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Abstract

This paper investigates whether codependence restrictions can be uniquely imposed on VAR

and VEC models via the so-called pseudo-structural form used in the literature. Codependence

of order q is given if a linear combination of autocorrelated variables eliminates the serial corre-

lation after q lags. Importantly, maximum likelihood estimation and likelihood ratio testing are

only possible if the codependence restrictions can be uniquely imposed. Applying the pseudo-

structural form, our study reveals that this is not generally the case, but that unique imposition is

guaranteed in several important special cases. Moreover, we discuss further issues, in particular

upper bounds for the codependence order.

Keywords: Codependence, VAR, cointegration, pseudo-structural form, serial correlation

common features

JEL classification: C32

∗We are grateful to Kyusang Yu and participants of seminars at the Central Bank Norway, the Humboldt Uni-

versity Berlin, the Leibniz University Hannover, and the University of Mannheim for very helpful comments. Of

course, all remaining errors are our own. The research was supported by the Deutsche Forschungsgemeinschaft

(DFG) through the SFB 884 ’Political Economy of Reforms’.
†Corresponding author. University of Mannheim, Center for Econometrics and Empirical Economics, L7, 3-

5, D-68131 Mannheim, Germany, trenkler@uni-mannheim.de, phone: +49 (0)621 181-1852, fax: +49 (0)621

181-1931
‡University of Regensburg, Department of Economics and Econometrics, D-93040 Regensburg, Germany,

enzo.weber@wiwi.uni-regensburg.de, phone: +49 (0)941 943-1952, fax: +49 (0)941 943-2735, and Institute of

Employment Research



1 Introduction

We investigate whether codependence restrictions can be uniquely imposed on vector autore-

gressive (VAR) and vector error correction models (VECMs) via their so-called pseudo-structural

forms (PSFs). Based on Gourieroux & Peaucelle (1988, 1992), Vahid & Engle (1997) speak of

codependence of order q if the (nonzero) impulse responses of a vector of variables are collinear

after the first q periods. Thus, the according linear combination has a serial correlation structure

that drops to zero after q lags. Codependence with q = 0 is equivalent to a serial correlation

common feature (SCCF) as introduced by Engle & Kozicki (1993), where an SCCF itself is

a special case of Engle & Kozicki (1993)’s more general concept of common features. Other

related concepts are e.g. scalar component models (SCMs), see Tiao & Tsay (1989), or polyno-

mial serial correlation common features (PSCCFs), see Cubadda & Hecq (2001).

We are in particular interested in imposing codependence restrictions on VAR models,

which was first discussed by Vahid & Engle (1997) and by Vahid & Engle (1993) for SCCFs.

If codependence can be uniquely imposed on a VAR, then efficient maximum likelihood (ML)

estimation of the codependent VAR and corresponding likelihood ratio (LR) testing for code-

pendence are possible. Moreover, the imposition of common cyclical features on a VAR can

lead to higher accuracy of forecasts and of estimates of impulse-response functions as demon-

strated by Vahid & Issler (2002). Therefore, it is of interest to analyze whether codependence

can be uniquely imposed on a VAR.

Vahid & Engle (1993) have introduced the PSF in order to impose SCCF restrictions on a

VECM. Schleicher (2007) extends this approach to the setup of codependence within a VECM.

We will more generally study the usefulness of the PSF for analyzing codependence in stable

finite-order VARs as well as in VEC models for variables that are integrated of order one, I(1).

The leading case will be a stable VAR of order p, VAR(p), since it is possible to transform

(non-)cointegrated I(1) systems into stable finite-order VAR processes, see e.g. Paruolo (2003)

and Franchi & Paruolo (2011). We will show that the PSF does not generally allow to uniquely

impose codependence restrictions on a VAR. To our knowledge, this fact has not been discussed

in detail in the literature so far.

The structure of interest is a relationship which links the reduced form VAR parameters to

the PSF parameters that represent the codependence restrictions, see equation (2.8) and there-

after. The motivation is to obtain the restricted reduced form parameters by transforming the

PSF. This approach of rotating the system only works if the matrix of contemporaneous PSF
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parameters is of full rank. However, this property is not always guaranteed. A rank reduction

occurs if certain additional restrictions on the moving average (MA) representation of the VAR

process are present. Notwithstanding, we can separate several important cases where unique

imposition of the relevant parameter restrictions is guaranteed. Moreover, we summarize upper

bounds for the codependence order q within the VAR framework for various cases.

The plan for the paper is as follows. We first discuss imposing codependence restrictions

for the setup of stable VAR models in the next section. Section 3 deals with codependence in

case of nonstationary variables, in particular with VECMs. The last section concludes.

2 Stable VAR Models

2.1 Model Framework and Definitions

We assume that the n-dimensional time series xt follows the reduced form VAR(p),

xt = A1xt−1 + A2xt−2 + · · ·+ Apxt−p + ut, t = 0, 1, 2, . . . , (2.1)

where Aj , j = 1, 2, . . . , p, are (n× n) parameter matrices and the roots of

k(z) ≡ det(A(z)) ≡ det(In − A1z − · · · − Apzp) (2.2)

are outside the unit circle. The error terms ut are i.i.d.(0,Ω) with positive definite covariance

matrix Ω and finite fourth moments. To simplify the exposition we do not consider deterministic

terms. They could be included by replacing xt with xt + µt, where µt can contain for instance

a linear trend, a constant term and seasonal dummy variables.

