On the definability of concurrency and communication: event structures versus pomset classes

C. Baier, M.E. Majster-Cederbaum

December 2, 1992

Contents

1 Introduction 2

2 The languages CCS and TCSP 2

3 Event structures 3
 3.1 Definitions ... 3
 3.2 The metric space \((E_v, d)\) 4

4 Pomset classes 5
 4.1 Pomsets ... 5
 4.2 The metric space \((Pom^d, d)\) 5

5 Parallel operators on \(E_v\) 6
 5.1 The CCS parallel operator on \(E_v\) 6
 5.2 The TCSP parallel operator on \(E_v\) 7

6 Parallel operators on \(Pom^d\) 9

7 Conclusion 10

A Appendix 10
 A.1 The CCS parallel operator on \(E_v\) 10
 A.2 The TCSP parallel operator on \(E_v\) 12
1 Introduction

In the context of communicating parallel process systems various paradigms for communication resp. synchronisation have been proposed. Two well-known theoretical models for communicating systems are CCS [15] and TCSP [5, 17]. A variety of semantics has been proposed for these and similar languages which can be characterized by different criteria: true versus interleaving parallelism, linear versus branching time models, operational versus denotational approaches, choice of the mathematical discipline to handle recursion and domain equations. In recent years interest has shifted more and more towards semantics that model true parallelism. The most known are petri net semantics [8, 10, 17, 18], event structure [3, 9, 21, 22] and pomset [2] semantics. The present paper investigates the question whether the two closely related approaches of event structures and pomsets are equally suitable to provide semantics for language constructs as available in CCS or TCSP. Given the variety of approaches to semantic description comparative studies like the present one are important as a guideline. They help us to decide which method suits which purpose. In addition, comparative studies enhance the better understanding of the language constructs, and finally, comparative studies of semantics that yield consistency results as in [3, 6, 7, 14, 20] strengthen our confidence in the correctness of each of the semantics involved.

The paper is divided into seven sections. Section 2 introduces CCS and TCSP and discusses their communication mechanisms. Section 3 introduces event structures. Section 4 defines pomset classes. Section 5 models the communication mechanisms of CCS and TCSP using event structures and section 6 discusses the problems that arise when pomset classes are used. Section 7 is the conclusion. The appendix contains some formal definitions.

2 The languages CCS and TCSP

The language CCS [15, 16] is given by the following production system.

Definition 2.1

Let \(\Delta \) be a set of names, \(\overline{\Delta} = \{ \overline{a} : a \in \Delta \} \), \(\Delta \cap \overline{\Delta} = \emptyset \), \(\overline{a} = a \) for \(a \in \Delta \), \(\tau \notin \Delta \cup \overline{\Delta} \), \(L = \Delta \cup \overline{\Delta} \), and \(Act = L \cup \{ \tau \} \).

A function \(f : Act \rightarrow Act \) is called a relabelling function for \(Act \) if \(f(\tau) = \tau \) and \(f(c) = f(\overline{c}) \) for \(c \in L \). Then CCS is given by the production system:

\[
\begin{align*}
\text{nil} & \rightarrow a.s | s_1 + s_2 | s_1|s_2 | x | \text{fix}(x = s) | s \setminus L | s[f] \\
\end{align*}
\]

where \(a \in Act \), \(L \subseteq L \), \(f \) is a relabelling function and \(x \) is an identifier.

\(nil \) models the inactive agent. The process \(a.s \) first performs \(a \) and then acts as \(s \). \(s_1 + s_2 \) describes the nondeterministic choice, \(\text{fix}(x = s) \) is a recursion, \(s \setminus L \) models restriction and \(s[f] \) relabelling. Our interest lies in the parallel operator \(\parallel \). Milner [15] gave an interleaving operational semantics for CCS using a transition system. The corresponding rules for \(\parallel \) are

\[
\begin{align*}
\frac{s_1 \xrightarrow{a} s'_1}{s_1 \parallel s_2 \xrightarrow{a} s'_1 \parallel s_2} & \quad \frac{s_2 \xrightarrow{a} s'_2}{s_1 \parallel s_2 \xrightarrow{a} s_1 \parallel s'_2} \\
\end{align*}
\]

where \(a \in Act \) and \(\cdots \)

\[
\begin{align*}
\frac{s_1 \xrightarrow{c} s'_1, s_2 \xrightarrow{\overline{c}} s'_2}{s_1 \parallel s_2 \xrightarrow{c} s'_1 \parallel s'_2} \\
\end{align*}
\]

where \(c \in L \).

The language TCSP [17] is given by the following production system.

Definition 2.2

Let \(Act = \text{Comm} \cup \{ \tau \} \) where \(\text{Comm} \) is a set of communications, \(\tau \notin \text{Comm} \). TCSP is given by the following production system:

\[
\begin{align*}
\text{nil} & \rightarrow a.s | s_1 + s_2 | s_1|s_2 | x | \text{fix}(x = s) | s \setminus L | s[f] \\
\end{align*}
\]

where \(a \in Act \), \(L \subseteq L \), \(f \) is a relabelling function and \(x \) is an identifier.

