ON THE DYNAMICS
OF CONTINUOUS DISTRIBUTIONS
OF DISLOCATIONS

E. BINZ, G. SCHWARZ, J. WENZELBURGER*

Lehrstuhl für Mathematik I
Universität Mannheim
D - 68131 Mannheim
Germany

Current address. University of Bielefeld, Department of Economics, P.O. Box 100131, D-33501 Bielefeld, Germany.
On the Dynamics of Continuous Distributions of Dislocations

Ernst Binz, Günter Schwarz, and Jan Wenzelburger *

*University of Mannheim
Dept. of Mathematics and Computer Science
D-68131 Mannheim
Germany

July 1996

Abstract

For materials with a continuous distribution of dislocations, equations of motion are derived from a symplectic structure on an appropriate configuration space. The proposed dynamics generalizes from elasticity.

Mathematics Subject Classification: 53C80, 58A10, 58A14.

1 Introduction

A mathematical framework for the dynamics of an elastic material is given by the space of all embeddings $E(M; \mathbb{R}^3)$ of a reference body M into the physical space \mathbb{R}^3. The constitutive law determining the equations of evolution can be given in terms of a virtual work functional on this phase space, cf. [8]. The invariance of the system under rigid global translations implies that the differential dj of the embedding $j \in E(M; \mathbb{R}^3)$ is the essential quantity for the constitutive behaviour of the material, cf. [3]. In classical terms this differential is precisely the deformation gradient of the actual configuration of the system. Mathematically the deformation gradient dj may be considered as an exact (\mathbb{R}^3-valued) differential one-form in $\Omega^1(M; \mathbb{R}^3)$.

*Current Address. University of Bielefeld, Department of Economics, P.O. Box 10 01 31, D-33501 Bielefeld, GERMANY.
In the continuum theory of defects one describes dislocations by a torsion density on the reference body, cf. [9, 15, 19]. This torsion density may be identified with an exact (\(\mathbb{R}^3 \)-valued) differential two-form \(d\gamma \in \Omega^2(M; \mathbb{R}^3) \). The corresponding Burgers vector computes as the integral of \(d\gamma \) over a bounded surface \(S \subset M \), cf. [20].

To incorporate this description of dislocations into the framework of elasticity, the Helmholtz decomposition theorem is utilized which claims that any differential form may be uniquely decomposed into a gradient and a divergence-free part. A generalised configuration space for a material with dislocations \(\mathcal{V}(M; \mathbb{R}^3) \) is defined as a submanifold of \(\Omega^1(M; \mathbb{R}^3) \). Each generalised configuration \(\gamma \in \mathcal{V}(M; \mathbb{R}^3) \) splits into an elastic or gradient part \(dj \), where \(j \in E(M; \mathbb{R}^3) \) is an embedding, and into a so-called plastic part \(\beta \) describing the dislocation density, cf. [20].

The main objective of this paper is to derive a dynamics for a material with a continuous distribution of dislocations. This is done by introducing a symplectic structure \(\Omega \) and a kinetic energy functional \(\mathcal{E} \) on the tangent space \(T\mathcal{V}(M; \mathbb{R}^3) \) of the configuration space \(\mathcal{V}(M; \mathbb{R}^3) \). The constitutive behaviour of such a system is described by a virtual work functional \(F \) on \(\mathcal{V}(M; \mathbb{R}^3) \). The resulting principle of virtual work determines weak equations of motion for the generalised configurations \(\gamma \).

Using the Helmholtz decomposition theorem, these equations split into a part which determines the evolution of the elastic parts \(dj \) of a generalised configuration \(\gamma \) and into a part which determines the evolution of the plastic parts \(\beta \). The equations for the elastic parts are just the well-known equations in classical elasticity. Thus, for purely elastic materials, this approach covers the classical theory.

2 Differential Forms

Since in this approach towards a dynamics of dislocations, differential forms provide a convenient framework, a brief introduction is given. Let \(M \) be the body manifold in the sense of elasticity. Assume that \(M \) is a smooth connected 3-dimensional compact oriented Riemannian manifold with boundary which is embedable into the physical space \(\mathbb{R}^3 \). A \(\mathbb{R}^3 \)-valued differential form \(\omega \in \Omega^k(M; \mathbb{R}^3) \) of degree \(k \) is a smooth assignment of a skew-symmetric \(k \)-linear map \(\omega_p \) on \(T_p M \) to each point \(p \in M \), where

\[
\omega_p : T_p M \times \cdots T_p M \longrightarrow \mathbb{R}^3 \quad \forall p \in M.
\]

In classical terms, differential forms may be considered as skew-symmetric two-point tensors of type \((1, k)\) on the body manifold \(M \) which are well-known objects in continuum mechanics, cf. [12]. Of particular interest in our approach are the cases \(k = 0, 1, 2 \). For example, the deformation gradient and the first Piola-Kirchoff stress tensor are
considered here as \mathbb{R}^3-valued one-forms on the body manifold M, i.e. as some $\omega \in \Omega^1(M; \mathbb{R}^3)$. Analogously, placements of M and force fields are elements in $\Omega^0(M; \mathbb{R}^3)$ which, by definition, is equal to $C^\infty(M; \mathbb{R}^3)$.

