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Abstract

We study a standard consumption based asset pricing model with rational
investors who entertain subjective prior beliefs about price behavior. Opti-
mal behavior then dictates that investors learn about price behavior from
past price observations. We show that this imparts momentum and mean
reversion into the equilibrium behavior of the price dividend ratio, similar to
what can be observed in the data. Estimating the model on U.S. stock price
data using the method of simulated moments, we show that it can quan-
titatively account for the observed stock price volatility, the persistence of
the price-dividend ratio, and the predictability of long-horizon returns. For
reasonable degrees of risk aversion, the model also passes a formal statis-
tical test for the overall goodness of �t, provided one excludes the equity
premium from the set of moments to be matched.

JEL Class. No.: G12, D84



"Investors, their con�dence and expectations buoyed by past price
increases, bid up speculative prices further, thereby enticing more
investors to do the same, so that the cycle repeats again and again.�

Irrational Exuberance, Shiller (2005, p. 56)

1 Introduction

The purpose of this paper is to show that a very simple asset pricing model
is able to quantitatively reproduce a variety of stylized asset pricing facts if
one allows for slight deviations from rational expectations while maintaining
the assumption of rational behavior.

We study a simple variant of the Lucas (1978) model with standard time
separable preferences. It is well known that the asset pricing implications
of this model under rational expectations (RE) are at odds with basic facts,
such as the observed high persistence and volatility of the price dividend
ratio, the high volatility of stock returns, the predictability of long horizon
excess stock returns, and the high level of the risk premium.

We stick to Lucas� framework but allow for agents whose prior beliefs
about stock price behavior deviate slightly from those assumed under RE.
Investors nevertheless hold a consistent system of subjective beliefs about all
payo¤-relevant random variables that are beyond their control; this includes
beliefs about model endogenous variables, such as competitive stock market
prices, as well as model exogenous variables, such as the dividend and income
processes. Given these subjective beliefs, investors maximize utility subject
to their budget constraints. We call such agents �internally rational�, as they
know all internal aspects of their individual decision problem and behave
optimally given this knowledge. They just do not know the exact model
generating stock prices or external variables more generally.

We employ this setup to relax the standard assumption that agents have
perfect knowledge about how a certain history of fundamental shocks maps
into a market outcome for the stock price.1 We assume that agents express
this lack of knowledge by specifying a subjective joint distribution for the
behavior of stock prices, incomes and dividends over time. In such a setting,

1Such uncertainty may arise from a lack of common knowledge of investors�price and
dividend beliefs, as is explained in detail in Adam and Marcet (2011).

1



agents optimally update their subjective expectations about stock price be-
havior in the light of realized market outcomes, so that agents�stock price
expectations in�uence stock prices and observed stock prices feed back into
agents�expectations. This self-referential aspect of the model turns out to
be key for generating stock price volatility of the kind that can be observed
in the data.

We demonstrate the ability of the model to produce data-like behavior
by deriving a number of analytical results about the behavior of stock prices
that is implied by a general class of belief updating rules. Speci�cally, we
show that learning from market outcomes imparts �momentum� on stock
prices around their RE value, which gives rise to sustained deviations of the
price dividend ratio from its mean, as can be observed in the data. Such
momentum arises because if agents�expectations about stock price growth
increase in a given period, the actual growth rate of prices has a tendency to
increase beyond the fundamental growth rate, thereby reinforcing the initial
belief of higher stock price growth through the feedback from outcomes to
beliefs. At the same time, the model displays �mean reversion�over longer
horizons, so that even if subjective stock price growth expectations are very
high (or very low) at some point in time, they will eventually return to
fundamentals. The model thus displays price cycles of the kind described in
the opening quote above.

For the quantitative evaluation of the learning model, we consider a
speci�c system of subjective beliefs which allows for subjective prior un-
certainty about the average growth rate of stock market prices. Internal
rationality then dictates that agents�beliefs optimally react to the realiza-
tion of market prices. In particular, agents optimally use a constant gain
model of adaptive learning to update their conditional expectations of one
step ahead risk-adjusted price growth, while no such updating occurs in the
absence of prior uncertainty. In our empirical section we document that the
quantitative �t with the data improves tremendously, if agents place a small
but strictly positive weight on observed market information.

To evaluate the learning model we �rst consider how well the model
matches asset pricing moments individually, just as many papers on stock
price volatility have done. We use formal structural estimation based on the
method of simulated moments (MSM) and we derive the asymptotic distri-
bution for test statistics adapting results of Du¢ e and Singleton (1993). We
�nd that the model can quantitatively match most of the moments we con-
sider, including the volatility of stock market returns, the mean, persistence
and volatility of the price dividend ratio and the evidence on excess return
predictability over long-horizons. With low relative risk aversion (equal to
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�ve) the t-statistics for these moments are all below two in one of our esti-
mated models (see Table 4 in section 5.2).

We also perform a formal econometric test for the overall goodness of
�t of our consumption based asset pricing model. As far as we know, this
is a more stringent test than has been applied in previous papers matching
stock price volatility, but a natural one to explore given our MSM strat-
egy. When risk aversion is as high as in Campbell and Cochrane (1999)
the model marginally fails the overall goodness of �t test at the 1% level.
When considering a lower degree of relative risk aversion (equal to �ve) and
when we exclude the risk premium by excluding the risk free rate from the
estimation, the p-value of the model for the overall goodness of �t increases
to more than 6%.

As we explain, this is a remarkable improvement relative to the perfor-
mance of the model under RE, even though our model is extremely simple
and represents a minimal deviation from the standard asset pricing frame-
work. We �nd it a striking observation that the quantitative asset pricing
implications of the standard model are not robust to such small departures
from rational price expectations and that this non-robustness is empirically
so encouraging. This suggests that allowing for such minimal departures
from a strong assumption (RE) could be a promising avenue for research
more generally.

The paper is organized as follows. In section 2 we discuss the related
literature. Section 3 presents the stylized asset pricing facts we seek to
match. We outline the asset pricing model in section 4 where we also derive
analytic results showing how - for a general class of belief systems - our model
can qualitatively deliver the stylized asset pricing facts described before in
section 3. Section 5 presents our MSM estimation and testing strategy
and documents that the model with subjective beliefs can quantitatively
reproduce the stylized facts. Readers interested in obtaining a glimpse of
the quantitative performance of our one parameter extension of the RE
model may directly jump to Table 2 in section 5.2.

2 Related Literature

A large body of literature documents that the basic asset pricing model
with time separable preferences and RE has great di¢ culties in matching
the observed volatility of stock returns.2 Models of learning have long been
considered as a promising avenue to match stock price volatility.

2See Campbell (2003) for an overview.
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Stock price behavior under Bayesian learning has been studied in Tim-
mermann (1993, 1996), Brennan and Xia (2001), Cecchetti, Lam, and Mark
(2000), Cogley and Sargent (2008) and Pastor and Veronesi (2003), among
others. Agents in these papers learn about the dividend or income process
and then set the asset price equal to the discounted expected sum of divi-
dends. As explained in Adam and Marcet (2011), this amounts to assuming
that agents know exactly how dividends and income map into prices, so that
there is a rather asymmetric treatment of the issue of learning: while agents
learn about how dividends and income evolve, they are assumed to know
perfectly the stock price process, conditional on the realization of dividends
and income. As a result, in all these models stock prices represent redun-
dant information given what agents are assumed to know and there exists no
feedback from market outcomes (stock prices) to beliefs. Since agents are
then learning about exogenous processes only, their beliefs are �anchored�
by the exogenous processes and the volatility e¤ects resulting from learning
are generally limited when considering standard time separable preference
speci�cations. In contrast, we largely abstract from learning about the divi-
dend and income processes and focus on learning about stock price behavior.
Price beliefs and actual price outcomes then mutually in�uence each other.
It is precisely this self-referential nature of the learning problem that imparts
momentum to expectations and is key in explaining stock price volatility.

A number of papers within the adaptive learning literature study agents
who learn about stock prices. Bullard and Du¤y (2001) and Brock and
Hommes (1998) show that learning dynamics can converge to complicated
attractors and that the RE equilibrium may be unstable under learning
dynamics.3 Branch and Evans (2010) study a model where agents�algorithm
to form expectations switches depending on which of the available forecast
models is performing best. Timmermann (1996) analyzes a case with self-
referential learning, assuming that agents use dividends to predict future
price.4 Marcet and Sargent (1992) also study convergence to RE in a model
where agents use today�s price to forecast the price tomorrow in a stationary
environment with limited information. Cárceles-Poveda and Giannitsarou
(2007) assume that agents know the mean stock price and �nd that learning
does then not signi�cantly alter the behavior of asset prices. Chakraborty
and Evans (2008) show that a model of adaptive learning can account for
the forward premium puzzle in foreign exchange markets.

3Stability under learning dynamics is de�ned in Marcet and Sargent (1989).
4Timmerman reports that this form of learning delivers even lower volatility than a

settings with learning about the dividend process only. It is thus crucial for our results
that agents use information on past price growth behavior to predict future price growth.
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We contribute relative to the adaptive learning literature by deriving the
learning and asset pricing equations from internally rational investor behav-
ior. In addition, we use formal econometric inference and testing to show
that the model can quantitatively match the observed stock price volatil-
ity. Finally, our paper also shows that the key issue for matching the data
is that agents learn about the mean growth rate of stock prices from past
stock prices observations.

Other papers have studied stock prices under rational market expec-
tations when agents have asymmetric information or asymmetric beliefs,
examples include Biais, Bossaerts and Spatt (2010) and Dumas, Kurshev
and Uppal (2009). In contrast to the RE literature, the behavioral �nance
literature seeks to understand the decision-making process of individual in-
vestors by means of surveys, experiments and micro evidence, exploring the
intersection between economics and psychology, see Shiller (2005) for a non-
technical summary. We borrow from this literature an interest in deviating
from RE but are keen on making only a minimal deviation from the stan-
dard approach: we assume that agents behave optimally given a consistent
system of subjective beliefs that is assumed to be close to the RE beliefs.

3 Facts

This section describes stylized facts of U.S. stock price data that we seek to
replicate in our quantitative analysis. These observations have been exten-
sively documented in the literature, we reproduce them here as a point of
reference using a single and updated data base.5

Since the work of Shiller (1981) and LeRoy and Porter (1981) it has been
recognized that the volatility of stock prices in the data is much higher than
standard RE asset pricing models suggest, given the available evidence on
the volatility of dividends. Figure 1 shows the evolution of the quarterly
price dividend (PD) ratio in the United States. The PD ratio displays very
large �uctuations around its sample mean (the bold horizontal line in the
graph): in the year 1932, for example, the quarterly PD ratio takes on values
below 30, while in the year 2000 values close to 350. The standard deviation
of the PD ratio (�PD) is almost one half of its sample mean (EPD). We
report this feature of the data as Fact 1 in Table 1.

