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Abstract

The edge-set encoding is a direct tree encoding which applies search oper-
ators directly to trees represented as sets of edges. There are two variants
of crossover operators for the edge-set encoding: With heuristics that con-
sider the weights of the edges, or without heuristics. Due to a strong bias
of the heuristic crossover operator towards the minimum spanning tree
(MST) a population of solutions converges quickly towards the MST and
EAs using this operator show low performance when used for tree opti-
mization problems where the optimal solution is not the MST. This paper
presents a modified crossover operator (γ-TX) that allows us to control
the bias towards the MST. The bias can be set arbitrarily between the
strong bias of the heuristic crossover operator, or being unbiased. An
investigation into the performance of EAs using the γ-TX for randomly
created OCST problems of different types and OCST test instances from
the literature present good results when setting the crossover-specific para-
meter γ properly. The presented results suggest that the original heuristic
crossover operator of the edge-sets should be substituted by the modified
γ-TX operator that allows us to control the bias towards the MST.

1 Introduction

A spanning tree T of an undirected graph G(V,E) is a subgraph that connects
all vertices of G and contains no cycles. Relevant constraint minimum spanning
tree (MST) problems are, for example, the optimal communication spanning
tree (OCST) problem [1], or the degree-constrained minimum spanning tree
problem [2, 3]. When using evolutionary algorithms (EAs) for tree problems it
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is necessary to encode a tree such that the evolutionary search operators like
crossover or mutation can be applied. There are two different possibilities for
doing this. Indirect representations usually encode a tree (phenotype) as a list of
strings (genotypes) and apply standard search operators to the genotypes. The
phenotypes are constructed by an appropriate genotype-phenotype mapping
(representation). In contrast, direct representations encode a tree as a set
of edges and apply search operators directly to the set of edges. Therefore,
no representation is necessary. Instead, tree-specific search operators must be
developed, as standard search operators can not be used any more. Examples
for direct encodings are the edge-set encoding [3], or the NetDir encoding [4,
sec. 7.2]. [3] proposed two different variants of search operators for the edge-
set encoding: Heuristic variants where the operators consider the weights of
the edges, and non-heuristic versions. Results for the degree-constrained MST
problem and the traveling salesman problem indicated a good performance of
the heuristic variants [5, 3].

Representations resp. search operators can have a bias towards some solu-
tions. A representation is biased if it is redundant and some phenotypes are
over-represented. A search operator is biased if its iterative application results
in a biased population that means not all possible phenotypes are represented
with the same probability by the population. Consequently, heuristic search is
biased if it pushes a population of solutions towards some solution even if no
selection operator is used. Biased representations resp. operators do change
the performance of evolutionary search. If the optimal solutions are similar to
the solution where the representation resp. search operator is biased to, EA
performance increases [4, section 3.1]. However, if there is a bias towards a
solution that is not similar to the optimal solution, EA performance is low.
[6, 7] examined the bias of the edge-set encoding and found a strong bias of
the heuristic crossover operator of the edge-sets towards the MST. Therefore,
problems where the optimal solution is the MST can be easily solved. However,
as the bias of the heuristic crossover towards the MST is strong, EAs fail if the
optimal solution is only slightly different from the MST.

This paper proposes a modified version of the heuristic crossover operator
of the edge-set encoding that allows us to control the strength of the bias
towards the MST. Therefore, the problems arising from the oversized bias of
the heuristic crossover operator can be overcome and its bias can be adjusted
according to the properties of the problem at hand. If it is known a-priori that
optimal solutions of a problem are similar to the MST, a modest bias towards
the MST allows EAs to solve the problem more efficiently. Experiments on the
performance of the modified crossover operator are performed for the optimal
communication spanning tree (OCST) problem. Results for random problems
and problem instances from the literature show that by controlling the strength
of the heuristic bias EA performance increases.

The paper is structured as follows. The following section describes the func-
tionality of the edge-set encoding with and without heuristics and introduces
the modified crossover operator. Section 3 investigates the bias of the crossover
operators of the edge-set encoding and shows that the bias can be controlled
when using the modified crossover operator. Its influence on EAs when solv-



ing OCST problems is examined in section 4. The paper ends with concluding
remarks.

