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BOOTSTRAPPING SAMPLE QUANTILES OF DISCRETE DATA

CARSTEN JENTSCH AND ANNE LEUCHT

Abstract. Sample quantiles are consistent estimators for the true quantile and satisfy central
limit theorems (CLTs) if the underlying distribution is continuous. If the distribution is dis-
crete, the situation is much more delicate. In this case, sample quantiles are known to be not
even consistent in general for the population quantiles. In a motivating example, we show that
Efron’s bootstrap does not consistently mimic the distribution of sample quantiles even in the
discrete independent and identically distributed (i.i.d.) data case. To overcome this bootstrap
inconsistency, we provide two different and complementing strategies.

In the first part of this paper, we prove that m-out-of-n-type bootstraps do consistently mimic
the distribution of sample quantiles in the discrete data case. As the corresponding bootstrap
confidence intervals tend to be conservative due to the discreteness of the true distribution,
we propose randomization techniques to construct bootstrap confidence sets of asymptotically
correct size.

In the second part, we consider a continuous modification of the cumulative distribution function
and make use of mid-quantiles studied in Ma, Genton and Parzen (2011). Contrary to ordinary
quantiles and due to continuity, mid-quantiles lose their discrete nature and can be estimated
consistently. Moreover, Ma, Genton and Parzen (2011) proved (non-)central limit theorems for
i.i.d. data, which we generalize to the time series case. However, as the mid-quantile function
fails to be differentiable, classical i.i.d. or block bootstrap methods do not lead to completely
satisfactory results and m-out-of-n variants are required here as well.

The finite sample performances of both approaches are illustrated in a simulation study by
comparing coverage rates of bootstrap confidence intervals.

Introduction

Since the seminal work of Efron (1979), bootstrapping has been established as a major tool for
estimating unknown finite sample distributions of general statistics. Among others, this method
has successfully been applied to construct confidence intervals for sample quantiles of contin-
uous distributions; see e.g. Serfling (2002, Chapter 2.6), Sun and Lahiri (2006), Sharipov and
Wendler (2013) and references therein. In this case, the asymptotic behavior of quantile estima-
tors is well-understood. Based on the well-known Bahadur representation, a CLT can then be
established for sample quantiles in case of an underlying distribution exhibiting a differentiable
cumulative distribution function (cdf) and a positive density at the quantile level of interest.
This allows for the application of classical results on the bootstrap to mimic the unknown finite
sample distribution.

If the underlying distribution is discrete, the situation is much more delicate. Sample quan-
tiles may not even be consistent in general for the population quantiles in this case. This issue
occurs due to the fact that the cdf is a step function. This leads to inconsistency if the level of
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2 CARSTEN JENTSCH AND ANNE LEUCHT

the quantile of interest lies in the image of the cdf and, consequently, CLTs do not hold true
anymore. Before we illustrate this inconsistency with the help of a simple, but very insightful
toy example below, first, we fix some notation that is used throughout this paper. Let Qp for
p ∈ (0, 1) be the usual population p-quantile of a probability distribution with cdf F defined via
its generalized inverse, i.e.

Qp = F−1(p) = inf
t
{t : F (t) ≥ p}. (1)

With observations X1, . . . ,Xn at hand, the sample p-quantile Q̂p is defined as the empirical
counterpart to (1), that is,

Q̂p = F̂−1
n (p) = inf

t
{t : F̂ (t) ≥ p}, (2)

where F̂n(x) = n−1
∑n

i=1 1(Xi ≤ x) denotes the empirical distribution. Here and in the sequel,
⌈x⌉ (⌊x⌋) denotes the smallest (largest) integer that is larger (smaller) or equal to x.

Toy example: Coin flip data.
Suppose a coin is flipped independently n times and we observe a sequence X1, . . . ,Xn of zeros
and ones such that P (Xi = 0) = p = 1 − P (Xi = 1) for some p ∈ (0, 1). Let Xmed = Q0.5 and

X̂med = Q̂0.5 denote the population median and the sample median, respectively. This leads to

P (X̂med = 0) =

n∑

k=⌈n
2
⌉

(
n

k

)
pk(1 − p)n−k. (3)

If the coin is fair, i.e. p = 1/2, we have Xmed = 0 and, by symmetry properties, we get

P (X̂med = 0) =

{
1
2 , n odd
1
2 +

(
n

n/2

) (
1
2

)n+1
, n even

. (4)

From Stirling’s formula, we get
( n
n/2

) (
1
2

)n+1
= O(n−1/2), which leads to

P (X̂med = 0) = 1 − P (X̂med = 1) → 1

2
(5)

as n → ∞. Thus, the sample median is not a consistent estimator and its limiting distribution
is an equally-weighted 2-point distribution, i.e. a fair coin flip itself.

