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Abstract

We study optimal experimentation by a monopolistic platform in a two-sided mar-
ket. The platform provider faces uncertainty about the strength of the externality each
side is exerting on the other. It maximizes the expected present value of its profit
stream in a continuous-time infinite-horizon framework by setting participation fees or
quantities on both sides. We show that a price-setting platform provider sets a fee lower
than the myopically optimal level on at least one side of the market, and on both sides
if the two sides are approximately symmetric. If the externality that one side exerts
is sufficiently well known and weaker than the externality it experiences, the optimal
fee on this side exceeds the myopically optimal level. We obtain analogous results for
expected prices when the platform provider chooses quantities. While the optimal pol-
icy does not admit closed-form representations in general, we identify special cases in
which the undiscounted limit of the model can be solved in closed form.
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1 Introduction

In many real-world markets, transactions are intermediated through platforms. This paper
studies a monopolistic two-sided platform market in which each side of the market exerts a
positive externality on the other. The platform provider is uncertain about the size of the
positive externality each side of the market is exerting on the other and, therefore, may want
to experiment in order to learn about the externality parameters. Its aim is to maximize
expected lifetime profit in a continuous-time infinite-horizon setting.

In every instant of time, the platform provider’s actions determine its current profit as
well as the amount of information received. Thus, there is a trade-off between maximizing
current profit and extracting information that will increase future profits. The higher the
rate at which future profits are discounted, the more important current profit becomes, up to
the extreme of myopic behavior which completely ignores information acquisition. Reversely,
the benefit of information increases if the discount rate decreases, up to the opposite extreme
of no discounting when maximal weight is put on learning.

We consider two variants of the model, one in which the platform provider sets prices and
learns from quantities, and one in which the platform provider selects quantities and learns
from prices.! Prices take the form of membership or subscription fees. In both versions, we
first compute the myopic benchmark, then investigate the optimal experimentation policy
of a forward-looking platform provider, and finally consider the undiscounted limit in which
experimentation is maximal. Our investigation of the optimal experimentation policy relies
on an analysis of the first-order conditions associated with the platform provider’s Bellman
equation; we show that the second-order conditions for a maximum are always satisfied. In
general, there are no closed-form solutions for the platform provider’s value function and
optimal policy. Turning to the undiscounted limit, however, we are able to identify special
cases of the model that yield a maximal experimentation policy in closed form.

In the price-setting version of the model, we first establish that the experimenting plat-
form provider will charge a fee lower than the myopic benchmark on at least one side of the
market. This immediately implies that if the two sides are approximately symmetric with
respect to the participants’ intrinsic platform value, the strength of the externality and the
informativeness of observed quantities, the provider will charge fees lower than their myopi-
cally optimal counterparts on both sides of the market. In sufficiently asymmetric settings,
however, the platform provider may find it optimal to charge a fee higher than the myopic
benchmark on one side of the market. More precisely, we show that a price increase may
occur on a side that exerts an externality the size of which is relatively well known and in
expectation lower than the one it experiences. In such a situation, it is optimal to increase
participation on the side that exerts the more wide-spread externality by lowering the fee
there, as this side conveys more information, and to extract part of the additional surplus
through a higher fee on the side that exerts the weaker externality. We numerically illustrate
the price paths that emerge under myopic and infinitely patient platform provider.

In the quantity-setting variant of the model, we obtain analogous results for expected
prices. While the platform provider increases the quantity on both sides of the market

!The price-setting version of the model seems more widely applicable, but the quantity-setting version
turns out to be more tractable.



relative to the myopic benchmark, this may entail an increase in the expected price on one
side relative to the myopic optimum if the externality that this side exerts is much weaker
than the externality it experiences.

Pricing implications in two-sided markets have received a lot of attention in industrial
economics recently. In general, a market is said to be two-sided whenever potential partici-
pants care about the number of counterparts on the other side of the market—i.e., when each
side exerts an externality on the other side, be it positive or negative. Potential interactions
take place on some platform or by means of some vehicle, allowing the provider of such a
platform or vehicle to charge participants for services and to manage usage on both sides.

Real world examples and applications of two-sided markets are manifold. Examples in-
clude payment systems (where card holders will want to hold a card if many merchants
accept it, while merchants will be willing to accept cards that many customers hold), game
consoles (players, software developers), smart phones (users, application developers), night-
clubs and matching agencies (men, women), shopping malls, supermarkets, and department
stores (where consumers are interested in a large variety of products, and producers in a
large number of customers).

Seminal papers on two-sided markets are Rochet and Tirole (2003, 2006) and Armstrong
(2006). For a theoretical investigation of media platforms see, in particular, Anderson and
Coate (2005). A general model of monopoly platforms is analyzed by Nocke, Peitz, and
Stahl (2007). Empirical work includes Rysman (2004) and Kaiser and Wright (2006). For a
selective survey, see Rysman (2009). None of the existing literature treats two-sided markets
in a setting of uncertainty where it is unclear how strong the relevant externalities are,
and where the platform provider might benefit from experimenting with prices or quantities
in order to learn about the true state of the world. Relative to the existing literature on
two-sided markets, our contribution is to introduce uncertainty and learning into the set-up
proposed by Armstrong (2006). This allows us to analyze how the optimal price structure
differs from the myopic benchmark and how it evolves over time. Our analysis suggests that
markets characterized by cross-group externalities of uncertain size provide incentives for
the experimenting platform provider to initially lower at least one price. This provides a
new rationale for low introductory prices in dynamic two-sided markets.?

The economics literature on optimal experimentation by a single Bayesian decision maker
starts with the work of Prescott (1972) and Rothschild (1974); a brief overview of this
literature can be found in Keller and Rady (1999). Our contribution here is to extend the
analysis of optimal experimentation to two-sided markets and, building upon the infinite-
horizon continuous-time model of Keller and Rady (1999), to provide a tractable framework
for it. To the best of our knowledge, ours is the first experimentation model in which the
decision maker has more than one instrument (i.e., two quantities or two prices) with which to
trade off exploration versus exploitation. Because of this, even a platform provider primarily
concerned about information acquisition can still pursue the secondary goal of current profit
maximization: from all pairs of actions generating the same amount of information, the
optimal policy selects the pair with the highest current profit.

2 An alternative explanation could be dynamic consumer behavior which might make a platform provider
strive to build up a critical mass. We exclude this channel by assuming that participants can revise their
participation decision in each period at no cost.



The remainder of the paper is structured as follows. Section 2 presents the model for the
price-setting platform provider and characterizes the evolution of beliefs. Section 3 analyzes
the directions of optimal experimentation, while Section 4 elaborates on the maximal exper-
imentation policy. The optimal policy of a quantity-setting platform provider is analyzed in
Section 5. Section 6 concludes. Technical proofs are relegated to the appendix.

2 The Model

We propose a two-sided market model following Armstrong (2006) to focus on participation
decisions. For tractability reasons, we analyze a setting with linear demand functions on both
sides of the market. We refer to the two sides as A and B. Depending on the application,
these may be buyers and sellers, advertisers and readers, or men and women. The novelty is
to introduce uncertainty with respect to the cross-group externality parameters. Arguably,
such uncertainty is an important feature of platform industries: a platform provider typically
cannot perfectly foresee how strongly one side reacts to the number of users on the other
side and has to infer this from market outcomes which noisily reveal the true state of the
world.

2.1 The price-setting platform provider

In each period, there is a continuum of participants on both sides of the market. Invoking
a uniform distribution over the value of the outside option (on a support that is sufficiently
large such that aggregate demand is decreasing when positive) gives rise to linear demand
functions. The platform provider can set membership fees (M4, M3p), but no usage fee.?
Suppose that the total mass of potential participants is such that demand n; on side ¢ =
A, B satisfies dn;/dM; = —1. The resulting masses of participants n4 and np are then
characterized by the system of linear equations

na = ug+ung — My, (1)

ng = mo+7nas— Mp, (2)

where uy and 7y are the intrinsic platform values, and @ and 7 are externality parameters.
For the sake of concreteness, we assume positive intrinsic values and positive externalities.
While the intrinsic values are common knowledge, the externality parameters are known
to market participants, but not to the platform provider.* The provider only knows that
(a,7) € {(u,m),(w,m)} with 0 <u<uw<land 0 <z <7 <1 We denote the probability
that the platform provider initially assigns to the realization (w,7) by pg and assume that

30ur notation closely follows Belleflamme and Peitz (2010).