The initial values x0, x−1, . . . , x−p+1 can always be chosen such that xt has the linear vector

moving average (MA) representation xt = Θ(L)ut with Θ(L) =
∑∞

i=0 ΘiL
i, where L is the lag

operator with Lxt = xt−1. Here, Θ0 = In and Θi =
∑i

j=1 Θi−jAj for i = 1, 2, . . ., with Aj = 0

for j > p, see Lütkepohl (2005).

Following Vahid & Engle (1997), codependence of order q is present in xt if there exists a

nonzero n× sq matrix δ0 with

δ′0Θi = 0, for all i > q and δ′0Θq 6= 0. (2.3)

The sq vectors represented by the columns of δ0 are labeled as codependence vectors, a term

introduced by Gourieroux & Peaucelle (1988, 1992). Hence, we have δ′0xt = δ′0Θ(L)ut =
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δ′(L)ut, where we assume that δ(z) = Θ′(z)δ0 =
∑q

i=0 δiz
i is a full column rank matrix

polynomial of order q. A matrix polynomial δ(z) =
∑q

i=0 δiz
i, δi ∈ Rn×sq , 0 < sq < n, is of

full column rank if δ0 and δq are of full column rank, see Franchi & Paruolo (2011). The full

rank condition on δ0 assures that the sq codependence vectors in δ0 are linearly independent,

whereas the full rank condition on δq rules out that the codependence vectors can be combined

such that a smaller order than q is obtained. The latter would imply that the codependence order

q is not minimal.

Note that the linear combinations in δ′0xt can be regarded as special cases of a so-called

scalar component model (SCM), see Vahid & Engle (1997). According to Tiao & Tsay (1989), a

nonzero linear combination v′0xt of an n-dimensional process xt follows an SCM(p,q) structure

if one can write

v′0xt +

p∑
j=1

v′jxt−j = v′0ut +

q∑
j=1

h′jut−j

for a set of n-dimensional vectors {vj}pj=1 and {hj}qj=1 with vp 6= 0 and hq 6= 0. Thus, code-

pendence of order q with respect to xt results in an SCM(0, q), where q = 0 represents the case

of an SCCF.

In general, several codependence orders, say k, can be generated by linearly independent

codependence vectors, see e.g. Schleicher (2007). In this case, we have k nonzero n × sj

matrices δ0,[j] with δ′0,[j]Θi = 0 for all i > j and δ′0,[j]Θj 6= 0, where j = q1, q2, . . . , qk indicates

the codependence order and sj is the number of codependence vectors with an order of qj . Each

of the matrix polynomials δ[j](z) = Θ(z)δ0,[j], that can be obtained analogously to δ(z) above,

is assumed to be of full column rank. In total there are s = sq1 + sq2 + · · ·+ sqk codependence

vectors, which we require to be linearly independent.

Analogously to the case of cointegration vectors, the linearly independent codependence

vectors in δ0,[j], j = q1, q2, . . . , qk, are only identified up to an invertible transformation. There-

fore, an identification structure has to be imposed. However, one has to pay particular attention

to the identification scheme applied to D = (δ0,[q1], δ0,[q2], . . . , δ0,[qk]) in order to maintain the

composition of the codependence orders. The typical identification schemeD∗ = [Is : D′(n−s)]
′,

where Dn−s is an (n−s)×s matrix containing the free parameters, will generally produce a set

of s linearly independent vectors generating codependence of the largest order involved. This is

the case, because the columns in D∗ are linear combinations of all columns of the unidentified

matrix D, in general. Hence, the scheme in D∗ only identifies the vector space with respect to

the largest codependence order. As a consequence, the full column rank assumption imposed
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on the last parameter matrix of the polynomials δ[j](z), j = q1, q2, . . . , qk, is not necessarily

satisfied for a particular chosen identification structure. In the following subsections, we will

comment on appropriate schemes for D for those cases for which uniquely imposing the code-

pendence restrictions is possible.

2.2 Unique Imposition of Codependence Restrictions:

Single Codependence Vector

In the following, we describe the restrictions the VAR parameters have to satisfy in case of

codependence and discuss whether they can be uniquely imposed via the PSF of a VAR. To

simplify the exposition we first focus on the case of a single codependence vector associated

with codependence order q. Hence, δ0 is an n× 1 vector. In section 2.3, we discuss the general

case of s codependence vectors that may generate k ≤ s different codependence orders.

Parameter restrictions and their imposition are conveniently discussed by adopting the frame-

work of Schleicher (2007) to the case of VAR models. Schleicher’s (2007) approach relies on

the PSF of a state-space representation of the VECM. Here, we use the following state-space

representation based on the companion form of the VAR.

xt = JXt

Xt = AXt−1 + Ut,

(2.4)

where

J = [In 0n×n(p−1)],

Xt = [x′t, x
′
t−1, . . . , x

′
t−p+1]

′, Ut = [u′t 0n(p−1)×1]
′,

and

A =



A1 A2 · · · Ap−1 Ap

In 0 · · · 0 0

0 In · · · 0 0
...

... · · · ...
...

0 0 · · · In 0


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is an np× np companion matrix. Thus, A satisfies the companion form restrictions R′A = Q′

with R = [0n(p−1)×n : In(p−1)]
′ and Q = [In(p−1) : 0n(p−1)×n]′.

By iterative substitution we obtain

Xt = AXt−1 + Ut

= A2Xt−2 + Ut + AUt−1

...

= Aq+1Xt−q−1 +

q∑
j=0

AjUt−j.

