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1. Introduction

Conditionally heteroscedastic time series are frequently used in the finance literature
to model the evolution of stock prizes, exchange rates and interest rates. Starting with
the papers by Engle (1982) on autoregressive conditional heteroscedastic models (ARCH)
and Bollerslev (1986) on generalized ARCH (GARCH) models, numerous variants of these
models have been proposed for financial time series modeling; see e.g. Francq and Zaköıan
(2010) for a detailed overview. The question of parameter estimation in these models has
been studied intensively. Exemplarily, we refer the reader to Straumann (2005), Francq
and Zaköıan (2010), Tinkl (2013) and references therein.

There is also an overwhelming amount of model specification tests in the econometric
literature. However, these methods typically rely on the assumption that the information
variables as well as the response variables are observable. This condition is violated in
the case of GARCH models, where unobserved quantities enter the information variable.
Hence, standard tests cannot be applied and certain additional approximation procedures
have to be invoked. It turns out that the literature on specification tests for conditionally
heteroscedastic time series is comparatively rare. Berkes, Horváth, and Kokoszka (2004)
proposed a Portmanteau goodness-of-fit test for GARCH(1,1) models. Their test statistic is
a quadratic form of weighted autocorrelations of the squared residuals of a GARCH(1,1) pro-
cess fitted to the data, whose dimension increases with the sample size. They showed that
its limit distribution is an (infinite) weighted sum of independent χ2

1-distributed random
variables under the null hypothesis but did not consider the behavior under alternatives.

In the present paper, we propose a specification test of Cramér-von Mises type for a
GARCH(1,1) hypothesis against general alternatives. Here, we face the particular problem
that some of the explanatory variables are not observed and have to be approximated. It
turns out that our test statistic can be approximated by a von Mises (V -) statistic and it
follows from results of Leucht and Neumann (2013a) that the latter converges to a weighted
sum of independent χ2

1 variables. In contrast to Berkes, Horváth, and Kokoszka (2004),
where the weights in the limit correspond to the weights in the test statistic itself, here
these quantities depend on the properties of the underlying process in a complicated way.
Therefore, the asymptotic result cannot be used for determining an appropriate critical
value. We propose to apply a model-based (semiparametric) bootstrap method to approxi-
mate the null distribution of the test statistic which eventually yields an appropriate critical
value for the test. Bootstrap consistency for statistics of L2-type has already been shown in
several previous papers. Escanciano (2007a, 2008) showed consistency of the wild bootstrap
in the context of tests with an underlying martingale structure under the null hypothesis.
Leucht and Neumann (2013a,b) proved consistency of model-based bootstrap and a variant
of the dependent wild bootstrap, respectively, for statistics that can be approximated by a
V -statistic. In contrast to the method of proof used in Leucht and Neumann (2013a), we
take this opportunity and present a different approach of proving bootstrap consistency:
Rather than imitating the derivation of the limit distribution of the test statistic also on
the bootstrap side, we use coupling arguments to show consistency. This approach was
successfully applied to U - and V -statistics of independent random variables by Dehling
and Mikosch (1994) and Leucht and Neumann (2009), however, it seems to be new in the
context of dependent data. Finally, we would like to mention that our theory can perhaps
be generalized to GARCH-models of higher order. To present the main ideas in an as
transparent as possible manner, we restrict ourselves to the simple GARCH(1,1)-case.
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2. Assumptions and some preliminaries on GARCH(1,1)-processes

Suppose that we observe Y0, . . . , Yn, where (Yt)t∈Z is a (strictly) stationary process
satisfying the model equation

Yt = σt εt,

where σt and εt are stochastically independent and (εt)t is a sequence of independent and
identically distributed (i.i.d.) random variables. We consider the test problem

H0 : (Yt)t∈Z ∈M0 against H1 : (Yt)t∈Z ∈M\M0

with

M0 = {(Yt)t∈Z | Yt = σt εt with E(Y 2
t | Yt−1, σ

2
t−1) = σ2

t = ω + αY 2
t−1 + βσ2

t−1, θ = (ω, α, β)′ ∈ Θ},
M = {(Yt)t∈Z | Yt = σt εt with E(Y 2

t | Yt−1, σ
2
t−1) = σ2

t = f(Yt−1, σ
2
t−1)}

and Θ = {θ = (ω, α, β)′ | ω > 0, α, β ≥ 0}.
Typical asymmetric alternatives contained in M are GQARCH(1,1) processes intro-

duced by Sentana (1995), where

σ2
t = ω + α(Yt−1 − δ)2 + β σ2

t−1,

or GJR-GARCH processes with

σ2
t = ω + αY 2

t−1 + β σ2
t−1 + δ Y 2

t−11Yt−1<0,

introduced by Glosten, Jagannathan and Runkle (1993), that are frequently used in finance.
If (Yt)t describes a sequence of log-returns of an asset and if δ > 0 then negative shocks
have a larger impact on the conditional volatilities than positive ones. If we had only one
of these two particular alternatives in mind, we could simply test whether or not δ = 0.
However, other deviations from the null are of a more complicated structure, e.g. the model
equation for the volatilities of EGARCH(1,1) processes is given by

lnσ2
t = ω + α

{
θ
Yt−1

σt−1
+ ζ

(∣∣∣∣Yt−1

σt−1

∣∣∣∣− E ∣∣∣∣Yt−1

σt−1

∣∣∣∣)}+ β lnσ2
t−1 ω, α, β, θ, ζ ∈ R;

see Nelson (1991). Therefore, we strive for a more general test that is also consistent
against unspecified deviations from a GARCH(1,1) model. It can be expected that our
test procedure can be generalized to a test for GARCH(p,q) specification but this extension
would be very technical and is therefore not carried out here.

A GARCH(1,1) process (Yt)t∈Z satisfies the equations

σ2
t = ω + αY 2

t−1 + βσ2
t−1 (2.1)

and

Yt = σt εt. (2.2)

Under H0, we denote by θ0 = (ω0, α0, β0)′ the true parameter and assume

(A1) (i) ω0 > 0, α0, β0 ≥ 0,
(ii) (εt)t∈Z i.i.d., Eε2

0 = 1, and E[ln(β0 + α0ε
2
0)] < 0.

According to Theorem 2 in Nelson (1990), there exists a unique strictly stationary and
ergodic solution to (2.1) and (2.2) that can be rewritten (see Equation (10) in Nelson (1990))
as

σ2
t = ω0

[
1 +

∞∑
k=1

k∏
i=1

(β0 + α0ε
2
t−i)

]
. (2.3)
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Making repeatedly use of the model equations (2.1) and (2.2) we get

σ2
t = ω0 + α0Y

2
t−1 + β0σ

2
t−1

= (ω0 + α0Y
2
t−1) + β0(ω0 + α0Y

2
t−2) + · · · + βK−1

0 (ω0 + α0Y
2
t−K) + βK0 σ

2
t−K . (2.4)

Since (σ2
t )t∈Z is stationary and since E[ln(β0 + α0ε

2
0)] < 0 implies β0 < 1, we see that the

last summand on the right-hand side of (2.4) tends to zero as K → ∞, i.e., we obtain the
alternative representation

σ2
t =

∞∑
k=1

βk−1
0 (ω0 + α0Y

2
t−k) =

ω0

1− β0
+ α0

∞∑
k=1

βk−1
0 Y 2

t−k. (2.5)

For any parameter θ = (ω, α, β)′, we define a stationary sequence of approximations of
the volatilities that are based on the Yts but correspond to the model with parameter θ as

σ2
t (θ) =

ω

1− β
+ α

∞∑
k=1

βk−1Y 2
t−k. (2.6)

We have obviously σ2
t (θ0) = σ2

t . More importantly, for θ close to θ0, (σ2
t (θ))t∈Z is strictly

stationary and ergodic, which implies that, for any fixed value of an estimator θ̂n of θ0,

σ2
t (θ̂n) serves as a suitable approximation to the (nonstationary) estimated volatilities σ̂2

t

that will be specified below. The following lemma shows that the above definition is correct
if θ is sufficiently close to θ0 and that σ2

t (θ) converges to σ2
t as θ → θ0.

Lemma 2.1. (i) For θ = (ω, α, β)′ ∈ Θ satisfying E[ln((β0 ∨ β) + (α0 ∨ α)ε2
0)] < 0,

(σ2
t (θ))t∈Z is the unique stationary solution to

σ2
t (θ) = ω + αY 2

t−1 + βσ2
t−1(θ), t ∈ Z. (2.7)

σ2
t (θ) is finite with probability 1.

(ii) supθ∈Θ: ‖θ−θ0‖≤δ
∣∣σ2
t (θ) − σ2

t

∣∣ −→
δ→0

0 with probability 1.

We intend to test a composite hypothesis, i.e. the GARCH(1,1) parameters are unknown
and have to be estimated. In accordance with Francq and Zaköıan (2004) we use the quasi-
maximum likelihood estimator with a normal reference distribution, which is defined as

θ̂n = arg min
θ∈Θ0

L̄n(θ).

Here,

Θ0 = {θ = (ω, α, β)′ | β ≤ ρ0, u1 ≤ min{ω, α, β} ≤ max{ω, α, β} ≤ u2}

with some 0 < u1 < u2 < ∞ and ρ0 ∈ (0, 1), and −n L̄n denotes the logarithmic quasi-
likelihood function (constant terms are ignored here), given by

L̄n(θ) =
1

n

n∑
t=1

(
log σ̄2

t (θ) +
Y 2
t

σ̄2
t (θ)

)
,

where

σ̄2
t (θ) = ω + αYt−1 + βσ̄2

t−1(θ), t ≥ 1.

In principle, the initial value σ̄2
0 can be chosen arbitrarily. For sake of definiteness, we follow

the suggestion (2.7) in Francq and Zaköıan (2004) and set σ̄2
0(θ) = Y 2

0 .
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We assume

(A2) (i) E|ε0|4 <∞ and var(ε2
0) > 0,

(ii) θ0 is in the interior of Θ0.

Francq and Zaköıan (2004) proved strong consistency and asymptotic normality of
the quasi-maximum-likelihood estimator (QMLE) in the framework of GARCH(p,q) pro-
cesses. Under the above conditions we obtain from their results, in the special case of a
GARCH(1,1) process considered here, the Bahadur linearization

θ̂n − θ0 =
1

n

n∑
t=1

Lt + oP

(
n−1/2

)
with Lt = (ε2

t − 1)(E[Ẅ0(θ0)])−1 σ̇
2
t (θ0)

σ2
t (θ0)

, (2.8)

where σ̇2
t (θ) = (∂σ2

t (θ)/∂ω, ∂σ
2
t (θ)/∂α, ∂σ

2
t (θ)/∂β)′, W0(θ) = log σ2

0(θ) + Y 2
0 /σ

2
0(θ) and Ẅ0

denotes its Hessian with respect to θ.