Figure 1 also shows that the deviation of the PD ratio from its sample
mean are very persistent, so that the �rst order quarterly autocorrelation of
the PD ratio (�PD;�1) is very high. We report this as Fact 2 in Table 1.

5Details on the data sources are provided in Appendix 7.1.
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Figure 1: Quarterly U.S. price dividend ratio 1927:1-2005:4

Related to the excessive volatility of prices is the observation that the
volatility of stock returns (�rs) in the data is almost four times the volatility
of dividend growth (��D=D). We report the volatility of returns as Fact 3
in Table 1, and the mean and standard deviation of dividend growth at the
bottom of the table.

While stock returns are di¢ cult to predict at short horizons, the PD
ratio helps to predict future excess stock returns in the long run. More
precisely, estimating the regression

Xt;n = c
1
n + c

2
n PDt + ut;n (1)

where Xt;n is the observed real excess return of stocks over bonds from
quarter t to quarter t plus n years, and ut;n the regression residual, the
estimate c2n is found to be negative, signi�cantly di¤erent from zero, and
the absolute value of c2n and the R-square of this regression, denoted R

2
n,

increase with n. We choose to include the OLS regression results for the
5-year horizon as Fact 4 in Table 1.6

6We focus on the 5-year horizon for simplicity, but obtain very similar results for
other horizons. Our focus on a single horizon is justi�ed because chapter 20 in Cochrane
(2005) shows that Facts 1, 2 and 4 are closely related: up to a linear approximation, the
presence of return predictability and the increase in the R2n with the prediction horizon n
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U.S. asset pricing facts, 1927:2-2005:4
(quarterly real values, growth rates & returns in percentage terms)

Fact 1 Volatility of EPD 113.20
PD ratio �PD 52.98

Fact 2 Persistence of �PD;�1 0.92
PD ratio

Fact 3 Excessive return �rs 11.65
volatility

Fact 4 Excess return c25 -0.0048
predictability R25 0.1986

Fact 5 Equity premium Ers 2.41
Erb 0.18

Dividend Mean Growth E�D
D

0.0035

Behavior Std of Growth ��D
D

2.98

Table 1: Stylized asset pricing facts

Finally, it is well known that through the lens of standard models real
stock returns tend to be too high relative to short-term real bond returns,
a fact often referred to as the equity premium puzzle. We report it as Fact
5 in Table 1, which shows that the average quarterly real return on bonds
Erb is much lower than the corresponding return on stocks Ers :

Table 1 reports ten statistics. As we show in section 5, we can replicate
these statistics using a model that has only four free parameters.

are qualitatively a joint consequence of persistent PD ratios (Fact 2) and i:i:d: dividend
growth. It is not surprising, therefore, that our model also reproduces the increasing size
of c2n and R

2
n with n: We match the regression coe¢ cients at the 5-year horizon to check

the quantitative model implications.
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4 The Model

We describe below a Lucas (1978) asset pricing model with rationally in-
vesting agents who hold subjective prior beliefs about stock price behavior.
The presence of subjective uncertainty implies that agents optimally update
their beliefs about stock price behavior from observed stock price realiza-
tions. Using a generic updating mechanism, section 4.2 shows that such
learning gives rise to oscillations of asset prices around their fundamental
value and qualitatively contributes to reconciling the Lucas asset pricing
model with the empirical evidence. Section 4.3 then introduces a speci�c
system of prior beliefs that gives rise to constant gain learning and that we
employ in our empirical work in section 5.

4.1 Model Description

The Environment: Consider an economy populated by a unit mass of
in�nitely-lived investors, endowed with one unit of a stock that can be traded
on a competitive stock market and that pays dividend Dt consisting of a
perishable consumption good. Dividends evolve according to

Dt
Dt�1

= a "dt (2)

for t = 0; 1; 2; :::; where log "dt � iiN (� s2d
2 ; s

2
d) and a � 1. This implies

E("dt ) = 1; E�D
D

� E
�

Dt
Dt�1

�
= a and �2�D

D

� var
�

Dt
Dt�1

�
= es

2
d � 1.

To capture the fact that the empirically observed consumption process is
considerably less volatile than the dividend process and to replicate the
weak correlation between dividend and consumption growth, we assume that
each agent receives in addition an endowment Yt of perishable consumption
goods. Total supply of consumption goods in the economy is then given by
the feasibility constraint Ct = Yt + Dt. Following the consumption-based
asset pricing literature, we impose assumptions directly on the consumption
supply process7

Ct
Ct�1

= a "ct ; (3)

where log "ct � iiN (� s2c
2 ; s

2
c) and (log "

c
t ; log "

d
t ) jointly normal. In our em-

pirical application, we follow Campbell and Cochrane (1999) and choose
sc = 1

7s
d and the correlation between log "ct and log "

d
t equal to �c;d = 0:2.

7The process for Yt is then implied by feasibility.
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Objective Function and Probability Space: Agent i 2 [0; 1] has a
standard time-separable expected utility function8

EP0

1X
t=0

�t
�
Cit
�1�

1� 

where  2 (0;1) and Cit denotes consumption demand of agent i. The
expectation is taken using a subjective probability measure P that assigns a
consistent set of probabilities to all external variables, i.e., all payo¤-relevant
variables that are beyond the agent�s control. Importantly, Cit denotes the
agent�s consumption demand, while Ct denotes the total supply of consump-
tion goods in the economy.

The competitive stock market assumption and the exogeneity of the div-
idend and income processes imply that investors consider the process for
stock prices fPtg and the income and dividends processes fYt; Dtg as ex-
ogenous to their decision problem. The underlying sample (or state) space

 thus consists of the space of realizations for prices, dividends and in-
come. Speci�cally, a typical element ! 2 
 is an in�nite sequence ! =
fPt; Yt; Dtg1t=0. As usual, we let 
t denote the set of histories from period
zero up to period t and !t its typical element. The underlying probability
space is thus given by (
;B,P) with B denoting the corresponding �-Algebra
of Borel subsets of 
; and P is the agent�s subjective probability measure
over (
;B). Expected utility is then de�ned as

EP0

1X
t=0

�t
�
Cit
�1�

1�  �
Z



1X
t=0

�t
Cit(!

t)1�

1�  dP(!): (4)

Our speci�cation of the probability space is more general than the one
used in other modeling approaches because we include also price histories in
the realization !t. Standard practice is to assume instead that agents know
the exact mapping from a history of income and dividends to equilibrium
asset prices Pt(Y t; Dt), so that market prices carry only redundant informa-
tion. This allows - without loss of generality - to exclude prices from the
underlying state space. This practice is standard in models of rational ex-
pectations, models with rational bubbles, in Bayesian RE model, and models
incorporating robustness concerns. The standard practice amounts to im-
posing a singularity in the joint density over prices, income and dividends,
which is equivalent to assuming that agents know exactly the equilibrium

8We assume standard preferences so as to highlight the e¤ect of learning on asset price
volatility.
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pricing function Pt(�). While being a convenient modeling device, assuming
exact knowledge of this function is at the same time very restrictive, which
makes it of interest to study the implication of (slightly) relaxing it. Adam
and Marcet (2011) show that rational behavior is indeed perfectly com-
patible with agents not knowing the exact form of the equilibrium pricing
function Pt(�).9

Choice Set and Constraints: Agents make contingent plans for con-
sumption Cit , bondholdings B

i
t and stockholdings S

i
t , i.e., choose the func-

tions �
Cit ; S

i
t ; B

i
t

�
: 
t ! R3 (5)

for all t � 0. Agent�s choices are subject to the budget constraint

Cit + Pt S
i
t +B

i
t � (Pt +Dt)Sit�1 + (1 + rt�1)Bit�1 + Yt (6)

for all t � 0, where rt�1 denotes the real interest rate on riskless bonds
issued in period t � 1 and maturing in period t. The initial endowments
are given by Si�1 = 1 and Bi�1 = 0, so that bonds are in zero net supply.
To avoid Ponzi schemes and to insure existence of a maximum the following
bounds must hold

S � Sit � S (7)

B � Bit � B

for some �nite bounds with the property S < 1 < S; B < 0 < B.
Maximizing Behavior (Internal Rationality): The investor�s prob-

lem then consists of choosing the sequence of functions fCit ; Sit ; Bitg1t=0 to
maximize (4) subject to the budget constraint (6) and the asset limits (7),
where all constraints have to hold for all t almost surely in P. Later on,
the probability measure P will be constructed by specifying some perceived
law of motion describing the agent�s view about the evolution of (P; Y;D)
over time, together with a prior distribution about the parameters governing
this law of motion. Optimal behavior will then entail learning about these
parameters, in the sense that agents update their posterior beliefs about the
unknown parameters in the light of new price, income and dividend observa-
tions. For the moment, this learning problem remains �hidden�in the belief
structure P.

9Speci�cally, with incomplete markets, i.e., in the absence of state contingent forward
markets for stocks, agents cannot simply learn the equilibrium mapping Pt(�) by observing
market prices. Furthermore, if the preferences and beliefs of agents in the economy fail
to be common knowledge, then agents cannot deduce the equilibrium mapping from what
they know.
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Optimality Conditions: Since the objective function is concave and
the feasible set is convex, the agent�s optimal plan is characterized by the
�rst order conditions�

Cit
��

Pt = �EPt

h�
Cit+1

��
Pt+1

i
+ �EPt

h�
Cit+1

��
Dt+1

i
(8)�

Cit
��

= �(1 + rt)E
P
t

h�
Cit+1

��i
(9)

These conditions are standard except for the fact that the conditional ex-
pectations are taken with respect to the subjective probability measure P.

4.2 Asset Pricing Implications: Analytical Results

This section presents analytical results that explain why the asset pricing
model with subjective beliefs can explain the asset pricing facts presented
in Table 1.

As is well known, under RE the model is completely at odds with these
asset pricing facts. A routine calculation shows that the unique RE solution
of the model is given by

PREt =
�a1��"

1� �a1��"
Dt (10)

where

�" = E
h
("ct+1)

�"dt+1

i
= e(1+)

s2c
2 e��c;dscs:

The PD ratio is then constant, return volatility equals approximately the
volatility of dividend growth and there is no (excess) return predictability,
so that the model misses Facts 1 to 4 listed in Table 1. This holds inde-
pendently of the parameterization of the model. Furthermore, even for very
high degrees of relative risk aversion, say  = 80, the model implies a fairly
small risk premium. This emerges because of the low correlation between
the innovations to consumption growth and dividend growth in the data
(�c;d = 0:2).