Each $\Omega^k(M; \mathbb{R}^3)$ may be equipped with a fibre metric by using the Riemannian metric g on M and the standard scalar product $\langle \cdot, \cdot \rangle_{\mathbb{R}^3}$ on \mathbb{R}^3. For our purposes, it suffices to consider the cases $k = 0, 1$. Let $E_1, E_2, E_3 \in \Gamma(TM)$ be a triple of vector fields orthonormal with respect to the metric g. A fibre metric on $\Omega^1(M; \mathbb{R}^3)$ is then defined by

$$\langle \omega, \eta \rangle := \sum_i \langle \omega(E_i), \eta(E_i) \rangle_{\mathbb{R}^3}, \quad \omega, \eta \in \Omega^1(M; \mathbb{R}^3).$$

(1)

The product (1) does only depend on the metric g but not on the chosen frame on M, cf. [13]. Notice that (1) corresponds to the contraction of skew symmetric two-point tensors. If $e_1, e_2, e_3 \in \mathbb{R}^3$ denotes the standard basis in \mathbb{R}^3 and $\theta^1, \theta^2, \theta^3 \in \Omega^1(M)$ the dual frame corresponding to E_1, E_2, E_3, then, in coordinates, any one-forms ω and η may be written as $\omega = \sum_{L, i} \omega^i_L e_L^i$ and $\eta = \sum_{L, i} \eta^i_L e_L^i$. Thus (1) reads

$$\langle \omega, \eta \rangle = \sum_{L, i=1}^3 \omega^i_L \eta^i_L.$$

With the help of the Riemannian volume element μ induced by g, the space $\Omega^1(M; \mathbb{R}^3)$ is now endowed with an L^2-product \mathcal{G}, given by

$$\mathcal{G}(\omega, \eta) := \int_M \langle \omega, \eta \rangle \mu, \quad \omega, \eta \in \Omega^1(M; \mathbb{R}^3).$$

(2)

For $k = 0$ the corresponding L^2-product \mathcal{G} is just the usual one. Let ∇ denote the Levi-Civita connection on M associated to g. Then ∇ induces a covariant derivative on $\Omega^1(M; \mathbb{R}^3)$, given by

$$\nabla_Y \omega(X) = D[\omega(X)](Y) - \omega(\nabla_Y X), \quad X, Y \in \Gamma(TM).$$

Here, the first term of the right hand side means the directional derivative of the \mathbb{R}^3-valued function $\omega(X)$ in direction of the vector field Y. For $k = 0$ the second term of the right hand side of the above expression vanishes. The covariant derivative allows to write the exterior derivative $d : \Omega^1(M; \mathbb{R}^3) \rightarrow \Omega^2(M; \mathbb{R}^3)$ as

$$d\omega(X, Y) = (\nabla_X \omega)(Y) - (\nabla_Y \omega)(X), \quad X, Y \in \Gamma(TM).$$

For $k = 0$ the exterior derivative corresponds to the gradient. The co-differential $\delta : \Omega^1(M; \mathbb{R}^3) \rightarrow \Omega^0(M; \mathbb{R}^3)$ may be defined by

$$\delta \omega := - \sum_{i=1}^3 (\nabla_{E_i} \omega)(E_i).$$
Notice that the co-differential δ, unlike the exterior derivative, depends on the chosen Riemannian metric g. In classical tensor notation, δ corresponds to the divergence of a tensor field.

Let \mathcal{N} denote the outward pointing unit normal field on the boundary ∂M of M. A differential one-form ω is called parallel to ∂M iff its normal component vanishes, that is $\omega(\mathcal{N}) = 0$. Define the space of all divergence-free and parallel one-forms by

$$ \mathcal{D}(M; \mathbb{R}^3) := \{ \omega \in \Omega^1(M; \mathbb{R}^3) \mid \delta \omega = 0 \text{ and } \omega(\mathcal{N}) = 0 \}. $$

We are now able to state the Helmholtz decomposition for the special case of \mathbb{R}^3-valued one-forms. For a general proof see [17].

Theorem 2.1 *Helmholtz Decomposition*

Let M be a compact, oriented Riemannian manifold with boundary. Then for any $\omega \in \Omega^1(M; \mathbb{R}^3)$ there exist $\theta \in \Omega^0(M; \mathbb{R}^3)$ and $\beta \in \mathcal{D}(M; \mathbb{R}^3)$ such that $\omega = d\theta + \beta$. Moreover, $d\theta$ and β are mutually L^2-orthogonal with respect to the inner product (2), that is the decomposition

$$ \Omega^1(M; \mathbb{R}^3) = d\Omega^0(M; \mathbb{R}^3) \oplus \mathcal{D}(M; \mathbb{R}^3) $$

is direct and L^2-orthogonal.