2 The Edge-Set Encoding

The edge-set encoding [3] is a direct representation for trees. Therefore, the
search operators are applied directly to sets of edges. There are two different
variants of search and initialization operators of the edge-set encoding: either
with or without heuristics. When using operators with heuristics the weights of
the edges are considered for the construction of the offspring. In the following
paragraphs we briefly review the functionality of the initialization method and
the crossover operator. We do not consider the mutation operator as [3] already
proposed a version of the mutation operator that allows us to control its bias
(compare [7]).

2.1 The Edge-Set Encoding without Heuristics

2.1.1 Initialization

In order to create feasible solutions for the initial population, the edge-set en-
coding uses the Kruskal random spanning tree (RST) algorithm, a slightly mod-
ified version of the algorithm from Kruskal. In contrast to Kruskals’ algorithm,
KruskalRST chooses edges (i, j) not according to their weight wij but ran-
domly. [3] have shown that this algorithm for creating random spanning trees,
KruskalRST, has a small bias towards star-like trees.

procedure KruskalRST(V,E): //E: set of edges; V : set of vertices
T ← ∅, A← E; //T : to be constructed spanning tree
while |T | < |V | − 1 do

choose an edge {(u, v)} ∈ A at random;
A← A− {(u, v)};
if u and v are not yet connected in T then

T ← T ∪ {(u, v)};
return T .

2.1.2 Recombination

The non-heuristic KruskalRST* crossover operator [3] includes in a first step all
edges that are common to both parents T1 and T2 in the offspring Toff . Then,
in a second step, KruskalRST is applied to Gcr = (V, T1∪T2). KruskalRST* has
high heritability as in the absence of constraints, only parental edges are used to
create the offspring. Crossover becomes more complicated for constraint MST
problems as it is possible that the RST algorithm can create no feasible tree
from Gcr = (V, T1 ∪T2). Then, additional edges have to be chosen randomly to
complete an offspring.



2.2 Heuristic Recombination Operators for the Edge-Set En-

coding

The heuristic crossover operator presented in [3] is a modified version of
KruskalRST* crossover. In a first step, the operator transfers all edges T1 ∩ T2

that exist in both parents to the offspring. Then, the remaining edges are chosen
randomly from E ′ = (T1 ∪ T2) \ (T1 ∩T2) using a tournament with replacement
of size two. If the underlying optimization problem is constrained, it is possible
that the offspring has to be completed using edges not in E ′. This version of
the heuristic crossover operator is denoted as 2-tournament-crossover (TX). [5]
proposed two other variants of the heuristic crossover operator. They differ in
the strategy of completing the offspring with the edges available in E ′:

• Greedy crossover: When using this strategy, the edge with the smallest
weight is chosen from E ′.

• Inverse-weight-proportional crossover: This strategy selects each
edge from E ′ according to probabilities inversely proportional to the edges’
weights.

[5] examined the performance of the different crossover variants for the
traveling-salesperson problem and the degree-constraint MST problem. The
results indicated that Greedy crossover shows good performance for simple and
easy problem instances. For large problems TX crossover resulted in the best
performance.

Due to the construction process all three crossover strategies have a strong
bias towards the MST. The bias of the TX operator is already so strong that EAs
are only able to find optimal solutions if they are very similar to the MST [7].
Problems where the optimal solutions are slightly different from the MST could
no longer be solved by using the TX operator. According to the construction
process the bias of the Greedy crossover is higher than the bias of the TX
crossover. Therefore, Greedy crossover also results in low EA performance if
the optimal solution is not the MST. The inverse-weight-proportional crossover
introduces a bias to the MST similar to the TX crossover. However, the bias
can not be controlled in a systematic way but depends on the specific weights
of the edges.

We want to propose a modified version of the heuristic TX operator. The
modification is only small but allows us to control the bias towards the MST.
In the new crossover variant (denoted as γ-TX crossover) the tournament of
size two that chooses one edge from E ′ is not always performed but only with
the probability γ. Therefore, for γ = 0 an edge is randomly chosen from E ′ and
we see the same behavior as KruskalRST*. For γ = 1 all edges are chosen by a
tournament of size 2 and we get the same behavior as TX crossover. The bias
of γ-TX towards the MST can be set arbitrarily small with γ → 0.