10 The model thus also misses Fact 5 in Table 1.

10Under RE, the risk free rate is given by 1+r =
�
�a�e(1+)

s2c
2

��1
and the expected

equity return equals Et[(Pt+1 + Dt+1)=Pt] =
�
�a��"

��1
. For �c;d = 0 there is thus no

equity premium, independently of the value for .
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We now characterize the equilibrium outcome under learning. One may
be tempted to argue that Cit+j can be substituted by Ct+j for j = 0; 1

in the �rst order conditions (8) and (9), simply because Cit = Ct holds
in equilibrium for all t.11 However, outside of strict rational expectations
we may have EPt

�
Cit+1

�
6= EPt [Ct+1] even if in equilibrium Cit = Ct holds

ex-post.12 To understand how this arises, consider the following simple
example: suppose agents know the aggregate process for Dt and Yt. In this
case, EPt [Ct+1] is a function only of the exogenous variables (Y

t; Dt). At
the same time, EPt

�
Cit+1

�
is generally a function of price realizations also,

since in the eyes of the agent, optimal future consumption demand depends
on future prices and, therefore, also on today�s prices whenever agents are
learning about price behavior. As a result, we have EPt

�
Cit+1

�
6= EPt [Ct+1],

so that one cannot routinely substitute individual by aggregate consumption
on the right-hand side of agent�s �rst order conditions (8) and (9).

Nevertheless, if in any given period t the optimal plan for period t+1 from
the viewpoint of the agent is such that

�
Pt+1(1� Sit+1)�Bit+1

�
= (Yt +Dt)

is expected to be small according to the agent�s expectations EPt ; then
Ct+1=Ct is very close to Cit+1=C

i
t . Hence, in this case one can rely on the

approximations13

EPt

"�
Ct+1
Ct

��
(Pt+1 +Dt+1)

#
' EPt

"�
Cit+1
Cit

��
(Pt+1 +Dt+1)

#
(11)

EPt

"�
Ct+1
Ct

��#
' EPt

"�
Cit+1
Cit

��#
; (12)

The following assumption provides su¢ cient conditions for this to be the
case:

Assumption 1 Given some asset holding constraints S < 1 < S and B <
0 < B, we assume Yt to be high enough so that the approximations
(11) and (12) hold with su¢ cient accuracy.

Intuitively, for high enough income Yt, the agent�s asset trading decisions

matter little for the agents�stochastic discount factor
�
Cit+1
Cit

��
, allowing us

11Cit = Ct follows from market clearing and the fact that all agents are identical.
12This is the case because the preferences and beliefs of agents are not assumed to be

common knowledge, so that agents do not know that Cit = Ct must hold in equilibrium.
13Equations (11) and (12) follow from using the budget constraint (6) to express Cit+1

and by exploiting the fact that market clearing in period t implies that equilibrium choices
are such that Cit = Ct, S

i
t = 1 and B

i
t = 0.
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to approximate individual consumption in t + 1 by aggregate consumption
in t+ 1.14

With assumption 1, the risk-free interest rate solves

1 = �(1 + rt)E
P
t

"�
Ct+1
Ct

��#
; (13)

Furthermore, de�ning the subjective expectations of risk-adjusted stock
price growth

�t � EPt

 �
Ct+1
Ct

�� Pt+1
Pt

!
(14)

and subjective expectations of risk-adjusted dividend growth

�Dt � EPt

 �
Ct+1
Ct

�� Dt+1
Dt

!
;

the �rst order condition for stocks (8) implies that the equilibrium stock
price under subjective beliefs is given by

Pt =
��Dt
1� ��t

Dt; (15)

provided �t < �
�1. The equilibrium stock price is thus increasing in (subjec-

tive) expected risk-adjusted dividend growth and also increasing in expected
risk-adjusted price growth.

For the special case when agents know the RE growth rates �t = �
D
t =

a1��" for all t, equation (15) delivers the RE price outcome (10). Fur-
thermore, when agents hold subjective beliefs about risk-adjusted dividend
growth but objectively rational beliefs about risk-adjusted price growth,
then with �Dt and �t denoting the respective posterior means of these be-
liefs, equation (15) delivers the pricing implications derived in the Bayesian
RE asset pricing literature, as surveyed at the beginning of section 2. To
highlight the fact that the improved empirical performance of the present
asset pricing model derives exclusively from the presence of subjective be-
liefs about risk-adjusted price growth, we shall entertain assumptions that
are orthogonal to those made in the Bayesian RE literature. Speci�cally, we
assume that agents know the true process for risk-adjusted dividend growth:

14Note that independent from their tightness, the asset holding constraints never prevent
agents from marginally trading or selling securities in any period t along the equilibrium
path, where Sit = 1 and B

i
t = 0 holds for all t.
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Assumption 2 Agents know the process for risk adjusted dividend growth,
i.e., �Dt � a1��" for all t.

Under this assumption the asset pricing equation (15) simpli�es to:15

Pt =
�a1��"
1� ��t

Dt: (16)

4.2.1 Stock Price Behavior under Learning

We now derive a number of analytical results regarding the behavior of asset
prices over time. We start out with a general observation about the volatility
of prices and thereafter derive results about the behavior of prices over time
for a general belief updating scheme.

The asset pricing equation (16) implies that �uctuations in subjective
price expectations can contribute to the �uctuations in actual prices. As
long as the correlation between �t and the last dividend innovation "

d
t is

small (as occurs for the updating schemes for �t that we consider in this
paper), equation (16) implies

var

�
ln

Pt
Pt�1

�
' var

�
ln
1� ��t�1
1� ��t

�
+ var

�
ln

Dt
Dt�1

�
: (17)

The previous equation shows that even small �uctuations in subjective price
growth expectations can signi�cantly increase the variance of price growth,
and thus the variance of stock price returns, if �t �uctuates around values
close to but below ��1.

To determine the behavior of asset prices over time, one needs to take
a stand on how the subjective price expectations �t are updated over time.
The optimal updating rules are thereby dictated by the probability measure
P. In section 4.3 we present a speci�c probability measure P that we employ
in our empirical application. Yet, to illustrate that the results we obtain in
our empirical application do not depend on the speci�c measure assumed and
to improve our understanding for the empirical performance of the model,
we derive the analytical results in this section for a more general nonlinear
belief updating scheme.

15Some readers may be tempted to believe that entertaining subjective price beliefs
while entertaining objective beliefs about the dividend process is inconsistent with indi-
vidual rationality. Adam and Marcet (2011) show, however, that there exists no such
contradiction, as long as the preferences and beliefs of agents in the economy are not
common knowledge.
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Given that �t denotes the subjective one-step-ahead expectation of risk
adjusted stock price growth, it appears natural to assume that the measure
P implies that rational agents revise �t upwards (downwards) if they under-
predicted (overpredicted) the risk adjusted stock price growth ex-post. This
prompts us to consider measures P that imply updating rules of the form16

��t = ft

 �
Ct�1
Ct�2

�� Pt�1
Pt�2

� �t�1; �t�1

!
(18)

for given non-linear updating functions ft : R2 ! R with the properties

ft(0;�) = 0 (19)

ft (�;�) increasing (20)

0 < � + ft (x;�) < �
U (21)

for all (t; x; �) and for some constant �U 2 (a1��"; ��1). Properties (19)
and (20) imply that �t is adjusted in the same direction as the last predic-
tion error, where the strength of the adjustment may depend on the current
level of beliefs, as well as on calendar time (e.g., on the number of observa-
tions available to date). Property (21) is needed to guarantee that positive
equilibrium prices solving (16) always exist.

In section 4.3 below we provide an explicit system of beliefs P in which
agents optimally update beliefs according to a special case of equation (18).
Updating rule (18) is more general and nests also other systems of beliefs, as
well as a range of learning schemes considered in the literature on adaptive
learning, such as the widely used least squares learning or switching gains
learning used by Marcet and Nicolini (2003).

To derive the equilibrium behavior of price expectations and price real-
izations over time, we �rst use (16) to determine realized price growth

Pt
Pt�1

=

�
a+

a� ��t
1� ��t

�
"dt (22)

Combining the previous equation with the belief updating rule (18) one
obtains

��t+1 = ft+1

�
T (�t;��t) ("

c
t)
� "dt � �t;�t

�
(23)

16Note that �t is determined from observations up to period t� 1 only. This simpli�es
the analysis and it avoids simultaneity of price and forecast determination. This lag in the
information is common in the learning literature. Di¢ culties emerging with simultaneous
information sets in models of learning are discussed in Adam (2003).
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where

T (�;��) � a1� + a
1�� ��

1� ��
Given initial conditions (D0; P�1), and initial expectations �0, equation (23)
completely characterizes the equilibrium evolution of the subjective price
expectations �t over time. Given that there is a one-to-one relationship
between �t and the PD ratio, see equation (16), the previous equation also
characterizes the evolution of the equilibrium PD ratio under learning. High
(low) price growth expectations are thereby associated with high (low) values
for the equilibrium PD ratio.

The properties of the second order di¤erence equation (23) can be il-
lustrated in a 2-dimensional phase diagram for the dynamics of (�t; �t�1),
which is shown in Figure 2 for the case where the shocks ("ct)

� "dt assume
their unconditional mean value �".

17 The e¤ects of di¤erent shock realiza-
tions for the dynamics will be discussed separately below.

The arrows in Figure 2 indicate the direction in which the vector (�t; �t�1)
evolves over time according to equation (23), and the solid lines indicate the
boundaries of these areas.18 Since we have a di¤erence equation rather than
a di¤erential equation, we cannot plot the evolution of expectations exactly,
as the di¤erence equation gives rise to discrete jumps in the vector (�t; �t�1)
over time. Yet, if agents update beliefs only relatively weakly in response
to forecast errors, as will be the case for our estimated model later on, then
these jumps will be correspondingly small. The arrows then suggest that
for the case where the shocks assume their average values, the expectations
are likely to move in ellipses around the rational expectations equilibrium
(�t; �t�1) = (a

1��"; a
1��").

Consider, for example, point A in the diagram. At this point �t is already
below its fundamental value a1��", but the phase diagram indicates that
expectations will fall further. This shows that there is momentum in price
changes: the fact that agents at point A have become less optimistic relative
to the previous period (�t < �t�1) implies that price growth optimism and
prices will fall further. Expectations move, for example, to point B over
time where they will start to revert direction and move on to point C, then
display upward momentum and move to point D, thereby displaying mean
reversion. The elliptic movements imply that expectations (and thus the
PD ratio) are likely to oscillate in sustained and persistent swings around
the RE value a1��".

17Appendix 7.2 explains in detail the construction of the phase diagram.
18The vertical solid line close to ��1 is meant to illustrate the restriction � < ��1.
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Figure 2: Phase diagram illustrating momentum and mean-reversion

The e¤ects of the stochastic disturbances ("ct)
� "dt is to shift the curve

labeled "�t+1 = �t" in Figure 2. Speci�cally, for realizations ("
c
t)
� "dt > �"

this curve is shifted upwards. As a result, beliefs are more likely to increase,
which is the case for all points below this curve. Conversely, for ("ct)

� "dt <
�" this curve shifts downward, making it more likely that beliefs decrease
from the current period to the next.