\(nil \) models the inactive agent. The process \(a.s \) first performs \(a \) and then acts as \(s \). \(s_1 + s_2 \) describes the nondeterministic choice, \(\text{fix}(x = s) \) is a recursion, \(s \setminus L \) models restriction and \(s[f] \) relabelling. Our interest lies in the parallel operator \(\parallel \). Milner [15] gave an interleaving operational semantics for CCS using a transition system. The corresponding rules for \(\parallel \) are

\[
\begin{align*}
\frac{s_1 \xrightarrow{a} s'_1}{s_1 \parallel s_2 \xrightarrow{a} s'_1 \parallel s_2} & \quad \frac{s_2 \xrightarrow{a} s'_2}{s_1 \parallel s_2 \xrightarrow{a} s_1 \parallel s'_2} \\
\end{align*}
\]

where \(a \in Act \) and \(\cdots \)

\[
\begin{align*}
\frac{s_1 \xrightarrow{c} s'_1, s_2 \xrightarrow{\overline{c}} s'_2}{s_1 \parallel s_2 \xrightarrow{c} s'_1 \parallel s'_2} \\
\end{align*}
\]

where \(c \in L \).

The language TCSP [17] is given by the following production system.
\[t ::= \text{stop} \mid a.t \mid t_1 \text{ or } t_2 \mid t_1 \Box t_2 \mid t_1 ||_A t_2 \mid x \mid \text{fix } x.t \mid t \setminus c \]

where \(a \in \text{Act}, c \in \text{Comm}, A \subseteq \text{Comm} \) and \(x \) is an identifier.

\(\text{stop} \) models inactiveness. \(a.t \) stands for the process which first performs \(a \) and then acts as \(t \) or resp. \(\Box \) stands for internal resp. external nondeterminism. \(\text{fix } x.t \) is a recursion, \(t \setminus c \) models hiding, i.e. relabelling the action \(c \) by the internal action \(r \). In the parallel composition \(t_1 ||_A t_2 \) actions of \(A \) may only be executed as joint events by both partners together.

Olderog [17] gave an interleaving operational semantics for TCSP using a transition system. The rules for \(||_A \) are

\[
\begin{align*}
 t_1 & \xrightarrow{a} t'_1 \\
 t_1 ||_A t_2 & \xrightarrow{a} t'_1 ||_A t_2
\end{align*}
\]

\[
\begin{align*}
 t_2 & \xrightarrow{a} t'_2 \\
 t_1 ||_A t_2 & \xrightarrow{a} t_1 ||_A t'_2
\end{align*}
\]

where \(a \notin A \) and

\[
\begin{align*}
 t_1 & \sim_\alpha t'_1, t_2 \sim_\alpha t'_2 \\
 t_1 ||_A t_2 & \sim_\alpha t'_1 ||_A t'_2
\end{align*}
\]

where \(c \in A \).

In TCSP, if a process \(t_1 \) runs in parallel with \(t_2 \) with respect to some set \(A \subseteq \text{Comm} \) (i.e. we consider \(t_1 ||_A t_2 \)) and the action that \(t_1 \) wants to perform next is \(a \) then either \(a \notin A \) and \(t_1 \) can perform or \(a \in A \) then \(t_1 \) can only proceed jointly with \(t_2 \) who must then also want to perform \(a \). In contrast to this the CCS parallel operator does not enforce synchronisation. A process \(s_1 \) running in parallel with \(s_2 \) (i.e. we consider \(s_1 || s_2 \)) either performs an action \(c \in L \) independently or may cooperate with \(s_2 \) who wants to perform \(c \).

The above described semantics for TCSP and CCS are interleaving. We are here investigating the question to what extent event structures and pomsets, that are suitable for describing true parallelism, can capture these synchronisation mechanisms.

3 Event structures

Event structures have been introduced by [22]. In this (resp. the next) section we will introduce the class \(Ev \) of labelled and finitely approximable event structures (resp. the class \(\text{Pom}^* \) of pomset classes). Event structures and pomset classes have been used to provide a compositional semantics for CCS- and TCSP-like languages, i.e. semantic operators on event structures (resp. pomset classes) have been defined that model the syntactic language constructs [2, 9, 21, 22]. In order to be able to give a meaning to recursive constructs it has been proposed to impose a metric on \(Ev \) (resp. \(\text{Pom}^* \)) that turns \(Ev \) (resp. \(\text{Pom}^* \)) into a complete metric space [2, 9]. Making use of Banach's fixed point theorem there is then a standard way to give a meaning to guarded recursion provided that the semantic operator for prefixing is contractive and that the remaining semantic operators are nondistance increasing. As it will turn out there is no problem in defining nondistance increasing semantic operators for communicating parallelism using event structures that capture the intended meaning. In contrast to this using pomset classes causes considerable problems.