3 Bias of the Crossover Operators for Edge-Sets

We investigate the bias of the TX and γ-TX operator for randomly created
trees with n = 10 and n = 16 nodes. To every edge (i, j) a non-negative weight



wij is associated. We want to consider two different possibilities for the weights
wij :

• Random weights: The real-valued weights wij are generated randomly
and are uniformly distributed in ]0, 100].

• Euclidean weights: The nodes are randomly placed on a 1000x1000
grid. The weights wij between nodes i and j are the Euclidean distances
between nodes i and j.

As the weights wij are randomly created and wij 6= wkl, ∀i 6= k, j 6= l, there
is a unique MST for every problem instance. T is the MST if c(T ) ≤ c(T ′)
for all other spanning trees T ′, where c(T ) =

∑
(i,j)∈T wij. The similarity

between two spanning trees Ti and Tj can be measured using the distance

dij ∈ {0, 1, . . . , n− 1} as dij = 1
2

∑
u,v∈V, u<v |l

i
uv − ljuv|, where liuv is 1 if an edge

from u to v exists in Ti and 0 if it does not exist in Ti.
For the experiments we randomly generate an initial population of 500

individuals using the non-heuristic KruskalRST initialization and apply the
crossover operators iteratively. As no selection operator is used, no selection
pressure pushes the population to high-quality solutions. An operator is unbi-
ased if the statistical properties of the population do not change by applying
crossover alone. In the experiments we measure in each generation the average
distance dmst−pop = 1/N

∑n
i=1 di,MST of the individuals Ti in the population

to the MST. If dmst−pop decreases, the crossover operator is biased towards the
MST. If dmst−pop remains constant, the crossover operator is unbiased and no
MST-like solutions are overrepresented.

We performed this experiment on 500 randomly generated 10 and 16 node
problem instances with random, resp. Euclidean weights wij . For every problem
instance we performed 50 runs. In each run, the crossover operator was applied
200 generations. Fig. 1 shows the mean and the standard deviation of the
distance dmst−pop over the number of generations. The plots compare the non-
heuristic KruskalRST* crossover with the heuristic TX and γ-TX operator (no
selection is used).

The results show that the non-heuristic KruskalRST* operator is unbiased.
In contrast, the heuristic TX operator shows a strong bias towards the MST
and a population converges to the MST after a few generations. When using
the γ-TX crossover the bias towards the MST can be controlled. With lower γ
the bias gets smaller and for γ = 0 we get the same results as for KruskalRST*.

4 Performance of the γ-TX Crossover for OCST

Problems

This section investigates how the performance of different crossover variants of
the edge-set encoding depends on the properties of the optimal solutions. We
perform the experiments for the optimal communication spanning tree (OCST)
problem as all trees are feasible solutions and there are no additional constraints.
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Figure 1: The plots show the mean and the standard deviation of the distance
dmst−pop between a population of 500 randomly generated individuals towards
the MST over the number of generations when only using crossover (no selection
pressure). The results show that the bias of the γ-TX crossover can be controlled
and lies between the strong bias of TX crossover (γ = 1) and the no-bias of the
KruskalRST* crossover (γ = 0).



4.1 Optimal Solutions for Randomly Created OCST Problems

The OCST problem was first introduced in [1] and is MAX NP-hard [8].
The problem seeks a spanning tree that connects all given nodes and satisfies
their communication requirements for a minimum total cost. The problem can
be defined as follows: Let G = (V,E) be a complete undirected graph with
n = |V | nodes and m = |E| edges. To every pair of nodes (i, j) a non-negative
weight wij and a non-negative communication requirement rij is associated.
The communication cost c(T ) of a spanning tree T is defined as

c(T ) =
∑

i,j∈V, i<j

rij · w(pT
i,j),

where w(pT
i,j) denotes the weight of the unique path from node i to node j in the

spanning tree T . The OCST problem seeks the spanning tree with minimal costs
among all other spanning trees. The OCST problem becomes the MST problem
if there are no communication requirements rij and c(T ) =

∑
(i,j)∈T wij .

It was shown in [9] that on average optimal solutions for OCST problems
are similar to the MST, that means the average distance dopt,MST between the
optimal solution and the MST is significantly lower than the average distance
drand,MST between a randomly created tree and the MST. Therefore, as the
optimal solutions of OCST problems are biased towards the MST, representa-
tions as well as operators that are biased to the MST are expected to solve the
OCST problem efficiently.