Remark 1. The practical derivation of the QMLE is based on an optimization problem
and therefore computationally intensive. For that reason, Kristensen and Linton (2006)
proposed a moment-based approach to estimate the GARCH parameters. They provide
explicit expressions for their estimators, however, their method is only reliable for very
large sample sizes. Therefore and for sake of definiteness, we stick to the QMLE in the
sequel.

3. The test statistic and its asymptotics

We propose a test of Cramér-von Mises type. At first glance, the statistic

T̄n = n

∫
R2

{
1

n

n∑
t=1

(
Y 2
t − σ̂2

t

)
w(z1 − Yt−1, z2 − σ̂2

t−1)

}2

Q(dz1, dz2)

seems natural, where σ̂2
0 = Y 2

0 and σ̂2
t = ω̂n + α̂nY

2
t−1 + β̂nσ̂

2
t−1 (t = 1, . . . , n) is a model-

based approximation of the unobserved volatility. Here, w is a weight function and Q a
probability measure. Since E(Y 2

t | Yt−1, σ
2
t−1)−σ2

t = 0 under H0, one would reject the null
hypothesis if the value of the test statistic is large. However, the test statistic is of a very
complicated structure and critical values cannot be determined directly. A bootstrap-aided
testing procedure will be proposed below to circumvent these difficulties. In order to show
its asymptotic validity, we would have to impose certain moment constraints, such as finite
fourth moments of Yt. The latter assumption would be rather restrictive and would rule out
e.g. IGARCH processes (α + β = 1) that are frequently applied in financial mathematics;
see Lee and Hansen (1994). In contrast, moment assumptions on the innovations are far less
restrictive and have already been presumed by Berkes, Horváth, and Kokoszka (2003) as
well as Francq and Zaköıan (2004) to obtain asymptotic normality of the quasi-maximum
likelihood estimator for the GARCH(1,1) parameter vector. It turns out that moment
conditions on the innovations suffice to derive the asymptotics of the slightly modified test
statistic

T̂n = n

∫
R2

{
1

n

n∑
t=1

(
Y 2
t

σ̂2
t

− 1

)
w(z1 − Yt−1, z2 − σ̂2

t−1)

}2

Q(dz1, dz2).

We will show that a bootstrap-aided test based on this statistic is consistent and asymp-
totically level-γ. Moreover, it is well known that tests of this type are suitable to detect
local alternatives of Pitman type.
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We first show that the test statistic can be approximated by a von Mises (V -) statistic

not depending on the estimators (σ̂2
t )t and θ̂n but on the true quantities (σ2

t )t and θ0, re-
spectively. The limit distribution of this approximating statistic can then easily be obtained
from recent results by Leucht and Neumann (2013a). To this end, we need the kernel of
this statistic being continuous which is ensured by the next assumption. Furthermore, in
order to keep the effect of approximating the unobserved volatilities in the weight function
negligible we require an extra condition on the smoothness of w. We make the following
assumptions regarding the weight function and the measure Q:

(A3) Q is a probability measure on (R2,B(R2)). The weight function w is non-negative,
bounded, and measurable. Moreover, there is some Cw <∞ such that∫

R2

|w(z − (y1, s1)′) − w(z − (y2, s2)′)|2Q(dz) ≤ Cw ‖(y1, s1)′ − (y2, s2)′‖2. (3.1)

Remark 2. (3.1) is obviously satisfied if w is Lipschitz continuous. It is also satisfied
if w(z− (y, s)′) = 1((y, s)′ � z) and Q has bounded marginal densities q1 and q2. Here and
below (a1, a2)′ � (b1, b2)′ means that a1 ≤ b1 and a2 ≤ b2.

Subsequently, we will abbreviate the information variable (Yt−1, σ
2
t−1(θ))′ by It−1(θ).

Lemma 3.1. Suppose that H0 holds true and that (A1) - (A3) are satisfied. Then

T̂n − Tn = oP (1),

where

Tn =

∫
R2

{
1√
n

n∑
t=1

((
ε2
t − 1

)
w(z − It−1(θ0)) − Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z − I0(θ0))

]′
Lt

)}2

Q(dz).

Note that Tn is a V -statistic that is degenerate under H0, i.e., it can be represented as
Tn = n−1

∑n
s,t=1 h(Xs, Xt) with Eh(X0, x) = 0 ∀x, where Xt = (ε2

t , Yt−1, σ
2
t−1, L

′
t)
′ and

h(x, x̄) =

∫
R2

{
(x1 − 1)w(z − (x2, x3)′) − Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z − I0(θ0))

]′
x4

}

×

{
(x̄1 − 1)w(z − (x̄2, x̄3)′) − Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z − I0(θ0))

]′
x̄4

}
Q(dz)

Thus, its asymptotics can be immediately deduced from a recent result on degenerate V -
statistics of ergodic data by Leucht and Neumann (2013a). In conjunction with the previous

lemma, we obtain the limit distribution of T̂n.

Proposition 3.1. Suppose that H0 holds true and that (A1) - (A3) are satisfied. Then

T̂n
d−→ Z =

∞∑
k=1

λkZ
2
k .

Here, (Zk)k is a sequence of independent standard normal random variables and (λk)k de-
notes the (finite or countably infinite) sequence of nonzero eigenvalues of the equation λΦ(x) =∫
h(x, x̄) Φ(x̄)PXθ0 (dx̄), enumerated according to their multiplicity.



6

Now, we consider the behavior of the test statistic under fixed alternatives. To this end,
we assume the parameter estimator, that is obtained by the quasi-maximum likelihood
approach described in Section 2, to be consistent for some pseudo-true parameter θ̄0.

(A4) θ̂n
P−→ θ̄0 ∈ Θ0.

Additionally, we impose some regularity conditions on the model under the alternative.

(A5) (Yt)t∈Z is strictly stationary and ergodic. Moreover, E|Y0|s < ∞ for some s > 0
and E[Y 4

0 /(σ
2
0(θ̄0))2] <∞.

Note that the first moment condition ensures almost sure finiteness of (σ2
t (θ))t∈Z for

θ in a neighborhood of θ̄0. As expected, the test statistic turns out to be asymptotically
unbounded under H1.

Proposition 3.2. Suppose that (A1) and (A3) - (A5) hold true, with θ0 replaced by θ̄0.
Then

(i) n−1 T̂n
P−→
∫
R2

{
E[(Y 2

1 /σ
2
1(θ̄0)− 1)w(z − I0(θ̄0))]

}2
Q(dz).

(ii) If additionally the relation E[(Y 2
1 /σ

2
1(θ̄0) − 1)w(z − I0(θ̄0))] 6= 0 for all z ∈ Π and

some Π with Q(Π) > 0 holds true, then

T̂n
P−→∞.

Remark 3. Provided that Q has an everywhere positive density, a weight function that
satisfies the additional condition in Proposition 3.2(ii) for all H1-scenarios is w(z − It) =
1It�z which is frequently used in Cramér-Mises type tests; cf. Lemma 1(d) in Escanciano
(2006).

4. A bootstrap-based test

We see from the previous section that the null distribution of the test statistic T̂n and
also its limit distribution depend on the unknown parameter θ0 in a complicated way. In
particular, the eigenvalues (λk)k appearing in the limit are unknown and it is not clear
at all how they can be computed in an efficient manner. Therefore, (asymptotic) critical
values of a test based on this statistic cannot be derived directly. The bootstrap offers
a convenient tool to circumvent these difficulties. In the present context, a model-based
bootstrap is probably the first choice since it can be expected to be more precise than
alternative model-free methods. We propose the following algorithm:

(1) Compute the residuals

et = Yt/σ̂t, t = 1, . . . , n.

(2) Calculate standardized versions

ε̂t = et/

√√√√n−1

n∑
s=1

e2
s.

(3) Draw independent bootstrap innovations

ε∗t ∼ Fn,ε̂, where Fn,ε̂(x) = n−1
n∑
t=1

1(ε̂t ≤ x).
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(4) Compute σ∗t
2, Y ∗t recursively:

σ∗0
2 = ω̂n

[
1 +

∞∑
k=1

k∏
i=1

(β̂n + α̂nε
∗2
−i)

]
,

Y ∗0 = σ∗0 ε
∗
0,

and then, for t = 1, . . . , n,

σ∗t
2 = ω̂n + α̂nY

∗2
t−1 + β̂nσ

∗2
t−1,

Y ∗t = σ∗t ε
∗
t .

(5) Compute the bootstrap statistic

T̂ ∗n = n

∫
R2

{
1

n

n∑
t=1

(
Y ∗2t
σ̂∗2t
− 1

)
w(z1 − Y ∗t−1, z2 − σ̂∗2t−1)

}2

Q(dz1, dz2),

with arbitrarily chosen σ̂∗20 and σ̂∗2t = ω̂∗n+α̂∗n Y
∗2
t−1+β̂∗n σ̂

∗2
t−1. Here, θ̂∗n = (ω̂∗n, α̂

∗
n, β̂

∗
n)′

is the QMLE based on the bootstrap sample.
(6) Repeat steps (3) to (5) B times and, for a nominal size of γ ∈ (0, 1), choose t∗γ as

any (1− γ)-quantile of the empirical distribution of T̂ ∗n,1, . . . , T̂
∗
n,B.

(7) Reject the null hypothesis if T̂n > t∗γ .

In order to validate asymptotic correctness of the algorithm above, we do not imitate
all the proofs of Section 3. Instead, an appropriate coupling of Xt = (εt, Yt−1, σ

2
t−1, L

′
t)
′ and

X∗t = (ε∗t
2, Y ∗t−1, σ

∗2
t−1, L

∗
t
′)′ (with σ∗2t−1 = σ∗2t−1(θ̂n) and σ∗2t (θ) being the bootstrap analogue

to σ2
t (θ)) directly results in a coupling of the corresponding test statistics on the original

and on the bootstrap side. Here, L∗t = (ε∗2t − 1)(E∗[Ẅ ∗0 (θ̂n)])−1σ̇∗2t (θ̂n)/σ∗2t (θ̂n).
To express distributional convergence in conjunction with the additional qualification

“almost surely” properly and to describe closeness of two distributions both depending
on n, we use the Lévy metric dL which is defined, for distribution functions G and H on R,
as

dL(G,H) = inf{ε : G(x− ε)− ε ≤ H(x) ≤ G(x+ ε) + ε ∀x ∈ R}.
Applied to random variables U and V with c.d.f. FU and FV , we also use the notation
dL(U, V ). A first step towards our proof of bootstrap consistency is done by the following
lemma.