3 The Kinematics of Dislocations

Let $j : M \rightarrow \mathbb{R}^3$ be a smooth embedding of the body manifold M into the Euclidean space \mathbb{R}^3, and $E(M; \mathbb{R}^3)$ denote the space of all such embeddings. In pure elasticity $E(M; \mathbb{R}^3)$ constitutes the configuration space of the system; in classical terms its elements j are called placement (or transplacement) fields. The displacement fields $u \in C^\infty(M; \mathbb{R}^3)$ compute as $u = (j - j_0)$, where j_0 is a reference configuration.

This section is aimed at generalising the classical configuration space $E(M; \mathbb{R}^3)$ in such a way that the description of the kinematics of dislocations is included. We introduce a configuration space for an elastic solid whose internal structure is characterised by a frame, i.e. a triple of linear independent vector fields on M

$$ Y_1, Y_2, Y_3 \in \Gamma(TM). \quad (3) $$

Physically, these vector fields describe lattice vectors of a continuised crystal as worked out in [9]. We denote the standard basis of \mathbb{R}^3 by e_1, e_2, e_3. Since M is embedable

1. $E(M; \mathbb{R}^3)$ is an open subset in the Fréchet space $C^\infty(M; \mathbb{R}^3)$, see [2] for details.
into \mathbb{R}^3, for any arbitrary frame (3), there exists a unique fibrewise one-to-one map
\[\gamma : TM \rightarrow \mathbb{R}^3 \]
such that
\[\gamma_p(Y_i(p)) = e_i, \quad i = 1, 2, 3 \quad \forall p \in M. \] (4)
Mathematically, γ is a \mathbb{R}^3-valued one-form $\gamma \in \Omega^1(M; \mathbb{R}^3)$ on M which is fibrewise one-to-one. The set of all these one-forms is defined by
\[\mathcal{I}(M; \mathbb{R}^3) := \{ \gamma \in \Omega^1(M; \mathbb{R}^3) \mid \gamma_p : T_pM \rightarrow \mathbb{R}^3 \text{ is one-to-one, } p \in M \}. \]
Consider a fixed $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$. Then $\gamma(X) \in C^\infty(M; \mathbb{R}^3)$ is a smooth function for each $X \in \Gamma(TM)$. Let $D(\gamma(X))(Y)$ denote the directional derivative of $\gamma(X)$ into the direction of some $Y \in \Gamma(TM)$. A connection $\nabla[\gamma]$ on TM associated with $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$ is then defined by
\[\nabla[\gamma]_Y X = \gamma^{-1} D(\gamma(X))(Y), \quad X, Y \in \Gamma(TM). \] (5)
In a coordinate system on M, the Christoffel symbols of (5) read
\[\Gamma^k_{lm} = \sum_{\lambda=1}^3 (\gamma^{-1})^k_{\lambda} \partial_l \gamma^\lambda_m. \]
It is easy to verify that the curvature of this connection vanishes, i.e. the connection (5) is flat. Conversely, it is shown in [20] that for any flat connection ∇ on TM, there is some $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$ with $\nabla = \nabla[\gamma]$. The torsion T^∇ of an arbitrary connection ∇ is defined by
\[T^\nabla(X, Y) = \nabla_Y X - \nabla_X Y - [X, Y] \quad \forall X, Y \in \Gamma(TM). \]
In particular, if $T[\gamma]$ denotes the torsion of $\nabla[\gamma]$, it follows from (5) and the definition of the exterior derivative d that
\[d\gamma(X, Y) = \gamma(T[\gamma](X, Y)), \quad X, Y \in \Gamma(TM). \]
In classical terms, the torsion of a connection describes the dislocation density or the material inhomogeneity of a material. Since γ is fibrewise one-to-one, the discussion shows that $T[\gamma] = \gamma^{-1} d\gamma$. Therefore, the dislocation density $T[\gamma]$ might as well be measured by the exterior derivative of the one-form $\gamma \in \mathcal{I}(M; \mathbb{R}^3)$. Hence, the two-form $d\gamma$ will be referred to as a dislocation density of the material. In particular,
\[d\gamma = 0 \quad \iff \quad T[\gamma] = 0, \]
implying that the material is defect-free if and only if γ is closed, i.e. $d\gamma = 0$. The Burgers vector b of an arbitrary surface $S \subset M$ associated with the dislocation density $d\gamma$ computes as the integral
\[b = \int_S d\gamma. \]
The crucial observation is that according to the Helmholtz decomposition, Theorem 2.1, each \(\gamma \in \mathcal{I}(M; \mathbb{R}^3) \) uniquely splits into
\[
\gamma = dv + \beta, \quad \text{where} \quad dv \in d\Omega^0(M; \mathbb{R}^3), \quad \beta \in \mathcal{D}(M; \mathbb{R}^3).
\] (6)
Since \(d^2 = 0 \), only the divergence-free part \(\beta \in \mathcal{D}(M; \mathbb{R}^3) \) of \(\gamma \) contributes to the dislocation density. In particular \(d\gamma = d\beta \), i.e. the dislocation density is uniquely determined by the so-called non-exact component \(\beta \).