3.1 Definitions

Definition 3.1

\(E = (E, \leq, \#) \) is called a (labelled and finitely approximable) event structure iff

1. \(E \) is a set (of events),

2. \(\leq \) is a partial order on \(E \)
 (i.e. \(\leq \) is a transitive, reflexive, antisymmetric relation on \(E \)),

3. \(||_A \) is a binary relation on \(E \)
 (i.e. it is a transitive, reflexive, antisymmetric relation on \(E \).)
3. \# is an irrelevezive, symmetrie relation on \(E \), called conflict relation, with:
\[
\forall e_1, e_2, e_3 \in E : (e_1 \leq e_2 \text{ and } e_1 \neq e_3) \implies e_2 \neq e_3
\]

4. \(l : E \rightarrow \text{Act} \) is a function. \(l \) is called the labelling function.

where

(1) For each event \(e \in E \) \(\text{depth}_e(e) \) is finite where
\[
\text{depth}_e(e) = \max \{ n \in \mathbb{N}_0 : \exists e_1, \ldots, e_n \in E \\
e_1 \leq e_2 \leq \ldots \leq e_n = e, e_i \neq e_j, 1 \leq i < j \leq n \}
\]

(2) For each \(n \in \mathbb{N}_0 \) the set \(E[n] = \{ e \in E : \text{depth}_e(e) \leq n \} \) is finite.

In the following we write \(\text{depth}(e) \) instead of \(\text{depth}_e(e) \) and \(E[n] \) instead of \(E_e[n] \).

Two event structures \(e_i = (E_i, \leq_i, \#, i, l_i), i = 1, 2, \) are isomorphic if there exists a bijective mapping \(f : E_1 \rightarrow E_2 \) such that

1. \(e_1 \leq_1 e_2 \iff f(e_1) \leq_2 f(e_2) \forall e_1, e_2 \in E_1 \),
2. \(e_1 \neq_1 e_2 \iff f(e_1) \neq_2 f(e_2) \forall e_1, e_2 \in E_1 \) and
3. \(l(f(e)) = l_i(e) \forall e \in E_1 \).

In the following we abstract from the names of the events, i.e. we will not distinguish between isomorphic event structures.

Definition 3.2
\(\text{Ev} \) denotes the set of all event structures (modulo isomorphism).

The empty event structure \((\emptyset, \emptyset, \emptyset, \emptyset)\) is denoted by \(\emptyset \).

Event structures can be depicted graphically by representing events as boxes (inscribed with the event label) and connecting them with their direct predecessors and successors.

A conflict between two events is a direct conflict if no predecessors of the events are in conflict. Direct conflicts are depicted graphically by a broken line. Example: The event structure \(e = (E, \leq, \#, l) \) with

1. \(E = \{ e_1, e_2, e_3 \} \)
2. \(e_1 \leq e_2, e_1 \neq e_3, e_2 \neq e_3 \) and
3. \(l(e_1) = a, l(e_2) = b, l(e_3) = c \)

is shown as

```
\[
\begin{array}{c}
\text{a} \\
\downarrow \\
\text{c}
\end{array}
\]
```

Event structures are used to model language constructs as follows: sequencing is modelled by the partial order. Parallel execution without communication is modelled by incomparability with respect to the partial order and nondeterministic choice is modelled by the conflict relation.

3.2 The metric space \((\text{Ev}, d)\)

Definition 3.3
Let \(e = (E, \leq, \#, l) \) be an event structure, \(A \subseteq E \). \(A \) is called leftclosed iff each predecessor of an event \(e \in A \) belongs to \(A \), i.e.
\[
e \in A, e' \in E, e' \leq e \implies e' \in A
\]
If \(A \) is a leftclosed subset of \(E \), then the event structure \(\varepsilon | A \) is defined by

\[
\varepsilon | A = (A, \leq \cap A \times A, \# \cap A \times A, l|A)
\]

It is clear that \(E[n] \) is leftclosed. We define

\[
\varepsilon[n] = \varepsilon | E[n]
\]

\(\varepsilon[n] \) is called the \(n \)-cut of \(\varepsilon \).

Definition 3.4

Let \(d : Ev \times Ev \rightarrow [0, 1] \) be defined by

\[
d(\varepsilon_1, \varepsilon_2) = \inf \{ \frac{1}{2^n} : \varepsilon_1[n] = \varepsilon_2[n] \}
\]

It has been shown in [9] that \((Ev, d)\) is a complete ultrametric space. Each event structure \(\varepsilon \) can be approximated by its \(n \)-cuts \(\varepsilon[n] \). We have:

\[
d(\varepsilon[n], \varepsilon) \leq \frac{1}{2^n} \quad \forall n \geq 0
\]

4 **Pomset classes**

Pomset classes are nonempty and closed sets of conflictfree event structures. The metric \(d \) on \(Ev \) induces a metric on \(Pom^* \) - the class of all pomset classes - which turns \(Pom^* \) into a complete ultrametric space.

Pomset classes are used in the same way as event structures to model language constructs except for nondeterministic choice. The alternatives of a nondeterministic choice are collected into a set of pomsets instead of connecting them via a conflict relation.

4.1 **Pomsets**

Definition 4.1

An event structure \(\varepsilon = (E, \leq, \#, l) \) is called conflictfree iff \(E \) does not contain conflicting events, i.e. \(\# = \emptyset \).

Conflictfree event structures are also called pomsets.