Hence, codependence of order q is given if

δ′0JA
q 6= 0 and (2.5)

δ′0JA
q+1 = 0. (2.6)

The equations (2.5)-(2.6) translate the restrictions on the MA parameter matrices given in

(2.3) to (nonlinear) restrictions on the reduced form VAR parameters. Clearly, (2.6) implies that

γ′0A
i = 0 for all i > q + 1 with γ0 = J ′δ0. Thus, further restrictions on Ai for i > q + 1 are

not necessary. We define γ′i = γ′0A
i, i = 1, 2, . . .. Following Schleicher (2007), we can write

the restrictions (2.5)-(2.6) as

γ′iA = γ′i+1, 0 ≤ i < q − 1,

γ′qA = 0.

(2.7)

Note that the vectors γi, i = 0, 1, . . . , q, are linearly independent, see Schleicher (2007, Lemma

1). Thus, (2.7) translates the nonlinear codependence constraints on the VAR parameters into

a set of linear restrictions regarding the companion form parameters in A. We further define

Υ = (γ0, γ1, · · · , γq).

There exists an upper bound for the order q, say qmax, in the VAR framework. The upper

bound qmax is the largest codependence order possible if yt follows a finite-order VAR process.

Such an upper bound is due to the (parameter) restrictions generated by the recursive relation-

ship of the VAR and MA parameter matrices. For the algebraic details on this issue we refer

to Franchi & Paruolo (2011). It follows from the results of Franchi & Paruolo (2011, Theorem

3.2) that qmax is equal to (n − 1)p; see also Theorem 1 given in the next section and its proof

in the Appendix. The upper bound qmax is clearly larger than the one that would be obtained
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if one applies the argumentation of Schleicher (2007, Lemma 1) to the setup of a VAR. The

approach of Schleicher (2007) relies on the assumption that the columns of Υ, describing the

codependence restrictions, and the columns of the matrix R, describing the companion restric-

tions, are jointly linearly independent.1 However, codependence and companion restrictions

can be linearly dependent as discussed below.

The fact that the sets of vectors describing the codependence restrictions and the vectors

capturing the companion restrictions can be linearly dependent already indicates that uniquely

imposing codependence restrictions may not be possible in general. In the following, we discuss

this issue in more detail in relation to the PSF of the VAR.

To set up a PSF representation, let us summarize the restrictions from (2.7) by Υ′A = Υ0′

with Υ0 = (γ1, γ2, . . . , γq, 0np×1) being an np × (q + 1)-dimensional matrix. Remember that

A satisfies R′A = Q′. Moreover, one has to add, if necessary, equations representing free

parameters in A, see Schleicher (2007). These may be expressed by R′PA = P ′, where RP and

P will be defined for appropriate cases later on. Defining Ψ = [Υ : R : RP ]′ and Φ = [Υ0 :

Q : RP ]′, the system ΨA = Φ is obtained. In fact, it is this set of equations linking the reduced

form parameters in A and the PSF parameters in Ψ and Φ that underlies the PSF presented later

on. Obviously, the reduced form parameters, satisfying the codependence restrictions, can be

uniquely recovered from the PSF parameters if Ψ is invertible. Put differently, if Ψ is invertible,

then the parameter restrictions inducing codependence can be uniquely imposed on the reduced

form VAR via the PSF. Moreover, note that we strive to uniquely obtain the restricted reduced

form parameters from the PSF parameters and not the other way around. Usually, the latter

constitutes the problem to be solved if structural models are of interest.

A unique and invertible Ψ requires that the columns of M = [Υ : R] are linearly indepen-

dent. As pointed out above, this is not automatically guaranteed. In fact, if q ≥ n, it is easily

seen that the columns in M have to be linearly dependent such that the vectors γj , j = 0, . . . , q,

in Υ together with a subset of the companion restrictions generate some of the remaining com-

panion restriction(s). Furthermore, linear dependence can also occur for q < n. We provide a

numerical example for that case as well as for q ≥ n in Appendix A.

It is possible to characterize the linear dependence of the columns in M by restrictions on

1The problem in Schleicher (2007, Lemma 1) is the following. Let θ1, θ2, . . . , θk be a set of 1 × n linearly

independent vectors. Moreover, each of these vectors is (individually) linear independent from an m × n matrix

M with rank m < n. In contrast to the assumption underlying Schleicher (2007, Lemma 1), this setup does not

imply that the vectors θ1, θ2, . . . , θk and the rows of M are jointly linearly independent.
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the MA coefficient matrices. First, note that the last (n − 1)p rows of R represent an identity

matrix and the first n rows of R are a zero matrix. Hence, the columns of Υ and R are linearly

dependent if the columns of the first n rows of Υ linearly depend on each other. In other

words, due to the structure of R one only needs to consider the first n rows of Υ to study

linear dependence of the columns in M . Since the upper-left n × n block of Ai is equal to

Θi, i = 1, 2, . . ., and since γ′i = γ′0A
i, the first n rows of Υ are given by Υδ = (δ0, δ1, . . . , δq),

where δ′i = δ′0Θi, i = 0, 1, . . . , q, are the n×1 parameter matrices of the matrix polynomial δ(z)

defined above. Remember that we have sq = 1 in the current setup such that δ(z) is actually a

vector polynomial.

Thus, if δ′0Θi, i = 0, 1, . . . , q, linearly depend on each other, then the columns of M are

linearly dependent. Hence, if the codependence vector δ0 also imposes restrictions on the first

q MA coefficient matrices described by linear dependence of δ′0Θi, i = 0, 1, . . . , q, then the

companion and codependence restrictions linearly depend on each other. As a consequence, the

matrix Ψ, as defined above, is not of full rank and therefore not invertible.

There emerge at least two questions. First, are there setups in which the columns of M =

[Υ : R] cannot be linearly dependent? Second, if there is linear dependence, can one uniquely

impose a dependence structure such that an adjusted full rank matrix Ψ can be obtained?