As far as classical elasticity is concerned, the essential quantity for the constitutive behaviour of a material is the deformation gradient \(dj \in \Omega^1(M; \mathbb{R}^3) \) of an actual embedding \(j \in E(M; \mathbb{R}^3) \). It is shown in [3] that the set of all such gradients
\[
dE(M; \mathbb{R}^3) = \{ dj \mid j \in E(M; \mathbb{R}^3) \}
\]
is an open subset of the Fréchet space of all one-forms \(\Omega^1(M; \mathbb{R}^3) \). Since differentials of embeddings are fibrewise one-to-one, we have \(dE(M; \mathbb{R}^3) \subseteq I(M; \mathbb{R}^3) \). Each deformation gradient \(dj \in dE(M; \mathbb{R}^3) \) defines a frame \(X_1, X_2, X_3 \in \Gamma(TM) \) by solving
\[
dj(X_l) = e_l, \quad l = 1, 2, 3.
\] (7)
Since \(d^2 = 0 \), it follows from (4) that this triple of vector fields characterises a defect-free material. Therefore, a placement \(j \in E(M; \mathbb{R}^3) \) will be called integrable configuration of the body manifold \(M \); an arbitrary \(\gamma \in \mathcal{I}(M; \mathbb{R}^3) \) will be referred to as a generalised configuration of \(M \).

According to [18] the evolution of defects is held responsible for the discrepancy between the macroscopic deformation and the behaviour of the lattice. Therefore, we think of the component \(\beta \in \mathcal{D}(M; \mathbb{R}^3) \) as a quantity by which the frame \(X_1, X_2, X_3 \) is incompatibly deformed. The vector fields
\[
(dj + \beta)(X_1), (dj + \beta)(X_2), (dj + \beta)(X_3)
\]
constitute a frame on \(j(M) \subset \mathbb{R}^3 \) if and only if \(dj + \beta \) is injective. For \(\beta \neq 0 \), this frame represents a dislocated lattice on the embedded body.

The general idea is that only the integrable part, i.e. the gradient part of a generalised configuration \(\gamma \in \mathcal{I}(M; \mathbb{R}^3) \) becomes visible as a placement of the body manifold in Euclidean space. Thus, we consider generalised configurations \(\gamma = dj + \beta \in \mathcal{I}(M; \mathbb{R}^3) \) whose integrable part \(dj \) stems from a placement \(j \in E(M; \mathbb{R}^3) \) and whose non-integrable part \(\beta \) lies in \(\mathcal{D}(M; \mathbb{R}^3) \). The set of all such configurations is denoted by
\[
\mathcal{V}(M; \mathbb{R}^3) = \{ dj + \beta \in \mathcal{I}(M; \mathbb{R}^3) \mid j \in E(M; \mathbb{R}^3), \beta \in \mathcal{D}(M; \mathbb{R}^3) \}.
\]
Observe that by construction \(\mathcal{V}(M; \mathbb{R}^3) \subset \mathcal{I}(M; \mathbb{R}^3) \), where the exact parts of generalised configurations \(\gamma \in \mathcal{V}(M; \mathbb{R}^3) \) are restricted to embeddings \(j \in E(M; \mathbb{R}^3) \). Since \(\mathcal{V}(M; \mathbb{R}^3) \) is an open Fréchet submanifold of \(\Omega^1(M; \mathbb{R}^3) \), we take \(\mathcal{V}(M; \mathbb{R}^3) \) as a configuration space for an elastic material which possibly may be dislocated, cf. [20].
4 The Geometry of $\mathcal{V}(M; \mathbb{R}^3)$

For a mathematical formulation of a dynamic theory of dislocated materials, a metric on the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ is needed. Following [6], we first introduce an appropriate metric on $dE(M; \mathbb{R}^3)$. Let $\rho : M \rightarrow \mathbb{R}$ be a strictly positive real-valued function which physically may be thought of as the mass distribution of the material. Since $E(M; \mathbb{R}^3)$ is open in $C^\infty(M; \mathbb{R}^3)$, the tangent manifold of $E(M; \mathbb{R}^3)$ is trivial

$$TE(M; \mathbb{R}^3) = E(M; \mathbb{R}^3) \times C^\infty(M; \mathbb{R}^3).$$

Identifying each tangent vector with its principal part, a metric on $E(M; \mathbb{R}^3)$ is defined by setting

$$G_\rho(u_1, u_2) := \int_M \rho(u_1, u_2) \\mu, \quad u_1, u_2 \in C^\infty(M; \mathbb{R}^3). \quad (8)$$