Lemma 4.1. Assume that H0 holds true and that (A1) - (A3) are fulfilled. Then

dL(Fn,ε̂, Fε)
a.s.−→ 0.

Now we are in the position to construct a coupling of the random variables Xt =
(ε2
t , Yt−1, σ

2
t−1, L

′
t)
′ appearing in the approximating V -statistic Tn with the random variables

X∗t = (ε∗t
2, Y ∗t−1, σ

∗2
t−1, L

∗
t
′)′.

Lemma 4.2. Assume that H0 holds true and that (A1) - (A3) are fulfilled. On a sufficiently

rich probability space (Ω̃, Ã, P̃ ), there exist independent random vectors ((ε̃t, ε̃
∗
t )
′)t∈Z such
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that

ε̃t
d
= εt,

ε̃∗t
d
= ε∗t ,

and, with L̃t, Ỹt, σ̃
2
t and L̃∗t , Ỹ

∗
t , σ̃

∗2
t being versions based on the ε̃s and ε̃∗s, respectively,

E
P̃

[
(ε̃∗t − ε̃t)2 + ‖L̃∗t − L̃t‖2 + |Ỹ ∗t−1 − Ỹt−1| ∧ 1 + |σ̃∗2t−1 − σ̃2

t−1| ∧ 1
]

a.s.−→ 0.

As a consequence of the above coupling, the following assertion provides a useful ap-
proximation for the two hypothetical volatility processes.

Corollary 4.1. Assume that H0 holds true and that (A1) - (A3) are fulfilled. On the

probability space (Ω̃, Ã, P̃ ) from Lemma 4.2,

E
P̃

[
sup
θ∈Θ0

∣∣σ̃∗2t (θ) − σ̃2
t (θ)

∣∣ ∧ 1

]
P̃−→ 0,

where σ̃∗2t (θ) and σ̃2
t (θ) are versions of the σ∗2t (θ) and σ2

t (θ), respectively, based on the Ỹ ∗t
and Ỹt.

The asymptotics of the test statistic T̂n heavily relies on the linearization of the QMLE θ̂n.
We now establish this property for the bootstrap QMLE.

Lemma 4.3. Assume that H0 holds true and that (A1) - (A3) are fulfilled. Then

θ̂∗n − θ̂n =
1

n

n∑
t=1

L∗t + oP ∗

(
1√
n

)
.

These results enable us to derive a bootstrap analogue to Lemma 3.1.

Lemma 4.4. Assume that H0 holds true and that (A1) - (A3) are fulfilled. Then, with T ∗n
being the bootstrap analogue of Tn,

T̂ ∗n = T ∗n + oP ∗(1).

Hence, bootstrap validity under the null hypothesis can be deduced from the following
result.

Theorem 4.1. Assume that H0 holds true and that (A1) - (A3) are fulfilled. Then

dL(T ∗n , Tn)
P−→ 0.

To show hat our bootstrap method is also valid under fixed alternatives, we additionally
assume

(A6) (i) E∗[(ε∗1)4] = OP (1),

(ii) E∗[(σ∗21 /σ
∗2
t (θ̂∗n)− 1)2]

P−→ 0.

(iii) There exists some δ > 0 such that P (E∗[ln(β̂n + α̂nε
∗2
1 )] ≤ −δ)−→n→∞ 1.
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Lemma 4.5. Suppose that (A3) and (A6) are fulfilled. Then

E∗
[
n−1T̂ ∗n

]
P−→ 0.

Thus, the above algorithm leads to a consistent, asymptotic level-γ test.

Corollary 4.2. (i) Assume that H0 holds true, that (A1) to (A3) are fulfilled and that
additionally E[h(X1, X1)] > 0. Then

P (T̂n > t∗γ) −→
n→∞

γ.

(ii) Under H1 and if additionally the prerequisites of Proposition 3.2(ii) and (A6) are
satisfied, then

P (T̂n > t∗γ) −→
n→∞

1.

Remark 4. Our test has similarities to the methodology proposed by Escanciano (2008) in
the general context of mean and variance specification testing. While our test is based on
the marked empirical process n−1/2

∑n
t=1(Y 2

t /σ̂
2
t −1)w(z1−Yt−1, z2−σ̂2

t ), Escanciano’s test

is based on the processes (n− j − 1)−1/2
∑n

t=j(Y
2
t − σ̂2

t )w(Yt−j , z), for j = 1, 2, . . . , i.e., he
uses only observable random variables in the weight function. However, in a previous version
of that paper, Escanciano (2007b), he allows for models with infinitely many explanatory
variables. In principle, using representation (2.5) above it seems that these results could be
applied in our case, too. In order to apply his result to our test problem, we would have
to assume that certain moments of the observed process exist; see his assumption A1(b).
However, this typically is not guaranteed in financial time series as we already discussed at
the beginning of Section 3.

Escanciano (2008) proposed a wild bootstrap procedure to determine critical values of
L2-type tests. Instead of adapting his approach, we decided to apply a model-based ap-
proach here since this kind of resampling procedure often outperforms model-free bootstrap
methods.

5. Numerical Examples

We illustrate the finite sample behavior of the proposed test by some simulations. We
use the indicator function w(z − It) = 1It�z as a weight function which is admissible in
view of Remark 3, and choose Q = N (0, 25)⊗N (0, 25). Straightforward calculations show
that in this case the test statistic simplifies to

T̂n =
1

n

n∑
s,t=1

(
Ys
σ̂2
s

− 1

)(
Yt
σ̂2
t

− 1

)
(1− Φ0,25(max{Ys, Yt}))

(
1− Φ0,25(max{σ̂2

s , σ̂
2
t })
)
,

where Φ0,25(·) = Φ(·/5) and Φ denotes the cumulative distribution function of N (0, 1). To
study of the performance of our test under the null hypothesis as well as certain alternative
scenarios we choose the innovations to be standard normal, draw samples of size n = 500
and n = 1000 and run a Monte-Carlo simulation N = 500 times, each with B = 500
bootstrap replications. In order to meet our assumption of stationarity, we discarded 500
pre-sample data values of the corresponding processes. The implementation was carried
out with the aid of the statistical software package R; see R Core Team (2012). To estimate
the GARCH parameters we use the routine of Tinkl (2013).
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Figure 1 shows a realization of a GARCH(1,1) process whereas Figures 2 and 3 show
realizations of a GQARCH and a GJR-GARCH process, respectively.

Figure 1. GARCH process with parameter θ = (0.2, 0.25, 0.35)′.

Figure 2. GQARCH process with parameters θ = (0.2, 0.25, 0.35)′ and δ = 0.5.

Figure 3. GJR-GARCH process with parameters θ = (0.2, 0.25, 0.35)′ and
δ = 0.5.

The rejection frequencies of our test under two null scenarios and for nominal significance
levels γ = 0.05 and γ = 0.1 are summarized in Table 1. Table 2 and Table 3 report the
finite sample behavior of our procedure under GQARCH and GJR-GARCH alternatives.
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Table 1. Rejection frequencies

θ = (0.20, 0.15, 0.25)′ θ = (0.20, 0.25, 0.35)′

n = 500 γ = 0.05 0.046 0.068
γ = 0.10 0.094 0.120

n = 1000 γ = 0.05 0.052 0.060
γ = 0.10 0.100 0.112

GQARCH

θ = (0.20, 0.15, 0.25)′ θ = (0.20, 0.25, 0.35)′

n = 500 δ = 0.25 γ = 0.05 0.254 0.528
γ = 0.10 0.386 0.634

δ = 0.50 γ = 0.05 0.660 0.940
γ = 0.10 0.816 0.982

n = 1000 δ = 0.25 γ = 0.05 0.624 0.846
γ = 0.10 0.748 0.920

δ = 0.50 γ = 0.05 0.982 1.000
γ = 0.10 0.994 1.000

GJR-GARCH
θ = (0.20, 0.15, 0.25)′ θ = (0.20, 0.25, 0.35)′

n = 500 δ = 0.25 γ = 0.05 0.424 0.392
γ = 0.10 0.558 0.502

δ = 0.50 γ = 0.05 0.874 0.774
γ = 0.10 0.936 0.866

n = 1000 δ = 0.25 γ = 0.05 0.754 0.674
γ = 0.10 0.840 0.774

δ = 0.50 γ = 0.05 0.996 0.984
γ = 0.10 0.998 0.994

It can be seen that the prescribed size is kept very well. The power behavior is convincing
for all of our alternatives. Having a particular alternative in mind, the power can even be
increased by a tailor-made choice of the weights w and Q; cf. Anderson and Darling (1954)
in the case of generalized Cramér-von Mises statistics.

6. Proofs

Throughout this section, we shortly write
∫

instead of
∫
R2 . Moreover, C denotes a

generic, finite constant that may change its value from one line to another.

Proof of Lemma 2.1. (i)
First of all, finiteness of σ2

t (θ) follows from a simple coupling argument. According to
(2.5), σ2

t (θ) consists only of nonnegative summands. Hence, the series
∑∞

k=1 β
k−1Y 2

t−k con-
verges, possibly to infinity. We show next that this series is actually finite with probability 1
under the assumption E[ln((β0∨β) + (α0∨α)ε2

0)] < 0. To this end, we compare σ2
t (θ) with

σ̌2
t = (ω0 ∨ ω)

[
1 +

∞∑
k=1

k∏
i=1

(
(β0 ∨ β) + (α0 ∨ α)ε2

t−i
)]
. (6.1)
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In contrast to σ2
t (θ), σ̌

2
t is the solution to a system of GARCH(1,1) equations,

σ̌2
t = (ω0 ∨ ω) + (α0 ∨ α)Y̌ 2

t−1 + (β0 ∨ β)σ̌2
t−1,

Y̌t = σ̌tεt

Hence, we can use available theory and we obtain from Theorem 2 of Nelson (1990) that σ̌2
t

is finite with probability 1. Comparing (2.3) with (6.1) we see that σ2
t ≤ σ̌2

t almost surely.
Hence, Y 2

t ≤ Y̌ 2
t , and since σ̌2

t can be rewritten as

σ̌2
t =

∞∑
k=1

(β0 ∨ β)k−1
(
(ω0 ∨ ω) + (α0 ∨ α)Y̌ 2

t−k
)
,

we see that σ2
t (θ) ≤ σ̌2

t . Hence, σ2
t (θ) is finite with probability 1. Now we obtain that

σ2
t (θ) = ω + αY 2

t−1 + β

∞∑
k=1

βk−1(ω + αY 2
t−1−k)

= ω + αY 2
t−1 + β σ2

t−1(θ),

i.e., (σ2
t (θ))t∈Z solves the system of equations (2.7). As for uniqueness, assume that (σ̃2

t )t∈Z
is any arbitrary stationary solution to (2.7). Then we obtain from a repeated application
of this equation that ∣∣σ2

t (θ) − σ̃2
t

∣∣ ≤ βK
∣∣σ2
t−K(θ) − σ̃2

t−K
∣∣ .

