cost in Vickrey auction is:
Bid(i
JZAD g pt () da

ci(Bid(i)) = PN Bid(i))

where pi™ (x) denotes the density function of P/ (x).

Functional equation

Having described state- and action-space, transition-probabilities and rewards/cost for different
auction protocols we will now develop the central functional equation of our model. The value-
functions for any state are given in the final stage T by V7 (z) = u(H(z)). For each state in
t<T:

Q'(z, Bid) =

> S Prsifi(Bid,z) | > Prght(k|Bid, z) - (VI (h? UK ES) — E[C(Bid, k)))
wCO; keK (w)



We will now explain the components of the equation in detail. O, denotes the set of auctions that
are still open in state z. Prsi'(Bid, z) denotes the probability that all auctions in w close at the
next decision stage and is given by:

Prstt(Bid, z) = H Prst™(Bid, z) - H(l — Prst™(Bid, 2)).
1cw i¢w
K (w) denotes the set of possible wins of goods or the possible changes of statuses of any auction
if all auctions in w close. k"% denotes the vector of won goods, and k% denotes the vector of
status changes. k = (k47*, k%) denotes the change of state, and k(v) denotes the state change in

auction v. For example, if auction 2 closes and the agent wins the auction, then k(2) = (1,C).
Prgitl(k|Bid, z) results as

Prgttl (k| Bid, z) H Prgt™(k(v)|Bid, 2) H PrgtJrl (v)|Bid, z).

vEW veO \w
Finally the expected cost are given by the sum of the cost resulting from every winning auction.
Therefore

Bid(t
Anz. f - pt-‘rl d

E[C(Bid,k)] = Z

Pf“(Bzd( ) 2, KO BidD)

1EWNIEV 1EWNIEF
~
cost in Vickrey auctions cost in First-Price auctions
WA -\ A
+ E k(@)™ - xi(t+ 1)+ E k()" - xi(t+ 1),
1€wNi€EE 1EwAI€ED
cost in english auctions cost in dutch auctions

where k(i)4"% is 1 if in k auction 4 closes and the agent wins the good, or 0 otherwise. The agent’s
aim is to maximise the expected utility. Thus

"z) = "(z, Bid).
Vi(z) max Q'(z, Bid)

4 Conclusions and Outlook

In this paper we discussed bidding strategies for agents in heterogeneous auction scenarios. After a
brief discussion of existing work from a decision theoretic point of view, we developed an MDP-based
decision framework that agents can use to bid in multiple heterogeneous auctions. This paper was
inspired by [4] and [5]. This work extends the state by providing an unified MDP-based framework
for different auction-types, whereas arbitrary start and closing times may be incorporated.

So far, in our model, quasi-linear preferences and the absence of a budget-constraint was as-
sumed. Future work will address the incorporation of these points with respect to computational
tractability. Because MDP-approaches result in high complexity for realistic problem-instances the
appliance of complexity-reducing methods is of high importance [3]. One may distinguish between
methods of abstraction, aggregation, and problem decomposition. In the case of abstraction and
aggregation, parts of the state space are ignored respectively aggregated to a common state vari-
able. In the case of problem decomposition, the problem is divided into several smaller problems.
In order to apply decision models to real-world problems, research regarding complexity-reduction
methods is mandatory.

We are currently implementing the developed framework for the TAC scenario, which we briefly
described in section 2. In this scenario, the problem may be decomposed into eight subproblems.



More precisely, for every customer, we modeled a separate MDP to compute the optimal bids in
hotel auctions. The challenge in this case is to coordinate the subproblems in a way, that an ac-
ceptable solution of the entire systems may be reached. One state of the entire MDP corresponds
to multiple possible combinations of sub-MDP states, because goods may be exchanged between
customers. We are currently implementing a coordination mechanism that is based on [17], which
was developed for the allocation of resources to independent tasks. In first experiments, we bench-
marked this approach against an approach which uses historical averages of hotel closing prices
and then computes the target auctions via integer programming. The bid value is then computed
as the marginal value of each item as in [8]. On the TAC server-platform, we compared the new
approach (DPAgent) with seven instances of the static approach (IPAgent). The following figure
shows the performance of these approaches (50-run average). Entertainment tickets are ignored in
these experiments.

2500

2000 ‘ ks o AN

points

1500 F N R s —
| | ‘ | | . DPAgent
IPAgentl -------
IPAgent2 --------
IPAgent3 -
. IPAgent4 ---—
1000 . IPAgent5 -------
s s s s s - IPAgent6 - -
IPAggnt? o

i i i i i i
O 20 40 60 80 100 120 140 160

game number
Figure 1: Chart of 50-run average.

The MDP-approach needs more time to learn closing price distributions as simple averages.
When leaving away early runs, no statistical significant differences can be shown between these two
approaches. We think that one reason that the MDP-approach did not outperform the ”classical”
approach is that flight tickets are currently not incorporated in the MDP-model. The agent buys
flight-tickets according to a simple heuristic. Another reason is the fact, that the MDPs are
coordinated only in a rudimentary way. Future research will focus on the coordination of the MDPs.
It has to be figured out, whether the proposed mechanism is adequate for the TAC-scenario.

References

[1] Patricia Anthony and Nicholas R. Jennings. Developing a bidding agent for multiple heterogeneous
auctions. ACM Transactions on Internet Technology, 3(3):185-217, 2003.

[2] Giinther Bamberg and Adolf Coenenberg. Betriebswirtschaftliche Entscheidungslehre. Vahlen, Miinchen,
2002. 11., iiberarbeitete Auflage.