Let \(Pom \) denote the class of all pomsets.

\[
Pom = \{ p \in Ev : p \text{ is conflictfree} \}
\]

If \(\varepsilon = (E, \leq, \#, l) \) is a pomset (i.e. \(\# = \emptyset \)) we write shortly \(\varepsilon = (E, \leq, l) \).

Lemma 4.2

\(Pom \) is a closed subspace of \(Ev \). In particular \(Pom \) (with the subspace metric) is a complete ultrametric space.

Proof: It is easy to see that the limit of a convergent sequence of conflictfree event structures is conflict-free.

\(\square \)

4.2 **The metric space \((Pom^*, d)\)**

Definition 4.3

Let \(Pom^* \) denote the class of all closed subsets of \(Pom \). The elements of \(Pom^* \) are called pomset classes.
Definition 4.4
The metric d on Pom induces the Hausdorff-metric on Pom_0^ω (which is also called d)

$$d(H_1, H_2) = \max \left\{ \sup_{p \in H_1} \inf_{q \in H_2} d(p, q), \sup_{p \in H_2} \inf_{q \in H_1} d(p, q) \right\}$$

for all $H_1, H_2 \in \text{Pom}_0^\omega$.

The Hausdorff-metric on the set of nonempty and closed subspaces of a complete ultrametric space is a complete ultrametric space. Hence (Pom_0^ω, d) is a complete ultrametric space (see [11]).

5 Parallel operators on Ev

5.1 The CCS parallel operator on Ev

We introduce a parallel operator $|$ on Ev which models the CCS parallelism with communication by giving some examples. The formal definition can be found in the appendix.

Example 5.1
Let e_1, e_2, e_3 resp. e_4 be given by

\[
\begin{array}{ccc}
\text{a} & \rightarrow & \text{c} \\
\text{c} & \rightarrow & \text{a} \\
\text{b} & \rightarrow & \text{c}
\end{array}
\]

resp. $\text{a} \rightarrow \text{c}$.

Since e_2 and e_3 do not contain complementary actions no communication in $e_2|e_3$ is possible. We get

$e_2|e_3 = \begin{array}{ccc}
\text{a} & \rightarrow & \text{c} \\
\text{b} & \rightarrow & \text{c}
\end{array}$

The events labelled by c resp. \bar{c} in e_3 resp. e_4 are able to communicate. We get:

$e_4 \upharpoonright e_3 = \begin{array}{ccc}
\text{a} & \rightarrow & \text{c} \\
\text{b} & \rightarrow & \text{c}
\end{array}$

Next we look for $e_1|e_3$. The \bar{c}-event in e_3 has two possibilities to communicate. We get

$e_1 \upharpoonright e_3 = \begin{array}{ccc}
\text{a} & \rightarrow & \text{c} \\
\text{b} & \rightarrow & \text{c}
\end{array}$

Lemma 5.2

$$d(e_1|e_2, e'_1|e'_2) \leq \max \{ d(e_1, e'_1), d(e_2, e'_2) \}$$

for all $e_1, e'_1, e_2, e'_2 \in Ev$.

Proof: We show
(a) \((e_1|e_2)[n] = (e_1[n] | e_2[n]) [n]\)

(b) \(d((e_1|e_2, e_1'|e_2') \leq \max \{ d(e_1,e_1'), d(e_2,e_2') \}\)

for all \(e_1, e_1', e_2, e_2' \in Ev\) and \(n \geq 0\).

ad (a): Let \(e_i = (E_i, \leq_i, \#_i, t_i), i = 1, 2\), \(E_1 \cap E_2 = \emptyset\). \(\varepsilon = e_1|e_2, \varepsilon' = e_1[n]|e_2[n]\). Let \(C\) resp. \(C'\) denote the set of 'possible' events in \(e\) resp. \(e'\).

\[C = E_1 \cup E_2 \cup C_{\text{Comm}}(e_1,e_2)\]

resp.

\[C' = E_1[n] \cup E_2[n] \cup C_{\text{Comm}}(e_1[n],e_2[n])\]

Then \(C' \subseteq C\) and for all \((e_1,e_2), (e_1',e_2') \in C'\):

\[(e_1,e_2) \sim_{C'} (e_1',e_2') \iff (e_1,e_2) \sim_{C} (e_1',e_2')\]

\[(e_1,e_2) \#_{C'} (e_1',e_2') \iff (e_1,e_2) \#_{C} (e_1',e_2')\]

In particular: If \(C\) is a subset of \(C'\) then \(C\) is leftclosed (conflictfree resp. linear) as a subset of \(C'\) if and only if it is leftclosed as a subset of \(C\). Let \(E\) resp. \(E'\) denote the set of events in \(e\) resp. \(e'\), i.e. \(E\) resp. \(E'\) is the set of leftclosed, conflictfree and linear subsets of \(C\) resp. \(C'\). Then \(E' \subseteq E\) and therefore \(E'[n] \subseteq E[n]\). We show that \(E[n] = E'[n]\).