Since our assumption E[ln((β0 ∨β) + (α0 ∨α)ε2
0)] < 0 implies that β < 1, we conclude that

σ̃2
t = σ2

t (θ) a.s. for all t ∈ Z.

(ii)

Since Eε2
0 < ∞, the function (α, β) 7→ E[ln(β + αε2

0)] is continuous. Hence, there exists
a sufficiently small δ0 > 0 such that E[ln((β0 + δ0) + (α0 + δ0)ε2

0)] < 0. If θ ∈ Θ and
‖θ − θ0‖ ≤ δ0, then there exists a stationary solution (σ2

t (θ))t∈Z to (2.7). We have the
representations

σ2
t (θ) =

∞∑
k=1

βk−1(ω + αY 2
t−k) (6.2)

and

σ2
t =

∞∑
k=1

βk−1
0 (ω0 + α0Y

2
t−k). (6.3)

If θ → θ0, then all summands on the right-hand side of (6.2) converge to their counterparts
in (6.3). Moreover, they are majorized by (β0 ∨ β)k−1((ω0 ∨ ω) + (α0 ∨ α)Y 2

t−k). Since

∞∑
k=1

(β0 ∨ β)k−1((ω0 ∨ ω) + (α0 ∨ α)Y 2
t−k) = σ̌2

t < ∞,

we obtain by majorized convergence that

sup
θ∈Θ: ‖θ−θ0‖≤δ

∣∣σ2
t (θ) − σ2

t

∣∣ −→
δ→0

0.

�
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Proof of Lemma 3.1. (a) Eliminating the effect of choosing an arbitrary initial volatility
First, we show that the effect of choosing an arbitrary initial volatility σ̂2

0 is asymptotically

negligible. Let T̃n be the statistic based on σ2
t (θ̂n) instead of σ̂2

t , i.e.

T̃n =

∫ {
1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− 1

)
w(z − It−1(θ̂n))

}2

Q(dz). (6.4)

We decompose the square root of the integrand in T̂n as

1√
n

n∑
t=1

(
Y 2
t

σ̂2
t

− 1

)
w(z − (Yt−1, σ̂

2
t )
′)

=
1√
n

n∑
t=1

(
Y 2
t

σ̂2
t

− Y 2
t

σ2
t (θ̂n)

)
w(z − (Yt−1, σ̂

2
t )
′)

+
1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− 1

) (
w(z − (Yt−1, σ̂

2
t )
′)− w(z − It−1(θ̂n))

)
+

1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− 1

)
w(z − It−1(θ̂n))

= Sn,1(z) + Sn,2(z) + Sn,3(z).

By the Cauchy-Schwarz inequality, we get

T̂n = T̃n + oP (1) (6.5)

if
∫
S2
n,i(z)Q(dz) = oP (1) for i = 1, 2 and if T̃n =

∫
S2
n,3(z)Q(dz) = OP (1). The latter

follows from part (b) of this proof and Proposition 3.1.

If ‖θ̂n − θ0‖ is sufficiently small, say less than δ > 0, then σ2
t (θ̂n) is finite on a set with

probability one. In view of

|σ̂2
t − σ2

t (θ̂n)|1‖θ̂n−θ0‖<δ ≤ β̂tn |σ̂2
0 − σ2

0(θ̂n)|1‖θ̂n−θ0‖<δ,

we get, since β̂n ≤ ρ0 < 1 and since the estimator θ̂n is consistent,∫
S2
n,1(z)Q(dz) ≤ C

n

n∑
s,t=1

∣∣∣∣∣ Y 2
s

σ2
s(θ̂n)

σ2
s(θ̂n)− σ̂2

s

σ̂2
s

∣∣∣∣∣
∣∣∣∣∣ Y 2

t

σ2
t (θ̂n)

σ2
t (θ̂n)− σ̂2

t

σ̂2
t

∣∣∣∣∣
≤ OP (1)

1

n

n∑
s,t=1

ρs+t0

∣∣∣∣∣ Y 2
s

σ2
s(θ̂n)

Y 2
t

σ2
t (θ̂n)

∣∣∣∣∣ + oP (1).

Again by consistency of θ̂n,

n∑
s=1

ρs0

∣∣∣∣∣ Y 2
s

σ2
s(θ̂n)

∣∣∣∣∣ ≤
n∑
s=1

ρs0 ε
2
s sup
θ∈Uδ(θ0)

σ2
s(θ0)

σ2
s(θ)

+ oP (1).

This and E[ε2
0 supθ : ‖θ−θ0‖≤δ |σ

2
0(θ0)/σ2

0(θ)|] <∞ for some δ > 0, where the latter inequality

follows from (4.26) in Francq and Zaköıan (2004), imply that
∫
S2
n,1(z)Q(dz) = oP (1).

Similarly, making use of (3.1) from (A3) we obtain∫
S2
n,2(z)Q(dz) ≤ C

∣∣∣σ̂2
0 − σ2

0(θ̂n)
∣∣∣ 1

n

n∑
s,t=1

ρ
(s+t)/2
0

∣∣∣∣∣ Y 2
s

σ2
s(θ̂n)

− 1

∣∣∣∣∣
∣∣∣∣∣ Y 2

t

σ2
t (θ̂n)

− 1

∣∣∣∣∣+ oP (1) = oP (1).
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(b) Proof of T̃n − Tn = oP (1)

Now we decompose the square root of the integrand in T̃n as

1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− 1

)
w(z − It−1(θ̂n))

=
1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ0)

− 1

)
w(z − It−1)− Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z − I0)

]′
Lt

+
1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ0)

− 1

)(
w(z − It−1(θ̂n)) − w(z − It−1)

)
+

1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− Y 2
t

σ2
t (θ0)

)(
w(z − It−1(θ̂n)) − w(z − It−1)

)
− 1√

n

n∑
t=1

(
ε2
t

σ̇2
t (θ0)

σ2
t (θ0)

w(z − It−1) − Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z − I0)

]′)
1

n

n∑
s=1

Ls

+
1√
n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− Y 2
t

σ2
t (θ0)

+ ε2
t

[
σ̇2
t (θ0)

σ2
t (θ0)

]′
(θ̂n − θ0)

)
w(z − It−1)

− 1√
n

n∑
t=1

ε2
t

[
σ̇2
t (θ0)

σ2
t (θ0)

]′ (
θ̂n − θ0 −

1

n

n∑
s=1

Ls

)
w(z − It−1)

=: Rn,0(z) + Rn,1(z) + Rn,2(z) − Rn,3(z) + Rn,4(z) − Rn,5(z), (6.6)

say, where we use the abbreviation It instead of It(θ0). Since

Eθ0

∫
R2
n,0(z)Q(dz) = Eθ0

∫ {
(ε2

1 − 1)w(z − I0) − Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z − I0)

]′
Lt

}2

Q(dz) <∞

by (A2), (A3), and (4.29) in Francq and Zaköıan (2004), we have that
∫
R2
n,0(z)Q(dz) =

OP (1) and it remains to show that∫
R2
n,i(z)Q(dz) = oP (1), for i = 1, . . . , 5. (6.7)

The main tool to estimate
∫
R2
n,1(z)Q(dz) will be the Bernstein-type inequality for

martingales given in Proposition 2.1 in Freedman (1975). Since this inequality requires
bounded random variables, we have to truncate Y 2

t /σ
2
t − 1 = ε2

t − 1. To this end, we define

ξn,t =
(
ε2
t − 1

)
1
(∣∣ε2

t − 1
∣∣ ≤ √n)− Eθ0 ((ε2

t − 1
)
1
(∣∣ε2

t − 1
∣∣ ≤ √n))

and

ξ̄n,t =
(
ε2
t − 1

)
1
(∣∣ε2

t − 1
∣∣ > √n) .

Then, with

Ws,t(θ) =

∫
[w(z − Is−1(θ))− w(z − Is−1)][w(z − It−1(θ))− w(z − It−1)]Q(dz),
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we obtain∫
R2
n,1(z)Q(dz)

≤ 3

n

n∑
s,t=1

Eθ0
[(
ε2
s − 1

)
1
(∣∣ε2

s − 1
∣∣ ≤ √n)]Eθ0 [(ε2

t − 1
)
1
(∣∣ε2

t − 1
∣∣ ≤ √n)]Ws,t(θ̂n)

+
3

n

n∑
s,t=1

ξ̄n,s ξ̄n,tWs,t(θ̂n)

+
3

n

n∑
t=1

ξ2
n,tWt,t(θ̂n)

+
6

n

n∑
t=2

ξn,t

{
t−1∑
s=1

ξn,sWs,t(θ̂n)

}
=: Tn,1 + · · · + Tn,4. (6.8)

Since Eθ0 [ε2
t − 1)1(|ε2

t − 1| ≤
√
n)] = −Eθ0 [(ε2

t − 1)1(|ε2
t − 1| >

√
n)], we obtain that

√
n
∣∣Eθ0((ε2

t − 1)1(|ε2
t − 1| ≤

√
n))
∣∣ ≤ Eθ0

[
(ε2
t − 1)2

1(|ε2
t − 1| >

√
n)
]
−→
n→∞

0

which implies by |Ws,t(θ)| ≤ 4‖w‖2∞ that

Tn,1 = oP (1). (6.9)

Furthermore, we have

P
(
|ε2
t − 1| >

√
n for some t ∈ {1, . . . , n}

)
≤

n∑
t=1

P
(
|ε2
t − 1| >

√
n
)

≤ Eθ0
[
(ε2
t − 1)2

1(|ε2
t − 1| >

√
n)
]
−→
n→∞

0,

which leads to

Tn,2 = oP (1). (6.10)

Since Ws,t(θ) is bounded,

Ws,t(θ) = O

(√
|σ2
s−1(θ)− σ2

s−1(θ0)|
√
|σ2
t−1(θ)− σ2

t−1(θ0)|
)

(6.11)

and E[|ε0|4] <∞, we obtain by Lemma 2.1 that

Tn,3 = oP (1). (6.12)