With respect to the first question it turns out that linear dependence is always ruled out for

q = 0 and q = 1. In the former case of an SCCF, Υ consists only of γ0 which is independent

of R. In the latter case of codependence of order q = 1, we have Υ = [γ0 : γ1]
′, so that

dependency between Υ and R would only be present if δ′0A1 = cδ′0 for some c ∈ R. Note that

γ1 = [δ′0A1 : δ′0A2 : · · · : δ′0Ap]
′ and γ′1A = 0. Using δ′0A1 = cδ′0, the latter zero constraints

can be expressed as cδ′0 + δ′0A2 = cδ′0A2 + δ′0A3 = · · · = cδ′0Ap−1 + δ′0Ap = cδ′0Ap = 0. From

here it is easy to see that this leads to an SCCF setup, what contradicts the assumption γ′0A 6= 0

underlying codependence of order one. For 1 < q < n both scenarios with linear dependence

and independence of the columns in M , i.e. of companion and codependence restrictions, are

possible.

Let us assume that q ≤ 1 such that the columns ofM have to be linearly independent. Then,

if q + 1 < n, the free parameters can be introduced by R′PA = P ′ as indicated above, except

for the case n = 2 and q = 1 where this is not necessary. The np× (n− q − 1) matrix RP has

to be designed such that Ψ is of full rank. This is always possible, but the choice of Rp depends

on the normalization of the codependence vector. E.g. if the first element of δ0 is normalized

to one, then Rp = [0(n−1)×1 : In−1 : 0(n−1)×n(p−1)]
′ ensures full column rank of Ψ in case of
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an SCCF (q = 0). For q = 1, one of the second to n-th columns of the just defined Rp has to

be set to zero. Full rank of Ψ is guaranteed for at least one of these choices because otherwise

δ′1 = δ′0A1 and δ′0 are linearly dependent what is a contradiction.2 Using the above definitions

of Ψ and Φ one obtains the PSF representation for the state-space system (2.4)

xt = JXt

ΨXt = ΦXt−1 + ΨUt,

(2.8)

with Ψ being of full rank. Hence, the reduced form parameters are then obtained via A = Ψ−1Φ

from the PSF parameters in Ψ and Φ. We also see that there are n(p − 1) + 1 restrictions

underlying the PSF because A contains pn2 reduced form parameters but there are only [(n −
1) + qnp+ (n− q− 1)np] PSF parameters in Υ, Υ0 and P assuming that the first element in δ0

is normalized to one.

Regarding the second question, it should be noted that linear dependence in the columns of

M can be caused by different dependence structures in the columns of the first n rows of Υ.

Hence, a matrix Ψ that is adjusted in order to eliminate a particular type of linear dependence

structure can turn out to be of reduced rank if the specific dependence structure considered is

incorrect. In other words, it is generally not possible to uniquely retrieve the (restricted) reduced

form parameters from the PSF if the imposed dependence structure is wrong.

As mentioned above, for 1 < q < n, setups with and without linear dependence of com-

panion and codependence restrictions can occur. If one makes the explicit assumption that the

columns in M are linearly independent, then the PSF uniquely delivers the appropriately re-

stricted reduced form parameters. However, such an assumption is not harmless. If the columns

of M are linear dependent, then M has no longer full column rank and Ψ in (2.8) is not invert-

ible.

2.3 Unique Imposition of Codependence Restrictions:

Multiple Codependence Vectors

For the general case of s codependence vectors with potentially k ≤ s different codependence

orders the foregoing discussion applies accordingly. Let δ0,1, δ0,2, . . . , δ0,s be the s codepen-

dence vectors associated with the codependence orders qj , j = 1, 2, . . . , s. Hence, several
2In case of inadequate normalization numerical problems during optimization are likely to occur. However,

there always exists at least one appropriate variant.
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codependence vectors may relate to the same codependence order. Accordingly, we do not

summarize vectors with the same order in one matrix as done in section 2.1 when introducing

the setup of k different codependence orders. This is done for notational convenience.

Each of the codependence vectors will satisfy a corresponding version of (2.5) and (2.6)

and induces a corresponding set of restrictions as in (2.7). Regarding the latter, we define

γ0,j = J ′δ0,j and γ′i,j = γ′0,jA
i, j = 1, 2, . . . , s. Moreover, we now use Υ = [Υ1 : Υ2 : · · · : Υs],

where Υj = (γ0,j, γ1,j, · · · , γqj ,j), j = 1, 2, . . . , s.

Although γ0,1, γ0,2, . . . , γ0,s do not linear depend on each other and the columns in Υj are

linearly independent for fixed j as well, the columns in Υ are not generally linear independent.

Note that this is in contrast to the claim in Schleicher (2007, Proof of Theorem 1) for the

case of a VECM. Numerical examples with linear dependence can be easily found. Thus,

in contrast to the case of a single codependence vector, a reduced column rank structure in

M = [Υ : R] can also occur even without considering the companion restrictions captured by

the matrix R. However, if the columns of Υ are linearly dependent, then also the upper parts of

the columns, made of the first n rows, linearly depend on each other. Analogously to the case

s = 1, this results in linear dependence of companion and codependence restrictions. The first

n rows of the columns in Υ can be expressed as δ′0,jΘi, j = 1, 2, . . . , s and i = 0, 1, . . . , qj .