To investigate how the performance of EAs using different crossover variants
of edge-sets depend on the structure of the optimal solution, an optimal or near-
optimal solution for the OCST problem must be determined. We identified
optimal (or near-optimal) solutions for the OCST problem by an EA whose
population size N is doubled in every iteration until the same solutions are
found in subsequent iterations. Details of the experimental setting for finding
optimal solutions for OCST problems can be found in [9].

4.2 Edge-Set Crossover for Randomly Created OCST Problems

This section investigates for randomly created OCST problems how the perfor-
mance of EAs using different variants of the crossover operator depends on the
distance dopt,MST between the optimal solution and the MST.

We randomly generated 500 problem instances with 10 and 16 nodes using
either random or Euclidean distance weights. The demands rij are chosen
randomly and are uniformly distributed in ]0,. . . ,100]. Then, we determine the
optimal solutions using the experimental setting described in [9]. For comparing
the performance of the different crossover variants (KruskalRST*, TX, and
γ-TX) we use a simple generational EA with no mutation and tournament
selection without replacement of size two. The population size N is chosen with
respect to the performance of KruskalRST*. The aim is to find the optimal
solution with a probability of about 25-75 %. Therefore, we choose for the
10 node problems a population size N = 100 and for the 16 node problems
N = 250. Each run is stopped after the population is fully converged or the
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Figure 2: The plots show the percentage of optimal solutions that can be found
(left) and the gap between the cost of the best found solution and the optimal
solution (right) over dopt,MST for different crossover operators and different
types of OCST problems. The plots show that with increasing dopt,MST , EAs
using the TX operators fail due to their strong bias. When using the γ-TX
operator with a low bias, EA performance is high. With increasing γ the bias
towards the MST becomes stronger and problems with larger dopt,MST can no
longer be solved.



number of generations exceeds 200. 50 runs are performed for each of the 500
problem instances.

The results of our experiments are presented in Fig. 2. It shows the percent-

age of EA runs that find the optimal solutions (left) and the gap
c(Tfound)−c(Topt)

c(Topt)

between the cost of the optimal solution Topt and the cost of the best found
solution Tfound (right) at the end of a run over the distance dopt,MST between
the optimal solution and the MST. Results are plotted for KruskalRST*, dif-
ferent variants of γ-TX, and TX. The initial population was generated using
the non-heuristic initialization from section 2.1. We only show results for those
dopt,MST with more than 10 problem instances (out of 500).

The results reveal that with increasing dopt,MST the performance of EAs
is reduced. The decrease in performance is emphasized with larger γ. When
using a crossover operator with a strong bias like TX or γ-TX with γ = 0.5
EA performance is high if and only if dopt,MST ≈ 0; with larger dopt,MST EA
performance drops rapidly. The strong bias pushes the population towards the
MST and makes it difficult to find the optimal solution. In contrast, when using
the γ-TX operator with a low γ (γ = 0.05 or γ = 0.2) the bias towards the
MST is small and reasonable and EAs perform better or equal than when using
the non-heuristic version. These results are confirmed when examining the gap
c(Tfound)−c(Topt)

c(Topt)
. With increasing bias and increasing dopt,MST , the quality of

the found solutions decreases.
In summary, using a strong bias towards the MST results in high EA per-

formance for dopt,MST ≈ 0 but low performance elsewhere. With lower γ,
problems with larger dopt,MST can be solved. EAs using the γ-TX operator
with a low bias towards the MST (γ ≈ 0.05 − 0.2 for 10 nodes and γ ≈ 0.05
for 16 node problems) outperform the non-heuristic KruskalRST* crossover for
low dopt,MST and also show good results for larger dopt,MST .

4.3 Edge-Set Crossover for Test Instances from the Literature

Test instances for the OCST problem have been proposed by [10, 11, 12]. Details
of the test instances and an analysis of their properties can be found in [9].
The following paragraphs examine the performance of EAs using the different
crossover variants for these test instances.