If \(C \subseteq E\), \(\text{depth}_E(C) \leq n\), then \(\text{depth}(e) \leq n\) for each event \(e\) in \(E_1 \cup E_2\) which occurs as a component of an element in \(C\). We conclude:

\[(e_1,e_2) \in C \implies e_i \in E_i \cup \{\ast\}\]

Therefore \(C \subseteq C'\) belongs to \(E'[n]\).

Since the partial orders on \(E\) and \(E'\) correspond to the 'subset'-relation \(\subseteq\) and since the conflict relation on \(E'\) is the restriction of the conflict relation of \(E\) on \(E'\) we get:

\[(e_1|e_2)[n] = (e_1[n] | e_2[n]) [n]\]

ad (b): If

\[\max \{ d(e_1,e_1'), d(e_2,e_2') \} = r\]

then either \(r = 0\) or \(r\) is of the form \(\frac{1}{2^n}\) for some natural number \(n\). If \(r = 0\) then \(e_i = e_i'\) and there is nothing to show. Now we assume that \(r = \frac{1}{2^n}\) for some \(n\). Then

\[d(e_i,e_i') \leq \frac{1}{2^n}, i = 1, 2\]

and therefore \(e_i[n] = e_i'[n], e_i[n] = e_i'[n]\). We get by (a):

\[(e_1|e_2)[n] = (e_1[n]|e_2[n])[n] = (e_1'[n]|e_2'[n])[n] = (e_1'|e_2')[n]\]

and therefore

\[d(e_1|e_2, e_1'|e_2') \leq \frac{1}{2^n}\]

\[\square\]

5.2 The TCSP parallel operator on Ev

This operator has been already introduced by [9]. We present only examples. The formal definition of [9] can be found in the appendix.
Example 5.3
We consider
\[\varepsilon_1 = \begin{array}{c} b \\ \rightarrow \\ \rightarrow \\ a \end{array} \]
and
\[\varepsilon_2 = \begin{array}{c} d \\ \rightarrow \\ \rightarrow \\ b \end{array} \]
Then \(\varepsilon_1 \parallel_{\{c\}} \varepsilon_2 \) is given by
\[\begin{array}{c} b \\ \rightarrow \\ \rightarrow \\ a \\ \rightarrow \\ \rightarrow \\ d \rightarrow b \end{array} \]
and \(\varepsilon_1 \parallel_{\emptyset} \varepsilon_2 \) is given by
\[\begin{array}{c} b \\ \rightarrow \\ \rightarrow \\ a \\ \rightarrow \\ \rightarrow \\ d \\ \rightarrow \\ \rightarrow \end{array} \]
Example 5.4
Let \(\varepsilon_1 = \begin{array}{c} c \\ \rightarrow \\ b \end{array} \) and \(\varepsilon_2 = \begin{array}{c} \end{array} \). Then \(\varepsilon_1 \parallel_{\{c\}} \varepsilon_2 \) is the empty event structure which represents a process where no action is possible.
This example shows that events may become impossible in the parallel composition.
Example 5.5
Let \(\varepsilon_1 = \begin{array}{c} c \\ \rightarrow \\ b \end{array} \) and \(\varepsilon_2 \) be given by
\[\begin{array}{c} c \\ \rightarrow \\ a \\ \rightarrow \end{array} \]
then there are two possible communications \(c \) in \(\varepsilon_1 \parallel_{\{c\}} \varepsilon_2 \), depending on which branch is chosen in \(\varepsilon_2 \). \(\varepsilon_1 \parallel_{\{c\}} \varepsilon_2 \) is given by
\[\begin{array}{c} c \\ \rightarrow \end{array} \]
\[\begin{array}{c} a \\ \rightarrow \end{array} \]
Lemma 5.6
Let \(A \) be a subset of \(\text{Comm} \) and \(\varepsilon_1, \varepsilon_1', \varepsilon_2, \varepsilon_2' \in Ev \). Then
\[d(\varepsilon_1\parallel_A \varepsilon_2, \varepsilon_1'\parallel_A \varepsilon_2') \leq \max \{ d(\varepsilon_1, \varepsilon_1'), d(\varepsilon_2, \varepsilon_2') \} \]
Proof: see [9].
From Lemma 5.2 and 5.6 we conclude that both CCS and TCSP synchronisation/communication can be modelled using event structures, as the respective parallel operators are shown to be nondistance increasing and as the other operators exhibit the desired properties [1, 9] to guarantee the solution of fixed point equations arising from recursion.
6 Parallel operators on Pom_0^*

In [2] de Bakker and Warmerdam attempt to model CCS-style synchronisation using pomset classes. The first attempt that models intuition best would be to associate with e.g. the CCS-program $s = a.\text{nil} \mid \overline{a}.\text{nil}$ the pomset class

\[
\begin{array}{c}
a \\
\overline{a}
\end{array}
\begin{array}{c}
, \\
\tau
\end{array}
\]

which expresses that a and \overline{a} can be performed independently or that the processes act jointly which results in the silent action τ. As [2] observe, this intuitive modelling results in a semantic operator for \mid that is not nondistance increasing. [2] give the following example: Let $s_1 = a.c.\text{nil}$, $s_2 = a.d.\text{nil}$ and $s_3 = c.\text{nil}$ with associated meanings

\[
\begin{aligned}
\text{Me}[s_1] &= \{ [a \rightarrow c] \}, \\
\text{Me}[s_2] &= \{ [a \rightarrow d] \}
\end{aligned}
\]

resp. $\text{Me}[s_3] = \{ [c] \}$.