4We impose this for the sake of tractability. If side A, say, does not know the strength of the externality
it exerts on the other side either, it has to form a belief about it. This, in turn, has to be taken into account
by the platform provider who then must form a belief about the true strength of the externalities as well as
about the belief of side A. We leave the analysis of such a model for future work. In the present set-up, only
the platform provider holds beliefs and learns.



this prior belief is non-degenerate, i.e., 0 < py < 1.°
As a7 # 1, the system (1)—(2) has a unique solution, given by

- M U — M
na(Ma, Mp,u,7) = &l A+ lm z)

1 —ar ’
— Mg + 7 (ug — M
np(Ma, Mg, i, 7) = —° Bltﬁa(;o 4

This constitutes the unique Nash equilibrium of the anonymous game that potential partic-
ipants play for given membership fees.

In every period ¢ € [0, 00|, the platform provider sets prices (M, M%) and then observes
noisy signals of the quantities na (MY, ML, @, 7) and ng(MYy, Mb, @, 7). More precisely, the
provider observes the cumulative quantity processes N and N with increments given by

dNY = na(MYy, My, a,7)dt + oadZ,

dN% = ng(MYy, My, a,7)dt + opdZk,
where Z and Z' are independent standard Brownian motions and the constants o4 and op
are positive. Note that, using normally distributed shocks, we cannot restrict the observed
quantities dN', and dN% to be positive. We will, however, only allow the platform provider
to choose prices such that, in expectation, demand is non-negative. Later, when we use

quantities as choice variables, we can explicitly rule out negativity.
The platform provider’s revenue increment is

dR; = MY dN+ MsdN%
= Mﬁl [nA(Mﬁl, Mgﬂ,fr) dt + aAdZﬁJ + M}; [nB(MZ, Mg,ﬂ, ) dt + UBdZH )

We normalize costs to zero. Hence, the platform provider’s total expected profits (ex-

pressed in per-period terms) are
o0
EP° {/ re_rtht} ,
0

where r > 0 is the discount rate. By the martingale property of the stochastic integral with
respect to Brownian motion, this expectation reduces to

o V re= { M ma(M'y, Mb, @, 7) + MY ng(M', M, @, 7)) dt
0
Let p; be the subjective probability at time ¢ that the platform provider assigns to the

realization (u,7). Invoking the law of iterated expectations, we can rewrite total expected
profits as

o | [ e R M0 a ®
0

5The assumption that the externality parameters are perfectly positively correlated is clearly restrictive.
Imperfect correlation leads to a much more complicated situation with two-dimensional beliefs. We will see
that our results for the quantity-setting scenario carry over to perfect negative correlation.



where
R(MA, MB7p) = MA EP [nA(MA7 M37 'll, ﬁ-)] + MB 10 [nB(MAa MB7 77’7 77—)] (4)

is the expected current revenue from charging the fees (M, Mpg) given the posterior belief
p-

2.2 The myopic benchmark

If the platform provider were myopic (corresponding to r = 00), it would maximize expected
current revenue at each instant. Under our parameter restrictions, this revenue is strictly
concave in (M4, Mp), so the myopically optimal fees,

(M(p), Mj(p)) = arg max R(My, Mg, p),
AiVIB

are well-defined.
To compute these fees, we write the expected quantities appearing on the right-hand side
of (4) as

EP [na(Ma, Mp, 0, 7)] = Lo(p)[uo — Ma] + La(p)[mo — MB],
EP [nB(MA> Mp,u, 7~T)] = 60(29)[”0 - MB} + EB(Z?)[UO - MA]7
where ]
_1-p p
lo(p) = l—au  1—71
and
~ (I-=pu pu

- _
( mg+ PT_
1—7u 1—7u

measure the expected direct and indirect effects, respectively, of lowering M4 or Mp.
With the dependence on the belief p suppressed, the right-hand side of (4) now becomes

[ﬁouU + EAWO]MA + [goﬂ'o + KBUO]MB — KOMX — [KA + KB]MAMB — KOM%

As 0 < ¥; < ly for i = A, B and hence 0 < {4 + {5 < 2{y, this quadratic function is indeed
strictly concave, and we obtain

202 — (€4 + Cp)la]ug — (La — p)lomg

‘LL p— E—
MA = Ug 4[3 N (KA +€B)2 ) (5)
202 — (La + L5)p) mo — (L5 — La)louq
'LL p— J—
Mo = 465 — (La+ Cp)? ‘ (6)

As is well known from the literature on two-sided markets, the myopically optimal fee
on one side of the market depends on market characteristics on both sides. Independent of
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the values of the externality parameters u,u, 7,7, the fee on either side is always increasing
in the intrinsic platform value on that same side. Whether or not the fee on one side is
increasing in the intrinsic platform value on the other side depends on the relative strength
of the cross-group externalities on both sides. To be precise, the fee M/} is increasing in
if and only if /4 — ¢ > 0. Broadly speaking, when the externality side A is experiencing is
higher than the one it is exerting, it benefits from the higher attractiveness of the platform
for participants on side B as the intrinsic platform value 7 rises, and can thus be charged
a higher price; in this sense, side A “subsidizes” side B.

Further, M can only exceed the intrinsic platform value ug if £4 exceeds ¢ by a sufficient
amount, and vice versa for My and m. Thus, at most one fee at a time can exceed the
intrinsic platform value and both fees will be lower than the respective intrinsic platform
values if the expected externalities are equal ({4 = £) or close together.

For future reference, we denote the myopically optimal revenue by

R*(p) = max R(Ma, Mp,p) = R(M}(p), M3(p), p), (7)
Ma,Mp
and, suppressing the dependence on p and other variables, rewrite the expected current
revenue as

R= RN —ly[My — MY]? — [04+ ] [My — MY] [Mp — MY — by [Mg — ML) . (8)

Finally, we note that the ratio ¢y/({4 + {p) is decreasing in p.

2.3 The evolution of beliefs

The platform provider revises its beliefs over time. Writing ma(Ma, M) = na(Ma, Mp,u,7)
and using analogous definitions for n4, np and ng, we define

S(My, Mp) =

0A

Tia(Ma, Mp) _ﬂA(MAaMB)]z n [ﬁB(MAaMB) —ng(My, Mp) 2
OB

Lemma 1 The beliefs of the price-setting platform provider evolve according to

dpy ~ N (0,p7(1 — py)>S(MY, Mp,) dt) . (9)

Any pricing policy for which S(MYy, M%) is bounded away from 0 induces complete learning
wn the long run: as t — oo the belief py almost surely converges to 1 if the true state of the
world is (u,T), and to 0 otherwise.

PROOF: See the appendix. O

In the expression for the infinitesimal variance of the change in beliefs, S(MY, M%) mea-
sures the information content of the demand observations obtained after setting prices (it is
the sum of the squared signal-to-noise ratios of these observations).® The more informative

STf the platform provider were uncertain about the intrinsic platform values (ug, ) instead of the exter-
nalities (u, ), the quantity of information would be independent of the fees charged. The platform provider
would then trivially always set the myopically optimal fees.
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the observations are, the more strongly the beliefs react to them. If the information content
is bounded away from zero, the continuous accrual of information ensures that the truth is
learnt eventually.

To gain more precise insights into the structure of the function S, we first note that

A(Ma, Mp) —n (Ma, Mp) = doylug — Ma]+da[mo — Mg,
np(Ma, Mp) —ng(Ma, Mp) = do[mo — Mg|+ dp[uo — Ma],

where d; = ¢;(1) — £;(0) > 0 is the slope of the linear function ¢; for i = 0, A, B. Thus, the

quotient g—z measures the marginal increase in the signal-to-noise ratio on side A when the
do
oB
and Z—g measure the marginal effects on the signal-to-noise ratio on side B of lowering Mpg
and M4, respectively.