In this paper, as a first result, we show that one consequence of the estimation inconsistency
illustrated in (5) is that the classical bootstrap of Efron for i.i.d. data is inconsistent for sample
quantiles if they do not consistently estimate the true quantile. More precisely, we prove that the
Kolmogorov-Smirnov distance between the cdfs and their bootstrap analogues do not converge
to zero, but to non-degenerate random variables. These turn out to be functions of a random
variable U ∼ Unif(0, 1) in the special case of the sample median for the fair coin flip discussed in
the example and in Theorem 1.1 below. To the authors knowledge, such a specific phenomenon
has not been observed in the bootstrap literature so far.
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Toy example: Coin flip data (continued).

Let X∗
1 , . . . ,X

∗
n be i.i.d. (Efron) bootstrap replicates of X1, . . . ,Xn and let X̂∗

med denote the
bootstrap sample median based on the bootstrap observations. Then, we have analogously to (3)

P ∗(X̂∗
med = 0) =

n∑

k=⌈n
2
⌉

(
n

k

)
p̂k

n(1 − p̂n)n−k, (6)

where p̂n = n−1
∑n

t=1 1(Xt = 0). In Theorem 1.1 below, we show that

P ∗(X̂∗
med = 0) = 1 − P ∗(X̂∗

med = 1)
D−→ U ∼ Unif(0, 1). (7)

By combining the result in (7) with (5), we get inconsistency of Efron’s bootstrap, see Theo-
rem 1.1 below for details.

In view of the results displayed in the toy example, it is worth noting that, more generally, the
population p-quantile Qp may be defined as any real number q that satisfies the two inequalities

P (X ≤ q) ≥ p and P (X ≥ q) ≥ 1 − p, (8)

where X ∼ F , i.e. the definition (1) corresponds to the smallest possible value of q in (8). In
particular, it is not unusual to define the median Xmed as the center of the smallest and the

largest possible values of the median with respect to definition (8). The sample median X̂med

is then defined in direct analogy. However, this choice does not affect at all the inconsistency
results above and we prefer the definitions via (1) and (2) for two reasons. First, they naturally
fit into the more general notation of the (generalized) inverse of the cdf and, secondly, the (sam-
ple) median then takes values in the support of PX1 only.

Still, one would like to establish consistent bootstrap results not only for the continuous setting,
but also in general for discrete distributions. In this paper, as the use of ordinary quantiles in
discrete settings can be discussed conversely, we provide two different and complementing strate-
gies to tackle the issue of bootstrap inconsistency for sample quantiles in the discrete setup that
is illustrated in the toy example above.

In the first part of this paper, we investigate whether the m-out-of-n bootstrap (or low intensity
bootstrap) leads to asymptotically consistent bootstrap approximations. In several contexts
where the classical bootstrap fails, this modified bootstrap scheme is known to be a valid alter-
native; see e.g. Swanepoel (1986), Angus (1993), Deheuvels, Mason and Shorack (1993), Athreya
and Fukuchi (1994, 1997) and Del Barrio, Janssen and Pauly (2013) among others. We prove
that the i.i.d. m-out-of-n bootstrap is consistent for sample quantiles without centering in the
i.i.d. discrete data case, but also that inconsistency for Efron’s bootstrap remains if the proce-
dure is applied with centering. These differing results seem to be odd at first sight, but they
can be explained by systematically different centering schemes. Another somewhat surprising
result is that, on the one hand, bootstrap consistency can be achieved for i.i.d. data as well as
dependent time series data for one and the same i.i.d. m-out-of-n bootstrap procedure (without
centering) as long as only single sample quantiles are considered. But on the other hand, an
m-out-of-n block bootstrap procedure à la Athreya, Fukuchi and Lahiri (1999) has to be used to
mimic correctly the joint limiting distribution of several sample quantiles in the time series case.
To be able to establish this theory, we had to derive the joint limiting distribution of vectors
of sample quantiles for weakly dependent time series processes. This might be of independent
interest.