One would like to define a semantic operator Pom_0^* such that

\[
\begin{aligned}
\text{Me}[s_1 \mid s_3] &= \text{Me}[s_1] \mid \text{Pom}_0^* \text{Me}[s_3] = \{ [a \rightarrow c], [a \rightarrow \tau] \} \\
\text{Me}[s_2 \mid s_3] &= \text{Me}[s_2] \mid \text{Pom}_0^* \text{Me}[s_3] = \{ [a \rightarrow d] \}
\end{aligned}
\]

but

\[
d(\text{Me}[s_1] \mid \text{Pom}_0^* \text{Me}[s_3], \text{Me}[s_2] \mid \text{Pom}_0^* \text{Me}[s_3]) = 1
\]

while $d(\text{Me}[s_1], \text{Me}[s_2]) = \frac{1}{2}$, hence such a semantic operator is not nondistance increasing.

As a remedy to this situation [2] propose to use a modified operator that includes interleaving behaviour and yields the following expression for $s_1 \mid s_3$:

\[
\begin{aligned}
{ [a \rightarrow c], [a \rightarrow \tau], [c \rightarrow c], [a \rightarrow c] }
\end{aligned}
\]

This operator is shown in [2] to have the desired mathematical properties but this solution is hardly satisfactory from a semantic point of view. In addition, this parallel operator allows the processes (represented by pomset classes) to communicate with themselves. We consider a CCS process with relabelling $s = (b[c])[f]$ where f is a relabelling function with $f(b) = c$. Then the meaning of s should be $\text{Me}[s] = \{ p \}$ where

\[
p = [c]
\]

\[
\text{Me}[s] = \{ [c] \}
\]
We consider the parallel execution of s and nil, i.e. the process \(s' = s | nil \). If \(\parallel \) denotes the parallel operator defined in [2] and if we assume that the meaning function \(Me \) is compositional we get

\[
\forall \tau \in \{ p \} \quad \tau \parallel \varnothing = Me[s] \parallel Me[\varnothing] = Me[s']
\]

One might think that the difficulties in using pomset classes for modelling communication originate in the specific CCS properties. However analogous problems arise when we try to model TCSP using pomset classes. Let us consider the TCSP programs \(t_1 = a . c . stop \parallel c . stop \), \(t_2 = a . d . stop \parallel c . stop \) and \(t_3 = c . stop \) with associated meanings

\[
Me[t_1] = \{ a \rightarrow c \} \quad Me[t_2] = \{ a \rightarrow \varnothing \}
\]

resp. \(Me[t_3] = \{ c \} \). Then we would like to define a semantic operator \(\parallel \{ c \} \) such that

\[
Me[t_1 \parallel \{ c \} t_2] = Me[t_1] \parallel \{ c \} Me[t_3] = \{ a \}
\]

\[
Me[t_1 \parallel \{ c \} t_3] = Me[t_2] \parallel \{ c \} Me[t_3] = \{ a \rightarrow \varnothing \}
\]

and

\[
Me[t_2 \parallel \{ c \} t_3] = Me[t_2] \parallel \{ c \} Me[t_3] = \{ a \rightarrow d \}
\]

But then again

\[
d(Me[t_1] \parallel \{ c \} Me[t_3], Me[t_2] \parallel \{ c \} Me[t_3]) = 1
\]

while

\[
d(Me[t_1], Me[t_2]) = \frac{1}{2}
\]

Let us finally remark that even though pomsets are event structures the definition of the parallel operators on \(Ev \) does not carry over to \(Pom \) as \(Pom \) is not closed with respect to these operators.

In [1] where pomsets and event structure semantics are studied in more detail, it is shown how an event structure can be decomposed into maximal components which are pomset classes. Based on this result one might think of proceeding as follows: Given two pomset classes one applies a parallel operator to \(Ev \) elementwise. Each event structure in the result is then decomposed into its maximal components. Unfortunately this definition yields again a parallel operator that is not nondistance increasing.

7 Conclusion

The question to what extent the two closely related 'true parallelism' models of event structures and pomset classes are suitable to describe communicating and synchronising parallel processes has been discussed. We found that - using a metric framework - event structures seem more suitable for modelling various types of synchronisation since it is possible to define nondistance increasing operators on \(Ev \) for modelling the CCS or TCSP communication whereas this is not possible on pomset classes. It is an open problem if the use of complete partial orders will change the situation.

A Appendix

We give the formal definitions of the CCS and TCSP parallel operators on \(Ev \). They are defined in a similar to that proposed in [21].