Next, we compute

fee M4 is lowered, and i—‘: the marginal increase when Mp is lowered. In the same way,

S(MA,MB) = SA [MA —UO}Q +23AB [MA —UO] [MB —7T0] —|—SB [MB —7T0]2 (10)

with the constants

B d% dQB B dg di B dody  dodp
SAa= 5+ 5, SB= 5+ 5, Sap= 5 t 5.
0p Op Op 034 OA Op
1 928

The coefficient s4 = is a measure of how fast the marginal informational gain from

2 0M?3
lowering the fee My incréAases as M, falls; it has two components, the first pertaining to
demand observations on side A, the second to demand observations on side B. The same
structure is evident in the coefficients sg = %5,8]\24% and sap = %%. Since s455 — 31243 =
0,205%(d2—dadp)? and, as a simple computation reveals, d2 < dadpg, we further see that S is
a strictly convex function which assumes its global minimum of zero at (M4, Mg) = (ug, 7).

It is straightforward to verify that the ratios s4/sap and sap/sp are both increasing in
0%/0%. Letting the latter tend to 0 and oo, respectively, we see that s4/sap and sap/sp
are both bounded below by dy/d4 and bounded above by dg/d,.

Clearly, the myopically optimal pricing policy satisfies (M%(p), M5 (p)) # (uo, mo) for all p
because the latter fees generate an expected current revenue of zero and marginally lowering
one fee would improve upon that. By Lemma 1, this implies that even the myopic pricing
policy leads to complete learning in the long run. We shall see shortly that an optimal policy
generates no less information than the myopic one, and hence gives rise to complete learning
as well.

The level curves of S in (M4, Mp)-space are concentric ellipses; the farther away such
an iso-information curve lies from the uninformative pair of fees (ug,m), the higher is the
amount of information generated by the respective fee combinations. Moreover, we have

fTSA = 0 (and hence horizontal tangents to the iso-information curves) along the line Mp =
Ty — SZAB (M4 — up), and % = 0 (and hence vertical tangents) along the line Mp = 7y —

SAB (M4 — ug); as Sasp — s%p > 0, the former line is steeper than the latter. For either
line, the respective partial derivative is positive above the line and negative below. Figure 1
visualizes this in (M4, Mpg)-space.
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Figure 1: Iso-information curves in the price plane. The amount of information increases in
the south-western direction.

Along the myopically optimal pricing policy, both m4 —n 4 and 7p —ng can be shown to
be positive, which directly implies that both partial derivatives of S are negative. Thus, the
myopically optimal fees lie below both lines in Figure 1. In fact, this is true for all admissible
fee combinations, as the following lemma shows. Figure 1 therefore only depicts those parts
of the iso-information curves that lie below both lines.

Lemma 2 Ower the admissible range of prices, a price decrease on either side of the market
increases the information content of observed quantities, whereas a price increase reduces it.

PROOF: The proof consists in showing that above either line of vanishing marginal informa-
tion content in Figure 1, at least one of the implied expected quantities becomes negative.
See the appendix for details. O

From this and the implicit function theorem, it immediately follows that over the admis-
sible range of fee combinations, iso-information curves are negatively sloped. Thus, the two
fees are substitutes with respect to information content.

3 The Optimal Pricing Strategy

We are now ready to characterize the pricing strategy. In view of the objective function (3)
and the law of motion (9), standard arguments yield the following Bellman equation for the

9



platform provider’s value function, v:

p*(1 —p)?

v(p) = max {R(MA,MB,p) + o

Ma,Mp

S(MA,MB)U”(p)} ) (11)

Arguing exactly as in Keller and Rady (1997, Appendices A-C), one shows that v is strictly
convex and twice continuously differentiable with p*(1 — p)?v”(p) — 0 as p — 0 or 1;
moreover, v is the only continuous real function on [0, 1] that solves (11) on ]0,1] and
coincides with the myopically optimal revenue R* on {0, 1}.

We can interpret the second term of the maximand in the Bellman equation as the value
of information, given by the product of the shadow price of information, p*(1 — p)%v”(p)/2r,
and the quantity of information, S(M4, Mg). For p € {0, 1}, the value of information is
zero, and the platform provider chooses the myopically optimal prices. For all other beliefs,
the platform provider experiments, i.e., deviates from the myopic strategy so as to increase
the information content of its demand observations. As a consequence, any optimal pricing
policy has S(MY, M%) bounded away from 0 and thus yields complete learning in the long
run by Lemma 1.

The maximand in (11) is the sum of two quadratic functions, one of them strictly concave
(expected current revenue), the other strictly convex (value of information). As the value
function is bounded, so must be the maximum on the right-hand side of (11); and as ad-
missible fees are unbounded below, the shadow price of information must actually be small
enough for the combined quadratic function to be strictly concave (the precise argument is
in the appendix).

This ensures that optimal fees are fully characterized by the (linear) first-order conditions
for the maximization problem in (11). Using the representation of expected current revenues
in (8), writing

for the shadow price of information, and suppressing the dependence on p, we compute the
optimal pair of fees as

2V
My = MY+ W {2(60 —sgV)Sh — (ba+lp — 2sABV)S§§} : (12)
* p 2V " 7
MB = MB+m{2(€Q—SAV)SB_(€A+€B_28ABV>SA}7 (13)

where

h(V) = 4@0 - SAV>(€0 — SBV) — (EA + 53 — 28,43V)2

is the determinant of the Hessian matrix of the maximand in (11) and

08

Shh = (MY, Mp) = sa(MYy —ug) + sap(Mh —m) < 0,
OMy

I3 ) BoATH B B
OMp

10



are the partial derivatives of the quantity of information S at the myopically optimal fees.”
Strict concavity of the maximand in (11) means ¢y — s4V > 0 and h(V) > 0, which in turn
implies ¢y — sgV > 0.

Our first result on the platform provider’s optimal pricing strategy is

Proposition 1 At any non-degenerate belief, the platform provider charges a fee lower than
the myopic benchmark on at least one side of the market.

PROOF: Suppose that M} > M’. By (12), this implies {4 + {5 — 2545V > 0 and

S 7kt oy
As a consequence,
Ml — 54V)SE — (04 + b — 2545118 < — V) qn g
la+Lg — 2548V
and so M}, < My by (13). In exactly the same way, M} > My implies M} < M. O

The intuition for this result is clear. The purpose of deviating from the myopic op-
timum is to increase the information content of observed demands. As higher fees mean
less information (see Lemma 2), at least one fee must be reduced relative to the myopic
benchmark.

This has an obvious consequence for approximately symmetric setups.

Proposition 2 Let 1 < 7. Then, for (u,u) sufficiently close to, but different from, (w,7),
and (ug, 04) sufficiently close to (mo, o), the platform provider always sets both fees below
their myopically optimal levels.

PROOF: For (u,u) = (m,7), we have MY = ug/2 and M5 = /2 by (5)—(6). This implies
that the Bellman equation (11) is solved by the affine function v = R*, so that V' = 0. For
(ug,04) = (m0,08), the expressions in curly brackets in (12)—(13) are then easily seen to be
negative and bounded away from 0 on the open unit interval. The result thus follows by
continuous dependence of the value function and its second derivative on (u, @, ug,04). O

The analysis of asymmetric settings is more complicated. A lower fee on one side of
the market makes reducing the fee on the other side more attractive from an informational
perspective (the cross-partial derivative of the quantity of information with respect to prices,
SAp, is positive), but less attractive as far as expected current revenue is concerned (its cross-
partial derivative, — ({4 + ¢), is negative). The overall effect is ambiguous.

A different way to see this is to think of the platform provider as following a two stage-
procedure. At the first stage, it determines the combination of fees that maximizes current
expected revenue subject to the constraint that a certain quantity of information be achieved.
This amounts to identifying points of tangency between iso-information and iso-revenue

"The argument why both of them are negative was given in Section 2.3.
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curves in the (M, Mp)-plane. At the second stage, the provider then chooses the optimal
quantity of information. Depending on the geometry of the iso-information and iso-revenue
curves, this may lead it to charge a fee higher than in the myopic benchmark on one side of
the market, as we shall see below.