The previous results show that learning causes beliefs and the PD ratio
to stochastically oscillate around its RE value. Such behavior will be key in
explaining the observed volatility and the serial correlation of the PD ratio,
i.e., Facts 1 and 2 in Table 1. Also, from the discussion around equation
(17) it should be clear that such behavior makes stock returns more volatile
than dividend growth, which contributes to replicating Fact 3. As discussed
in Cochrane (2005), a serially correlated and mean reverting PD ratio gives
rise to excess return predictability, i.e., contributes to matching Fact 4.

The momentum of changes in beliefs around the RE value of beliefs, as
well as the overall mean reverting behavior can be more formally captured
in the following results:

17



Momentum: If ��t > 0 and

�t � a1� ("ct)
� "dt , (24)

then ��t+1 > 0. This also holds if all inequalities are reversed.

The result follows from the fact that condition (24) implies that the
�rst argument in the f function on the right-hand side of equation (23) is
positive. Note that the expected value of random variables appearing on
the right-hand side of condition (24) is equal a1��", which is the RE value
of risk-adjusted stock price growth. Therefore, if the updating function f is
su¢ ciently close to linear in its �rst argument, the previous result implies
that

Et�1[��t+1] > 0

whenever ��t > 0 and �t � a1��e, so that beliefs have a tendency to
increase further following an initial increase, whenever beliefs are at or below
the RE value. By the same token, beliefs have a tendency to decrease further
following an initial decrease, provided that beliefs are above or at the RE
value.

The following result shows formally that stock prices would eventually
return to their (deterministic) RE value in the absence of further distur-
bances, and that such reverting behavior occurs monotonically:19

Mean reversion: Consider an arbitrary initial belief �t 2 (0; �U ). In the
absence of further disturbances

lim
t!1

sup�t � a1� � lim
t!1

inf �t

Furthermore, if �t > a1� ; there is a period t0 � t such that �t is
non-decreasing between t and t0 and non-increasing between t0 and
t00; where t00 is the �rst period where �t00 is arbitrarily close to a

1� :
Symmetrically, if �t < a

1�.

The previous result implies that - absent any shocks - �t cannot stay away
from the RE value forever. Beliefs either converge to the (deterministic) RE
value or stay �uctuating around it forever. Any initial deviation, however,
is eventually eliminated with the reversion process being monotonic.

Summing up, the previous results show that for a general set of nonlinear
belief updating rules, stock prices and beliefs �uctuate around their RE
values in a way that helps to qualitatively account for Facts 1 to 4 listed in
Table 1.
19See Appendix 7.3 for the proof under an additional technical assumption.
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4.3 Optimal Belief Updating: Constant Gain Learning

We now introduce a fully speci�ed probability measure P and derive the
optimal belief updating equation it implies. We employ this belief updating
equation in our empirical work in section 5. As we prove below, it guarantees
that prices are geometrically ergodic, a condition that is required for the
MSM estimation approach to be applicable, see Du¢ e and Singleton (1993).
In addition, we show that this system of beliefs represents a small deviation
from RE.

We parameterize the measure P such that the implied expectations about
risk-adjusted stock price and dividend growth can be chosen to lie arbitrarily
close to the RE beliefs of these variables. We shall even assume that agents
know the objective distributions for the dividend and aggregate consumption
processes (or alternatively for the dividend and income processes). In line
with Assumption 2, agents then hold objectively rational expectations about
risk-adjusted dividend growth. At the same time, we allow for subjective be-
liefs about risk-adjusted stock price growth by allowing agents to entertain
the possibility that risk-adjusted price growth may contain a small and per-
sistent time-varying component. This is motivated by the observation that
in the data there are periods in which the PD ratio increases persistently, as
well as periods in which the PD ratio falls persistently, see �gure 1. In an
environment with unpredictable innovations to dividend growth, this implies
the existence of persistent and time-varying components in stock market re-
turns. For this reason, we consider agents who think that the process for
risk-adjusted stock price growth is the sum of a persistent component bt and
of a transitory component "t�

Ct
Ct�1

�� Pt
Pt�1

= bt + "t

bt = bt�1 + �t

where the persistent process bt follows a random walk and "t � iiN(0; �2"),
�t � iiN(0; �2�), independent of each other.

Besides the empirical appeal of the model, the previous setup is of the-
oretical interest because there is a limiting case in which it gives rise to
RE. This happens when agents believe �2� = 0 and assign probability one
to b0 = a1��". Expectations about risk-adjusted stock price growth then
equals the RE value a1��" in all periods.

In what follows we relax these beliefs and allow for a non-zero variance
�2� , i.e., for the presence of a persistent time-varying component in price
growth. The setup then gives rise to a learning problem because agents
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observe only the realizations of risk-adjusted price growth, but not the per-
sistent and transitory component separately. The learning problem thus
consist of optimally �ltering out the persistent component of price growth.
Assuming that agents prior beliefs about b0 are centered at the RE value
and given by

b0 � N(a1��"; �20)

and setting �20 equal to the steady state Kalman �lter uncertainty about bt,
which is given by

�20 =
��2� +

r�
�2�

�2
+ 4�2��

2
"

2
;

agents�posterior beliefs at any time t are given by

bt � N(�t; �0)

with optimal updating implying that �t, de�ned in equation (14), recursively
evolves according to

�t = �t�1 +
1

�

 �
Ct
Ct�1

�� Pt
Pt�1

� �t�1

!
(25)

The optimal (Kalman) gain is given by 1=� =
�
�20 + �

2
�

�
=
�
�20 + �

2
� + �

2
"

�
and captures the strength with which agents optimally update their poste-
riors in response to surprises.20

In the limiting case with vanishing innovations to the random walk
process (�2� ! 0), agents� prior uncertainty vanishes (�20 ! 0) and the
optimal gain converges to zero (1=�! 0). As a result, �t ! a1��" in dis-
tribution for all t for any given distribution of prices. We prove below that
this convergence result also applies when we consider instead the equilibrium
price distribution emerging from the beliefs with vanishing gain.

For our empirical application, we need to slightly modify the updating
equation (25) to guarantee that the bound �t < �U holds for all periods
and equilibrium prices always exist. The exact way in which this bound
is imposed matters little for our empirical result, because the moments we
compute do not change much as long as �t is close to �

U only rarely over

20 In line with equation (18) we incorporate information with a lag, so as to eliminate
the simultaneity between prices and price growth expectations. The lag in the updating
equation could be justi�ed by a speci�c information structure where agents observe some
of the lagged transitory shocks to risk-adjusted stock price growth.
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the sample length considered. To impose this bound, we consider in our
empirical application a concave, increasing and di¤erentiable function w :
R+ ! (0; �U ) and modify the belief updating equation (25) to21

�t = w

 
�t�1 +

1

�

"�
Ct�1
Ct�2

�� Pt�1
Pt�2

� �t�1

#!
(26)

where
w(x) = x if x 2 (0; �L)

for some �L 2 (a1��"; �U ). Beliefs thus continue to evolve according to
(25), as long as they are below the threshold �L, while for higher beliefs we
have that w(x) � x. The modi�ed algorithm (26) satis�es the constraint
(21) and can be interpreted as an approximate implementation of a Bayesian
updating scheme where agents have a truncated prior that puts probability
zero on bt > �U .22 The learning setup will then give rise to a stationary and
ergodic equilibrium outcome and in the limit 1=� ! 0 to small deviations
from rational expectations:

Stationarity, Ergodicity, and Small Deviations from RE: Suppose agents�
posterior beliefs evolve according to equation (26) and equilibrium prices
are determined according to equation (16). Then �t is geometrically
ergodic for � su¢ ciently large. Furthermore, as 1=� ! 0; we have
E[�t]! a1��" and V AR(�t)! 0.

The proof is based on results from Du¢ e and Singleton (1993) and
contained in appendix 7.4. Geometric ergodicity implies the existence of
a unique stationary distribution for �t that is ergodic and that is reached
from any initial condition. This justi�es the MSM approach to estimation
pursued in section 5. The previous result also shows that risk-adjusted stock
price growth expectations have a distribution that is increasingly centered
at the RE value a1��" as the gain parameter becomes vanishingly small.

21The exact functional form for w can be found in appendix 7.5.
22The issue of bounding beliefs so as to insure that expected utility remains �nite is

present in many applications of both Bayesian and adaptive learning to asset prices. The
literature has typically dealt with this issue by assuming that agents simply ignore obser-
vations that would imply updating beliefs beyond the required bound, see Timmermann
(1993, 1996), Marcet and Sargent (1989), or Evans and Honkapohja (2001). This approach,
however, introduces a discontinuity in the simulated moments and creates di¢ culties for
our MSM estimation in section 5, prompting us to pursue the di¤erentiable approach to
bounding beliefs described above.
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From equation (16) it then follows that actual equilibrium prices also be-
come increasingly concentrated at their RE value, so that the di¤erence
between beliefs and outcomes becomes vanishingly small as 1=� ! 0. This
proves that for small values of 1=� agent�s conditional expectations about
risk-adjusted price growth deviate only slightly from RE.

5 Quantitative Model Performance

This section evaluates the quantitative performance of our asset pricing
model with subjective price beliefs and shows that it can robustly repli-
cate Facts 1 to 4 listed in Table 1. We formally estimate and test the model
using the method of simulated moments (MSM). This approach to struc-
tural estimation and testing helps us focusing on the ability of the model to
explain the speci�c moments of the data described in Table 1.23

While the model gives rise to an equity premium (Fact 5 in Table 1),
it tends to fall short of replicating the observed magnitude of this premium
for reasonable degrees of relative risk aversion. This occurs even though the
predicted equity premium is much higher than under RE. To document that
the ability of the model to replicate Facts 1 to 4 in Table 1 is not sensitive
to the assumed degree of risk aversion, we consider a setting with a very
high degree of risk aversion, asking the model then to replicate also the risk
premium, and a setting with a lower value, in which case we leave the risk
premium out of the estimation targets. For the high value of relative risk
aversion we choose  = 80, which is the steady state value of relative risk
aversion used in Campbell and Cochrane (1999).24 The model then repli-
cates all moments in Table 1, including the risk premium, but marginally
fails a formal statistical test for the overall goodness of �t. For low risk
aversion we choose  = 5. The model then replicates Facts 1 to 4 in Table
1. It also passes a formal statistical test for the overall goodness of �t when
we do not include the risk free rate, and it explains all individual moments
when we exclude stock returns instead.
23A popular alternative approach in the asset pricing literature has been to test if

agents��rst order conditions hold in the data. Hansen and Singleton (1982) pioneered
this approach for RE models and Bossaerts (2003) provides an approach that can be
applied to models of learning. We pursue the MSM estimation approach here because it
naturally provides additional information on how the formal test for goodness of �t of the
model relates to the model�s ability to match the moments of interest. The results are
then easily interpretable, they point out which parts of the model �t well and which parts
do not, thus providing intuition about possible avenues for improving the model �t.
24This value is reported on p.244 in their paper.
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The next section explains the method of simulated moments (MSM) ap-
proach for estimating the model and the formal statistical test for evaluating
the goodness of �t. The subsequent section reports on the estimation and
test outcomes.