The consistency results achieved for the m-out-of-n bootstrap are then applied to construct
bootstrap confidence intervals. As these tend to be conservative due to the discreteness of the
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true distribution, we propose randomization techniques similar to the construction of random-
ized tests (e.g. classical Neyman-Pearson tests) to construct bootstrap confidence intervals of
asymptotically correct size.

All afore-mentioned difficulties related to discrete distributions are mainly due to the jumps
occurring in the distribution function, which leads to many quantiles having the same values. An-
other look at quantiles of discretely distributed data is to employ the so-called mid-distribution
function proposed by Parzen (1997, 2004). This concept has been further studied in Ma, Genton
and Parzen (2011) and has been applied successfully e.g. to probabilistic index models in Thas,
de Neve, Clement and Ottoy (2006). The corresponding mid-quantile function is a continuous,
piecewise linear modification of the ordinary quantile function.

In the second part of this paper, we make use of mid-quantiles. Although the distributions
of the mid-quantiles lose their discrete nature, they allow for a meaningful interpretation in
many relevant situations. Exemplary, compare two (small) samples stemming from coin flip
scenarios. Both their sample medians may be computed to 0. Actually, this is not much infor-
mation since the samples widely may differ. Assume for example that in the first sample five
out of nine heads (equal to 0) may be occurred and in the second sample eight out of nine heads
occurred. It would be of much more use to regard the empirical proportion of heads and tails
within each sample to describe their underlying distributions and to reflect possible differences.
Based on such considerations Parzen (1997, 2004) established the concept of mid-distribution
functions to handle sample medians more likely. Contrary to ordinary quantiles, it turns out
that the mid-quantiles can be estimated consistently. Moreover, (non-)central limit theorems of
the sample mid-quantiles can be achieved, where the limiting distributions crucially depend on
whether the mid-distribution function is differentiable or not at the quantile of interest.

First, we generalize the limiting results obtained in Ma, Genton and Parzen (2011) to the time
series case under a τ -dependence condition introduced by Dedecker and Prieur (2005). This
extension is motivated by a growing literature on modeling of and statistical inference for count
data that appears e.g. as transaction numbers of financial assets of in biology where the the
evolution of infection numbers over time is of great interest; see for instance Fokianos, Rahbek
and Tjostheim (2009) and Ferland, Latour, and Oraichi (2006). In particular, the theory pro-
vided in this paper covers parameter-driven integer-valued autoregressive (INAR) models but
also observation-driven integer-valued GARCH (INGARCH) models. By construction, the mid-
quantile function is continuous, but it fails to be differentiable. Caused by this non-smoothness,
it turns out that classical i.i.d. or block bootstrap methods do not lead to completely satis-
factory results and m-out-of-n variants are required here as well. Moreover, due to boundary
effects, randomization techniques still have to be used in order to construct confidence intervals
of asymptotic correct level 1 − α.

The rest of the paper is organized as follows. Part I focuses on bootstrapping classical quantiles.
In a first Section 1.1 we show inconsistency of Efron’s bootstrap in the special case of the fair
coin flip. Afterwards, in Section 1.2 we discuss validity of low intensity bootstrap methods for
quantiles in a much more general framework that covers a large class of discretely distributed
time series. In Section 1.3 randomization techniques for the construction of (1 − α) confidence
sets are provided before the finite sample behavior of our methods is illustrated in Section 1.4.
In Part II we consider the alternative concept of mid-quantiles. In Section 2.1 we generalize
the asymptotic results established in Ma, Genton and Parzen (2011) for the i.i.d. case to the
case of weakly dependent time series data. Bootstrap validity is discussed in Section 2.2 and,
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based on these results, confidence intervals for mid-quantiles are provided in Section 2.3. Nu-
merical experiments are reported in Section 2.4. Finally, both Parts I and II are discussed in
a comparative conclusion. All proofs and auxiliary results are deferred to a final section of the
paper.