To provide sufficient conditions for the directions of optimal experimentation in asym-
metric settings, we insert the expressions for S and S% into (12)—(13) and collect the terms
in MY — ug and My — 7o, respectively:

2V
MZ = MZ + m { [2£0$A - (gA + gB)SAB - 2(SASB - 3,24B)V] (MZ - uo)
+ [2losap — (Ca + Up)sg] (Mg — 7To)} ; (14)
My = ME 4 2L 2605 — (€ + £5)s4] (MY — uo)
h(V)

+ [26083 — (EA —f—EB)SAB — Q(SASB — 81243)‘/] (Mg — 7T0)} . (15)

Proposition 3 Consider a belief p for which both myopically optimal fees are lower than
the respective intrinsic values. Then, the platform provider lowers the fee on side A relative
to the myopically optimal level if

200(p) SB
> , 16
) + () sas 1)
and raises it if y
o(p) < SAB (17)

Calp) +06(p) ~ sa
Similarly, the platform provider lowers the fee on side B relative to the myopically optimal
level if
200(p) SA
>
la(p) +Lp(p) = sam

: (18)

and raises it if

20y (p) _ S4B

O (19)

PROOF: Under condition (16), the coefficient of M — my in (14) is clearly positive, and
using the fact that V < {y/sp, we have

o2
260814—(£A+€B)SAB—2<$ASB—S?43)V > 2€0 <SA—SASBS—SAB)—(€A+€B)SAB
B

S SASB — 82
= (Cat ) {_B (SA _ u) _ SAB}

SAB SB
= 0,

so that the coefficient of M/} — g in (14) is also positive.

12



Under condition (17), the coefficient of M’ — 7o in (14) is clearly negative, and we have

260 (p) SB
(a) + 05(0) ~ sap

9

so that the coefficient of M} — g in (14) is also negative.
The statements about the fee on side B follow in the same way. 0

It is straightforward to give an intuition for conditions (16)—(19) in terms of iso-revenue
and iso-information curves in the (M4, Mp)-plane. Condition (16), for example, ensures that
in each point of the line segment {(Ma, Mp): Ma = MY, Mg < m}, the iso-information
curve declines more steeply than the iso-revenue curve. This means that the platform
provider can raise both its expected revenue and the information content of demand ob-
servations by setting M4 below its myopically optimal level.

Note that, in line with Proposition 1, conditions (17) and (19) cannot hold at the same
time. If they did, we would have

( 20y(p) >2< S?AB <1

Ca(p) + £5(p) SASB

— a contradiction to the fact, established in Section 2.2, that 0 < £4(p) + £5(p) < 24y(p).

As was also noted in Section 2.2, the ratio ¢y/({4 + ¢p) is monotonically decreasing in p.
If condition (16) is met at a belief p, therefore, it will be met at all p < p. The reason for this
is straightforward: a lower p implies a flatter iso-revenue curve and thus makes it “cheaper”
(in terms of expected revenue) to lower the fee on side A for informational purposes. By
the same line of argument, (18) also becomes easier to satisfy as p decreases, while (17) and
(19) become harder to satisfy. Thus, a sufficient condition for uniformly lower fees on both
sides of the market is that (16) and (18) both hold at p = 1, and a sufficient condition for a
uniformly higher fee on one side is that either (17) or (19) hold at p = 0.2

As the left-hand sides of (16) and (18) exceed 1, the inequality s; < s4p is also sufficient
for a uniform fee decrease on side i = A, B. Since s;/sap > dy/d;, moreover, we see that the
inequality d; < dj already implies a uniform fee decrease on side i, irrespectively of the noise
parameters o4 and op. This inequality can be satisfied on one side of the market only (recall
that dadp > d2). Tt holds on side B, for instance, when the difference 7 — 7 is small, so that
the externality which side A exerts on side B is relatively well known from the outset. In
this case, there is indeed much more to be learned from raising participation on side B, and
hence from lowering the fee there.

In the limiting case where the externality exerted by side A is perfectly known, we have
the following characterization of the optimal pricing policy.

Proposition 4 Suppose T = w. Relative to the myopic optimum, the platform provider then
always lowers the fee on side B, and raises the fee on side A if and only if £a(p) > {p(p).

8This discussion relies on the assumption of Proposition 3 that both myopically optimal fees are lower than
the respective intrinsic values. We maintain this assumption in the following paragraph, but can dispense
with it when we come to Proposition 4 below.
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PROOF: For T = 7 = 7, the ratios {5/, sap/sp and sa/sap all reduce to m. This implies
that the expression in curly brackets in (15) simplifies to [2¢y — w(¢4 + ¢5)]S%, which is
negative. The expression in curly brackets in (14) simplifies to (€5 — £ 4)S%, which is positive
if and only if £4 > (p. L]

We can offer the following intuition for this result. When the externality exerted by side
A is known, the platform provider learns most by lowering the fee on side B. Side A then
benefits from higher participation on side B. When ¢4 > (g, the externality that side A
is expected to exert on side B is weaker than the externality in the other direction, and
the platform provider can safely extract part of the additional surplus given to side A by
charging this side a higher fee.

Figure 2 illustrates the two situations that might arise for a known externality param-
eter . The identity sap/sp = sa/sap = m implies that in the (M4, Mp)-plane, the iso-
information curves are parallel straight lines with slope —m. The experimenting platform
provider deviates from the myopically optimal fees so as to reach an iso-information line that
is closer to the origin. On any iso-information line, it chooses the fees that correspond to a
point of tangency with an iso-revenue curve. In the left panel, the locus of these tangency
points (parameterized by the shadow price of information, V') slopes down and to the left
— the optimal trade-off between information and current revenue induces a decrease in both
fees for increased information. In the right panel, the locus of tangency points slopes down
and to the right; here, the trade-off between information and current revenue leads to a
decrease in Mg but an increase in My4.

Mg Mp 4

My My

Figure 2: Two examples of iso-information lines (dotted) and iso-revenue curves (solid) for
7m = 7 = w. The solid line in each case indicates the locus of optimal fees as the shadow
price of information varies. The left panel depicts a situation in which /4 < ¢, while the
right panel depicts the opposite case.

Proposition 4 implies in particular that for a known externality parameter m < u, the
platform provider always sets a fee above the myopic optimum on side A. For 7w > u, it lowers
both fees relative to the myopic benchmark. For u < 7 < @, finally, it sets M3 (p) > M (p)
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for p above some threshold p. Our next result extends these findings to situations in which
there is a moderate degree of uncertainty about the externality exerted by side A.

Proposition 5 For ™ < w and © sufficiently close to T, the optimal fee on side A exceeds
its myopic benchmark at beliefs close to 1.

PROOF: We know from the proof of Proposition 4 that for m = 7, equation (14) implies

2V

Mam M=

(KB - KA)ng
which is positive at beliefs high enough for /4 to exceed ¢5. The result thus follows by
continuous dependence of the value function and its second derivative on (7, 7). O

The intuition for this result is the same as for Proposition 4. If @ < u, we have the
stronger result that for 7 sufficiently close to 7, the platform provider charges more than
M/, at all non-degenerate beliefs.

4 Maximal Experimentation

In the previous section, we were able to analyze the directions of optimal experimentation
without having to solve for the value function. To establish the precise extent of optimal
experimentation, one could plug the fees (12)-(13) into the maximand in (11) and numerically
solve the resulting second-order ordinary differential equation for the value function.