Using (8), each $j \in E(M; \mathbb{R}^3)$ and each $u \in C^\infty(M; \mathbb{R}^3)$ may be decomposed into

$$j = j^0 + C_j, \quad \text{where} \quad C_j \in \mathbb{R}^3, \quad G_\rho(j^0, c) = 0 \quad \forall c \in \mathbb{R}^3$$

and

$$u = u^0 + C_u, \quad \text{where} \quad C_u \in \mathbb{R}^3, \quad G_\rho(u^0, c) = 0 \quad \forall c \in \mathbb{R}^3$$

respectively. The sets

$$E_0(M; \mathbb{R}^3) := \{ j \in E(M; \mathbb{R}^3) \mid \int_M \rho j \mu = 0 \}$$

and

$$C_0^\infty(M; \mathbb{R}^3) := \{ u \in C^\infty(M; \mathbb{R}^3) \mid \int_M \rho u \mu = 0 \}$$

are Fréchet manifolds which are naturally isomorphic to $dE(M; \mathbb{R}^3)$ and $d\Omega^0(M; \mathbb{R}^3)$ respectively, cf. [3, 4]. Since $dE(M; \mathbb{R}^3) \subset d\Omega^0(M; \mathbb{R}^3)$ is open,

$$T(dE(M; \mathbb{R}^3)) = dE(M; \mathbb{R}^3) \times d\Omega^0(M; \mathbb{R}^3).$$

Configurations in $j \in E_0(M; \mathbb{R}^3)$ are such that the center of mass is kept fixed, $C_j = 0$. A metric on $dE(M; \mathbb{R}^3)$ naturally induced by this construction is given by

$$G_E(du_1, du_2) := \int_M \rho(u_1, u_2) \\mu, \quad du_1, du_2 \in d\Omega^0(M; \mathbb{R}^3), \quad (9)$$

where we identify tangent vectors with their principal parts.

As the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ is an open subset of $\Omega^1(M; \mathbb{R}^3)$, the tangent manifold $T\mathcal{V}(M; \mathbb{R}^3)$ of $\mathcal{V}(M; \mathbb{R}^3)$ is trivial

$$T\mathcal{V}(M; \mathbb{R}^3) = \mathcal{V}(M; \mathbb{R}^3) \times \Omega^1(M; \mathbb{R}^3).$$

Applying Theorem 2.1, tangent vectors $\eta \in T\mathcal{V}(M; \mathbb{R}^3)$ allows to equip the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ with a metric as follows.
Definition 4.1 Let $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ be an arbitrary generalised configuration. For each pair $\eta_i \in T_i \mathcal{V}(M; \mathbb{R}^3)$, $i = 1, 2$, let

$$\eta_i = du_i + v_i$$

with $du_i \in d\Omega^0(M; \mathbb{R}^3)$, $v_i \in \mathcal{D}(M; \mathbb{R}^3)$ be the respective Helmholtz decompositions. A metric \mathcal{G}_γ on the configuration space $\mathcal{V}(M; \mathbb{R}^3)$ is defined by setting

$$\mathcal{G}_\gamma[\gamma](\eta_1, \eta_2) := \mathcal{G}_\gamma^{(e)}[\gamma](du_1, du_2) + \mathcal{G}_\gamma^{(p)}[\gamma](v_1, v_2).$$

The elastic part of $\mathcal{G}^{(e)}$ is given by

$$\mathcal{G}^{(e)}_\gamma[\gamma](du_1, du_2) := \mathcal{G}_E(du_1, du_2),$$

where \mathcal{G}_E is defined in (9). The plastic part of \mathcal{G}_γ is given by

$$\mathcal{G}^{(p)}_\gamma[\gamma](v_1, v_2) := \int_M \sigma(v_1, v_2)\mu, \quad v_1, v_2 \in \mathcal{D}(M; \mathbb{R}^3),$$

where $\sigma \in C^\infty(M)$ is a strictly positive real-valued function.

Notice that physically, the function σ appearing in the above metric may be thought of as the density of inertia of the dislocations. For sake of simplicity we assume that the density σ is independent of the actual configuration. This means that all dislocations respond to a force action by the same specific inertia.

Let $T \tau_{\gamma} : T^2 \mathcal{V}(M; \mathbb{R}^3) \rightarrow T \mathcal{V}(M; \mathbb{R}^3)$ denote the tangent map of the canonical projection τ_{γ} and $\tau_{\mathcal{V}} \mathcal{V}(M; \mathbb{R}^3)) := \ker T \tau_{\gamma}$ the vertical bundle. Moreover, let $V \mathcal{X} \subset V(T \mathcal{V}(M; \mathbb{R}^3))$ denote the vertical component of any vector $\mathcal{X} \in T^2 \mathcal{V}(M; \mathbb{R}^3)$. The metric \mathcal{G}_γ given in Definition 4.1 defines a natural weakly nondegenerate symplectic two-form Ω on $T \mathcal{V}(M; \mathbb{R}^3)$ by

$$\Omega[\xi](\mathcal{X}, \mathcal{Y}) := \mathcal{G}_\gamma[\gamma](V \mathcal{X}, T \tau_{\gamma} \mathcal{X}) - \mathcal{G}_\gamma[\gamma](V \mathcal{Y}, T \tau_{\gamma} \mathcal{Y})$$