Part I: Bootstrapping sample quantiles

1.1. Inconsistency of Efron’s Bootstrap.
In this section, we prove for the simple example of a fair coin flip and the sample median that
Efron’s bootstrap is not capable in general to estimate consistently the limiting distribution of
sample quantiles from discretely distributed data. To check for bootstrap consistency, we make
use of the Kolmogorov-Smirnov distance and show that neither

dKS(X̂∗
med, X̂med) = sup

x∈R

∣∣∣P ∗(X̂∗
med ≤ x) − P (X̂med ≤ x)

∣∣∣ (9)

(without centering) nor

dKS(X̂∗
med − X̂med, X̂med −Xmed) = sup

x∈R

∣∣∣P ∗(X̂∗
med − X̂med ≤ x) − P (X̂med −Xmed ≤ x)

∣∣∣ (10)

(with centering) do converge to zero for increasing sample size, but to non-degenerate distribu-
tions, which turn out to be different in these two cases. Dealing with the non-centered case (9)
first and due to Xi ∈ {0, 1} for the coin flip example, it suffices to consider

sup
x∈[0,1)

∣∣∣P ∗(X̂∗
med ≤ x) − P (X̂med ≤ x)

∣∣∣ =
∣∣∣P ∗(X̂∗

med = 0) − P (X̂med = 0)
∣∣∣ , (11)

because |P ∗(X̂∗
med ≤ x) − P (X̂med ≤ x)| = 0 holds for all x /∈ [0, 1). Further, we know that

P (X̂med = 0) → 1/2 with n→ ∞ by (5) such that we have to investigate

P ∗(X̂∗
med = 0) =

n∑

k=⌈n
2
⌉

(
n

k

)
p̂k

n(1 − p̂n)n−k (12)

in more detail. For the case with centering (10), things become slightly different and it suffices
to consider

sup
k∈{−1,0}

∣∣∣P ∗(X̂∗
med − X̂med ≤ k) − P (X̂med −Xmed ≤ k)

∣∣∣ (13)

in this case. Precisely, we get the following results.

Theorem 1.1 (Inconsistency of Efron’s bootstrap). For independent and fair (p = 0.5) coin
flip random variables X1, . . . ,Xn and i.i.d. (Efron) bootstrap replicates X∗

1 , . . . ,X
∗
n, it holds

P ∗(X̂∗
med = 0) =

n∑

k=⌈n
2
⌉

(
n

k

)
p̂k

n(1 − p̂n)n−k D−→ U ∼ Unif(0, 1). (14)

This leads to:

(i) For Efron’s bootstrap without centering, it holds

dKS(X̂∗
med, X̂med)

D−→
∣∣∣∣U − 1

2

∣∣∣∣ ∼ Unif(0, 1/2). (15)
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(ii) For Efron’s bootstrap with centering, it holds

dKS(X̂∗
med − X̂med, X̂med −Xmed)

D−→ 1

(
1

2
≤ U

)
U + 1

(
1

2
> U

)
− 1

2
=: S, (16)

where the cdf of S is given by

FS(x) = x1[0, 1
2
)(x) + 1[ 1

2
,∞)(x).

1.2. The m-out-of-n bootstrap.

1.2.1. Coin flip data.
Of course, there are other situations discussed in the literature, where the ordinary Efron’s
bootstrap fails; see Bickel and Friedman (1981, Section 6), Mammen (1992), Horowitz (2001)
and references therein. The most prominent example is the maximum of i.i.d. random variables
X1, . . . ,Xn, that is, Mn = max(X1, . . . ,Xn). In this case, bootstrap inconsistency of M∗

n =
max(X∗

1 , . . . ,X
∗
n) has been investigated in Angus (1993). To circumvent this problem and in

view of the well-known limiting result [cf. Resnick (1987, Chapter 1)]

P (a−1
n (Mn − bn) ≤ x) −→

n→∞
G(x) ∀x ∈ R

for suitable distributions PX1, sequences (an)n and (bn)n and a non-degenerate cdf G, Swanepoel
(1986), Deheuvels, Mason and Shorack (1993) and Athreya and Fukuchi (1994, 1997) used the
low-intensity m-out-of-n-bootstrap. That is, drawing with replacement m times with m → ∞
such that m = o(n) to get X∗

1 , . . . ,X
∗
m and to mimic the distribution of a−1

n (Mn − bn) by that of
a−1

m (M∗
m−bm). This task has been generalized by Athreya, Fukuchi and Lahiri (1999) to time se-

ries data, where additionally a low-intensity block bootstrap has been proposed and investigated.