A.1 The CCS parallel operator on \(Ev \)

Definition A.1

\(\text{Let } e_i = (E_i, \leq_i, \#_i, l_i) \text{ be event structures, } i = 1, 2. \text{ We assume w.l.o.g. that } E_1 \cap E_2 = \emptyset. \)
\(C_{\text{Comm}}(e_1, e_2) = C_{\text{Comm}} \) denotes the set of possible communications.

\[C_{\text{Comm}} = \{ (e_1, e_2) \in E_1 \times E_2 : l_1(e_1) = l_2(e_2) \in \text{Comm} \} \]

and let \(C \) denote the set of all possible events

\[C = E_1 \cup E_2 \cup C_{\text{Comm}} \]

Let \(* \) be a symbol which does not belong to \(E_1 \) or \(E_2 \). We identify each event \(e \) in \(E_1 \) resp. \(E_2 \) with \((e, *) \) resp. \((*, e)\). We extend \(\leq_i \) and the conflict relation on \(E_i \cup \{ * \} \) in the following way:

1. \((e \leq_i *) \lor (* \leq_i e) \implies e = * \)
2. \(-(e \neq_i *) \land (e \neq_i e) \)

for all \(e \in E_i \cup \{ * \} \).

Let \(\leq_C \) be the transitive, reflexive closure of \(\to \) where the binary relation \(\to \) is given by

\[(e_1, e_2) \to (e'_1, e'_2) \iff [(e_1 \leq_1 e'_1) \land (e_2 >_2 e'_2)] \lor [(e_2 \leq_2 e'_2) \land (e_1 >_1 e'_1)] \]

(Here \(e >_i f \) means \((f \leq_i e) \land (f \neq e)\).)

The conflict relation \(\#_C \) on \(C \) is given by

\[(e_1, e_2) \#_C (e'_1, e'_2) \iff (e_1 \neq e'_1) \lor (e_2 \neq e'_2) \lor [(e_1 = e'_1) \land (e_2 \neq e'_2)] \lor [(e_2 = e'_2) \land (e_1 \neq e'_1)] \]

Let \(C \) be a subset of \(C \). \(C \) is called

- leftclosed if for each pair \((e_1, e_2) \in C \)
 - If \(e'_1 \in E_1, e'_1 \leq_1 e_1 \text{ then there exists } e'_2 \in E_2 \cup \{ * \} \text{ such that } (e'_1, e'_2) \in C \text{ and } (e'_1, e'_2) \to (e_1, e_2). \)
 - If \(e'_2 \in E_2, e'_2 \leq_2 e_2 \text{ then there exists } e'_1 \in E_1 \cup \{ * \} \text{ such that } (e'_1, e'_2) \in C \text{ and } (e'_1, e'_2) \to (e_1, e_2). \)
- conflictfree if \(-(\xi \neq_C \xi') \) for all \(\xi, \xi' \in C \).
- linear if \(\leq_C = \leq_C \cap C \times C \) is a partial order on \(C \) (i.e. \(\leq_C \) is antisymmetric) and if there exists a unique maximal element (with respect to \(\leq_C \)) in \(C \). The maximal element of \(C \) is denoted by \(\max(C) \).

Let \(E \) denote the set of all leftclosed conflictfree and linear subsets of \(C \). We define a conflict relation \(\# \) on \(E \) as follows:

\[C_1 \# C_2 \iff \exists \xi_1 \in C_1 \exists \xi_2 \in C_2 \xi_1 \#_C \xi_2 \]

Then

\[e_1 | e_2 = (E_1, C_1, \#, I) \]

is an event structure where the labelling function \(I : E \to \text{Act} \) is given by

\[I(C) = \left\{ \begin{array}{ll} l_1(\max(C)) & : \text{if } \max(C) \in E_1, i = 1, 2 \\ \tau & : \text{if } \max(C) \in C_{\text{Comm}} \end{array} \right. \]

It is easy to see that \(e_1 | e_2 \) is indeed an event structure.
A.2 The TCSP parallel operator on Ev

We give the formal definition of the TCSP parallel operator as it was introduced in [9]. We define the syntactic communication of two event structures \(e_1, e_2 \) with respect to some set of actions \(A \), denoted by \(D_A(e_1, e_2) \). This set contains all pairs \((e_1, e_2) \) of events \(e_1 \in e_1, e_2 \in e_2 \) with the same label \(c \in A \) (these pairs describe potential communications). In addition, \(D_A(e_1, e_2) \) contains a representation of all events in \(e_1 \) or in \(e_2 \) that are not related to \(A \).

The events of the parallel composition are certain conflict-free subsets of \(D_A(e_1, e_2) \), where conflict-freeness of a set \(C \subseteq D_A(e_1, e_2) \) means that \(C \) does not contain conflicting 'communications', i.e. two elements \((e_1, e_2), (e'_1, e'_2) \) such that they either contain conflicting events or one event communicates with two distinct events.

Definition A.2

Let \(e_i = (E_i, \leq_i, \#_i, l_i) \in Ev, i = 1, 2, \) w.l.o.g. \(E_1 \cap E_2 = \emptyset \) and \(A \subseteq \text{Comm} \).