An alternative route to this differential equation is to write the Bellman equation in the
form 0 = maxy, py{R — v+ @ Sv"} and to observe that the maximum remains zero,
and the set of maximizers is unchanged, when we divide the maximand by the quantity of
information, S.° Re-arranging then yields

POPP s ) = RO Mo, p)
2r My, Mp S(Ma, Mp)

This in turn permits an alternative characterization of the optimal combination of fees as a
function of the belief p and the associated value v(p):

. Cny . v(p) = R(Ma, Mg, p)
(M(p), Mi(p)) = arg Mo S(Ma, Mg)

Arguing as in Keller and Rady (1997, Theorem 5.2 and Appendix E.1), one shows that
the value v(p) is decreasing in r at all p in the open unit interval, and that it converges to
the ex ante full-information pay-off

R(p) = pR*(1) + (1 — p)R"(0)

% As the admissible pair of fees (ug, mo) is clearly suboptimal (yielding zero revenue and zero information),
the function S is indeed positive on the relevant domain.
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as r | 0. This means that the optimal fees converge to

o _ B . R(p) — R(My, Mg, p)
(Ma(p), Mg(p)) = arg M S(My, Mp) ’

(20)

which is the optimal policy of a platform provider maximizing its undiscounted transient
payoff, that is, total expected revenue net of the full-information payoff that it will obtain
in the long run; see Bolton and Harris (2000).

Intuitively speaking, the lower the platform provider’s discount rate, the greater is its
incentive to learn, and the farther it might want to deviate from the myopic optimum.
Experimentation is maximal when r = 0. Once we know the optimal strategy of the infinitely
patient provider, therefore, we have fully characterized the range of experimentation in which
an impatient provider will set his fees.

Studying the maximal experimentation strategy (M4, Mp) has the further advantage
that it does not require computation of the value function for the maximization of transient
payoffs.!® While the system of first-order conditions for (20) in general does not permit
explicit solutions, it is considerably easier to solve numerically than the differential equation
for the value function under discounting. In the next subsection, we will take advantage of
this to illustrate the maximal experimentation policy and the associated learning dynamics
in a numerical example. Thereafter, we will briefly return to the limiting case ™ = 0 which
does permit a closed-form solution.

4.1 An example

We assume the following parameters: uy = 0.4, 719 = 0.1, v = 0.1, w = 0.9, © = 0.15,
T =025, 04 = op = 1, pp = 0.5, and the “true” values are (u,7). These parameters
translate into expected direct and indirect price effects of {y(py) = 1.15, £a(po) = 0.63,
and (p(py) = 0.24, respectively, such that 2¢y(po)/(€a(po) + €(po)) = 2.65. In particular,
at the initial belief the externality that side B is expected to exert on side A, l4(pg), is
assumed more than twice as large as the expected opposite externality, {(py). Also note
that s4/sap = 0.28 and sap/sa = 3.54, hence sa/sap < 20o(po)/(Ca(po) +¢B(po)) < Sap/sSa
and Proposition 3 predicts that M4 will be raised and Mp will be lowered compared to the
myopic benchmark.

The fees set under the myopically optimal policy and the maximal experimentation policy
are depicted in Figure 3. It is straightforward to check that both myopically optimal fees
are lower than the respective intrinsic values at all beliefs. In line with Propositions 1 and
3, the maximal experimentation policy reduces the fee on side B relative to the myopic
benchmark at any non-degenerate belief, as sa/sap < 1, such that 2¢/(¢4 + {p) exceeds
sa/sap for any belief.!* The fee set on side A under the maximal experimentation policy is

0This is crucial for the characterization of Markov perfect equilibria in Bolton and Harris (2000), for
example.

"Note that for the given set of parameters, the optimal fee under full information on side B is actually
negative, i.e., participants on side B receive a payment from the platform provider. Monetary payments
to participants on one side may not always be feasible. However, as pointed out in the two-sided market
literature, in-kind payments can often substitute for monetary payments.
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lower than the myopic benchmark at all beliefs below a threshold that approximately equals
0.32, and higher than the myopic benchmark at all beliefs above that threshold. This again
is well in line with Proposition 3, which for this example predicts that fees on side A are
lowered for beliefs below 0.30 and raised for beliefs exceeding 0.35. Further, in accordance
with Proposition 2 the fee on side A is reduced when the externalities are of similar expected
size (for beliefs close to 0, the large difference between @ and 7 does not matter much), but
is increased when £4(p), the expected strength of the externality that side A experiences, is
sufficiently larger than (5(p), the expected strength of the externality that side A exerts.

Figure 4 depicts the optimal myopic and experimentation fees for the same set of pa-
rameters except for that T = x is fixed at 0.2. As there is no scope for learning on side B,
the platform provider raises the fee on side A already at a belief of approximately 0.11 at
which ¢4 and /¢ coincide, as predicted by Proposition 4. Moreover, the incentive to gather
information on the externality side B exerts and, thus, the incentive to lower the fee Mp
becomes more pronounced in comparison to Figure 3.

028

n.o4

0o

024 -

=002

022
-0.04

-0.06

Figure 3: Optimal myopic fees (dashed line) and maximal experimentation fees (solid line)
on market side A (left) and B (right) as a function of the belief; T = 0.25, = = 0.15.
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Figure 4: Optimal myopic fees (dashed line) and maximal experimentation fees (solid line)
on market side A (left) and B (right) as a function of the belief; 7 = = = 0.2.
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Figure 5 illustrates that the infinitely patient provider learns faster — its beliefs converge
more quickly to the true state.?
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Figure 5: Evolution of beliefs for the myopic policy (white squares) and the maximal exper-
imentation policy (black squares), and true state (thick line).
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Figure 6: Evolution of fees on side A for the myopic policy (white squares) and the maximal
experimentation policy (black squares).

Figure 6 shows a sample path for the maximal experimentation fee on side A. In the
beginning, when beliefs are below 0.3 the experimentation fee undercuts the myopic fee. In
later stages as the belief tends towards the true state the experimentation fee exceeds its
myopically optimal counterpart, and the difference is particularly large at times when the
belief induced by the maximal experimentation policy is already quite close to the truth while
the belief induced by the myopically optimal strategy still reflects considerable uncertainty
about the true state.

12Gimulations were carried out using Wolfram Mathematica 8. Normal shocks were generated by random
draws from the normal distribution using the commands “RandomReal” and “NormalDistribution” with mean
equal to 0 and variances equalling o4 and op respectively.
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Figure 7: Evolution of fees on side B for the myopic policy (white squares) and the maximal
experimentation policy (black squares).
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Figure 8: Evolution of expected per-period revenues for the myopic policy (white squares)
and the maximal experimentation policy (black squares).

The evolution of fees on side B is shown in Figure 7. Maximal experimentation fees on
this side are consistently below their myopic counterparts.

The expected per-period revenues depicted in Figure 8 show the advantages of each
policy. While the myopic policy creates higher revenues in the very early periods, revenues
in later periods are higher for the patient platform provider as its belief approaches the true
state of the world more rapidly.

4.2 A closed-form solution

We have seen in Proposition 5 above that, for vanishing externality parameter 7, the platform
provider raises the fee on side A relative to the myopically optimal policy. The limiting case
7 = 0 turns out to permit a closed-form solution for the maximal experimentation policy.'?

13 As an example, consider readers whose utility of a magazine is independent of the amount of advertising.
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The myopically optimal fees in this case are

2ug + u(p)mo

M} (p) 4_—u(m2 )
M) = o=t [Z(()p;wp)] |

where u(p) = E [a] = pu + (1 — p)u. The myopic revenue is

g + ug + mouou(p)
4 —u(p)®

The quantity of information simplifies to S(Ma, Mp) = (U —u)?(mo — Mp)?, reflecting
the fact that only the demand observed on side A is informative.
The minimum of [R(p) — R(My4, Mg, p)]/(my — Mp)? is attained at

Ri(p) =

Touo + 2R (p)u(p)
270 + upu(p)
ug — 4R(p)
270 + ugu(p)

MB(]?) = 7mo+

Comparing these fees to the myopically optimal ones, we first see that

4[R*(p) — R(p)]
21 + ugu(p)

Mp(p) — Mj(p)

As R(p) = pR*(1) + (1 — p)R*(0) and R* is strictly convex, the right-hand side is negative
for 0 < p < 1. Thus, in line with Proposition 3, the maximal experimentation policy will
indeed decrease the fee that generates information.