The situation addressed in this paper is somehow comparable. A closer inspection of (3) and
(6) leads to the conclusion that if we were allowed to replace p̂n by p for asymptotic considera-
tions, we would get the same limiting results. Obviously, from (5) and (7), this is not the case.
However, as

√
n(p̂n − p)

D→ N (0, p(1 − p)) , (17)

inconsistency stated in Theorem 1.1 for the coin flip can be explained by the fact that the
convergence p̂n − p = OP (n−1/2) is just “too slow”. Hence, the bootstrap is not able to mimic
the underlying scenario correctly since the latter completely differs for p = 1/2 and p 6= 1/2.
Note that the limiting distribution is a non-degenerate 2-point distribution in the first and
degenerate in the second case; compare Theorem 1.3 below and Figure 1. Therefore, the natural
question is whether an m-out-of-n bootstrap may be capable to “speed up” the convergence of
p̂n (relative to the convergence of the empirical cdf on the bootstrap side) and whether this does
lead to bootstrap consistency. The following theorem summarizes our findings in this direction
for the sample median without and with centering corresponding to the results of Theorem 1.1.

Theorem 1.2 (Consistency and inconsistency for the m-out-of-n bootstrap for the sample
median). For independent and fair (p = 0.5) coin flip random variables X1, . . . ,Xn, we draw
i.i.d. bootstrap replicates X∗

1 , . . . ,X
∗
m. Suppose that m/n + 1/m = o(1) as n → ∞ and denote

the bootstrap sample median based on X∗
1 , . . . ,X

∗
m by X̂∗

m,med.

(i) For the m-out-of-n bootstrap without centering, it holds

dKS(X̂∗
m,med, X̂med)

P−→ 0.
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Figure 1. 1000 realizations of supk

∣∣∣P ∗(X̂∗
med ≤ k) − P (X̂med ≤ k)

∣∣∣ of a coin flip

for sample sizes n ∈ {100, 500, 1000} (from left to right) and for p ∈ {0.5, 0.45}
(from top to bottom).

(ii) For the m-out-of-n bootstrap with centering, it holds

dKS(X̂∗
m,med − X̂med, X̂med −Xmed)

D−→ 1

2
1

(
U <

1

2

)
=: S̃,

where U ∼ Unif(0, 1) such that 2S̃ ∼ Bin(1, 0.5) is Bernoulli-distributed.

Remark 1.1. The results of Theorem 1.2 that state consistency for the non-centered sample
median, but inconsistency for the centered version for the m-out-of-n bootstrap, seem to be
surprising at first sight. However, by a closer inspection of part (ii) this oddity can be explained by

the fact that Xmed = 0, while X̂med and X̂∗
m,med take the values 0 and 1 with limiting probability

1/2 each. Hence, the centering differs on the bootstrap and the non-bootstrap side of (ii). This
effect is caused by the estimation inconsistency of the sample median.

In Figure 2, the differing asymptotic behavior of X̂∗
med,m for m = n and m = n2/3 is illustrated

via histogram plots for coin flip data. For the first case, the asymptotic uniform distribution of

P ∗(X̂∗
med,n = 0) is reflected by the high variability of the histograms, whereas the probabilities

seem to be more balanced in the second case.

So far we have considered only the toy example of i.i.d. fair coin flip random variables and
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Figure 2. Histograms of X̂∗
med,m based on i.i.d. bootstrap replicates X∗

1 , . . . ,X
∗
m

from fair coin flip data X1, . . . ,Xn for n = 10000 and m = n (first row) and

m = n2/3 (second row).

the sample median. This seems to be very restrictive at first sight. In the following, we turn
to a much more general setup and show that asymptotics follow immediately from the results
established for the coin flip example. Consequently, it turns out to be not that toyish at all.