5.1 MSM Estimation and Statistical Test

This section outlines the MSM approach and the formal test for evaluating
the �t of the model. All technical details are contained in appendix 7.6.

For a given value of the coe¢ cient of relative risk aversion, there are four
free parameters left in the model, comprising the discount factor �, the gain
parameter 1=�, and the mean and standard deviation of dividend growth,
denoted by a and ��D

D
, respectively. We summarize these in the parameter

vector
� �

�
�; 1=�; a; ��D

D

�
:

Throughout the paper we restrict consideration to discount factors satisfying
� < 1. The four parameters will be chosen so as to match the ten sample
moments in Table 1:25� bErs ; bEPD; b�rs ; b�PD; b�PD;�1; bc52; bR25; bErb ; bE�D

D
; b��D

D

�
(27)

Let bSN 2 Rs denote the subset of sample moments in (27) that will be
matched in the estimation, with N denoting the sample size and s � 10.26
Furthermore, let eS(�) denote the moments implied by the model for some
parameter value �.27 The MSM parameter estimate b�N is de�ned as

b�N � argmin
�

h bSN � eS(�)i0 b��1S;N h bSN � eS(�)i (28)

where b�S;N is an estimate of the variance-covariance matrix of the sample
moments bSN . The MSM estimate b�N chooses the model parameter such that
the model moments eS(�) �t the observed moments bSN as close as possible
in terms of a quadratic form with weighting matrix b��1S;N . Appendix 7.6
explains how we estimate b�S;N from the data. Adapting standard results

25Many elements listed in (27) are not sample moments but they are non-linear functions
of sample moments. This generates some technical complications, which are discussed in
appendix 7.6. It would be more precise to refer to the elements in (27) as �sample statistics�,
as we do in the appendix. For simplicity we avoid this terminology in the main text.
26As discussed before, we sometimes exclude the risk premium from the estimation.
27Note that the smooth bounding function w in equation (26) guarantees that a Monte-

Carlo approximation to eS(�) is di¤erentiable.
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from MSM, we have the following results: for a given the list of moments
included in bSN , the estimate b�N is consistent and the best estimate amongst
those obtained with di¤erent weighting matrices.

The MSM estimation approach also provides an overall test of the model.
Under the null hypothesis that the model is correct, we have

cWN � N
h bSN � eS(b�N )i0 b��1S;N h bSN � eS(b�N )i! �2s�4 as N !1 (29)

where convergence is in distribution. Furthermore, we obtain a proper as-
ymptotic distribution for each element of the deviations bSN� eS(b�N ); so that
we can build t-statistics that indicate which moments are better matched in
the estimation, see appendix 7.6 for details.

All asymptotic distribution results hinge on the assumption that b�S;N is
invertible, as the inverse of this matrix appears in equations (28) and (29).
In our practical implementation of the MSM approach, we �nd that the
estimate b�S;N obtained from the data happens to be nearly singular. The
distribution of cWN in small samples is then not well approximated by the
asymptotic chi-square statistic, as some moments are almost exact linear
combinations of other moments. These moments carry almost no additional
information, while the estimation procedure would ask them to be �tted
exactly. To eliminate this near singularity in b�S;N we drop one additional
moment from the list of moments (27), using a formal procedure described
in detail in appendix 7.6. The procedure picks the moment that is most
highly correlated with the remaining moments and suggests that we drop
the coe¢ cient from the �ve year ahead excess return regression bc52. In the
empirical section below, the value of the regression coe¢ cient implied by the
estimated model is always such that the t-statistic for this moment remains
below one. This happens despite the fact that information about bc52 has not
been used in the estimation.

5.2 Estimation Results

This section presents the estimation results and test outcomes from using
the MSM approach described in the preceding section.

Table 2 reports the estimation outcomes when we assume a high degree
of risk aversion ( = 80, in line with Campbell and Cochrane (1999)). We
then use for estimation all asset pricing moments listed in equation (27),
with the exception of the coe¢ cient c52 from the excess return regression.28

28As discussed in the previous section, c52 is excluded from the estimation to avoid the
near-singularity of the weighting matrix.
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The results in table 2 show that the estimated learning model successfully
replicates all moments in the data, including the risk-premium. All the t-
statistics for the individual moments are below two, with most of them even
assuming values below one. The model also quantitatively replicates the
value of the regression coe¢ cient c52, which has not been included in the
estimation.29

Figure 3 shows some realizations of the time series outcomes for the PD
ratio generated from simulating the estimated model for the same number
of quarters as numbers of observations in our data sample. The time series
looks similar to that of the data, see �gure 1, so that the model also passes
an informal �eyeball test�.

The discount factor estimated in Table 2 is close to but below one and
the estimated gain coe¢ cient is small. The latter implies that agents�risk-
adjusted return expectations respond only 0.21% in the direction of the last
observed forecast error, suggesting that the system of price beliefs in our
model represents indeed only a small deviation from RE beliefs. Under
strict RE the reaction to forecast errors is assumed to be zero, but the
model then provides a very bad match with the data. It counterfactually
implies �rs � ��D=D, �PD = 0, and R25 = 0.30 The model then also cannot
simultaneously match Ers ; E�D=D and EPD, unlike is the case with the
learning model, see Table 2. This follows from the fact that the PD ratio is
constant under RE so that the mean asset return can be expressed as

E[
Pt+1 +Dt+1

Pt
] =

PD + 1

PD
E[
Dt+1
Dt

]

If the RE model replicates the sample averages of the PD ratio and dividend
growth in the data, the previous equation implies an average quarterly real
stock return of 0:35%, while the data average for this moment is 2:41%.31

Interestingly, the learning model also gives rise to a signi�cantly larger

29The model also behaves well along other dimensions that have not been included in
the estimation, e.g., the model implied autocorrelation of quarterly returns is 0.14. The
corresponding value in the data equals -0.06, which is estimated with a standard devation
of 0.13, so that the t-statistic for this moment equals 1.59.
30Due to the constant PD ratio, the autocorrelation of the PD ratio and the regression

coe¢ cient c52 would not be well de�ned under RE.
31Exploiting the fact that the average PD ratio and average dividend growth rate are

estimated with uncertainty does not improve the situation much: assuming a model im-
plied RE PD ratio that is two standard deviations below and a mean dividend growth
rate that is two standard devations above their respective data averages, delivers an up-
per bound for the quarterly real stock return of 0:74%, which still falls signi�cantly short
of the sample average.
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risk premium than its RE counterpart.32 For the estimated parameter values
in Table 2, the quarterly real risk premium under RE is just 0.5%, which
falls short of the 2.08% emerging in the model with learning.33 The learning
model generates a higher equity premium than the RE model independently
of the assumed degree of risk aversion. We provide an explanation for this
outcome at the end of this section.

US data Estimated model
(c52 not included)

Data moment Std. dev. Model moment t-statisticbSN;i b� bSi eSi(b�)
Mean stock return Ers 2.41 0.45 2.16 0.57
Mean bond return Erb 0.18 0.23 0.08 0.47
Mean PD ratio EPD 113.20 15.15 115.85 -0.18
Std.dev. stock return �rs 11.65 2.88 16.99 -1.89
Std.dev. PD ratio �PD 52.98 16.53 70.93 -1.09
Autocorrel. PD ratio �PD;�1 0.92 0.02 0.95 -1.52
Excess return reg. coe¢ cient c25 -0.0048 0.002 -0.0063 0.73
R2 of excess return regression R25 0.1986 0.082 0.2516 -0.06
Mean dividend growth E�D=D 0.35 0.19 0.18 0.98
Std. dev. dividend growth ��D=D 2.98 0.84 4.67 -2.02
Discount factor b�N 0.9986
Gain coe¢ cient 1=b�N 0.0021
Test statistic cWN 17.23

Table 2: Estimation outcome for  = 80

Our MSM approach naturally provides a measure for the overall goodness
of �t via the test statisticcWN . To the best of our knowledge, previous papers
seeking to describe stock price volatility do not consider such a formal test.
While the learning model is able to �t all moments individually and also
signi�cantly improves upon the empirical performance of model under RE,
the model marginally fails an overall test of the goodness of �t. Table

32The RE counterpart is the model with the same parameterization, except for 1=� = 0.
33The learning model and the RE model imply the same risk free rate, as we assumed

that agents have objective beliefs about the aggregate consumption and dividend process.
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2 reports the value for the test statistic cWN . It has an �25 asymptotic
distribution and the p-value for the reported value is 0.41%, so that the
model would marginally fail a test at the 1% signi�cance level. Therefore,
even if each asset pricing moment can be matched individually, some of the
joint deviations observed in the data are unlikely to happen if the model is
true. This shows that the cWN test statistic is a much stricter test than that
imposed by matching moments individually.

We now show that the model�s ability to replicate many aspects of the
behavior of stock prices does not hinge on the assumed high degree of risk
aversion. Table 3 below reports estimation outcomes when assuming  = 5.
The fourth and �fth column in the table report the outcome when we again
seek to match all moments, except for c52. With the exception of the average
stock return, the t-statistics for the individual moments are then again all
below two and half of the t-statistics are below one. The failure of the
model to match the equity premium causes the cWN statistic to increase
signi�cantly relative to the case with a high degree of risk aversion. To show
that the equity premium is indeed the source of the di¢ culty for passing the
overall goodness of �t test, columns 6 and 7 in Table 3 report the estimation
outcome obtained when excluding the risk-free rate Erb from the estimation.
The t-statistics for the majority of included moments then decreases and
the model comfortably passes the overall goodness of �t test: the p-value
for the reported cWN statistic is 6.31%.34 We conclude that the model gives
a very good �t of all moments in Table 1 even for low risk aversion with
the exception of the equity premium. The model nevertheless generates a
sizeable equity premium, but has di¢ culties to quantitatively match this
aspect of the data precisely.