On the other side of the market, we find

Satp) - arfp) = 2D ED =IO B g, - At

so for non-degenerate beliefs, there is a price increase relative to the myopic benchmark, as
predicted by Proposition 5.

The expected quantity on side B clearly increases relative to the myopic optimum since
the fee Mp goes down. Using the above expression for M 4(p) — M/ (p), one can additionally
establish that the expected quantity on side A changes by —@[WB (p) — M%(p)], which is
again positive for non-degenerate beliefs. Hence, the platform provider also expects activity
on this side to rise relative to the myopic optimum. Overall, therefore, optimal experimen-
tation leads to uniform increases in expected quantities while price adjustments on the two
sides go in opposite directions.
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5 The Quantity-Setting Platform Provider

We now assume that the platform provider sets quantities. The quantity-setting assumption
seems appropriate in real-world markets where capacity constraints matter. For instance, a
shopping mall owner has to decide how much parking space and shop space to provide. If
prices are market-clearing, this choice of capacities corresponds to quantity setting.

In standard monopoly, it does not matter (under certainty) whether a price or a quantity
is chosen. In two-sided markets, setting quantities means that the platform directly controls
the size of the externality, whereas a price setter does so only indirectly. This explains why
the quantity-setting case is more tractable: there are no feedback effects to be taken into
account when the quantity is changed on one side of the market. As we shall see below, this
makes the information content of market observations additively separable across the two
sides and implies unambiguous directions of experimentation.

Let the platform provider choose quantities (na,ng) € ]Ri and observe noisy signals of
the prices

MA(TLA,HB,&) = Ug —|—1~L7’LB — Ny,

MB(TLA,HB,ﬁ'> = 7T0+7?TLA —npg,

where @ € {u,u} and 7 € {7,7T} with 0 <u<u, 0<zm<7TandT+7 <2 As we permit
externality parameters exceeding 1, this is somewhat more general than what we assumed
in the price-setting case.

We impose the natural restriction that the platform provider can only decide to sell
non-negative quantities, while prices are not restricted. Negative prices are interpreted as
subsidies to one side or (temporarily) both sides of the market, as discussed earlier. Note
that the price on one side of the market does not depend on the externality parameter on
the other side. However, as we assume perfect positive correlation between % and 7, any
information gained on one side of the market immediately translates into a similar piece of
information on the other side.!?

As before, we write p for the subjective probability assigned to the realization (u, 7). We
maintain the assumption that costs are zero.

5.1 Revenues and beliefs

In every period ¢ € [0,00[, the platform provider chooses quantities (ny,n%) and then
observes the increments Ma(n'y, nly, @) dt + 0,dW and Mp(nly,nly, 7)) dt + 0gdW of two
cumulative price processes where W4 and Wp are independent standard Brownian motions
and the constants 64 and g are positive. The resulting revenue increment at date ¢ is

dR, = n'y [Ma(n'y,nls, @) dt + 02dW}] + ny [Mp(nly, nl, 7) dt + 0dW}] .

14Notably, all insights of this section carry over to the case of perfect negative correlation. Results only
depend on expected externalities, exchanging the roles of w and u is unproblematic, therefore. As to Propo-
sitions 7 and 8 below, it suffices that signal-to-noise ratios coincide in absolute value.
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With the notation

u(p) = pu+(l—-pu,
m(p) = pr+(1-p)r

for the expected externalities, and
R(na,np,p) = na [uog +u(p) np — nal +np[m + 7(p) na — npl

for the expected per-period revenue, the platform provider’s total expected payoff is

EPo [/ re "' R(n'y, ny, py) dt| .
0

The expected revenue R depends on the expected externalities only through the term
[u(p) + m(p)|nanp, so only the sum of the externalities matters here. As |u(p) + m(p)| < 2,
moreover, R is strictly concave in (n4,ng). The myopically optimal quantities are

b 2w + molu(p) + 7 (p)]

e SRR

\ 20+ uolu(p) + 7(p)
2l

") = ) )

They exhibit a symmetric structure with interchanged intrinsic platform values. If these
platform values coincide, myopically optimal quantities are the same on both sides.

The corresponding expected prices for each group, however, depend on the specific ex-
ternality the other group is exerting. They are given by

oy o mo[u(p) — m(p)] + uo(2 — m(p)[u(p) + 7(p)))
Male) = 1~ [ulp) + 7 ’
ME() :zmﬂm—uwﬂ+m@—U@MMﬂ+MMD.

4= [u(p) +7(p)*

The expected current revenue from the myopically optimal quantities is

ug + g + uomo[u(p) + m(p)]

4 — [u(p) + m(p)]?

To describe the law of motions of beliefs, we define the strictly convex function

R (p) = My (p)n/y(p) + Mp(p)nis(p) =

S(na,np) = pan’y + ppnig,

— 2 — 2
(T-=x (u-u
IOA_( 93 )7 IOB—( 6A)

are the squares of the marginal signal-to-noise ratios.

where the constants
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Lemma 3 The beliefs of the quantity-setting platform provider evolve according to
dp; ~ N(O,pf(l — )2 X(nly,nk) dt)
PROOF: The proof is similar to the price-setting case and therefore omitted. ([l

Complete learning in the long-run follows from the same arguments as in the price-setting
scenario. As Y is increasing in both n4 and ng, moreover, we obviously have

Lemma 4 For the quantity-setting platform provider, a quantity increase on either side of
the market increases the information content of observed prices, whereas a quantity decrease
reduces it.

Finally, we note that the marginal informational impact of adjusting the quantity on one
side of the market does not depend on the quantity set on the other.

5.2 Optimal quantities

Under discounting at rate » > 0, the Bellman equation is

p*(1 —p)?

2 Sl )

v(p) = max {R(nA,nB,p) +
The maximand is again the sum of a strictly concave quadratic function and a strictly
convex one. A simpler version of the argument given in the price-setting case shows that the
shadow price of information, V(p) = p*(1 — p)*v”(p)/2r, is again sufficiently small to make
the combined quadratic function strictly concave at all beliefs (we omit the details).

Solving the first-order conditions for optimal quantities and suppressing the dependence
on the belief p, we obtain

2V
X _ 7 w
Ny = Ny + X(V> {2<1 pBV>pAnA + (u + W)anB} 3
2V
x [ _ @ B
np = nNp + X(V) {2(1 pAV>anB + (u + W)pAnA} 3

where

X(V) =41 = paV)(1 = ppV) = (u +7)*

is the determinant of the Hessian matrix of R+ V'X. Strict concavity of this function means
1—paV > 0and x(V) > 0, which in turn implies 1—pgV > 0. As an immediate consequence,
we get

Proposition 6 At any non-degenerate belief, the quantity-setting platform provider chooses
quantities above the myopic benchmark on both sides of the market.
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The intuition behind this result is simple. As the information content of observed prices
is increasing in quantities, the optimal deviation from the myopic benchmark must entail a
higher quantity on at least one side of the market. This raises the marginal revenue on the
other side of the market without affecting the marginal informational benefit of adjusting
the quantity there. It is optimal, therefore, to set a quantity above the myopic level on that
side as well.!?

The optimal quantities n’y and n} give rise to the expected prices M} = ug + unp — n’y
and My = my + mn’ — nj. Consequently,

My =M} = unp —nlg] — [} —nll,
Mp = Mp = mn}y —nly] = [np —njl.

For symmetric signal-to-noise ratios ps = pg, the difference M} — M/ is easily seen to be a
linear combination of un’y — n'y and unly — n'y with positive weights. As

unly —nly o molu — ] — wp[2 — u(u + 7)),

unly —nly o wolu — ] — m[2 — u(u + 7)),

the expected fee on side A is below its myopic counterpart whenever u < 7, and can only
be above it if u exceeds 7 by a sufficient margin. In the latter case, the platform provider
optimally learns by strongly increasing the number of participants on side B, and recoups
part of the resulting surplus by inducing a higher than myopically optimal price on side A.
Similarly, the expected fee on side B can only be above its myopic counterpart if 7 exceeds
u by a sufficient margin. As in the price-setting case, therefore, (approximately) symmetric
signal-to-noise ratios and externality parameters induce the platform provider to lower both
expected fees relative to the myopic benchmark.