1.2.2. General setup.
We now turn to more general distributions than the Bernoulli distribution and suppose that
(Xt)t∈Z is a sequence of random variables that might inherit a certain dependence structure. In
the last decade, Poisson autoregressions [e.g. Ferland, Latour, and Oraichi (2006) and Fokianos,
Rahbek and Tjostheim (2009)], INAR processes [e.g. McKenzie (1988), Weiß (2008), and Drost,
van den Akker and Werker (2009)] and various extensions of these models have attracted increas-
ing interest, see Fokianos (2011). We intend to derive results that hold true for a broad range of
processes including the previous one. Doukhan, Fokianos and Tjøstheim (2012) and Doukhan,
Fokianos and Li (2012) showed that these processes are τ -dependent with geometrically decaying
coefficients. Therefore, we will use this concept in the sequel and state its definition for sake of
completeness. However, it can be seen from the proofs below that any other concept of weak
dependence being sufficient for a CLT of the empirical distribution function can be applied here
as well.

Definition 1. Let (Ω,A, P ) be a probability space and (Xt)t∈Z be a strictly stationary sequence
of integrable R

d-valued random variables. The process is called τ -(weakly) dependent if

τ(h) = sup
D∈N

1

D
sup

h≤t1<···<tD

{τ (σ(Xt, t ≤ 0), (Xt1 , . . . ,XtD ))} −→
h→∞

0,

where

τ(M,X) = E

(
sup

f∈Λ1(Rp)

∣∣∣∣
∫

Rp

f(x)dPX|M(x) −
∫

Rp

f(x)dPX(x)

∣∣∣∣

)
.

Here, M is a sub-σ-algebra of A, PX|M denotes the conditional distribution of the R
p-valued

random variable X given M, and Λ1(R
p) denotes the set of 1-Lipschitz functions from R

p to R,
i.e. f ∈ Λ1(R

p) if |f(x) − f(y)| ≤ ‖x− y‖1 =
∑p

j=1 |xj − yj| ∀x, y ∈ R
p.
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Remark 1.2. If a process (Xt)t∈Z on (Ω,A, P ) is τ -dependent and if A is rich enough, then

there exists, for all t < t1 < · · · < tD ∈ Z, D ∈ N, a random vector (X̃t1 , . . . , X̃tD)′ which is
independent of (Xs)s≤t, has the same distribution as (Xt1 , . . . ,XtD )′ and satisfies

1

D

D∑

j=1

E‖X̃tj −Xtj‖1 ≤ τ(t1 − t); (18)

cf. Dedecker and Prieur (2004). This L1-coupling property will be an essential device for the
proofs of our results below. Also note that in particular sequences of i.i.d. random variables
(Xt)t∈Z are τ -dependent with τ(0) ≤ 2E‖X1‖ and τ(h) = 0 for h 6= 0. Nevertheless, we state
the i.i.d. case separately in all our Theorems since τ -dependent processes are assumed to have
finite first moment which is not necessary in our results if the data are i.i.d..

Regarding the marginal distribution PX1 , we assume that it has support supp(PX1) = V , that
is, P (Xi ∈ V ) = 1, where

V = {vj | j ∈ T ⊆ Z} (19)

for some finite or countable index set T with vj < vj+1 for all j ∈ T . Further, we assume that
V has no accumulation point. As the cdf F is a step function, there is always a p ∈ (0, 1) such
that the p-quantile Qp = vj, say, as well as vj+1 satisfy both inequalities in (8). Recall that
this covers particularly the population median in the fair coin flip example. In the following, we

consider the asymptotics for the sample quantile Q̂p as defined in (2) and its bootstrap analogue

Q̂∗
p,m = (F̂ ∗

m(p))−1 = inf
t
{t : F̂ ∗

m(t) ≥ p},

where F̂ ∗
m(x) = m−1

∑m
i=1 1(X∗

i ≤ x) denotes the empirical bootstrap distribution function.
Similar to (3), for all x ∈ R, we have

P (Q̂p ≤ x) = P

(
n∑

i=1

1(Xi ≤ x) ≥ ⌈np⌉
)

=

n∑

j=⌈np⌉

(
n

j

)
F j(x)(1 − F (x))n−j .

For the bootstrap p-quantile Q̂∗
p,m based on i.i.d. bootstrap pseudo replicates X∗

1 , . . . ,X
∗
m, we

get the analogue representation

P ∗(Q̂∗
p,m ≤ x) = P ∗

(
m∑

i=1

1(X∗
i ≤ x) ≥ ⌈mp⌉

)
=

m∑

j=⌈mp⌉

(
m

j

)
F̂ j

n(x)(1 − F̂n(x))m−j .