for all $\mathcal{X}, \mathcal{Y} \in T_i T \mathcal{V}(M; \mathbb{R}^3)$, $\xi \in T_i \mathcal{V}(M; \mathbb{R}^3)$, $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$. Thus, $T \mathcal{V}(M; \mathbb{R}^3)$ endowed with Ω becomes a symplectic manifold. Since $T \mathcal{V}(M; \mathbb{R}^3)$ is trivial, in coordinates one has

$$\mathcal{X} = (\gamma, \xi, \xi_1, \xi_2)$$

and

$$\mathcal{Y} = (\gamma, \xi, \eta_1, \eta_2)$$

which in turn yields

$$\Omega[\gamma, \xi](((\xi_1, \xi_2), (\eta_1, \eta_2)) = \mathcal{G}_\gamma[\gamma](\eta_2, \xi_1) - \mathcal{G}_\gamma[\gamma](\xi_2, \eta_1).$$

8
The metric g induces the kinetic energy functional $E : T\mathcal{V}(M; \mathbb{R}^3) \rightarrow \mathbb{R}$ of the dislocated material by setting

$$E(\xi) := \frac{1}{2} g[\gamma](\nu, \nu), \quad \xi \in T_\gamma \mathcal{V}(M; \mathbb{R}^3), \quad \gamma \in \mathcal{V}(M; \mathbb{R}^3).$$

(11)

If $\xi = du + \nu$ denotes the Helmholtz decomposition, then, according to Definition 4.1, the kinetic energy E of a dislocated material splits into an elastic part

$$E^{(e)}(\xi) := \frac{1}{2} g^{(c)}[\gamma](du, du),$$

and into a plastic part

$$E^{(p)}(\xi) := \frac{1}{2} g^{(p)}[\gamma](\nu, \nu),$$

corresponding to the kinetic energy associated with the material mass density, and into the kinetic energy of the dislocation density. By construction, the metric g is constant in γ, that is

$$DG_{\gamma}[\nu](\eta) = 0 \quad \forall \eta \in T_\gamma \mathcal{V}(M; \mathbb{R}^3), \quad \gamma \in \mathcal{V}(M; \mathbb{R}^3).$$

Therefore, the corresponding Euler's equations yield

$$\mathcal{G}_{\gamma}[\gamma(\eta)](\dot{\gamma}(\eta), \eta) = 0, \quad \forall \eta \in T_\gamma \mathcal{V}(M; \mathbb{R}^3)$$

as weak equations of motion. The geodesics of \mathcal{G}_{γ} are analogously to elasticity straight line segments, cf. [4, 6]. An inertial motion follows by definition the geodesics of \mathcal{G}_{γ}. A motion under non-vanishing forces will deviate from these geodesics.

5 The Principle of Virtual Work

In our setting, a work functional on the space of generalised configurations $\mathcal{V}(M; \mathbb{R}^3)$ is understood to be a continuous linear functional

$$F : T\mathcal{V}(M; \mathbb{R}^3) \equiv \mathcal{V}(M; \mathbb{R}^3) \times \Omega^1(M; \mathbb{R}^3) \rightarrow \mathbb{R},$$

on the tangent bundle $T\mathcal{V}(M; \mathbb{R}^3)$. We assume that for each configuration $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ the functional F admits an integral representation with respect to the metric g given in (2), such that

$$F[\gamma](\eta) = \int_M \langle \alpha[\gamma], \eta \rangle \mu \quad \forall \eta \in T_\gamma \mathcal{V}(M; \mathbb{R}^3).$$

(12)

The constitutive law of the continuum M is encoded in the functional dependence of the integral kernel $\alpha[\gamma] \in \Omega^1(M; \mathbb{R}^3)$ on the configuration γ. This dependence will, in
general, be non-linear and possibly also non-local. More precisely, the integral kernel \(\alpha \) may be thought of as a smooth section into the tangent bundle \(TV(M; \mathbb{R}^3) \), where each \(\alpha[\gamma] \) is identified with its principal part. The one-form \(\alpha \) will be called stress form; in classical elasticity, \(\alpha \) corresponds to the first Piola-Kirchhoff stress tensor, cf. [5, 16].

For each \(\gamma \in \mathcal{V}(M; \mathbb{R}^3) \), the Helmholtz decomposition of \(\alpha[\gamma] \) reads

\[
\alpha[\gamma] = dh[\gamma] + \tau[\gamma],
\]

where \(dh[\gamma] \in d\Omega^0(M; \mathbb{R}^3) \) is a gradient and \(\tau[\gamma] \in \mathcal{D}(M; \mathbb{R}^3) \) is divergence-free. The decompositions are understood with respect to a fixed reference metric \(g \). Writing \(\eta = du + v \), the orthogonality of the Helmholtz decomposition implies

\[
\mathcal{G}(\alpha[\gamma], \eta) = \mathcal{G}(dh[\gamma], du) + \mathcal{G}(\tau[\gamma], v).
\]

Therefore, for each generalised configuration \(\gamma \in \mathcal{V}(M; \mathbb{R}^3) \), the work functional \(F \) splits into an elastic part \(F^{(e)} \) and a plastic part \(F^{(p)} \), i.e.