Hence, if δ′0,jΘi, j = 1, 2, . . . , s and i = 0, 1, . . . , qj , are linearly dependent, then codependence

and companion restrictions linearly depend on each other as claimed. Accordingly, the matrix

Ψ = [Υ : R : RP ]′ is not of full column rank and the corresponding PSF does not uniquely

deliver the restricted reduced form parameters.

It is interesting to highlight one potential setup implied by linear dependence of δ′0,jΘi,

j = 1, 2, . . . , s and i = 0, 1, . . . , qj . If two codependence vectors, say δ0,1 and δ0,2, generate the

same codependence order q, then linear dependence of δ′0,1Θq and δ′0,2Θq means that a linear

combination of δ0,1 and δ0,2 results in codependence with an order of at most q−1. This case was

ruled out by the assumption that the corresponding matrix polynomial δ[q](z) is of full column

rank. Hence, a PSF with an invertible matrix Ψ, what, in fact, excludes linear dependence of

δ′0,jΘi, j = 1, 2, . . . , s and i = 0, 1, . . . , qj , assures the full column rank assumption regarding

δ[qj ](z), j = 1, 2, . . . , k.

Similar to the single codependence vector case, several dependence structures in M may

exist for a particular combination of codependence orders. Hence, it is in general not possible

to impose a unique dependence structure for a particular set of codependence orders. However,

there are a two setups for which linear independence of the columns in M is guaranteed such
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that the restricted reduced form parameters are uniquely obtained from the PSF model. The first

setup occurs if all s ≤ n codependence vectors satisfy an SCCF. In this case, the s columns of

the matrix Υ are equal to γ0,1, γ0,2, . . . γ0,s, respectively, which are jointly independent from the

columns in R. Therefore, the columns in M have to be linearly independent.

The second setup is described by one codependence vector, say the first one, generating an

order of q1 = 1, while the other s − 1 < n − 1 vectors induce SCCFs. The argument runs

as for the case s = 1 using the additional fact that γ′0,jA = 0 for j = 2, 3, . . . , s. This is the

only setup with codependence of order one for which the restricted reduced form parameters

can be uniquely retrieved. Consider, e.g., the case s = 2 with q1 = q2 = 1 and, thus, Υ =

(γ0,1, γ1,1, γ0,2, γ1,2). Define δ′1,1 = δ′0,1A1 = δ′0,1Θ1 and δ′1,2 = δ′0,2A1 = δ′0,2Θ1 as the first n

rows of γ1,1 and γ1,2, respectively. Then, the linear combination δ′1,2 = c1δ
′
0,1 + c2δ

′
0,2 + c3δ

′
1,1

can exist with a nonzero vector c = (c1, c2, c3) so that the columns in M = [Υ : R] are linearly

dependent. The situation does not change if a codependence order of one is jointly considered

with orders larger than one.

In order to determine the number of restrictions underlying the VARs for which code-

pendence can be uniquely imposed, an appropriate identification scheme has to be applied

to D = (δ0,1, δ0,2, . . . , δ0,s). If only SCCFs or a single codependence vector associated with

order one are considered, then the identifying structure D∗ = [Is : D′(n−s)]
′ can be used. In

contrast to the general setup discussed in subsection 2.1, only vectors related to the same code-

pendence order, either q = 0 or q = 1, are involved. Therefore, no linear combinations of

vectors of different codependence orders occur so that the full column rank assumption on the

relevant finite-order matrix polynomial is satisfied. Using the definition of D∗, i.e. the corre-

sponding identified versions of δ0,j , say δ∗0,j , j = 1, 2, . . . , s, one obtains the identified vectors

γ∗0,j = J ′δ∗0,j .

If s SCCFs are considered, then s(n − s) parameters are contained in the identified (code-

pendence) vectors γ∗0,1, γ
∗
0,2, . . . , γ

∗
0,s. Moreover, there are np(n− s) free parameters in P such

that the PSF has n2p − s(n(p − 1) + s) parameters. Setting s = 1, the same number of PSF

parameters is obtained in the case of a single codependence vector with q = 1: n−1 parameters

in γ∗0,1, np parameters in γ∗1,1 due to codependence of order one, and np(n − 2) parameters in

P . By contrast, the reduced form has n2p parameters. Therefore, s(n(p − 1) + s) restrictions

underlie the PSF of a codependent VAR with 1 ≤ s ≤ n SCCFs or s = 1 vector associated with

codependence order one.

If s0 = s − 1 SCCF vectors δ0,1, δ0,2, . . . , δ0,s0 are combined with the codependence vector
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δ0,s of order one, then the identification scheme

D∗∗ =

Is0 0s0×1

D0 (1 : D′1)
′


is sufficient to ensure uniqueness, where D0 and D1 are (n − s0) × s0 and (n − s0 − 1) × 1

matrices of free parameters, respectively. In fact, the first s0 columns only have to be identified

with respect to the SCCF vectors, and the last column is then chosen to be linearly independent

of the first s0 columns. D∗∗ contains (n−s0)(s0 +1)−1 = s(n−s)+(s−1) parameters, s−1

more than inD∗ above, where only a single codependence order is involved. Therefore, the PSF

of a codependent VAR with s− 1 SCCF vectors and one vector associated with codependence

order one is characterized by s(n(p− 1) + s)− (s− 1) restrictions.