Further, for all x ∈ R and analogue to (17), we have

√
n(F̂n(x) − F (x))

D→ N (0,W ) where W = cov(1(X0 ≤ x), 1(X0 ≤ x)).

As for the median in the coin flip example and analogue to (9) and (10), to check for boot-

strap consistency, we have to consider dKS(Q̂∗
p, Q̂p) or dKS(Q̂∗

p − Q̂p, Q̂p − Qp). To this end,

we first study the asymptotics for the empirical quantile Q̂p. In particular, part (iii) of the
following lemma addresses the joint limiting distributions of several empirical quantiles. To the
authors knowledge, such a result has not been established in this generality so far and may be
of independent interest.

Theorem 1.3 (Asymptotics of empirical quantiles for discrete distributions). Let X1, . . . ,Xn

be discretely distributed random variables which are either i.i.d. or observations of a strictly sta-
tionary and τ -dependent process (Xt)t∈Z with

∑∞
h=0 τ(h) <∞ and supp(PX1) = V as described

above.
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(i) If F (Qp) > p,

P (Q̂p = Qp) −→
n→∞

1.

(ii) If F (Qp) = p and Qp = vj , say, for some vj ∈ V ,

P (Q̂p = vj) −→
n→∞

1/2 and P (Q̂p = vj+1) −→
n→∞

1/2.

(iii) For p1, . . . , pd such that F (Qpi
) = pi, i = 1, . . . , k and F (Qpi

) > pi, i = k+ 1, . . . , d with

Qpi
= vli, say, joint convergence in distribution of Q̂ = (Q̂p1 , . . . , Q̂pd

)′ holds. Precisely,
we have

P (Q̂ = q) →
n−→∞

{
P
(⋂k

j=1

{
(2 · 1(qj = Qpj

) − 1)Zj ≥ 0
})

, qi = Qpi
, i = k + 1, . . . , d

0, otherwise
(20)

where q = (q1, . . . , qd)
′ with qi ∈ {vli , vli+1}. Here, the probability of the empty intersec-

tion is set to one and Z = (Z1, . . . , Zk)
′ ∼ N (0,W) with covariance matrix W having

entries

Wi,j =

{
cov(1(X0 ≤ qi), 1(X0 ≤ qj)), i.i.d. case∑

h∈Z
cov(1(Xh ≤ qi), 1(X0 ≤ qj)), time series case

.

Note that the asymptotics do not depend on the dependence structure of the underlying process
as long as single quantiles are considered. This does no longer hold true when the joint distri-

bution of several quantiles is considered. Part (iii) above shows that Q̂ converges to a random
variable with 2-point marginal distributions that are indeed dependent not only for the time
series case, but also for i.i.d. random variables. More precisely, the probability that the vector

of empirical quantiles Q̂ equals the vector q corresponds asymptotically to the probability that

the normally distributed random variable Z takes values in a certain orthant of R
k depending

on q. This is illustrated in the following example.

Example 1.1. In the situation of Theorem 1.3(iii) let k = 2 and suppose (Qp1 , Qp2) = (vi1 , vi2).

(i) If q = (vi1 , vi2), we have P (Q̂ = q) →
n→∞

P (0 ≤ Z1, 0 ≤ Z2).

(ii) If q = (vi1 , vi2+1), we have P (Q̂ = q) →
n→∞

P (0 ≤ Z1, 0 ≥ Z2).

After having established asymptotic theory for sample quantiles in this general setup, it remains

to consider the bootstrap analogue, i.e. P ∗(Q̂∗
p,m ≤ x), in more detail. In particular, for x = Qp

we have by Theorem 1.4 below

P ∗(Q̂∗
p,m = Qp) = P ∗(Q̂∗

p,m ≤ Qp) − oP (1) =

m∑

k=⌈mp⌉

(
m

k

)
F̂ k

n (Qp)(1 − F̂n(Qp))
m−k − oP (1),

which has (asymptotically) exactly the same shape as (12) and the results of Theorems 1.1 and
1.2 transfer directly to this more general setup.