The estimation of the term Tn,4 turns out to be much more delicate. The fact that Ws,t(θ̂n)

is of order OP (‖θ̂n − θ0‖) might suggest that Tn,4 is negligible. However, these weights

depend via θ̂n on the whole sample and we cannot use any standard inequality for sums of
martingale differences directly. To proceed, we choose a sequence of increasingly fine grids
Θn = {θn,1, . . . , θn,Mn} on Θ̄n := Θ0 ∩ {θ : ‖θ − θ0‖ ≤ γnn

−1/2}, where γn −→n→∞ ∞ and

γn = O(nγ), for some γ < 1/2. Terms such as
∑n

t=2 ξn,t

{∑t−1
s=1 ξn,sWs,t(θn,i)

}
have now

the desired martingale structure and we will show that

max
1≤i≤Mn

∣∣∣∣∣ 1n
n∑
t=2

ξn,t

{
t−1∑
s=1

ξn,sWs,t(θn,i)

}∣∣∣∣∣ = oP (1). (6.13)
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In order to get a meaningful result, we will choose the grids sufficiently fine such that

min
1≤i≤Mn

∣∣∣∣∣ 1n
n∑
t=2

ξn,t

{
t−1∑
s=1

ξn,s

(
Ws,t(θ̂n) − Ws,t(θn,i)

)}∣∣∣∣∣ = oP (1). (6.14)

Then (6.13) and (6.14) eventually yield that

Tn,4 = oP (1). (6.15)

To prove (6.14), we have to find a reasonably good estimate for |Ws,t(θ̂n)−Ws,t(θn,i)|. To
this end, we decompose∣∣∣Ws,t(θ̂n) − Ws,t(θn,i)

∣∣∣
≤

∣∣∣∣∫ [w(z − Is−1(θ̂n)) − w(z − Is−1(θn,i))
]

[
w(z − It−1(θ̂n)) − w(z − It−1)

]
Q(dz)

∣∣∣
+

∣∣∣∣∫ [w(z − Is−1(θn,i)) − w(z − Is−1)][
w(z − It−1(θ̂n)) − w(z − It−1(θn,i))

]
Q(dz)

∣∣∣
≤

√∫ [
w(z − Is−1(θ̂n)) − w(z − Is−1(θn,i))

]2
Q(dz)

√
Wt,t(θ̂n)

+

√∫ [
w(z − It−1(θ̂n)) − w(z − It−1(θn,i))

]2
Q(dz)

√
Ws,s(θn,i)

= O

(√∣∣∣σ2
s−1(θ̂n) − σ2

s−1(θn,i)
∣∣∣ +

√∣∣∣σ2
t−1(θ̂n) − σ2

t−1(θn,i)
∣∣∣) ,

where the latter equation follows from (A3) and the rough estimate |Wt,t(θ)| ≤ 4‖w‖2∞.
Therefore,∣∣∣Ws,t(θ̂n) − Ws,t(θn,i)

∣∣∣ ≤ C

(√
σ̇2
s−1(θ̂n,i,s) +

√
σ̇2
t−1(θ̂n,i,t)

) √
‖θ̂n − θn,i‖,

for some random θ̂n,i,s between θ̂n and θn,i (s = 1, . . . , n, i = 1, . . . ,Mn). To deal with terms

such as σ̇2
s−1(θ̂n,i,s), we define θmax,n = θ0 + γnn

−1/2(1, 1, 1)′ and make use of the fact that

σ2
t (θ) ≤ σ2

t (θmax,n) holds for all θ ∈ Θ̄n. Using |ξn,t| ≤ 2
√
n and again |Ws,t(θ)| ≤ 4‖w‖2∞

we obtain that∣∣∣∣∣ 1n
n∑
t=2

ξn,t

{
t−1∑
s=1

ξn,s

(
Ws,t(θ̂n) − Ws,t(θn,i)

)}∣∣∣∣∣
≤ nC ‖w‖2−4κ

∞

n∑
t=1

(
σ2
t−1(θmax,n) sup

θ∈Θ̄n

{‖σ̇2
t−1(θ)‖
σ2
t−1(θ)

})κ
‖θ̂n − θn,i‖κ

holds for all κ ∈ (0, 1/2). In view of Proposition 1 and (4.29) in Francq and Zaköıan (2004)
we have Eθ0

(
σ2
t−1(θmax,n) supθ∈Θ̄n{‖σ̇

2
t−1(θ)‖/σ2

t−1(θ)}
)κ0 < ∞, for some κ0 ∈ (0, 1/2).

Hence, choosing the grid such that

sup
θ∈Θ̄n

min
1≤i≤Mn

‖θ − θn,i‖κ0 = o(n−2)
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we eventually obtain (6.14). Note that the grid can be chosen such that Mn = O(nm) for
some m ∈ N which will be essential for the calculations below.

To prove (6.13), we first study the size of the quantities n−1/2
∑t−1

s=1 ξn,sWs,t(θn,i). Note
that this is not a sum of martingale differences since the weights of Ws,t(θn,i) depend on
It−1(θn,i) and It−1(θ0). By an approximation of It−1(θn,i) and It−1(θ0) on a sufficiently fine
grid with nonrandom points we obtain by the Bernstein-type inequality given in Proposi-
tion 2.1 in Freedman (1975) that

P

(
max

1≤i≤Mn

max
2≤t≤n

∣∣∣∣∣n−1/2
t−1∑
s=1

ξn,sWs,t(θn,i)

∣∣∣∣∣ > νn

)
−→
n→∞

0, (6.16)

for νn = n−δ with arbitrary δ ∈ (0, 1/2− γ). We define the stopping time

τ = inf

{
k : max

1≤i≤Mn

∣∣∣∣∣n−1/2
k∑
s=1

ξn,sWs,t(θn,i)

∣∣∣∣∣ > νn

}
.

Then, (6.16) is equivalent to
P (τ < n) −→

n→∞
0. (6.17)

Moreover, in case of τ ≥ n, we have, with Ft = σ(σt, Yt, σt−1, Yt−1, . . . ),

V 2
n (θn,i) =

1

n2

n∑
t=2

E

(ξn,t t−1∑
s=1

ξn,sWs,t(θn,i)

)2
∣∣∣∣∣∣Ft


≤ 1

n

n∑
t=2

(
n−1/2

t−1∑
s=1

ξn,sWs,t(θn,i)

)2

E[ξ2
n,t]

≤ ν2
n κ,

where κ = E[(ε2
1 − 1)2]. Now we obtain, again from the Bernstein-type inequality in

Freedman (1975, Proposition 2.1) that

P

(∣∣∣∣∣ 1n
n∑
t=2

ξn,t

{
t−1∑
s=1

ξn,sWs,t(θn,i)

}∣∣∣∣∣ > νn an and τ ≥ n

)

≤ 2 exp

{
− ν2

n a
2
n

2 (2ν2
n an + ν2

n κ)

}
. (6.18)

Therefore, choosing an = c
√

log n with an appropriate c we obtain that

Mn∑
i=1

P

(∣∣∣∣∣ 1n
n∑
t=2

ξn,t

{
t−1∑
s=1

ξn,sWs,t(θn,i)

}∣∣∣∣∣ > νn an and τ ≥ n

)
= o(1). (6.19)

Now, (6.17) and (6.19) imply (6.15).
Furthermore, (6.9), (6.10), (6.12), and (6.15) yield∫

R2
n,1(z)Q(dz) = oP (1). (6.20)

The estimation of the remaining terms is much easier. A Taylor expansion gives∫
R2
n,2(z)Q(dz)

≤
∫ {

‖θ̂n − θ0‖√
n

n∑
t=1

ε2
t

‖σ̇2
t (θ̄n,t)‖
σ2
t (θ̂n)

∣∣∣w(z − It−1(θ̂n)) − w(z − It−1)
∣∣∣}2

Q(dz)
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with some random θ̄n,t between θ̂n and θ0. Note that

E

[
ε2
t

‖σ̇2
t (θ̄n,t)‖
σ2
t (θ̂n)

1‖θ̂n−θ‖≤η

]
= E

[
ε2
t

‖σ̇2
t (θ̄n,t)‖
σ2
t (θ̄n,t)

σ2
t (θ̄n,t)

σ2
t (θ0)

σ2
t (θ0)

σ2
t (θ̂n)

1‖θ̂n−θ‖≤η

]
< ∞

for some η > 0 by (4.29) in Francq and Zaköıan (2004) and

E

[
sup

θ∈U(θ0)

σ2
t (θ)

σ2
t (θ0)

]4

+ E

[
sup

θ∈U(θ0)

σ2
t (θ0)

σ2
t (θ)

]4

<∞, (6.21)

where the latter relation can be deduced similarly to (4.26) in Francq and Zaköıan (2004)
for sufficiently small U(θ0). Hence, by (6.11) in conjunction with Lemma 2.1, we get∫

R2
n,2(z)Q(dz) = oP (1). (6.22)

The application of a CLT for martingale differences, Theorem 2.3 of McLeish (1974), leads
to∫

R2
n,3(z)Q(dz)

= OP (1)

∫ ∥∥∥∥∥ 1

n

n∑
t=1

(
ε2
t

σ̇2
t (θ0)

σ2
t (θ0)

w(z − It−1) − Eθ0

[
ε2

1

σ̇2
1(θ0)

σ2
1(θ0)

w(z − I0)

])∥∥∥∥∥
2

2

Q(dz)

= oP (1). (6.23)

The latter relation follows essentially from convergence of the empirical distribution based
on X1, . . . , Xn to PX0 ; see also the proof of equation (17) in Leucht and Neumann (2013a)
for details. Since (

Y 2
t

σ2
t (θ̂n)

− Y 2
t

σ2
t (θ0)

)
= −ε2

t

(
σ̇2
t (θ̄t)

σ2
t (θ̂n)

)′
(θ̂n − θ0)

we obtain∫
R2
n,4(z)Q(dz)

≤ ‖θ̂n − θ0‖22 ‖w‖2∞
n

(
n∑
t=1

ε2
t sup
θ : ‖θ−θ0‖2≤‖θ̂n−θ0‖2

∥∥∥∥∥ σ̇2
t (θ)

σ2
t (θ̂n)

− σ̇2
t (θ0)

σ2
t (θ0)

∥∥∥∥∥
2

)2

= oP (1) (6.24)

again by (4.29) in Francq and Zaköıan (2004) and (6.21) in conjunction with Lebesgue’s

dominated convergence theorem and consistency of θ̂n. Finally, by (2.8),∫
R2
n,5(z)Q(dz) ≤

‖θ̂n − θ0 − n−1
∑n

s=1 Ls‖22 ‖w‖2∞
n

∥∥∥∥∥
n∑
t=1

ε2
t

σ̇2
t (θ0)

σ2
t (θ0)

∥∥∥∥∥
2

2

= oP (1). (6.25)

We see from (6.20) and (6.22) to (6.25) that (6.7) actually holds true, which completes the
proof. �

Proof of Proposition 3.2. (i) The overall structure of the proof is similar to the one of
Lemma 3.1. Therefore we only sketch the proof and stress the main differences to the
previous one. Within the proof of Lemma 3.1, we repeatedly apply relations (4.26)
and (4.29) of Francq and Zaköıan (2004). Under the alternative, the observations do
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not arise from a GARCH(1,1) process. Therefore, these results are not applicable
directly. Still, replacing θ0 by θ̄0 these relations remain valid since the proofs of
Francq and Zaköıan (2004) only rely on the definition of σ2

t (θ), t ∈ Z, θ ∈ Θ0, and
the moment conditions stated in (A5).