34The asymptotic distribution of cWN is now �24, as there is one moment less in the
estimation and the statistic is computed using only moments that are included in the
estimation.
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Figure 3: Simulated paths for the PD ratio, estimated model ( = 80)
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US data Estimated model Estimated model
(c52 not included) (c52, Erb not included)

Data moment Std. dev. Model moment t-statistic Model moment t-statisticbSN;i b� bSi eSi(b�) eSi(b�)
Ers 2.41 0.45 1.25 2.58 1.34 2.38
Erb 0.18 0.23 0.42 -1.07 0.88 -3.07
EPD 113.20 15.15 123 -0.68 116 -0.20
�rs 11.65 2.88 10.59 0.37 7.86 1.32
�PD 52.98 16.53 67.23 -0.86 53.90 -0.06
�PD;�1 0.92 0.02 0.96 -1.84 0.95 -1.68
c25 -0.0048 0.002 -0.0067 0.94 -0.0055 0.36
R25 0.1986 0.082 0.23 -0.36 0.21 -0.18

E�D=D 0.35 0.19 0.03 1.73 0.17 0.95
��D=D 2.98 0.84 2.16 0.99 2.10 1.04
Discount factor b�N 0.9972 0.9999
Gain coe¢ cient 1=b�N 0.0073 0.0070
Test statistic cWN 57.02 8.92

Table 3: Estimation results for  = 5

We have performed a range of robustness tests using a number of vari-
ations of the model and of the estimation strategy. For example, we used
the mean bond return in the estimation and dropped the mean stock return
instead, assuming as in Table 3 that  = 5. Results for this case are shown
in Table 4. All t-statistics then assume values well below 2, including the
t-statistic for the mean stock return, which has not been used in the estima-
tion. This estimation outcome performs better than that in many previous
papers matching moments on stock price volatility, as it successfully matches
individual moments with a relatively low degree of risk aversion. Neverthe-
less, the more stringent test statistic cWN increases to a value of 35 in this
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setting, implying that the overall �t of the model is rejected.

US data Estimated model
(c52, Ers not included)

Data moment Std. dev. Model moment t-statisticbSN;i b� bSi eSi(b�)
Ers 2.41 0.45 1.61 1.79
Erb 0.18 0.23 0.45 -1.19
EPD 113.20 15.15 113.74 -0.04
�rs 11.65 2.88 12.92 -0.44
�PD 52.98 16.53 72.32 -1.17
�PD;�1 0.92 0.02 0.94 -1.08
c25 -0.0048 0.002 -0.0067 0.96
R25 0.1986 0.082 0.1681 0.36

E�D=D 0.35 0.19 0.06 1.55
��D=D 2.98 0.84 2.89 0.10
Discount factor b�N 0.9986
Gain coe¢ cient 1=b�N 0.0080
Test statistic cWN 35.7

Table 4: Matching bond returns,  = 5

Furthermore, we considered a setting where agents also learn about risk-
adjusted dividend growth, using the same weight 1=� for the learning mech-
anism about dividend and price growth rates. The moments of the model
and t-statistics are then virtually unchanged relative to a setting without
learning about dividend growth. We �nd the same outcome when we use
a model of learning that switches between ordinary least squares learning
and constant gain learning, as in Marcet and Nicolini (2003). We also used
di¤erent values for the coe¢ cient of relative risk aversion . For lower val-
ues of relative risk aversion around 2, we �nd that the model continues to
generate volatile stock prices, but not enough to quantitatively match the
data.

We now brie�y discuss why our model is also able to generate a sizable
risk premium for stocks. Surprisingly, the model generates a small ex-post
risk premium for stocks even when investors are risk neutral ( = 0). To
understand this feature, note that the realized gross stock return between
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period 0 and period N can be written as the product of three terms

NY
t=1

Pt +Dt
Pt�1

=
NY
t=1

Dt
Dt�1| {z }
=R1

�
�
PDN + 1

PD0

�
| {z }

=R2

�
N�1Y
t=1

PDt + 1

PDt| {z }
=R3

:

The �rst term (R1) is independent of the way prices are formed, thus cannot
contribute to explaining the emergence of an equity premium in the model
with learning. The second term (R2), which is the ratio of the terminal
over the starting value of the PD ratio could potentially generate an equity
premium but is on average below one in our simulations of the learning
model, while it is slightly larger than one under RE.35 The equity premium in
the learning model must thus be due to the last component (R3). This term
is convex in the PD ratio, so that a model that generates higher volatility of
the PD ratio (but the same mean value) will also give rise to a higher equity
premium. Therefore, because our learning model generates a considerably
more volatile PD ratio, it also gives rise to a larger ex-post risk premium.

6 Conclusions and Outlook

A very simple consumption based asset pricing model is able to quanti-
tatively replicate a number of important asset pricing facts, provided one
slightly relaxes the assumption that agents perfectly know how stock prices
are formed in the market. We assume that agents formulate their doubts
about market outcomes using a consistent set of subjective beliefs about
prices which is close - but not equal - to the RE prior beliefs routinely as-
sumed in the literature. Optimal behavior then dictates that agents learn
about the equilibrium price process from past price observations. This gives
rise to a self-referential model of learning about prices that imparts momen-
tum and mean reversion behavior into the price dividend ratio. As a result,
sustained departures of asset prices from their fundamental value emerge,
even though all agents act rationally in the light of their beliefs.

We submit our consumption based asset pricing model also to a formal
econometric test based on the method of simulated moments. The model
performs remarkably well despite its simplicity. While the model gives rise
to a signi�cant equity premium, it fails to match quantitatively the premium
found in the data for reasonable degrees of relative risk aversion. When risk
aversion is su¢ ciently high, and as high as in some of the previous work, the

35For the learning model we choose the RE PD ratio as our starting value.
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model can also replicate the equity premium, but we leave a full treatment
of this issue to future research.

Given the di¢ culties documented in the empirical asset pricing litera-
ture in accounting for stock price volatility under RE, our results suggest
that models of learning may be economically more relevant than previously
thought. Indeed, the most convincing case for models of learning can be
made by explaining facts that appear �puzzling�from the RE viewpoint, as
we attempt to do in this paper.

The �nding that large asset price �uctuations can result from individ-
ually rational �uctuations in investor optimism and pessimism is also rele-
vant from a policy perspective. The desirability of policy responding to asset
price �uctuations will depend to a large extent on whether or not asset price
�uctuations are fundamentally justi�ed.
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7 Appendix

7.1 Data Sources

Our data is for the United States and has been downloaded from �The Global
Financial Database�(http://www.global�nancialdata.com). The period cov-
ered is 1925:4-2005:4. For the subperiod 1925:4-1998:4 our data set corre-
sponds very closely to Campbell�s (2003) handbook data set available at
http://kuznets.fas.harvard.edu/~campbell/ data.html.

In the calibration part of the paper we use moments that are based on
the same number of observations. Since we seek to match the return pre-
dictability evidence at the �ve year horizon (c25 and R

2
5) we can only use data

points up to 2000:4. For consistency the e¤ective sample end for all other
moments reported in table 1 has been shortened by �ve years to 2000:4. In
addition, due to the seasonal adjustment procedure for dividends described
below and the way we compute the standard errors for the moments de-
scribed in appendix 7.6, the e¤ective starting date was 1927:2.

To obtain real values, nominal variables have been de�ated using the
�USA BLS Consumer Price Index�(Global Fin code �CPUSAM�). The monthly
price series has been transformed into a quarterly series by taking the index
value of the last month of the considered quarter.

The nominal stock price series is the �SP 500 Composite Price Index
(w/GFD extension)�(Global Fin code �_SPXD�). The weekly (up to the end
of 1927) and daily series has been transformed into quarterly data by taking
the index value of the last week/day of the considered quarter. Moreover,
the series has been normalized to 100 in 1925:4.

As nominal interest rate we use the �90 Days T-Bills Secondary Market�
(Global Fin code �ITUSA3SD�). The monthly (up to the end of 1933), weekly
(1934-end of 1953), and daily series has been transformed into a quarterly se-
ries using the interest rate corresponding to the last month/week/day of the
considered quarter and is expressed in quarterly rates, i.e., not annualized.

Nominal dividends have been computed as follows

Dt =

�
ID(t)=ID(t� 1)
IND(t)=IND(t� 1) � 1

�
IND(t)

where IND denotes the �SP 500 Composite Price Index (w/GFD extension)�
described above and ID is the �SP 500 Total Return Index (w/GFD exten-
sion)�(Global Fin code �_SPXTRD �). We �rst computed monthly dividends
and then quarterly dividends by adding up the monthly series. Following
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Campbell (2003), dividends have been deseasonalized by taking averages of
the actual dividend payments over the current and preceding three quarters.

7.2 Details on the phase diagram

The second order di¤erence equation (23) describes the evolution of beliefs
over time and allows to construct the directional dynamics in the

�
�t; �t�1

�
plane, as shown in Figure 2 for the case ("ct)

� "dt = 1. Here we show the
algebra leading to the arrows displayed in this �gure as well the e¤ects
of realizations ("ct)

� "dt 7 1. De�ne x0t � (x1;t; x2;t) �
�
�t; �t�1

�
. The

dynamics can then be described by

xt+1 =

 
x1;t + ft+1

��
a1� +

a1��(x1;t�x2;t)
1��x1;t

�
("ct)

� "dt � x1;t; x1;t
�

x1;t

!
The points in Figure 2 where there is no change in each of the elements
of x are the following: we have �x2 = 0 at points x1 = x2; so that the
45o line gives the point of no change in x2, and �x2 < 0 above this line.
We have �x1 = 0 for x2 = 1

� �
x1(1��x1)

a1��("c)�"d
. For ("c)� "d = �" this is

the curve labelled "�t+1 = �t" in Figure 2, and we have �x1 > 0 below
this curve. So for ("c)� "d = �", the zeroes for �x1 and �x2 intersect
are at x1 = x2 = a1��" which is the REE value and, interestingly, at
x1 = x2 = ��1 which is the limit of rational bubble equilibria. These
results give rise to the directional dynamics shown in �gure 2. Finally, for
("c)� "d > �" (("

c)� "d < �") the curve "�t+1 = �t" in Figure 2 is shifted

upwards (downwards) as indicated by the function x2 = 1
� �

x1(1��x1)
a1��("c)�"d

.

7.3 Proof of mean reversion

To prove mean reversion for the general learning scheme (18) we need the
following additional technical assumption on the updating function ft:

Assumption A1 There is a � > 0 such that ft(�; �) is di¤erentiable in the
interval (��; �) for all t and all �
Furthermore, letting

Dt � inf
�2(��;�);�2(0;�U )

@ft(�; �)

@�
,

we have 1X
t=0

Dt =1
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This is satis�ed by all the updating rules considered in this paper and by
most algorithms used in the stochastic control literature. For example, it is
guaranteed in the OLS case where Dt = 1=(t+�1) and in the constant gain
where Dt = 1=� for all t; �. The assumption would fail and

P
Dt <1, for

example, if the weight given to the error in the updating scheme is 1/t2: In
that case beliefs could get �stuck�away from the fundamental value simply
because updating of beliefs ceases to incorporate new information for t large
enough. In this case, the growth rate would be a certain constant but agents
would forever believe that the growth rate is another constant, di¤erent from
the truth. Hence in this case agents would make systematic mistakes forever.
Therefore, assumption A1 is likely to be satis�ed by any system of beliefs
that puts a "grain of truth" on the RE equilibrium.