\[
F[\gamma](\eta) = F^{(e)}[\gamma](du) + F^{(p)}[\gamma](v) \quad \forall \eta = du + v \in T\gamma \mathcal{V}(M; \mathbb{R}^3).
\]

The elastic part is given by

\[
F^{(e)}[\gamma](du) := \int_M <dh[\gamma], du> \mu \quad \forall du \in d\Omega^0(M; \mathbb{R}^3),
\]

and the plastic part by

\[
F^{(p)}[\gamma](v) := \int_M <\tau[\gamma], v> \mu \quad \forall v \in \mathcal{D}(M; \mathbb{R}^3).
\]

Since the Helmholtz decomposition is orthogonal,

\[
F = F^{(e)} \iff \alpha[\gamma] = dh[\gamma] \quad \forall \gamma \in \mathcal{V}(M; \mathbb{R}^3).
\]

It was first observed in [3] that in pure elasticity, only the exact part \(dh[\gamma] \) of the stress form \(\alpha[\gamma] \) contributes to the work functional. In fact, \(F^{(e)} \) is the well-known work functional of elasticity, cf. [1, 7, 14]. The work functional (12) thus becomes a natural generalisation of the notion of work in classical elasticity.

Notice that both components \(dh[\gamma] \) and \(\tau[\gamma] \) of the stress form \(\alpha[\gamma] = dh[\gamma] + \tau[\gamma] \) will, in general, depend on the integrable part \(dj \) as well as the plastic part \(\beta \in \mathcal{D}(M; \mathbb{R}^3) \) of \(\gamma = dj + \beta \). From the elastic point of view, \(\tau \) marks a gauge freedom, cf. [5]. Hence, the choice of \(\tau \) describes the plastic part in view.

Next, we implement the work functional (12) in the d'Alembert principle of virtual work. According to [13], an exterior force acting on a general mechanical system is given by a horizontal one-form on the tangent manifold of the corresponding configuration space.
Recall that, using the tangent map \(T\tau_V : T^2V(M; \mathbb{R}^3) \rightarrow TV(M; \mathbb{R}^3) \) of the canonical projection \(\tau_V \), a vector field \(\mathcal{V} \) on \(TV(M; \mathbb{R}^3) \) is by definition *vertical* iff \(T\tau_V(\mathcal{V}) = 0 \). A one-form \(\mathcal{F} \) on \(TV(M; \mathbb{R}^3) \) is *horizontal* iff \(\mathcal{F}(\mathcal{V}) = 0 \) for all vertical vector fields \(\mathcal{V} \). Thus, an exterior force in the above sense acting on dislocated material is given by a horizontal one-form \(\mathcal{F} \) on \(TV(M; \mathbb{R}^3) \).

If \(\mathcal{V} \) is a vertical vector field and \(\Omega \) is the symplectic two-form defined in (10), then

\[
\Omega(\mathcal{V}, \mathcal{Z}) = -G_V(\gamma)(\mathcal{V}, T\tau_V \mathcal{Z}) \quad \forall \mathcal{Z} \in \Gamma(T^2V(M; \mathbb{R}^3)).
\]

Therefore, the induced one-form \(\iota_{\mathcal{V}} \Omega \) given by

\[
\iota_{\mathcal{V}} \Omega(\mathcal{Z}) := \Omega(\mathcal{V}, \mathcal{Z}) \quad \forall \mathcal{Z} \in \Gamma(T^2V(M; \mathbb{R}^3))
\]

is horizontal\(^2\). On the other hand, using the tangent map \(T\tau_V \) of the canonical projection \(\tau_V \), the work functional \(F \) defined in (12) induces an exterior work one-form \(\mathcal{F} \) in the above sense by setting

\[
\mathcal{F} := (T\tau_V)^*F. \quad (17)
\]

Due to the pull-back construction, \(\mathcal{F} \) is horizontal. Given the kinetic energy functional \(\mathcal{E} \) and an exterior work one-form (17), the d’Alembert principle of virtual work now states that the Euler vector field \(\mathcal{X} \) is determined by the equation

\[
d\mathcal{E}(\mathcal{Z}) - \iota_{\mathcal{X}} \Omega(\mathcal{Z}) = (T\tau_V)^*F(\mathcal{Z}) \quad \forall \mathcal{Z} \in \Gamma(T^2V(M; \mathbb{R}^3)). \quad (18)
\]

6 The Equations of Motion

In order to formulate a dynamics on our configuration space \(V(M; \mathbb{R}^3) \), consider a motion given by a smooth curve

\[
\gamma : \mathbb{R} \rightarrow V(M; \mathbb{R}^3), \quad t \mapsto \gamma(t).
\]

Using the exterior work functional (17), the curve \(\gamma(t) \) describes a motion subject to the d’Alembert principle of virtual work (18), if it satisfies the weak equations of motion

\[
G_V[\gamma(t)]=F[\gamma(t)] \quad \forall \eta \in \Omega^1(M; \mathbb{R}^3). \quad (19)
\]