As under H0, the effect of choosing an arbitrary initial volatility σ̂0 is asymp-
totically negligible. Using the notation of part (a) of the proof of Lemma 3.1,
n−1

∫
S2
n,i(z)Q(dz), i = 1, 2, can be verified in the same manner as before. Thus, we

obtain negligibility of the effect of the starting value if additionally n−1T̃n = OP (1),
which follows from the calculations below.

We decompose the square root of the integrand of n−1T̃n defined in (6.4) as

1

n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− 1

)
w(z − It−1(θ̂n))

=
1

n

n∑
t=1

(
Y 2
t

σ2
t (θ̄0)

− 1

)
w(z − It−1(θ̄0))

+
1

n

n∑
t=1

(
Y 2
t

σ2
t (θ̄0)

− 1

) (
w(z − It−1(θ̂n)) − w(z − It−1(θ̄0))

)
+

1

n

n∑
t=1

(
Y 2
t

σ2
t (θ̂n)

− Y 2
t

σ2
t (θ̄0)

)
w(z − It−1(θ̂n))

= Un,1(z) + Un,2(z) + Un,3(z).

Similarly to (6.23) we obtain
∫
U2
n,1(z)Q(dz)

P−→
∫ (
E[(Y 2

1 /σ
2
1(θ̄0)− 1)w(z − I0(θ̄0))]

)2
Q(dz).

Moreover, under (A3) and (A5) we obtain

∫
U2
n,2(z)Q(dz) ≤ OP (1)

1

n

n∑
t=1

{
1 ∧ |σ2

t (θ̂n)− σ2
t (θ̄0)|

}
.

In analogy to the proof of Lemma 2.1(ii), asymptotic negligibility of the remaining
term can be verified. Finally, we get

|Un,3(z)| ≤ oP (1)
‖w‖2∞
n

n∑
t=1

Y 2
t

σ2
t (θ̄0)

‖σ̇2
t (θ̄n,t)‖
σ2
t (θ̂n)

for some random θ̄n,t between θ̂n and θ̄0. Thus,
∫
U2
n,3(z)Q(dz) is of order oP (1)

under (A5) and finally n−1T̂n =
∫
E[(Y 2

1 /σ
2
1(θ̄0)− 1)w(z − I0(θ̄0))]2Q(dz) + oP (1).

(ii) The assertion follows immediately from part (i) and the extra condition presumed
under (ii).

�
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Proof of Lemma 4.1. Recall that et and ε̂t denote the raw and the standardized residuals,
respectively. We define

Fε(x) = P (ε0 ≤ x),

Fn,ε(x) =
1

n

n∑
t=1

1(εt ≤ x),

Fn,e(x) =
1

n

n∑
t=1

1(et ≤ x),

Fn,ε̂(x) =
1

n

n∑
t=1

1(ε̂t ≤ x).

First of all, we obtain from the Glivenko-Cantelli theorem that

dL(Fn,ε, Fε)
a.s−→ 0. (6.26)

Next we will prove that

1

n

n∑
t=1

|et − εt|
a.s.−→ 0, (6.27)

which then implies

dL(Fn,e, Fn,ε)
a.s.−→ 0. (6.28)

To this end, we split up

1

n

n∑
t=1

|et − εt|

≤ 1

n

n∑
t=1

|εt|
∣∣∣σt(θ0)/σt(θ̂n) − 1

∣∣∣ +
1

n

n∑
t=1

|εt|σt(θ0)

∣∣∣∣∣ 1

σ̂t
− 1

σt(θ̂n)

∣∣∣∣∣ .
It follows from (A2) and (4.26) of Francq and Zaköıan (2004) that
E[|ε0| supθ : ‖θ−θ0‖≤δ |σ0(θ0)/σ0(θ) − 1|] < ∞ for some δ > 0. Therefore we obtain from

Lemma 2.1 that E[|ε0| supθ : ‖θ−θ0‖≤δ |σ0(θ0)/σ0(θ) − 1|] −→δ→0 0. This implies, in con-

junction with θ̂n
a.s.−→ θ0 and by the ergodic theorem (see e.g. Theorem 2.3 on page 48 in

Bradley (2007)) that

P

(
sup
n≥n0

1

n

n∑
t=1

|εt||σt(θ0)/σt(θ̂n) − 1| > ε

)
−→
n0→∞

0

holds for all ε > 0. Therefore, we obtain that

1

n

n∑
t=1

|εt|
∣∣∣σt(θ0)/σt(θ̂n) − 1

∣∣∣ a.s.−→ 0. (6.29)

Since |σ2
t (θ̂n)− σ̂2

t | ≤ β̂tn|σ2
0(θ̂n)− σ̂2

0| and σ̂2
t ≥ ω̂n (for t ≥ 1) we obtain

1

n

n∑
t=1

|εt|σt(θ0)

∣∣∣∣∣ 1

σ̂t
− 1

σt(θ̂n)

∣∣∣∣∣ ≤ 1

n

n∑
t=1

|εt|
σt(θ0)

σt(θ̂n)

β̂tn|σ2
0(θ̂n)− σ̂2

0|
ω̂n

.

Furthermore, since

|σ2
0(θ̂n)− σ̂2

0|
ω̂n

a.s.−→ |σ2
0(θ0)− σ̂2

0|
ω0
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and

β̂n
a.s.−→ β0 < 1

we conclude that

1

n

n∑
t=1

|εt|σt(θ0)

∣∣∣∣∣ 1

σ̂t
− 1

σt(θ̂n)

∣∣∣∣∣ a.s.−→ 0. (6.30)

Next, (6.29) and (6.30) yield (6.27) and therefore also (6.28). Moreover, we obtain by the

strong law of large numbers (SLLN) that n−1
∑n

t=1 ε
2
t

a.s.−→ E[ε2
0] = 1. In analogy to the

proof of (6.27) it can be shown that

1

n

n∑
t=1

|e2
t − ε2

t |
a.s.−→ 0.

Therefore, we end up with

1

n

n∑
t=1

e2
t

a.s.−→ 1. (6.31)

Hence,

dL(Fn,ε̂, Fn,e)
a.s.−→ 0. (6.32)

From (6.26), (6.28), and (6.32) we conclude that

dL(Fn,ε̂, Fε)
a.s.−→ 0, (6.33)

as required. �

Proof of Lemma 4.2. Recall that ε∗t has the distribution function Fn,ε̂. Since E∗[ε∗t
2] =

E[ε2
t ] = 1 it follows from our Lemma 4.1 and Lemma 8.3 in Bickel and Freedman (1981)

that

d2(ε∗t , εt)
a.s.−→ 0, (6.34)

where d2(U, V ) = inf{E(Ũ − Ṽ )2 : Ũ
d
= U, Ṽ

d
= V } denotes Mallows’ distance between the

random variables U and V . Since (εt)t∈Z and (ε∗t )t∈Z are both sequences of i.i.d. random

variables, we can construct, on an appropriate probability space (Ω̃, Ã, P̃ ), a sequence of
i.i.d. random vectors ((ε̃∗t , ε̃t)

′)t∈Z such that

ε̃t
d
= εt,

ε̃∗t
d
= ε∗t ,

and

E
P̃

[(ε̃∗t − ε̃t)
2] = d2(ε∗t , εt)

a.s.−→ 0. (6.35)

The proof of

E
P̃

[
|Ỹ ∗t−1 − Ỹt−1| ∧ 1 + |σ̃∗2t−1 − σ̃2

t−1| ∧ 1
]

a.s.−→ 0 (6.36)

is more delicate since we have to deal here with infinite series. Let ε > 0 be arbitrary. We
define approximations

σ̃2
t,K = ω0

[
1 +

K∑
k=1

k∏
i=1

(β0 + α0ε̃
2
t−i)

]
,

σ̃∗2t,K = ω̂n

[
1 +

K∑
k=1

k∏
i=1

(β̂n + α̂nε̃
∗2
t−i)

]
.
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It follows from (6.35) and θ̂n
a.s.−→ θ0 that

P̃
(
|σ̃2
t,K − σ̃∗2t,K | > ε

) a.s.−→ 0

holds for all K ∈ N. Since the infinite series defining σ̃2
t converges, we have

P̃
(
|σ̃2
t − σ̃2

t,K | > ε
)
≤ ε

if K = K(ε) is sufficiently large. Furthermore, since E∗[ln(β̂n + α̂nε
∗
t

2)]
a.s.−→ E[ln(β0 +

α0ε
2
0)] < 0, we have that

P̃
(
|σ̃∗2t − σ̃∗2t,K∗ | > ε

)
≤ ε, a.s.

for all n ≥ N , where K∗ is sufficiently large and nonrandom and N is random but finite.
For K̄ = max{K,K∗}, we obtain that

P̃
(
|σ̃2
t − σ̃∗2t | > 3 ε

)
≤ 3 ε, a.s.,

for all n larger than some random but finite value. This, however, implies that

E
P̃

[
|σ̃∗2t−1 − σ̃2

t−1| ∧ 1
] a.s.−→ 0.

The proof of the fact,

E
P̃

[
|Ỹ ∗t−1 − Ỹt−1| ∧ 1

]
a.s.−→ 0 (6.37)

is similar and therefore omitted.
It remains to establish a coupling of (L̃∗t )t and (L̃t)t. To this end, we first show that

E∗[Ẅ ∗0 (θ̂n)]
a.s.−→ Eθ0 [Ẅ0(θ0)] with W ∗0 (θ) := log σ∗20 (θ) + Y ∗20 /σ∗20 (θ) and σ∗2t (θ) = ω/(1−

β) + α
∑∞

k=1 β
k−1Y ∗2t−k. In accordance with (4.13) in Francq and Zaköıan (2004) we get

Ẅ ∗t (θ) :=

(
1− Y ∗2t

σ∗2t (θ)

)
1

σ∗2t (θ)

∂2σ∗2t (θ)

∂θ∂θ′
+

(
2
Y ∗2t
σ∗2t (θ)

− 1

)
∂σ∗2t (θ)

∂θ

∂σ∗2t
∂θ′

.