The statement about limsup is equivalent to saying that if �t > a in
some period t, then for any � > 0 su¢ ciently small, there is a �nite period
t00 > t such that �t00 < a+ �.

Fix � > 0 such that � < min(�; (�t � a)=2) where � is as in assumption
A1.

We �rst prove that there exists a �nite t0 � t such that

��et � 0 for all et such that t < et < t0, and (30)

��t0 < 0 (31)

To prove this, choose � = �
�
1� ��U

�
. Since �t < �U and � > 0 it is

impossible that ��et � � for all et > t: Let t � t to be the �rst period where
��t < �.

There are two possible cases: either i) ��t < 0 or ii) ��t � 0:
In case i) we have that (30) and (31) hold if we take t0 = t.
In case ii) �t can not decrease between t and t so that

�t � �t > a+ �

Furthermore, we have

T (�t;��t) = a+
��t
1� ��t

< a+
�

1� ��t
< a+

�

1� ��U
= a+ �

where the �rst equality follows from the de�nition of T in the main text.
The previous two relations imply

�t > T (�t;��t)
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Therefore
��t+1 = ft+1 (T (�t;��t)� �t;�t) < 0

and in case ii) we have that (30) and (31) hold for t0 = t+ 1.
This shows that (30) and (31) hold for a �nite t0 as in the �rst part of

the statement of Mean Reversion in the text. Now we need to show that
beliefs eventually fall below a+ � and do decrease monotonically.

Consider � as de�ned above. First, notice that given any j � 0, if

��
t0+j

< 0 and (32)

�
t0+j

> a+ � (33)

then

��t0+j+1 = ft0+j+1

�
a+

��t0+j
1� ��t0+j

� �t0+j ; �t0+j
�
< ft0+j+1

�
a� �t0+j ; �t0+j

�
(34)

< ft0+j+1
�
��; �t0+j

�
� ��Dt0+j+1 � 0 (35)

where the �rst inequality follows from (32), the second inequality from (33)
and the third from the mean value theorem, � > 0 and Dt0+j+1 � 0. Assume,
towards a contradiction, that (33) holds for all j � 0: Since (32) holds for
j = 0, it follows by induction that ��t0+j � 0 for all j � 0 and, therefore,
that (35) would hold for all j � 0 hence

�t0+j =

jX
i=1

��t0+i + �t0 � ��
jX
i=1

Dt0+i + �t0

for all j > 0. Assumption A1 above would then imply �t ! �1 showing
that (33) can not hold for all j. Therefore there is a �nite j such that �t0+j
will go below a+ � and � is decreasing from t0 until it goes below a+ �.

For the case �t < a��, choosing � = � one can use a symmetric argument
to construct the proof.

7.4 Proof of Geometric Ergodicity

De�ning �t � ("ct)
� "dt and using (22) and (26) we can write the learning

algorithm that gives the dynamics of �t as�
�t
��t

�
= F

�
�t�1
��t�1

; �t�1

�
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where the �rst element of F , denoted F1, is given by the right side of (26)
and F2(�;��; �t�1) � F1(�;��; �t�1)� �. Therefore,

F
0
t �

@F
�
�; �t�1

�
@
�
�t ��t

� = w0t � � At; 1� 1
� +Bt

At; � 1
� +

1
�Bt

�

for At = 1
�

a��t�1
1���t�1

, Bt = 1
�

a� ��t�1�t�1

(1���t�1)
2 ; with w0t denoting the derivative of

w at period t. The eigenvalues of the matrix in brackets are

�+t ; �
�
t =

At + 1� 1
� +Bt �

q�
At + 1� 1

� +Bt
�2 � 4At

2

Since At; Bt ! 0 for large � we have that �+t is the larger eigenvalue in
modulus and that the radicand is positive. We wish to �nd a uniform
bound for �+t ; because given that jw0tj < 1 this will be a uniform bound for
the largest eigenvalue of F 0t : Such a bound will play the role of ��("t) in the
de�nition of the "L2 unit circle condition" on p. 942 in Du¢ e and Singleton
(1993) (henceforth DS).

Consider the function fa(x) = x+a+
q
(x+ a)2 � 4a for some constant

a > 0 and x large enough for the radicand to be positive. For " > 0 the
mean value theorem implies

fa(x+ ") �

0@1 + xq
(x+ a)2 � 4a

1A "+ fa(x)
Evaluating this expression at a = At; " = Bt and x = 1� 1=� we have

�+t � Bt +
fAt(1� 1

�)

2
< Bt + 1�

1

�
for ��t�1 � 0 (36)

where we used

fAt(1�
1

�
) < At + 1�

1

�
+

s�
At + 1�

1

�

�2
� 4At(1�

1

�
) = 2

�
1� 1

�

�
Since fAt(�) is monotonic, using the expression for Bt we have

�+t �
1

2
fAt(1�

1

�
+Bt) �

fAt(1� 1
�)

2
< 1� 1

�
for ��t�1 < 0 (37)
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From (26) we have

��t �
1

�

�
�t�1a

1�
�
1 +

��t�1
1� ��t�1

�
� �t�1

�
(38)

So, if ��t�1 � 0; using �t�1 > 0

��t �
1

�
�t�1a

1�

"
1 +

����t�1��
1� ��t�1

#
Therefore, adding the right side of this inequality to (37), and using the
inequality for (36) we have that for all ��t�1

�+t � 1

�

a1���
1� ��t�1

�2
 
a1�

�
�t�2

"
1 +

����t�2��
1� ��t�2

#!
�t�1 + 1�

1

�

� 1

�2
eK�t�2�t�1 + 1� 1

�

for a constant 0 < eK <1; where we used
����t�2�� ; �t�1; �t�2 < �U :

Since w0 � 1, it is clear from the mean value theorem that
eK
�2
�t�2�t�1+

1� 1
� plays the role of ��("t) in the De�nition of "L

2 unit circle condition"
of DS, where our � plays the role of �, and �t�1�t�2 the role of "t in DS.

Therefore, we need to check that E
� eK
�2
�t�t�1 + 1� 1

�

�2
< 1 for � large

enough. A routine calculation shows that

E

 eK
�2
�t�t�1 + 1�

1

�

!2
= 1� 1

�
� 1
�

"
1� 1

�
� 2

�
1� 1

�

� eK
�
E
�
�t�t�1

�
�
eK2

�3
E
�
�2t �

2
t�1
�#

For � large the term in brackets is positive. Therefore,

E

 eK
�2
�t�t�1 + 1�

1

�

!2
< 1� 1

�
< 1

This proves that for large � the variable �t satis�es DS�L
2 unit-circle

condition, hence it satis�es DS�AUC condition, and Lemma 3 in DS guar-
antees that �t is geometrically ergodic.

Now, adding a1��t�1 on both sides of (38) and taking expectations at
the ergodic distribution we have

E
�
�t�1 � �t�1a1�

�
� E

�
��t�1
1� ��t�1

�t�1a
1�
�

(39)
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Our previous argument shows that the right side is arbitrarily small for �
large, therefore E�t�1 � E�t�1a1� : A similar argument shows that var�t
goes to zero as �!1: Therefore for � large �t � �L with arbitrarily large
probability so that (38) holds as equality with arbitrarily large probability.
Taking expectations on both sides for the realizations where this holds as
equality, we have that E�t ! E�t�1a

1� = �RE as �!1 which completes
the proof.�

7.5 Di¤erentiable projection facility

The function w used in the di¤erentiable projection facility is

w(x) = U

(
x if x � �L

�L + x��L
x+�U�2�L (�

U � �L) if �L < x � �U (40)

�L +
1

2

�
�U � �L

�
Clearly w is continuous, the only point where continuity is questionable is
at x = �L; but it is easy to check that

lim
x%�L

w(x) = lim
x&�L

w(x) = �L

lim
x%�L

w0(x) = lim
x&�L

w0(x) = 1

lim
x!1

w(x) = �U

In our numerical applications we choose �U so that the implied PD ratio
never exceeds UPD = 500 and �L = ��1 � 2(��1 � �U ), which implies that
the dampening e¤ect of the projection facility starts to come into e¤ect for
values of the PD ratio above 250. Therefore, this dampening is applied in
few observations.

7.6 Details of the MSM procedure

7.6.1 Estimation and testing

Here we provide an estimator for the covariance matrix of the statisticsb�S;N ; we give some more details about consistency of the estimator de�ned
in (28), and derive the needed asymptotic distribution results.

Let N be the sample size, (y1; :::;yN ) the observed data sample, with yt
containing m variables. The standard version of the method of simulated
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moments (MSM) is to �nd parameter values that make the moments of
the structural model close to sample moments cMN � 1

N

PN
t=1 h(yt) for a

given moment function h : Rm ! Rq. However, many of the statistics that
we wish to match in Table 1 are not of this form, but they are functions
of moments. Formally, the statistics in table 1 can be written as bSN �
S(cMN ) for a statistic function S : Rq ! Rs mapping sample momentscMN into the considered statistics. Explicit expressions for h(�) and S(�) in
our particular application are stated in section 7.6.2. In the text we talked
about "moments" as describing all statistics to be matched in (27). In this
appendix we properly use the term "statistic" as possibly di¤erent from
"moment".

We propose to base our MSM estimates and tests on matching the statis-
tics bSN . Since this deviates from standard MSM we need to adapt standard
proofs and asymptotic distribution results. The proofs follow standard steps
so we provide an outline of the argument and the derivations. The statis-
tics to be matched bSN can be all or a subset of the statistics in (27), the
reason we sometimes consider a subset will be discussed in detail after re-
sult "Asymptotic Distribution of MSM" below. Since we have endogenous
state variables in the model (namely past beliefs �t�1; �t�2) the asymptotic
theory result needed is from Du¢ e and Singleton (1993) (DS).

Let yt(�) be the series generated by the structural model at hand for
parameter values � and some realization of the underlying shocks. All the
results below are derived under the null hypothesis that the model is true,
more speci�cally, that the observed data is generated by the structural model
at hand for a true parameter value �0: Let M(�) � E [ h(yt(�)) ] be the
true moments for parameter values � at the stationary distribution of yt(�);
hence M0 � M(�0) are the true moments, and let eS(�) � S(M(�)) be
the true statistics when the model parameter is �: Denote by M j

0 the j-th
autocovariance of the moment function at the true parameter, that is

M j
0 � E [h(yt(�0))�M0] [h(yt�j(�0))�M0]

0

De�ne

Sw �
1X

j=�1
M j
0 (41)

We use the following estimate of the variance for the sample statisticsbSN b�S;N � @S(MN )

@M 0
bSw;N @S(MN )

0

@M

The asymptotic properties of this estimate are given in the following result:

43



Variance of bSN Suppose that

a) Sw <1; and we have consistent estimators of this matrix bSw;N !
Sw a.s. as N !1

b) S is continuously di¤erentiable at M0.

c) the observed process fytg is stationary and ergodic

Then we have that

b�S;N ! �S �
@S(M0)

@M 0 Sw
@S(M0)

0

@M
(42)

and that �S is the asymptotic covariance matrix of bSN :
E
h bSN � S(M0)

i h bSN � S(M0)
i0
! �S (43)

both limits occurring a.s. as N !1:
Therefore, b�S;N is a consistent estimator of the asymptotic variance
of the sample statistics.