To sum up, a PSF that uniquely provides the restricted reduced form parameters can only

be obtained if companion and codependence restrictions are linearly independent. The code-

pendence vectors impose additional restrictions on the MA coefficient matrices in case of linear

dependence of companion and codependence restrictions. Algebraically, linear dependence

of companion and codependence restrictions results in linear dependence among the columns

of the first n rows of the matrix M of which the entries are nonlinear functions of the VAR

parameters. Hence, such dependence introduces nonlinear constraints on the companion ma-

trix. Accordingly, the advantage of the companion form, which lies in translating the nonlinear

VAR parameter restrictions implied by codependence into linear restrictions on the companion

matrix, disappears. Therefore, it is not surprising that uniqueness cannot be achieved via the

pseudo-structural representation if companion and codependence restrictions are linearly de-

pendent. In fact, the set of models where unique imposition is possible is rather limited. Only

setups with SCCFs (q = 0), codependence of order one generated by a single codependence

vector, or a combination of these two always lead to a unique set of restricted reduced form pa-

rameters. In case of SCCF, the restrictions can be directly imposed on the VAR parameters and

are, therefore, linear. Accordingly, a unique imposition of the restrictions is easily achieved.

Nevertheless, from an applied point of view, the VAR framework is of limited use for an-

alyzing general codependence restrictions since uniqueness is rarely given. Accordingly, the

scope of ML estimation of codependent VARs and conventional LR testing for codependence

is narrowed to a few, albeit potentially important, special cases. These facts shall inform future

work in this research area.
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3 VEC Models

We now assume that xt is I(1) and potentially cointegrated. Defining Π = −(In−A1−· · ·−Ap)
and Γj = −(Aj+1 + · · · + Ap), j = 1, . . . , p − 1, we can re-write (2.1) in the vector error

correction form

∆xt = Πxt−1 +

p−1∑
j=1

Γj∆xt−j + ut, t = 1, 2, . . . . (3.1)

The relationship of the VAR and VECM representations can be compactly described by A(z) =

In −A1z − · · · −Apzp = In∆−Πz − Γ1∆z − · · · − Γp−1∆z
p−1. The error term assumptions

of section 2 still apply. We make the following new assumption, see e.g. Johansen (1995).

Assumption 1.

(a) The roots of k(z) in (2.2) are either |z| > 1 or z = 1.

(b) The matrix Π has reduced rank r < n, i.e. the matrix Π can be written as Π = αβ′, where

α and β are n× r matrices with rk(α) = rk(β) = r.

(c) The matrix α′⊥Γβ⊥ has full rank, where Γ = In −
∑p−1

j=1 Γj and where α⊥ and β⊥ are the

orthogonal complements to α and β.

Given Assumption 1, xt is I(1) and the cointegrating rank is equal to r. Hence, we obtain

the Granger representation, see Johansen (1995, Theorem 4.2),

xt = C
t∑

s=1

us + C(L)ut + a0,

where C = β⊥(α′⊥Γβ⊥)−1α′⊥ and a0 is the initial condition.

If the variables are not cointegrated, i.e. if r = 0, then (3.1) reduces to a VAR(p−1) for ∆xt

and α⊥ = β⊥ = In. Hence, codependence can be analyzed in terms of ∆xt using the VAR(p−1)

representation. Thus, the definition in (2.3) for codependence of order q and the results on

unique imposition of the codependence parameter restrictions obtained in the previous section

apply accordingly. Note in this respect that s(n(p−2)+s) or s(n(p−2)+s)−(s−1) restrictions

underlie the codependent VAR for ∆xt depending on whether only vectors associated with the

same codependence order are considered or whether SCCF vectors are combined with a vector

generating codependence of order one. Codependence in terms of the first differences of I(1)

variables has been studied e.g. in Vahid & Engle (1997).
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If the variables in xt are cointegrated with r > 0, then the framework of Paruolo (2003) and

Franchi & Paruolo (2011) can be applied. They show that Yt ≡ (x′tβ : ∆x′tβ⊥)′ follows the

stable VAR(p) process Yt = Ã1Yt−1 + Ã2Yt−2 + · · · + ÃpYt−p + uot , with uot = (β : β⊥)′ut,

if Assumption 1 holds.3 The VAR parameters in Ã1, Ã2, . . . , Ãp are nonlinear functions of the

VECM parameters in (3.1) as well as β⊥, see e.g. Paruolo (2003, Appendix A).

Paruolo (2003) considers SCCFs in Yt and provides an extensive discussion on ML inference

regarding the corresponding model setup. Franchi & Paruolo (2011) characterize codependence

structures with respect to Yt. Yt is codependent of order q if there exists a nonzero (n×sq) matrix

δ ≡ (δ′(0) : δ(1))
′ with δ′Yt = δ′(L)uot and δ(z) =

∑q
i=0 δiz

i, δi ∈ Rn×sq , 0 < sq < n, being

again a full column rank matrix polynomial of order q.

As pointed out by Paruolo (2003), the matrix δ may only select elements either from β′xt

(δ(0) 6= 0, δ(1) = 0) or from β′⊥∆xt (δ(0) = 0, δ(1) 6= 0). The latter case refers to codependence

in ∆xt generated by codependence vectors of the form δβ⊥ = β⊥δ(1) that are orthogonal to

the cointegration matrix β. This is exactly the setup studied by Schleicher (2007) and Vahid &

Engle (1993). The former case of δ(0) 6= 0 and δ(1) = 0 has been discussed in Paruolo (2003)

and studied by Trenkler & Weber (2013). For the case of a single cointegration vector (r = 1),

δ(0) is a scalar and codependence is directly linked to the cointegration relation β′xt. Thus,

the cointegration vector β represents a codependence vector. If β′xt is codependent of order q,

i.e. if it has an SCM(0, q) representation, then a one-time shock to the cointegration error has

no effect after q periods. Hence, codependence in β′xt refers to the adjustment dynamics of the

system towards the cointegration equilibrium. The latter interpretation may also be applied in

case of r > 1 since δβ = βδ(0) also represents a set of cointegration vectors. Whether (some

of) the considered cointegration vectors or linear combinations of the cointegration matrix gen-

erate codependence of a certain order q is a matter of the identification scheme applied to the

cointegration matrix.