We obtain explicit formulas for the derivatives appearing in the formula above by substitut-
ing the original random variables by their bootstrap counterparts in the equations (4.15),
(4.16), and (4.20) to (4.22) of that paper. They depend on the parameters and lagged Y ∗s in
a smooth manner and we get the desired convergence by dominated convergence theorem

from almost sure convergence of θ̂n to θ, (6.37) and from the bootstrap analogues to (4.25)
in Francq and Zaköıan (2004) and to Lemma 2.3 in Berkes, Horváth, and Kokoszka (2003).

Similarly we obtain

E
P̃

∥∥∥ ˙̃σ
∗2
t (θ̂n)/σ̃∗2t (θ̂n) − ˙̃σ

2

t (θ0)/σ̃2
t (θ0)

∥∥∥2 a.s.−→ 0

which in turn leads to

E
P̃
‖L̃∗t − L̃t‖2

a.s.−→ 0. (6.38)

This finally completes the proof. �

Proof of Corollary 4.1. We have

σ̃2
t (θ) =

(
ω

1− β
+ α

K∑
k=1

βk−1Ỹ 2
t−k

)
+ α

∞∑
k=K+1

βk−1Ỹ 2
t−k

=: σ̃2
t,K(θ) + Rt,K(θ)
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and, analogously,

σ̃∗2t (θ) =

(
ω

1− β
+ α

K∑
k=1

βk−1Ỹ ∗2t−k

)
+ α

∞∑
k=K+1

βk−1Ỹ ∗2t−k

=: σ̃∗2t,K(θ) + R∗t,K(θ).

Since β ≤ ρ0 < 1 and α ≤ u2 < ∞ for all (ω, α, β)′ ∈ Θ0 we obtain from Lemma 4.2,
for arbitrary K <∞,

E
P̃

[
sup
θ∈Θ0

∣∣σ̃∗2t,K(θ) − σ̃2
t,K(θ)

∣∣ ∧ 1/3

]

≤ u2

K∑
k=1

E
P̃

[∣∣∣Ỹ ∗2t−k − Ỹ 2
t−k

∣∣∣ ∧ 1/3
]

a.s.−→ 0. (6.39)

To estimate the remainder terms Rt,K(θ) and R∗t,K(θ), we choose any ζ ∈ (1, 1/ρ0). Then

∞∑
k=K+1

P̃ (Ỹ 2
t−k > ζk) =

∞∑
k=1

P (Y 2
0 > ζK+k)

=

∞∑
k=1

P

(
2 log Y0

log ζ
− K > k

)
≤ E

[(
2 log Y0

log ζ
− K

)
+

]
,

which tends to zero as K →∞. On the other hand, if Ỹ 2
t−k ≤ ζk for all k > K, we obtain

that

sup
θ∈Θ0

Rt,K(θ) ≤ u2

∞∑
k=K+1

ρk−1
0 ζk = (ρ0ζ)K

u2ζ

1− ρ0ζ
.

Since this upper estimate also tends to zero as K →∞, we conclude

E
P̃

[
sup
θ∈Θ0

Rt,K ∧ 1/3

]
−→
K→∞

0. (6.40)

Finally, since

E∗
[(

2 log Y ∗0
log ζ

− K

)
+

]
P−→ E

[(
2 log Y0

log ζ
− K

)
+

]
we get in analogy to (6.40) that

E
P̃

[
sup
θ∈Θ0

R∗t,K ∧ 1/3

]
P̃−→ 0. (6.41)

The assertion follows now from (6.39) to (6.41). �

Proof of Lemma 4.3. The assertion can be proved along the lines of the proof of Theo-

rem 2.2 in Francq and Zaköıan (2004) if θ̂∗n − θ̂n = oP ∗(1). Therefore we proceed in two
steps.

(i) Weak consistency of θ̂∗n.



24

Let ε > 0 be arbitrary. By strong consistency of θ̂n for θ0, it suffices to show that

P ∗
(
θ̂∗n ∈ Uε

)
P−→ 0, (6.42)

where Uε = {θ : ‖θ − θ0‖ ≥ ε} ∩Θ0.
Before we deduce this conclusion via coupling arguments, some preliminary considera-

tions involving the behavior of the log-likelihood process (L̄n(θ))θ∈Θ0 on the original side
are in order. It can be seen from the proof of Theorem 2.1 in Francq and Zaköıan (2004)
that, for all θ 6= θ0, there exist sufficiently small η(θ) > 0, δ(θ) > 0 and a sufficiently large
M(θ) <∞ such that, for U(θ) = {θ̄ : ‖θ̄ − θ‖ < η(θ)} ∩Θ0,

Eθ0

[
inf

θ̄∈U(θ)

(
lnσ2

t (θ̄) + Y 2
t /σ

2
t (θ̄)

)
∧M(θ)

]
≥ Eθ0

[
lnσ2

0(θ0) + 1
]

+ δ(θ). (6.43)

Since the set Uε is a compact subset of R3 and is covered by the open sets {θ̄ : ‖θ̄−θ‖ < η(θ)},
θ ∈ Uε, we can extract a finite subcover, that is, there exist θ(1), . . . , θ(N) ∈ Uε such that

Uε ⊆
N⋃
i=1

U(θ(i)).

Let Ln,M (θ) = n−1
∑n

t=1{(lnσ2
t (θ) + Y 2

t /σ
2
t (θ)) ∧M(θ)}. Since the underlying process is

strictly stationary and ergodic we obtain by the ergodic theorem, forM = max{M(θ(1)), . . . ,M(θ(N))},

Pθ0

(
inf
θ∈Uε
Ln,M (θ) ≥ 1

n

n∑
t=1

(
lnσ2

t (θ0) + Y 2
t /σ

2
t (θ0)

))
(6.44)

≤
N∑
i=1

Pθ0

(
1

n

n∑
t=1

inf
θ̄∈U(θ(i))

{
lnσ2

t (θ̄) + Y 2
t /σ

2
t (θ̄)

}
∧M ≥ 1

n

n∑
t=1

(
lnσ2

t (θ0) + Y 2
t /σ

2
t (θ0)

)
+
δ(θ)

2

)
−→
n→∞

0.

We now show that the log-likelihood process L̄∗n, given by

L̄∗n(θ) =
1

n

n∑
t=1

ln σ̄∗2t (θ) +
Y ∗2t
σ̄∗2t (θ)

,

behaves in a similar manner as L̄n. Here, σ̄∗2t (θ) denotes the bootstrap analogue to σ̄2
t (θ).

Since we have to deal with a triangular scheme on the bootstrap side, we do not have tools
such as the ergodic theorem at hand and a direct imitation of the consistency proof from
the original side would be presumably rather cumbersome. Fortunately, some coupling
arguments can be employed to complete the proof in a simple manner.

Recall that θ̂∗n is defined as a minimizer of L̄∗n. In the following we show that

P ∗
(

inf
θ∈Uε
L̄∗n(θ) > L̄∗n(θ̂n)

)
P−→ 1, (6.45)

which then implies (6.42).
Let L∗n(θ) = n−1

∑n
t=1 lnσ∗2t (θ) + Y ∗2t /σ∗2t (θ) be the analogue to L̄∗n(θ), where only

σ̄∗2t (θ) is replaced by the stationary approximation σ∗2t (θ). We can prove in complete
analogy to (i) in the proof of Theorem 2.1 in Francq and Zaköıan (2004) that

sup
θ∈Θ0

∣∣L̄∗n(θ) − L∗n(θ)
∣∣ = oP ∗(1). (6.46)
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Next we prove that, with L̃∗n(θ̂n) = n−1
∑n

t=1 ln σ̃∗2t (θ̂n) + Ỹ ∗2t /σ̃∗2t (θ̂n),∣∣∣L̃∗n(θ̂n) − L̃n(θ0)
∣∣∣ P̃−→ 0. (6.47)

We split up ∣∣∣L̃∗n(θ̂n) − L̃n(θ0)
∣∣∣

≤ 1

n

n∑
t=1

∣∣ε̃∗2t − ε̃2
t

∣∣
+

1

n

n∑
t=1

∣∣∣(ln σ̃∗2t (θ̂n) ∧M
)
−
(

ln σ̃2
t (θ̂n) ∧M

)∣∣∣
+

1

n

n∑
t=1

(
ln σ̃2

t (θ̂n) − M
)

+

+
1

n

n∑
t=1

(
ln σ̃∗2t (θ̂n) − M

)
+

+
1

n

n∑
t=1

∣∣∣ln σ̃2
t (θ̂n) − ln σ̃2

t (θ0)
∣∣∣

= Tn,1 + · · · + Tn,5.

It follows from Lemma 4.2 that

Tn,1 + Tn,2
P̃−→ 0.

We obtain from monotone convergence that

E
P̃

[
sup

θ : ‖θ−θ0‖≤δ
(ln σ̃2

t (θ)−M)+

]
→

M→∞
0, (6.48)

for some δ > 0. Since θ̂n
a.s.−→ θ0 we conclude that

Tn,3
P̃−→ 0.

Furthermore, it can be deduced similarly to Theorem 3 in Nelson (1991) that E∗σ̃∗s0 (θ̂n) ≤ C
with probability tending to one for some s > 0 and C < ∞. Hence, using Lemma 4.2 and
(6.48)

Tn,4
P̃−→ 0.

Finally, it follows from E[supθ : ‖θ−θ0‖≤δ | lnσ
2
0(θ)− lnσ2

0(θ0)|]→δ→0 0 and θ̂n
a.s.−→ θ0 that

Tn,5
P̃−→ 0,

which completes the proof of (6.47).

Define L̃∗n,M (θ) = n−1
∑n

t=1

(
ln σ̃∗2t (θ) + Ỹ ∗2t /σ̃∗2t (θ)

)
∧ M . We obtain from Corol-

lary 4.1 that

sup
θ∈Θ0

∣∣∣L̃∗n,M (θ) − L̃n,M (θ)
∣∣∣ P̃−→ 0. (6.49)

From (6.43), (6.44), and (6.46) to (6.49) we obtain (6.45) and therefore (6.42).