3]

[4]

[13]

[14]

[15]

[16]

[18]

Craig Boutilier, Thomas Dean, and Steve Hanks. Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artifical Intelligence Research, 11:1-94, 1999.

Craig Boutilier, Moises Goldszmidt, and Bikash Sabata. Sequential auctions for the allocation of re-
sources with complementarities. In Proceedings of the 16th International Joint Conference on Artificial

Intelligence (IJCAI-99), pages 527-534. Morgan Kaufmann Publishers, 1999.

Andrew Byde. A dynamic programming model for algorithm design in simultaneous auctions. In Ludger
Fiege, Gero Miihl, and Uwe Wilhelm, editors, Electronic Commerce: Second International Workshop,
WELCOM 2001, volume 2232 of Lecture Notes in Computer Science, pages 152-163, 2001.

Andrew Byde. A comparison among bidding algorithms for multiple auctions. In Julian Padget, Onn
Shehory, David Parkes, Norman Sadeh, and William E. Walsh, editors, Agent-Mediated Electronic Com-
merce 1V. Designing Mechanisms and Systems: AAMAS2002 Workshop on Agent-Mediated Electronic
Commerce Bologna. Revised Papers, volume 2531 of Lecture Notes in Artificial Intelligence, pages 1-16,
Berlin, 2002. Springer.

Andrew Byde, Chris Preist, and Nicholas R. Jennings. Decision procedures for multiple auctions. In
Proceedings of the first international joint conference on Autonomous agents and multiagent systems,
pages 613-620. ACM Press, 2002.

Shih-Fen Cheng, Evan Leung, Kevin M. Lochner, Kevin O’Malley, Daniel M. Reeves, L. Julian Schvartz-
man, and Michael P. Wellman. Walverine: A walrasian trading agent. In Second International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-03), pages 465-472, 2003.

Didier Dubois and Henry Prade. Possibility theory as a basis for qualitative decision theory. In Chris
Mellish, editor, Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence,
pages 1924-1930, San Francisco, 1995. Morgan Kaufmann.

Marlon Dumas, Lachlan Aldred, Guido Governatori, Arthur ter Hofstede, and Nick Russell. A proba-
bilistic approach to automated bidding in alternative auctions. In Proceedings of the eleventh interna-
tional conference on World Wide Web, pages 99-108. ACM Press, 2002.

Peyman Faratin, Carles Sierra, and Nicholas R. Jennings. Negotiation decision functions for autonomous
agents. Int. Journal of Robotics and Autonomous Systems, 24(3-4):159-182, 1998.

Pere Garcia, Eduard Giménez, Lluis Godo, and Juan A. Rodriguez-Aguilar. Possibilistic-based design
of bidding strategies in electronic auctions. In The 13th European Conference on Artificial Intelligence
(ECAI-98), pages 575-579, 1998.

Amy Greenwald. The 2002 trading agent competition: an overview of agent strategies. Al Magazine,
24(1):83-91, 2003.

Minghua He and Nicholas R. Jennings. Southamptontac: An adaptive autonomous trading agent. ACM
Transactions on Internet Technology, 3(3):218-225, August 2003.

Paul Klemperer. Auction theory: A guide to the literature. Journal Of Economic Surveys, 13(3):
227-284, 1999.

R. Preston McAfee and John McMillan. Auctions and bidding. Journal Of Economic Literature, 25(2):
699-738, 1987.

Nicolas Meuleau, Milos Hauskrecht, Kee-Eung Kim, Leonid Peshkin, Leslie Pack Kaelbling, Thomas
Dean, and Craig Boutilier. Solving very large weakly coupled markov decision processes. In Proceedings
of the fifteenth national/tenth conference on Artificial intelligence/Innovative applications of artificial
intelligence, pages 165—172. American Association for Artificial Intelligence, 1998.

Chris Preist, Claudio Bartolini, and Andrew Byde. Agent-based service composition through simul-
taneous negotiation in forward and reverse auctions. In Proceedings of the 4th ACM conference on
Electronic commerce, pages 55-63. ACM Press, 2003.



[19]

Chris Preist, Claudio Bartolini, and Ivan Phillips. Algorithm design for agents which participate in
multiple simultaneous auctions. In Frank Dignum and Ulises Cortés, editors, Agent-Mediated Electronic
Commerce III : Current Issues in Agent Based Electronic Commerce Systems, volume 2003 of Lecture
Note in Artificial Intelligence, pages 139-154, Berlin, 2001. Springer.

Chris Preist, Andrew Byde, and Claudio Bartolini. Economic dynamics of agents in multiple auctions.
In Proceedings of the fifth international conference on Autonomous agents, pages 545-551. ACM Press,
2001.

Chris Preist, Andrew Byde, Claudio Bartolini, and Giacomo Piccinelli. Towards agent-based service
composition through negotiation. AISB Journal, 1(1):109-124, 2001.

Martin L. Puterman. Markov decision processes: discrete stochastic dynamic programming. Wiley, New
York, 1994.

P. Stone, J. Schapire, M. Littman, J. Csirik, and D. McAllester. Decision theorethic bidding based on
learned density models in simultaneous, interacting auctions. Journal Of Artificial Intelligence Research,
19:209-242, 2003.

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, and Yevgeniy Vorobeychik. Price prediction
in a trading agent competition. Journal Of Artificial Intelligence Research, 20:1-17, 2004.