Letting pa — 0, on the other hand, we find that M} — M/} — C [u— ] and M}, — My —
—C' 2 —m(u+m)] with C =2V pgny/x(V) > 0. Thus, similar to the price-setting scenario
when T — © — 0, the market side that generates the information is awarded a reduction
in expected fees, while the expected fee on the other side depends on the relative strength
of the externalities. The market side that transmits close to no information is ‘subsidized’
(relative to the myopic optimum) if it exerts a higher externality than it experiences, and
‘taxed’” otherwise. The intuition for this finding is exactly the same as in the price-setting
case.

5.3 Maximal experimentation

The maximal experimentation strategy is given by

- g B )

15In the price-setting scenario, by contrast, lowering the fee on one side of the market has an ambiguous
effect on the incentives to lower the fee on the other side because the cross-partial derivative of the quantity
of information with respect to these fees has the opposite sign to the respective derivative of expected current
revenue.
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where R(p) = pR*(1) + (1 — p)R*(0) is once more the expected full-information payoff.
In general, the associated first-order conditions involve third-order polynomials in n4 and
ng. Owing to the simpler structure of the quantity-setting scenario, however, it is easier
to obtain closed-form solutions than in the price-setting case, for example by assuming
symmetric signal-to-noise ratios.!®

Proposition 7 Suppose that pa = pp and ug # m. Then the quantities set under the
mazimal experimentation policy are

nalp) = =5 {Wo(ﬂﬁ + ug) + 4R(p)uolu(p) + 7 (p)]

— moy/ (ud — 732 + (2uomo + AR(D)[u(p) + 7(p))? } :

np(p) = 202 = D)) T )] {(—UO(WO + ug) — 4R(p)mo[u(p) + 7(p)]

+ “0\/(U3 — 7m5)% + (2ugmo + 4R(p)[u(p) + 7(p)])? } :

PROOF: See the appendix. O

The reason why these quantities do not depend on the common marginal signal-to-noise
ratio is simple. For p4 = pp = p, the information content of observed prices simplifies
to X(na,np) = p[n% + n%], so the maximal experimentation strategy minimizes (R(p) —
R(p))/(n% +n%). Note that for my > ug, both numerator and denominator of 74(p) and
np(p) are negative, so the quantities remain positive. The knife-edge case ug = my will be
covered below.

The expected fees M 4(p) and M (p) given the quantities 4(p) and Tip(p) are straight-
forward to calculate. Comparing them with the myopic optimum once more confirms what
we have already seen in the price-setting model: even if the externality parameters w and 7
are both smaller than 1, there are parameter constellations such that one side of the market
(which exerts an externality much weaker than the one it experiences) faces a fee above the
myopic optimum, as exemplarily shown for M 4 in Figure 9.

Maintaining symmetric signal-to-noise ratios, we further assume now that the intrinsic
value of the platform is the same for all users, i.e., ug = my. This admittedly rather strong
assumption seems appropriate in a number of examples, such as night clubs and matching
agencies.!” It simplifies the expressions for the optimal quantities considerably.

16Closed-form solutions are also obtained in the limiting case of a known externality on one side of the
market. If # = 7, for instance, any deviation from the expected price on side B must be attributed to noise
and is, thus, uninformative. The platform provider can then only experiment by adjusting the quantity npg
and observing the price on side A. This situation is isomorphic to the one analyzed in Keller and Rady
(1999).

17Tt is clearly less appropriate in other examples, such as merchants and customers in the credit card
market.
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Figure 9: Difference between the expected prices induced by the myopic policy and the
maximal experimentation policy as a function of beliefs for ug = 0.1, 79 = 0.7, u = 0.8,
u=09 r=01,7=02 0,4 =0 =1.

Proposition 8 Suppose that pa = pp and uy = w9 = cg. Then the quantities set under the
mazimal experimentation policy are symmetric across market sides and linear in the current
belief:

R(p) p 1—p
% 2—(i+7m  2-(u+d

PROOF: See the appendix. O

The intuition for this symmetry is as follows. With identical intrinsic platform values, the
myopically optimal quantities are symmetric. With identical signal-to-noise ratios, moreover,
the incentive to deviate from the myopic optimum is the same in both quantity dimensions.

The linearity of the maximal experimentation policy makes it easy to visualize the range
of quantity experimentation; see Figure 10. It is the area bounded below by the myopic
policy and above by the line joining the quantities that are optimal under full information.

Expected prices need not be symmetric. They are

Ma(p) = co+ [u(p) —1]7(p),
MB(P) = ¢+ [7(p) — 1] n(p).

As u(p)+7(p) < 2, either both expected prices are lower than the intrinsic platform value, or
one is lower and the other one higher. The ordering of expected prices depends on the size of
the externalities and on the current belief, and may change with beliefs. Let u < 7 <7 < 7,
for example. For high values of p, then, u(p) will exceed m(p) and side A will have to pay a
higher price in expectation than side B, while for low values of p the reverse is true.

As to the comparison with the myopic benchmark, we have
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Figure 10: Range of quantity experimentation for symmetric signal-to-noise ratios and sym-
metric intrinsic values.

Corollary 1 Under the assumptions of Proposition 8, the expected price induced by the
mazximal experimentation policy exceeds its myopically optimal counterpart on a given side
of the market if and only if the expected externality that this side experiences exceeds 1.

PROOF: See the appendix. O

The myopic policy and the maximal experimentation policy imply the same expected
prices at the beliefs 0 and 1 or if the expected externality equals 1. As u(p) + w(p) < 2,
this of course implies that at any time at most one expected price can exceed the myopically
optimal level. It also implies that for the ‘standard’ case of both externalities smaller than
1, both expected prices will decrease relative to the myopic benchmark.

6 Conclusion

We have studied optimal behavior of a monopolistic platform provider in a two-sided market
with uncertainty about the strength of interaction between the two sides. The platform
provider either chooses prices or quantities (i.e., participation levels). The demand external-
ities considered are linear on both sides. Fees are charged for participation in the market,
but not per transaction. In this respect, our setting follows the monopoly setting analyzed
in Armstrong (2006).

When the platform provider faces uncertainty about the size of the externality and wants
to maximize its expected lifetime profits, it faces the basic trade-off between the conflicting
aims of maximizing current payoff and maximizing the information content of the signals
it observes. We have characterized the optimal policies depending on how much weight
the platform provider assigns to future profit. If it does not put any weight on the future
(r = 00), it chooses the myopically optimal actions given its current belief. If the platform
provider puts some weight on the future, it will deviate from the short-sighted policy and
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invest in learning. The upper bound on such experimentation is given by the optimal policy
of an infinitely patient platform provider (r = 0).

The effect of experimentation on (expected) prices depends on market characteristics:
Either both prices will be lower than in the myopic benchmark or one price will be above
and one price below the myopically optimal prices. The price on one side of the market will
go up if the externality this side is exerting is known well and weak while the externality
it is experiencing is strong. The higher price recoups part of the surplus created by the
higher participation on the other side of the market. We numerically illustrate the dynamic
implications and provide a closed-form solution under maximal experimentation for some
special cases of the model.

Our analysis concerns an unrestricted monopoly platform. Future work may want to look
at markets with multiple differentiated platforms. As a starting point, it would be interesting
to analyze duopoly experimentation in a two-sided market in which there is single-homing on
both sides and full observability of actions and outcomes. In such a duopoly, a participant
acquired by one platform provider is a participant lost for the competitor. Owing to cross-
group externalities, this makes demand more sensitive to price changes than demand in the
monopoly setting with a fixed outside option that has been analyzed in this paper. Therefore,
one may conjecture that gaining information about the size of externality parameter becomes
more important. As has been pointed out in the literature on duopoly experimentation (e.g.,
Mirman et al. 1994, Harrington 1995, Keller and Rady 2003), however, the public information
generated by market signals may have a negative value, in which case the duopolists have
an incentive to generate less information than in the myopic equilibrium.