(ii) Linearization of θ̂∗n.
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With the same arguments as in the proof of Theorem 2.2 of Francq and Zaköıan (2004) we
obtain

(E∗[Ẅ ∗0 (θ̂n)])−1 1

n

n∑
t=1

(
Ẅ ∗t (θ̄n,i,j)

)
i,j=1,2,3

(
θ̂∗n − θ̂n

)
=

1

n

n∑
t=1

L∗t + oP ∗(n−1/2)

for some θ̄n,i,j between θ̂n and θ̂∗n and it remains to prove that

1

n

n∑
t=1

(
Ẅ ∗t (θ̄n,i,j)

)
i,j=1,2,3

− E∗[Ẅ ∗0 (θ̂n)] = oP ∗(1).

By part (i) of this proof and the bootstrap analogue to (iii) of the proof of Theorem 2.2 in
Francq and Zaköıan (2004) we get

1

n

n∑
t=1

(
Ẅ ∗t (θ̄n,i,j)

)
i,j=1,2,3

− E∗[Ẅ ∗0 (θ̂n)] =
1

n

n∑
t=1

Ẅ ∗t (θ̂n)− E∗[Ẅ ∗0 (θ̂n)] + oP ∗(1).

Asymptotic negligibility of the r.h.s. follows from n−1
∑n

t=1 Ẅt(θ0) − E[Ẅ0(θ0)] = oP (1)

(see (vi) of the proof of Francq and Zaköıan (2004)), and E∗[Ẅ ∗0 (θ̂n)]
a.s.−→ E[Ẅ0(θ0)] if

additionally

1

n

n∑
t=1

Ẅ ∗t (θ̂n)− Ẅt(θ0) = oP ∗(1).

This in turn can be deduced from Lemma 4.2 in conjunction with (4.20) to (4.22) in Francq
and Zaköıan (2004). �

Proof of Lemma 4.4. The proof can be carried out in complete analogy to the verification
of Lemma 3.1 if the bootstrap counterparts of the assumptions (A1) and (A2) are satisfied
since the Bahadur linearization of the estimator (2.8) is valid by Lemma 4.3. In particular,
we have to show an analogue of (6.23) on the bootstrap side. This will essentially follow
from convergence of the empirical bootstrap distribution to PX0 . To show the latter we can
use our Lemma 4.1 which implies that the difference of the empirical bootstrap distribution
and the empirical distribution given by X1, . . . , Xn is asymptotically negligible. Finally,
convergence of the empirical distribution to PX0 follows from the ergodic theorem. Now
we check the prerequisites (A1) and (A2).

Obviously, (A1)(i) is satisfied with θ̂n instead of θ0. The bootstrap innovations (ε∗t )t
are i.i.d. and have unit second moment. Moreover, E∗[ln(β̂n + α̂nε

∗
1

2)] < 0 with probability
tending to one which then yields the bootstrap version of (A1)(ii).

Next, we consider the bootstrap analogue of (A2). Clearly, by Lemma 4.1 we obtain a
nondegenerate distribution of the ε∗t

2s with probability tending to one. Finally, we have to
show that E∗[|ε∗0|4] ≤ C with probability tending to one for a finite constant C. In view of
(6.31), we get

E∗[|ε∗t |4] = |1 + oP (1)|n−1
n∑
n=1

e4
t = |1 + oP (1)|n−1

n∑
n=1

ε4
t + oP (1),

where the latter relation can be verified similarly to (6.27). Now the SLLN implies the
desired boundedness of moments. �

Proof of Theorem 4.1. The coupling of the Xt with the X∗t constructed in the proof of

Lemma 4.2 implies a coupling of Tn and T ∗n . Denote by T̃n and T̃ ∗n the versions of Tn
and T ∗n based on the coupled variables X̃t and X̃∗t , respectively. First, note that the
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kernels of the V -statistics are of the form h(x, y) =
∫
g(x, z)g(y, z)Q(dz) and h∗(x, y) =∫

g∗(x, z)g∗(y, z)Q(dz), resp., where

g(x, z) = (x1 − 1)w(z1 − x2, z2 − x3) − Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z1 − Y0, z2 − σ2
0(θ0))

]′
x4,

g∗(x, z) = (x1 − 1)w(z1 − x2, z2 − x3) − E
θ̂n

[
˙σ∗1

2(θ̂n)

σ∗1
2(θ̂n)

w(z1 − Y ∗0 , z2 − σ∗0
2(θ̂n))

]′
x4.

We obtain by Minkowski’s inequality that∣∣∣∣√T̃n − √T̃ ∗n ∣∣∣∣
=

∣∣∣∣∣∣∣

∫ (

1√
n

n∑
t=1

g(X̃t, z)

)2

Q(dz)


1/2

−


∫ (

1√
n

n∑
t=1

g∗(X̃∗t , z)

)2

Q(dz)


1/2
∣∣∣∣∣∣∣

≤


∫ (

1√
n

n∑
t=1

[g(X̃t, z) − g∗(X̃∗t , z)]

)2

Q(dz)


1/2

.

It follows from the independence of the vectors (ε̃t, ε̃
∗
t )
′ that, for t > s,

E
P̃

(
g(X̃t, z) − g∗(X̃∗t , z) | X̃s, X̃

∗
s

)
= 0 a.s.

This implies

E
P̃

(√
T̃n −

√
T̃ ∗n

)2

≤ 1

n

n∑
s,t=1

E
P̃

{∫
[g(X̃s, z) − g∗(X̃∗s , z)][g(X̃t, z) − g∗(X̃∗t , z)]Q(dz)

}
= E

P̃

∫
[g(X̃t, z) − g∗(X̃∗t , z)]

2Q(dz)

≤ 2 E
P̃

∫ {
(ε̃2

1 − 1) w(z1 − Ỹ0, z2 − σ̃2
0) − (ε̃∗21 − 1) w(z1 − Ỹ ∗0 , z2 − σ̃∗20 )

}2
Q(dz)

+ 2 E
P̃

∫ {
Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z1 − Y0, z2 − σ2
0(θ0))

]′
L̃1 − E

θ̂n

[
˙σ∗1

2(θ̂n)

σ∗1
2(θ̂n)

w(z1 − Y ∗0 , z2 − σ∗0
2(θ̂n))

]′
L̃∗1

}2

Q(dz).

The assertion of the Theorem now follows from Lemma 4.2 and

∫ (
E
θ̂n

[
˙σ∗1

2(θ̂n)

σ∗1
2(θ̂n)

w(z1 − Y ∗0 , z2 − σ∗0
2(θ̂n))

]
− Eθ0

[
σ̇2

1(θ0)

σ2
1(θ0)

w(z1 − Y0, z2 − σ2
0(θ0))

])2

Q(dz)
a.s.−→ 0,

where the latter follows from (A3) and the proof of Lemma 4.2. �
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Proof of Lemma 4.5. We split up

n−1T̂ ∗n

=

∫ {
1

n

n∑
t=1

(
Y ∗t

2

(σ̂∗t )
2
− 1

)
w(z1 − Y ∗t−1, z2 − σ̂∗2t−1)

}2

Q(dz1, dz2)

≤ 3

∫ {
1

n

n∑
t=1

(ε∗t
2 − 1)w(z1 − Y ∗t−1, z2 − σ∗2t−1)

}2

Q(dz1, dz2)

+ 3

∫ {
1

n

n∑
t=1

(
Y ∗t

2

(σ̂∗t )
2
− ε∗t

2

)
w(z1 − Y ∗t−1, z2 − σ̂∗2t−1)

}2

Q(dz1, dz2)

+ 3

∫ {
1

n

n∑
t=1

(ε∗t
2 − 1)

(
w(z1 − Y ∗t−1, z2 − σ̂∗2t−1) − w(z1 − Y ∗t−1, z2 − σ∗2t−1)

)}2

Q(dz1, dz2)

=: R∗n,1 + R∗n,2 + R∗n,3.

The sum in the integrand of R∗n,1 is a sum of martingale differences. Therefore, and since

ε∗t is independent of (Y ∗t−1, σ
∗2
t−1) we have

E∗R∗n,1 =
3

n
E∗[(ε∗1

2 − 1)2]

∫
w2(z1 − Y ∗t−1, z2 − σ∗2t−1)Q(dz1, dz2) = OP (n−1).

Moreover, note that

R∗n,2 ≤ 6

∫ {
1

n

n∑
t=1

(
Y ∗t

2

σ∗2t (θ̂∗n)
− ε∗t

2

)
w(z1 − Y ∗t−1, z2 − σ∗2t (θ̂∗n))

}2

Q(dz1, dz2) + oP (1).

We abbreviate the first summand on the r.h.s. by R̄∗n,2. By the Cauchy-Schwarz inequality,

σ∗2t (θ̂∗n) ≥ ω̂∗ ≥ u1 > 0 and since ε∗t is independent of (σ∗2t (θ̂∗n), σ∗t
2) we obtain

E∗R̄∗n,2 ≤ 12 E∗

[
ε∗1

4 |σ∗2t (θ̂∗n)− σ∗12|2

σ∗4t (θ̂∗n)

]
‖w‖2∞

P−→ 0.

Similarly, R∗n,3 = R̄∗n,3 + oP (1) with

R̄∗n,3 = 6

∫ {
1

n

n∑
t=1

(ε∗t
2 − 1)

(
w(z1 − Y ∗t−1, z2 − σ∗2t (θ̂∗n)) − w(z1 − Y ∗t−1, z2 − σ∗2t−1)

)}2

Q(dz1, dz2).

Finally, by (A3) and again by the Cauchy-Schwarz inequality,

E∗R̄∗n,3 ≤ 6 E∗[(ε∗1
2 − 1)2] E∗

[∫ (
w(z1 − Y ∗0 , z2 − σ∗2t (θ̂∗n)) − w(z1 − Y ∗0 , z2 − σ∗20 )

)2
Q(dz1, dz2)

]
P−→ 0,

which completes the proof. �

Proof of Corollary 4.2. We prove only (i) since (ii) follows directly from Proposition 3.2
and Lemma 4.5. Since∣∣∣P (T̂n > t∗γ) − γ

∣∣∣ ≤ sup
t∈R

∣∣∣P (T̂n ≤ t)− P ∗(T̂ ∗n ≤ t)
∣∣∣ +

∣∣∣P ∗(T̂ ∗n > t∗γ)− γ
∣∣∣ ,

part (i) of the corollary follows from Proposition 3.1, Lemma 4.4, and Theorem 4.1 if the

limit distribution of T̂n is continuous; see also Lemma 2.11 of van der Vaart (1998). The
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limit variable Z =
∑

k λkZ
2
k has indeed a continuous distribution if at least one of the λks

is nonzero which in turn follows from

E[h(X1, X1)] > 0. (6.50)

�
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