According to Helmholtz, each \(\gamma(t), t \in \mathbb{R} \) decomposes into \(\gamma(t) = d\eta(t) + \beta(t) \). The orthogonality of the splittings of the work functional \(F = F^v + F^p \) and the metric

\(^2\) In the case where \(\Omega \) is regular, the converse also holds true: for any horizontal one-form \(\mathcal{F} \), there is a vertical vector field \(\mathcal{V}_\mathcal{F} \) such that \(\mathcal{F} = \iota_{\mathcal{V}_\mathcal{F}} \Omega \).
Given in Definition 4.1, respectively, implies that (19) is equivalent to
the system of equations

\[G^c_v[\gamma(t)](\ddot{d}(t), du) = F^c(\gamma(t))(du) \quad \forall du \in d\Omega^0(M; \mathbb{R}^3) \] (20)

and

\[G^p_v[\gamma(t)](\ddot{\beta}(t), v) = F^p(\gamma(t))(v) \quad \forall v \in D(M; \mathbb{R}^3). \] (21)

Thus, the dynamical equations derived from the principle of virtual work split into an elastic part (20) and into a plastic part (21). In absence of all external volume and surface forces, the equations of motion\(^3\) induced by (20) and (21) are given in the following theorem.

Theorem 6.1 Let \(\alpha[\gamma] = dh[\gamma] + \tau[\gamma] \) be the Helmholtz decomposition of a stress form for a dislocated material. Then the equations of motion are given by

\[
\begin{align*}
\rho \dddot{y}(t) &= \Delta h[\gamma(t)] \\
\sigma \dddot{\beta}(t) &= \tau[\gamma(t)]
\end{align*}
\]

where \(\gamma(t) = \ddot{d}(t) + \beta(t) \) is the Helmholtz decomposition of \(\gamma(t) \) and \(\Delta := \delta d \) is the Laplace operator on functions in \(C^\infty(M; \mathbb{R}^3) \).

The first equation in Theorem 6.1 is nothing but the well-known equation of motion in elasticity: since \(\delta \tau[\gamma] = 0 \), the divergence of the stress form \(\alpha[\gamma] \) corresponding to the first Piola-Kirchhoff stress tensor can be represented as the Laplace operator on functions, i.e. \(\delta \alpha[\gamma] = \Delta h[\gamma] \). The second one is an evolution equation for the non-integrable parts of the deformation \(\gamma(t) \). The equations of motion are coupled via the Helmholtz decomposition. The motion of dislocations may, in general, be accompanied by dissipative effects, cf. [11].

In a static setting, \(\gamma \in \mathcal{V}(M; \mathbb{R}^3) \) is an equilibrium configuration if and only if

\[F[\gamma](\eta) = 0 \quad \forall \eta \in T_\gamma \mathcal{V}(M; \mathbb{R}^3) \]

which according to (14) is equivalent to

\[F^c(\gamma)(du) = 0 \quad \forall du \in d\Omega^0(M; \mathbb{R}^3) \quad \text{and} \quad F^p(\gamma)(v) = 0 \quad \forall v \in D(M; \mathbb{R}^3). \]

\(^3\)The equivalence of the weak equations and the strong equations follow from the fact, that the space of smooth differential forms is dense in an appropriate \(L^2 \)-completion, cf. [17].
The second Piola-Kirchhoff stress tensor $S[\gamma]$ associated with the stress form $\alpha[\gamma] \in \Omega^1(M; \mathbb{R}^3)$, $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ is given by

$$S[\gamma](X,Y) := \langle \alpha[\gamma](X), \gamma(Y) \rangle_{\mathbb{R}^3}, \quad X,Y \in \Gamma(TM).$$

In pure elasticity, there is a gauge freedom in choosing the stress form. Since only the integrable part $dh[\gamma]$ of a stress form $\alpha[\gamma]$ contributes to the work functional of elasticity $F^{(e)}$, any stress form $\tilde{\alpha}[\gamma] = \alpha[\gamma] + \xi[\gamma]$ with arbitrary $\xi[\gamma] \in \mathcal{D}(M; \mathbb{R}^3)$ will give the same work functional $F^{(e)}$ and hence determine the same dynamics of the system, cf. [3]. In particular, one may chose $\xi[\gamma]$ such that the stress tensor \tilde{S} corresponding to $\tilde{\alpha}[\gamma]$ is symmetric, cf. [16].

In the dislocated case, this gauge freedom is lost. Since the divergence-free part τ of the stress form α appears explicitly in the principle of virtual work (19), the stress tensor may not chosen to be symmetric. The concept of decomposing configurations $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ and stress forms $\alpha[\gamma] \in \Omega^1(M; \mathbb{R}^3)$, $\gamma \in \mathcal{V}(M; \mathbb{R}^3)$ is completely analogous to the concept of strain spaces and stress spaces in [10]. The integrable part of the deformation is the dual quantity to the integrable part of the stress, the non-integrable part of the deformation is the dual quantity to the non-integrable part of the stress.

References