Since Yt has a stable VAR(p) representation, one can again apply the framework of the

previous section, now with respect to Yt, in order to define and analyze codependence for coin-

tegrated VECMs. Accordingly, only SCCF setups and the case of a single codependence vector

associated with q = 1 can be uniquely handled via the PSF. The corresponding codependent

VECMs are characterized by s(n(p − 2) + r + s) restrictions for setups with a single code-

pendence order of q = 0 or q = 1, or by s(n(p − 2) + r + s) − (s − 1) restrictions in case

3The matrix β⊥ can be replaced by an arbitrary matrix c⊥ of the same dimension as β⊥, such that c′⊥β⊥ is

square and of full rank, see Franchi & Paruolo (2011).
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of joint consideration of codependence vectors with q = 0 and q = 1. To see this, note first

that Ãp = (Ãp,0 : 0n×(n−r)), where Ãp is partitioned according to the two components in Yt,

see Franchi & Paruolo (2011, Proposition 7.1). Hence, β′⊥∆xt enters the process only with up

to p − 1 lags, i.e. the coefficients regarding β′⊥∆xt−p are zero in Ap. Accordingly, the reduced

form has n(n− r) parameters less compared to an unrestricted VAR(p) model. By contrast, the

number of parameters of the PSF is only reduced by (n − s)(n − r) given the PSF represen-

tation of the previous section. As a consequence, one obtains the aforementioned numbers of

restrictions.

If the focus is on codependence of order zero, one can use the framework of Paruolo (2003)

to test for SCCFs and estimate the weights in the linear combinations of Yt that generate the

SCCFs. This can be conveniently done using reduced rank techniques. Furthermore, it is possi-

ble to test restrictions on δ, e.g. δ(0) = 0 or δ(1) = 0. Note that replacing β by a superconsistent

estimate does not change the asymptotic properties of the aforementioned inference procedures,

see Paruolo (2003). For the case of q = 1 one has to rely on nonlinear ML inference since the

underlying restrictions are no longer linear in the VAR parameters.

Finally, we present in Theorem 1 the upper bounds for the codependence order q in relation

to the VAR for Yt.4 We also consider the special cases of r = n and r = 0 that refer to the

setups of section 2 and the non-cointegrated VAR, respectively. To our knowledge, most of the

upper bounds given in Theorem 1 have not been explicitly stated in the literature. A proof of

Theorem 1 can be found in the Appendix B.

Theorem 1. Let xt be an n-dimensional VAR(p) process as generated by (2.1) for which As-

sumption 1 holds such that Yt ≡ (x′tβ : ∆x′tβ⊥)′ follows a stable VAR(p). Moreover, it is

assumed that β = 0 and β⊥ = In if r = 0 and that β = In and β⊥ = 0 if r = n. Then,

(i) the maximum codependence order with respect to linear combinations of Yt is given by

qmax = (n−1)p−(n−r−1) for r < n and qmax = (n−1)p for r = n; (ii) the maximum code-

pendence order with respect to linear combinations of β′xt is given by qβmax = (n−1)p−(n−r)
for r > 0; (iii) the maximum codependence order with respect to linear combinations of β′⊥xt

is given by qβ⊥max = (n− 1)p− (n− r − 1) for r < n. �

4Note that the upper bound does not refer to the maximum of the sum of orders generated by linearly indepen-

dent codependence vectors. Instead, it states the maximum order which a single codependence order can produce

if the data follow a finite-order VAR process.
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4 Conclusions

This paper investigated whether codependence restrictions can be uniquely imposed on VARs

and VECMs via their pseudo-structural form. Practical relevance comes from the fact that ML

estimation and LR testing are only applicable if such a unique imposition is possible.

We have shown that the restricted reduced form VAR parameters cannot be uniquely ob-

tained from the pseudo-structural form in general. We applied a linear representation of the

codependence restrictions based on a companion form of the VAR. However, it was clarified

that the vectors describing the codependence restrictions and the vectors capturing the restric-

tions on the companion matrix can be linearly dependent. This fact impairs a unique imposition

of codependence restrictions.

Importantly, linear dependence is always ruled out for codependence orders zero (i.e., SCCF)

and one. For models featuring multiple codependence vectors we showed that this holds only if

all vectors generate SCCFs or at most one of them generates codependence of order one. More-

over, we provided upper bounds for the order of codependence both in VAR and VEC models.

These facts should be recognized in future applied and theoretical work on codependence. One

such example is given by Trenkler & Weber (2013) who discuss testing issues and apply the

concept to US short-term interest rate data. To be precise, a GMM approach to test for gen-

eral forms of codependence is presented. This approach avoids the imposition of codependence

restrictions on VAR models but rather uses these models for deriving a finite set of zero corre-

lation conditions. It should be noted in this respect that the limitations we have discussed in the

current paper do not refer to the concept of codependence itself. In fact, it is a useful framework

for analyzing the dynamics of multiple time series.

Appendix A: Numerical Examples

Consider a three-dimensional version of the VAR in (2.1) of order three with

A1 =


0.00 0.50 0.00

0.00 0.40 0.00

a31,1 0.00 a33,1

 , A2 =


0.00 0.36 0.00

0.00 0.00 0.00

0.00 0.00 0.00

 , and A3 =


0.00 a12,3 0.00

0.00 0.00 0.00

0.00 0.00 0.00

 .