Suppose, for instance, that market participation is perfectly price-inelastic, as is the
case in the Hotelling-type model introduced by Armstrong (2006). Then, learning does not
increase future equilibrium profits in expectation because profits are linear in beliefs. Since
deviations from the myopic best-response are costly, we conjecture that patient platform
operators do not behave differently from infinitely impatient ones, and learn only passively.
The duopoly setting merits further, more general investigation, and it would be interesting
to understand the effect of the degree of differentiation on experimentation in a two-sided
market.

Another interesting extension is to consider a market for two (or more) goods that are
complements. Specifically, suppose that demands are linked through positive network effects.
Here we have in mind a situation in which a monopolist sells a product (or technologically
related products) to two distinct and distinguishable consumer groups (i.e., the monopolist
can practice third-degree price discrimination). If consumers in each group care directly
or indirectly about the sum of the total number of buyers in both groups (e.g., because
a larger production volume increases average product quality through learning-by-doing),
we can rewrite this as a demand system with within-group and cross-group externalities.
Thus our analysis can possibly be extended to capture experimentation in markets with
complementary goods.
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Appendix

Proof of Lemma 1

Given a pair of prices (M4, Mp), the observed quantity increments are
dN 4 _ 7~1A dt + ca O dZ 4
dNp np 0 oB dZp

with ny = nA(MA,MB,ﬂ,fT) and ng = nB(MA,MB,ﬁ,fT).
Given the subjective probability p currently assigned to the state (u,7T), the vector of expected

demands is (Eﬁ{gﬂ>:p<zg)+(l_p)<zg>

with my = nA(MA, MB,ﬂ,f) etc.
According to Liptser and Shiryayev (1977), the infinitesimal change in beliefs is given by

dp — ng — EP [Nyl ng 0 dZ 4
P =P ng — EP [ﬁB] 0 0§1 dZB

dZa\ _ (o' 0 dNy — EP [n4] dt
dZg ) 0 og' )\ dNp—EP[iip] dt

= (0 ) Gazei) o (i)

is the increment of a standard two-dimensional Brownian motion relative to the platform provider’s
information filtration.
Simplifying the expression for dp, we obtain

where

dp=p(1 —p)(Tia —ny)o, dZs+p(l - p)(ip —ng)og dZp.

Relative to the platform provider’s information filtration, dZ4 and dZ B are normally distributed
with mean zero and variance dt, and the infinitesimal covariance < dz A,dZ B > is zero, so the
change in beliefs dp is normally distributed with mean zero and variance

p?(1 = p)*(Ma —ny)?o 2 dt + p*(1 — p)*(Ap — ng)?ogz> dt = p*(1 — p)2S(M4, Mp) dt.

Now consider a pricing policy with S(Ma, Mp) bounded away from 0, and suppose that the
true state is (u, 7). As

d?A _ O'Al 0 mg — E? [ﬁA] dt + dZ 4
dZp 0 oz nip — EP [Ap] dZg )’

we see that relative to the information filtration of an outside observer who knows the true state of
the world, dp is normally distributed with mean

2 4 (mp — EP [ap))?o52} dt = p(1 — p)2S(Ma, Mp) dt.

p{(a — EP [ia])*oy
As this is strictly positive on ]0,1[, the process of beliefs is a submartingale with respect to the
observer’s filtration and, if started at a non-degenerate prior, almost surely converges to its upper
bound 1 as t — oo. An analogous argument establishes convergence to 0 when the true state is
(u, ). O
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Proof of Lemma 2

We wish to show that in the region where the information content of quantities is increasing in a
fee, the expected quantity on at least one side of the market must be negative.

For a partial derivative of S to be positive, at least one of the differences m4 — ny or np —np
has to be negative. This in turn is equivalent to at least one of the following inequalities holding:

d,
Mp > mo—+ =2 (ug— M), (21)
da
d
Mp > 7T0+de(uo—MA). (22)
0

For the two expected demands to be non-negative, it is necessary that both m4 and np be
non-negative. This requires the following inequalities to hold:

IN

1
Mpg 7T0+%(UO—MA), (23)
Mp < mg —i—f(uo—MA). (24)

Comparing the coefficients of ug — M4 on the right-hand sides of these four inequalities, we
see that for My > wup, (23) contradicts both (21) and (22), while (24) does so for M4 < wug. For
M4 = ug the contradiction is obvious. O

Strict concavity of the maximand in the Bellman equation

Fixing a belief p and a shadow price of information V' = p?(1—p)2v”(p)/2r, we write the maximand
in the Bellman equation (11) as R(Ma, Mp,p)+V S(M4, Mp) and compute its Hessian, suppressing
the variable p from now on:

B —24y —(fA—f-fB) 254  2SAB
HV) = < _(€A+£B) —24y ) +V< 2sAB 2sp >

Its determinant is
h(V) = 4(lo—saAV)(lo — V) — (ba +€p — 2545V)%.

For global strict concavity of R+ V'S, we wish to show that £y — s4V > 0 and h(V) > 0.

Since the value function, and hence the maximum of R+ V'S, is bounded, the latter is bounded
from above along any ray {(Ma, Mp) : My = up — x, Mp = mp — Bz, x > 0} with 8 > 0 (note that
these fees are all admissible). As

R(ug — z,mg — fz) + VS(ug — x,m9 — Bz) = {uo [lo + L8] + 7o [loS + EB]} z — q(B)z?
with the quadratic function
q(B) = o — 5aV + (€a + B — 2548V + (b — s5V) 52,

this implies that ¢ is positive on [0, co[. Setting § = 0 yields ¢y — s4V > 0.
Next, let V' > (€4 +£€5)/2sap, so that ¢'(0) < 0. As a consequence, £y — sV > 0 since g would
become negative at high 8 otherwise. Moreover, ¢ assumes its minimum at

5* . QSABV — €A — €B
- 2(50—83‘/)

> 0.
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This minimum equals

(2saBV —La—1{B)*  R(V)
4(ly — sgV) "~ 4(6y —sgV)’

q(B*) =Ly — 54V —

implying A(V) > 0 and concavity of R+ V'S.

As V multiplies the strictly convex function S, concavity of R+ V'S now also follows for shadow
prices V< (b4 +£€B)/2saB. O
Proof of Propositions 7 and 8
For arbitrary p4 and pp, the first-order conditions for the fees T4 (p) and g (p) can be written as

(1o + [u(p) + (D)5 — 2n.4)(pan + pun)
+ 2pana [R(p) — (uo + u(p)np —na)na — (mo + w(p)na —np)ng] = 0,

pany + ppni)
ng —na)na — (w0 + w(p)na —ng)ng| = 0.

(o + [u(p) + 7(p)Ina — 2np)
+ 2ppng [R(p) — (uo + u(p

(
)

For pa = pp, this system simplifies to

N

(uo + [u(p) + 7(p)Inp) (g — n%) + 2(R(p) — npmo) na
(0 + [u(p) + 7(p)Ina)(nh — n}) + 2(R(p) — naug)np =

For ug # mp, the pair of quantities stated in Proposition 7 constitutes the unique solution to these
equations. For ug = mp = ¢p, setting both quantities equal to R(p)/cy solves the system. O

Proof of Corollary 1
For ug = my = ¢p, the myopically optimal expected price on side A simplifies to

m _ 00[1 — W(p)]
Male) = 5 Tutp) + 2(0)

)

so the price difference M 4(p) — M’ (p) has the same sign as

1 —7(p)
[u(p) + 7 (p)]

P l—-p
L+ (ulp) = 1) [2—(u—|—7r)+2—(u+7r)] Ta2-

Multiplying with 2 — [u(p) + 7(p)] and simplifying, we see that this in turn has the same sign as

(u(p)—l){(2—[u(p)+7r(p)])[ P Lo )]—1}.

2—(u+7) 2—(u+m

The expression in curly brackets is strictly concave in p; as it vanishes at p = 0 and p = 1, it is
positive for 0 < p < 1. The proof for side B is analogous. O
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