Table 1 lists the properties of the optimal solutions for the test instances.
It shows the number of nodes n, the distance dopt,MST , and the cost c(Topt)
of the optimal solution. In the instance berry35u, all distances are uniform
(wij = 1), so all spanning trees are minimal. For all test instances, dopt,MST is
smaller than the average distance of a randomly created solution towards the
MST (compare [9]). Therefore, all test problems are biased towards the MSTs.

For the experiments the same generational EA with population size N as in
the previous section is used. The table presents the mean µ and the standard
deviation σ of the cost of the best solution found at the end of the runs averaged
over 50 runs for each problem instance. The results show that the heuristic
TX crossover (γ = 1) is only able to find the optimal solution if dopt,MST = 0.
Otherwise, the performance of EAs using it is low. In contrast, the performance
of EAs using the non-heuristic and unbiased KrukalRST* is high and high



Table 1: Performance of EA using different crossover operators for OCST test
problems from the literature
problem opt solution

N
KruskalRST* γ-TX (γ = 0.05) γ-TX (γ = 0.2) TX (γ = 1)

instance n dopt,MST c(Topt) µ σ µ σ µ σ µ σ

palmer6 6 1 693,180 50 698,200 8,447 696,301 5,833 698,217 8,524 706,784 6,438
palmer12 12 7 3,428,509 60 3,589,15492,885 3,582,433 91,529 3,534,93571,125 3,707,947 56,691
palmer24 24 12 1,086,656 800 1,088,231 915 1,088,007 665 1,088,615 695 1,873,835 36,453
raidl10 10 3 53,674 60 57,046 5,266 55,275 3,481 55,077 2,261 57,200 927
raidl20 20 4 157,570 400 159,714 4,038 159,943 3,984 157,922 1,426 164,811 2,671
berry6 6 0 534 50 539 13 534 3 534 0 534 0
berry35u 35 - 16,273 800 16,621 173 16,622 180 16,604 190 16,577 187
berry35 35 0 16,915 800 17,263 381 16,975 138 16,915 0 16,915 0

quality solutions can be found. When using the modified γ-TX operator with
a low γ (γ = 0.05 or γ = 0.2) the performance of EAs can be increased in
comparison to KruskalRST* as the optimal solutions for all problem instances
are biased towards the MST. EAs using the γ-TX with low γ (e. g. γ = 0.05)
always find solutions of similar or higher quality. Only for berry35u can no
better solutions be found as all spanning trees are minimal and therefore a low
bias towards the MST does not increase EA performance.

5 Summary and Conclusions

This work proposed a new variant (γ-TX) of the heuristic crossover (TX) opera-
tor of the edge-set encoding. When using the standard TX operator an offspring
tree is created from two parents by inserting all edges that are common in both
parents into the offspring. The offspring is completed by parental edges chosen
by a tournament of size two. Edges with lower weight are preferred. In contrast
to the standard TX operator, the γ-TX operator only performs a tournament
with probability γ and otherwise inserts a random edge from one of the parents.

Due to its construction rule the TX operator shows a strong bias towards
the minimum spanning tree (MST). Using it for the optimal communication
spanning tree (OCST) problem allows EAs only to solve the problem if the
optimal solution is the MST. If the optimal solution is slightly different from
the MST, EAs fail. The γ-TX operator allows us to control the bias which can
be set arbitrarily (according to γ) between the strong bias of the TX operator
(γ = 1) and no-bias (γ = 0). Therefore, the problems of the TX operator
with the strong bias towards the MST can be overcome while still allowing the
crossover operator to be slightly biased towards the MST. The experimental
results for random OCST problem instances and problem instances from the
literature show that EAs using the γ-TX operator with a proper setting of γ
show good performance.

The problems of the TX operator of the edge-set encoding emphasize the
difficulties of a proper design of representations and operators. If it is known
a priori that the optimal solutions for some problems are biased towards some
solutions this bias can be exploited by developing representations resp. opera-
tors that are biased in the same direction. Then, with a proper bias, problems
can be solved more efficiently than when using non-biased encodings. However



if the bias is too great, EAs fail if the optimal solution is only slightly different
from the solution the representation resp. operator is biased to. Therefore, bi-
ased representations should be used with great care and only if there is some a
priori knowledge regarding the properties of the optimal solutions. Otherwise,
if no a priori knowledge exists non-biased representations should be preferred.
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