We assume a31,1 6= 0 and a33,1 6= 0. If a12,3 = −0.16, then δ0 = (1 −1 0)′ is a codependence

vector which generates codependence of order q = 2 with respect to yt. We have γ0 = (1

−1 0 0 · · · 0)′, γ1 = γ′0A = (0 0.1 0 0 0.36 0 0 −0.16 0)′, and γ2 = γ′1A = (0 0.4 0 0
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−0.16 0 0 0 0)′ with γ′2A = 0. Here, A is the corresponding companion matrix of the three-

dimensional VAR(3). The vectors consisting of the first three elements of γ1 and γ2 represent

the vectors labeled by δ1 and δ2 in section 2.2. Obviously, δ1 and δ2 are linearly dependent

meaning that the codependence vector δ0 imposes additional constraints on the first two MA

parameter matrices. Hence, the current setup represents an example for q = 2 < 3 = n with

linear dependence of codependence and companion restrictions.

Let us extend the previous VAR to the lag order of four with

A4 =


0.00 −0.12 0.00

0.00 0.00 0.00

0.00 0.00 0.00


and set a12,3 = 0.14. Then, the codependence vector δ0 = (1 −1 0)′ is associated with a code-

pendence order q = 3. We obtain γ0 = (1−1 0 0 · · · 0)′, γ1 = γ′0A = (0 0.1 0 0 0.36 0 0 0.14

0 0 − 0.12 0)′, and γ2 = γ′1A = (0 0.4 0 0 0.14 0 0 − 0.12 0 · · · 0)′, γ3 = γ′2A =

(0 0.3 0 0 −0.12 0 · · · 0)′ with γ′3A = 0. Now, A is the companion matrix related to the

three-dimensional VAR(4). Obviously, the vectors δ1, δ2, and δ3 linearly depend on each other

such that we have an example for the case of q ≥ n with linear dependence of codependence

and companion restrictions.

We make two final remarks. First, the considered VAR processes are stable if |a33,1| < 1.

Second, the values of a31,1 and a33,1 do not affect the properties of codependence and linear

dependence with respect to the considered VAR models.

Appendix B: Proof of Theorem 1

Let us start by considering a stable n-dimensional VAR process zt of order p,

A(L)zt = ut,

where ut satisfies the same assumptions as in section 2. The autoregressive matrix polynomial is

given byA(z) = In−A1z−A2z
2−· · ·−Apzp. Then, let k(z) ≡ detA(z) andK(z) ≡ adjA(z)

be respectively the characteristic and adjoint polynomials with respect to A(z). As noted by

Franchi & Paruolo (2011, Section 2), k(z) and K(z) may have common factors such that one

can obtain so-called minimal characteristic and adjoint polynomials g(z) andG(z), respectively.

Now, let δ′zt = δ′(L)ut where δ(L) is a full rank matrix polynomial of order q such that zt

is codependent of order q. Franchi & Paruolo (2011, Theorem 4.2) show that 0 ≤ q ≤ dG − dg,
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where dG and dg are the orders of G(z) and g(z), respectively. Since the maximum value for

dG is n(p − 1) and the minimum value for dg is zero, one obtains qmax = n(p − 1) as upper

bound for the codependence order q. This confirms part (i) of Theorem 1 for r = n since

Yt reduces to xt, which is a stable VAR(p) process in case of r = n. Note that the upper

bound qmax = n(p− 1) can only be achieved if k(z) and K(z) have no common factors, i.e. if

k(z) = g(z) and K(z) = G(z), and if A(z) is unimodular, i.e. dg = 0.

As pointed out in section 3, Franchi & Paruolo (2011, Proposition 7.1) showed that Yt ≡
(x′tβ : ∆x′tβ⊥)′ follows a stable VAR(p) process if Assumption 1 holds for xt. Let the corre-

sponding autoregressive matrix polynomial be Ã(z) = In − Ã1z − Ã2z
2 − · · · − Ãpzp and let

G̃(z) and g̃(z) be the minimal characteristic and adjoint polynomials with respect to Ã(z). As

also mentioned in section 3, Ãp = (Ãp,0 : 0n×(n−r)) such that β′⊥∆xt enters the process only

with up to p− 1 lags. This fact has an impact on the maximum polynomial orders of the first r

and last n − r rows of G̃(z). Let these two maximum orders be labeled as dr
G̃,max

and dn−r
G̃,max

,

respectively. As can be easily verified, drG,max = (n − 1)p − (n − r), assuming r > 0, and

dn−rG,max = (n− 1)p− (n− r − 1), assuming r < n.

Since Yt is a stable VAR process, we can apply the inequality 0 ≤ q ≤ dG̃ − dg̃, where

d̃G and d̃g are the orders of G̃(z) and g̃(z), respectively. If only linear combinations of β′xt,

i.e. the first r rows of Yt, are of interest, then it suffices to consider the maximum order of

the first r rows of G̃(z), i.e. dr
G̃,max

, in order to determine the maximum codependence order.

Thus, the maximum codependence order with respect to linear combinations of β′xt is given

by qβmax = (n − 1)p − (n − r) assuming that r > 0. This proves part (ii) of Theorem 1.

Similarly, we obtain qβ⊥max = (n − 1)p − (n − r − 1) as the maximum codependence order for

linear combinations of β′⊥xt assuming that r < n, which shows part (iii). Since general linear

combinations of Yt may involve β′⊥xt, i.e. may include some of the last n − r rows of Yt, we

have qmax = (n − 1)p − (n − r − 1) as maximal codependence order for linear combinations

of Yt for r < n. This proves part (i) for r < n and completes the proof. �
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