The syntactic communication of \(e_1 \) and \(e_2 \) on \(A \) is defined by

\[
D_A(e_1, e_2) = \{ (e, \ast) : e \in E_1, l_1(e) \notin A \} \cup \{ (\ast, e) : e \in E_2, l_2(e) \notin A \} \cup \{ (e_1, e_2) \in E_1 \times E_2 : l_1(e_1) = l_2(e_2) \in A \}
\]

Here, \(\ast \) is an auxiliary symbol, \(\ast \notin E_1 \cup E_2 \). We extend the relations \(\leq \) and \(\# \) on \(E_i \cup \{ \ast \} \) by defining

\[
(1) (\ast \leq e) \lor (e \leq \ast) \iff e = \ast \\
(2) (\ast \# e \lor e \# \ast) \lor e \in E_i \cup \{ \ast \}
\]

Two communications \((e_1, e_2), (e'_1, e'_2) \in D_A \) are in conflict if they contain conflicting events, i.e. \(e_1 \# e'_1 \) or \(e_2 \# e'_2 \), or one event communicates with two distinct events, i.e. \((e_1 = e'_1 \neq \ast \land e_2 \neq e'_2) \) or \((e_2 = e'_2 \neq \ast \land e_1 \neq e'_1) \).

The relation \(\rightarrow_A \) on \(D_A \) is defined by

\[
(e_1, e_2) \rightarrow_A (f_1, f_2) \iff ((e_1 \leq f_1) \land (e_2 \geq f_2)) \lor ((e_2 \leq f_2) \land (e_1 \geq f_1))
\]

The transitive closure of \(\rightarrow_A \) is denoted by \(< \). If \(C \) is a subset of \(D_A \) then \(<_C \) denotes the restriction of \(< \) on \(C \).

A subset \(C \) of \(D_A \) is called

- conflict-free iff no two communications in \(C \) are in conflict.
- left-closed iff \(\forall (e_1, e_2) \in C, \forall f_1 \in E_1 \) with \(f_1 \leq e_1 \) there exists \((f_1, f_2) \in C \) with \((f_1, f_2) \rightarrow_A (e_1, e_2) \) and symmetrically \(\forall (e_1, e_2) \in C, \forall f_2 \in E_2 \) with \(f_2 \leq e_2 \) there exists \((f_1, f_2) \in C \) with \((f_1, f_2) \rightarrow_A (e_1, e_2) \).
- linear iff \(<_C \) is antisymmetric and there exists exactly one maximal element in \(C \) (with respect to \(<_C \)). This is denoted by \(\max(C) \).

The parallel composition of \(e_1 \) and \(e_2 \) with communication on \(A \subseteq \text{Comm} \) is given by

\[
e_1 \parallel_A e_2 := (E, \subseteq, \#, I)
\]

12.
where E denotes the set of conflict-free, left-closed and linear subsets of D_A. The conflict relation $\#$ on E is given by

$$C_1 \# C_2 : \iff \exists \eta_1 \in C_1, \eta_2 \in C_2 \text{ such that } \eta_1 \text{ and } \eta_2 \text{ are in conflict}$$

The labelling function $l : E \to \text{Act}$ is given by

$$l(C) = \begin{cases} l_1(e) : \text{if } \max(C) = (e, \ast) \\ l_2(e) : \text{if } \max(C) = (\ast, e) \\ c : \text{if } \max(C) = (e_1, e_2) \in E_1 \times E_2, l_1(e_1) = l_2(e_2) = c \in A \end{cases}$$

References

[1] C. Baier, M.E. Majster-Cederbaum:
Algebraic metric spaces for modelling concurrency and communication, to appear.

Metric pomset semantics for a concurrent language with recursion,

[3] G. Boudol, I. Castellani:
Three Equivalent Semantics for CCS,

A Model for Communicating Sequential Processes,

An Improved Failures Model for Communicating Processes,

[8] U. Goltz:
On Representing CCS Programs as Finite Petri Nets,

[9] U. Goltz, R. Loogan:
Modelling Nondeterministic Concurrent Processes with Event Structures,

[10] U. Goltz, A. Mycroft:

[11] H. Hahn:

[12] C.A.R. Hoare:

Contractions in Comparing Concurrency Semantics,
[14] M. Majster-Cederbaum, F. Zetzsche:
The comparison of a cpo-based with a cms-based semantics for CSP; Manuskripte der Fakultät für
Science.

[15] R. Milner:
A Calculus of Communicating Systems,
Lecture Notes in Computer Science 92, Springer-Verlag, 1980.

[16] R. Milner:
Lectures on a Calculus of Communicating Systems, Seminar on Concurrency, Lecture Notes in

[17] E.R. Olderog:

[18] E.R. Olderog:
Operational Petri-Net Semantics for CCSP, Advances in Petri-Nets 1987, Lecture Notes in Com-

[19] V. Pratt:
Modelling Concurrency with Partial Orders,

[20] W. Reisig:
Partial Order Semantics versus Interleaving Semantics for CSP-like Languages and its Impact on
Fairness,

[21] F.W. Vaandrager:
A Simple Definition for Parallel Composition of Prime Event Structures,

[22] G. Winskel:
Event Structure Semantics for CCS and Related Languages,

[23] G. Winskel:
Event Structures, Petri-Nets: Applications and Relationships to Other Models of Concurrency,