Proof. Assumptions a), c) imply

cMN !M0 a.s. as N !1

and assumption b) gives (42).
Assumptions a), c) imply

E [MN �M0] [MN �M0]
0 ! Sw a.s. as N !1

The mean value theorem implies that

S(MN )� S(M0) =
@S(fMN )

@M 0 [MN �M0] (44)

for a fMN !M0 a.s. asN !1: Taking expectations of [S(MN )� S(M0)] [S(MN )� S(M0)]
0

we have (43).

Conditions a), c) are standard minimal assumptions used in time series
asymptotic results, condition b) is clearly satis�ed in our application, see
the expression for S in section 7.6.2. We choose consistent estimates bSw;N
applying the Newey West estimator using only the data. Hence the esti-
mator b�S;N can be found purely from data, without using the model or its
parameter estimates. We now turn to
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Consistency Let b�N be the estimator de�ned in (28), where the maximiza-
tion is over a set � � Rn: Assume

a) � is compact, the process fyt(�)g is well de�ned for all � 2 �; eS
is continuous in �; and �0 2 �:

b) fyt(�)g is geometrically ergodic for all � 2 �
c) �S is invertible

d) h eS(�0)� eS(�)i0��1S h eS(�0)� eS(�)i > 0 for all � 6= �0

Then b�N ! �0 a:s: as N !1:

The proof is easily obtained by adapting the consistency result from DS.
Condition a) is standard in GMM applications, the set � should be large

enough to insure that it contains admissible values of the true parameter val-
ues. DS emphasize that a strong form of ergodicity is needed as in condition
b), we showed in appendix 7.4 that this holds for � large enough, therefore
b) is guaranteed if � is restricted to large �. Conditions c) and d) are stan-
dard identi�cation requirements that the statistics selected are su¢ cient to
identify the true parameter values. A necessary condition for d) is that the
number of parameters is less than the number of statistics s.

Let

B0�
@M 0(�0)

@�

@S 0(M0)

@M

Asymptotic Distribution In addition to all the assumptions in the above
results, assume that B0��1S B

0
0 is invertible. Then

p
N
hb�N � �0i ! N (0;

�
B0��1S B0

��1
) (45)

p
N
h bSN � S(M(b�))i ! N (0;�S � B00(B0�

�1
S B

0
0)
�1B0)) (46)cWN ! �2s�n (47)

in distribution as N !1; wherecWN � N
h bSN � eS(b�)i0 b��1S;N h bSN � eS(b�)i

Proof. The central limit theorem and (44) imply

p
N [S(MN )� S(M0)] =

@S(fMN )

@M 0

p
N [MN �M0]! N (0;�S) (48)
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in distribution. Letting

B(�;M)�@M
0(�)

@�

@S 0(M)
@M

The asymptotic distribution of the parameters is derived as

S(M(b�N ))� S(M(�0)) = B(e�;fM) hb�N � �0i
B(b�N ;cMN )b��1S;N hS(M(b�))� S(M(�0))i = B(b�N ;cMN )b��1S;NB(e�;fM)0 hb� � �0i
B(b�N ;cMN )b��1S [S(MN )� S(M(�0))] = (49)

B(b�N ;cMN )b��1S B(e�;fM)0 hb� � �0i
where the last equality follows because B(b�N ;cMN )b��1S h

S(MN )� S(b�N )i =
0 at the maximum of (28): This implies (45).

To obtain (46) we use mean value theorem and (49) to conclude

S(cMN )� S(M(b�N )) = S(cMN )� S(M(�0)) + B(e�;fM) h�0 � b�i =�
I �

h
B(b�N ;cMN )�

�1
S B(e�;fM)0i�1 B(b�N ;cMN )b��1S;N�hS(cMN )� S(M(�0))

i
This gives (46).

(47) follows from (46) and that
�
�S � B00

�
B0��1S B00

��1 B0� is an idem-
potent matrix.

We mentioned in the main text and earlier in this appendix that we
drop some statistics from bSN when b�S;N is nearly singular: The reason is
that, as stated above, we need invertibility of �S both for consistency and
asymptotic distribution. In practice, a nearly singular b�S;N creates many
problems. First, the results for the test W change very much with small
changes in the model or testing procedure and the maximization algorithm
is nearly unstable, making it di¢ cult to �nd a maximum numerically. This
happens because in this case the formula for cWN nearly divides zero by
zero, hence the objective function is nearly unde�ned, and the asymptotic
distribution is not necessarily a good approximation to the true distribution
of the test statistic. But this is not a bad situation for an econometrician,
it just means that one of the statistics is redundant, so it makes sense to
simply drop one statistic from the estimation.

To decide which statistic to drop we compute the variability of each
statistic that can not be explained by a linear combination of the remaining
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statistics: This is analogous to the R2 coe¢ cient of running a regression of
each statistic on all the other statistics when the regression coe¢ cients are
computed from b�S;N : We drop the statistics for which this R2 is less than
1%, as it turns out this only occurs for bc52 with an R2 equal to 0.006. After
we drop bc52 the estimation results become su¢ ciently stable.36 As we explain
in our discussion around Table 2, the model is in any case able to match bc52
even when we drop it from the statistics used in the estimation.

There are various ways to compute the moments of the model eS(�) for
a given � 2 Rn:We use the following Monte-Carlo procedure. Let !i denote
a realization of shocks drawn randomly from the known distribution that
the underlying shocks are assumed to have and

�
y1(�; !

i); :::yN (�; !
i)
�
the

random variables corresponding to a history of length N generated by the
model for shock realization !i and parameter values �. Furthermore, let

MN (�; !
i) � 1

N

NX
t=1

h(yt(�; !
i))

denote the model moment for realization !i. We set the model statisticseS(�) equal to
1

K

KX
i=1

S(MN (�; !
i))

for large K: In other words, eS(�) is an average across a large number of
simulations of length N of the statistics S(MN (�; !

i)) implied by each sim-
ulation. We use K of the order of 1000, therefore the model moments are
computed with KN observations. These are the averages reported as model
moments in tables 2 to 4 of the main text.

Many papers on MSM emphasize the dependence of the estimates on
the ratio of number of observations in simulations to N: Since this is 1000
in our application this adds a negligible factor to the asymptotic variance-
covariance matrices computed and we entirely ignore it in our results.

7.6.2 The statistic and moment functions

This section gives explicit expressions for the statistic function S(�) and
the moment functions h(�) that map our estimates into the framework just
36An alternative to dropping one moment would be to match the linear combinations

corresponding to the principal components of bSw. While this has some advantages from
the point of view of asymptotic theory, we �nd it less attractive from the economic point of
view, since the economic meaning of these principal components would be unclear, while
each individual moment does have clear economic interpretation.
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discussed in this appendix.
The underlying sample moments needed to construct the statistics of

interest are

MN �
1

N

NX
t=1

h(yt)

where h(�) : R42 ! R11 and yt are de�ned as

h(yt) �

26666666666666666664

rst
PDt
(rst )

2

(PDt)
2

PDt PDt�1
rs;20t�20�
rs;20t�20

�2
rs;20t�20PDt�20

rbt
Dt=Dt�1
(Dt=Dt�1)

2

37777777777777777775

; yt �

266666666666664

PDt
Dt=Dt�1
PDt�1

Dt�1=Dt�2
...

PDt�19
Dt�19=Dt�20
PDt�20
rbt

377777777777775

where rs;20t denotes the stock return over 20 quarters, which can be computed
using from yt using (PDt; Dt=Dt�1; :::; PDt�19; Dt�19=Dt�20).

The ten statistics we consider can be expressed as function of the mo-
ments as follows:

S(M) �

2666666666666664

E(rst )
E(PDt)
�rst
�PDt
�PDt;�1
c52
R25
E(rbt )

E(�Dt=Dt�1)
�Dt=Dt�1

3777777777777775
=

26666666666666666664

M1

M2q
M3 � (M1)

2q
M4 � (M2)

2

M5�(M2)
2

M4�(M2)
2

c52(M)
R25(M)
M9

M10q
M11 � (M10)

2

37777777777777777775
where Mi denotes the i�th element of M and the functions c52(M) and
R25(M) de�ne the OLS and R

2 coe¢ cients of the excess returns regressions,
more precisely
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c5(M) �
�
1 M2

M2 M4

��1 �
M6

M8

�
R25(M) � 1�

M7 � [M6;M8] c
5(M)

M7 � (M6)
2

7.6.3 Derivatives of the statistic function

This appendix gives explicit expressions for @S=@M 0 using the statistic func-
tion stated in appendix 7.6.2. Straightforward but tedious algebra shows

@Si
@Mj

= 1 for (i; j) = (1; 1); (2; 2); (8; 9); (9; 10)

@Si
@Mj

=
1

2Si(M)
for (i; j) = (3; 3); (4; 4); (10; 11)

@Si
@Mj

=
�Mj

Si(M)
for (i; j) = (3; 1); (4; 2); (10; 10)

@S5
@M2

=
2M2(M5 �M4)

(M4 �M2
2 )
2
;

@S5
@M5

=
1

M4 �M2
2

;
@S5
@M4

= � M5 �M2
2�

M4 �M2
2

�2
@S6
@Mj

=
@c52(M)

@Mj
for i = 2; 4; 6; 8

@S7
@Mj

=
[M6;M8]

@c5(M)
@Mj

M7 �M2
6

for j = 2; 4

@S7
@M6

=

h
c51(M) + [M6;M8]

@c5(M)
@M6

i �
M7 �M2

6

�
� 2M6 [M6;M8] c

5(M)�
M7 �M2

6

�2
@S7
@M7

=
M2
6 � [M6;M8] c

5(M)�
M7 �M2

6

�2
@S7
@M8

=
c52(M) + [M6;M8]

@c5(M)
@M8

M7 �M2
6

Using the formula for the inverse of a 2x2 matrix

c5(M) =
1

M4 �M2
2

�
M4M6 �M2M8

M8 �M2M6

�

49



we have

@c5(M)

@M2
=

1

M4 �M2
2

�
2M2c

5(M)�
�
M8

M6

��
@c5(M)

@M4
=

1

M4 �M2
2

�
�c5(M) +

�
M6

0

��
@c5(M)

@M6
� 1

M4 �M2
2

�
M4

�M2

�
@c5(M)

@M8
� 1

M4 �M2
2

�
�M2

1

�
All remaining terms @Si=@Mj not listed above are equal to zero.
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