Theorem 1.4 (Consistency of the i.i.d. m-out-of-n bootstrap). Let X1, . . . ,Xn be discretely
distributed i.i.d. random variables with supp(PX1) = V as above and we draw i.i.d. bootstrap

replicates X∗
1 , . . . ,X

∗
m. Suppose that m/n + 1/m = o(1) as n → ∞ and let Q̂ = (Q̂p1, . . . , Q̂pd

)

as in Theorem 1.3 and Q̂
∗
m

= (Q̂∗
p1,m, . . . , Q̂

∗
pd,m) for p1, . . . , pd ∈ (0, 1). Then, we have bootstrap

consistency, i.e.

dKS

(
Q̂

∗
m
, Q̂
)

:= sup
x∈Rd

∣∣∣P ∗(Q̂
∗
m

≤ x) − P (Q̂ ≤ x)
∣∣∣ P−→ 0.

Here, the short-hand x ≤ y for x, y ∈ R
d is used to denote xi ≤ yi for all i = 1, . . . , d.
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To capture the dependence structure of the process (Xt)t∈Z in the time series case, we approach
an m-out-of-n (moving) block bootstrap procedure:

Step 1. Choose a bootstrap sample size m, a block length l and let b = ⌈m/l⌉ be the smallest
number of blocks required to get a bootstrap sample of length bl ≥ m. Define blocks
Bi,l = (Xi+1, . . . ,Xi+l), i = 0, . . . , n − l and let i0, . . . , ib−1 be i.i.d. random variables
uniformly distributed on the set {0, 1, 2, . . . , n− l}.

Step 2. Lay the blocks Bi0,l, . . . , Bib−1,l end-to-end together to get

Bi0,l, . . . , Bib−1,l = Xi0+1, . . . ,Xi0+l,Xi1+1, . . . ,Xi1+l, . . . ,Xib−1+1, . . . ,Xib−1+l

= X∗
1 , . . . ,X

∗
bl

and discard the last bl −m values to get a bootstrap sample X∗
1 , . . . ,X

∗
m.

An application of this block bootstrap is in particular necessary to obtain bootstrap consistency
if several quantiles are considered jointly. This leads to the following theorem.

Theorem 1.5 (Consistency of the block-wise m-out-of-n bootstrap). Let X1, . . . ,Xn be dis-

cretely distributed random variables with supp(PX1) = V as above that are observations of a
strictly stationary and τ -dependent process (Xt)t∈Z with

∑∞
h=0 h τ(h) <∞. We apply the block-

wise m-out-of-n bootstrap to get a bootstrap sample X∗
1 , . . . ,X

∗
m. Suppose that m/n + l/m +

1/m+ 1/l = o(1) as n→ ∞. With the notation of Theorem 1.4, we have bootstrap consistency,
i.e.

dKS

(
Q̂

∗
m
, Q̂
)

P−→ 0.

Remark 1.3. It can be seen from Theorem 1.3(iii) that P (Q̂p = Qp) −→ P (Z ≥ 0) = 1/2 as
n → ∞ if F (Qp) = p. Here, Z is a centered normal variable whose variance depends on the
dependence structure of the underlying process. However, for the limit behavior of the sample
quantile itself the variance of Z is not relevant and we only require symmetry around the origin.

In the case of F (Qp) > p the proof of P (Q̂p = Qp) −→ 1 is based on the WLLN which holds for
i.i.d. as well as for τ -weakly dependent data. This implies in particular that in order to mimic
the asymptotic behavior of a single quantile correctly we do not have to imitate the dependence
structure correctly. Hence, the i.i.d. m-out-of-n-bootstrap is also valid for sequences of weakly
dependent random variables if single quantiles are considered; for details follow the lines of the
proof of Theorem 1.4. A similar phenomenon occurs when m-out-of-n bootstrap is used to mimic
the distribution of Mn = max(X1, . . . ,Xn); see Theorem 4 and Section 4 in Athreya, Fukuchi
and Lahiri (1999).

1.3. Randomized construction of confidence sets.
In discrete set-ups it is more appropriate to work with confidence sets rather than confidence
intervals for population quantiles. By consistency of the non-centered m-out-of-n i.i.d. bootstrap
(and the m-out-of-n block bootstrap) we can apply this method to derive such confidence sets.
Due to the discreteness of the underlying distribution a naive construction of confidence sets will
be to conservative, that is, the effective limiting coverage of an asymptotic (1 − α)-quantile is
strictly larger than 1−α; actually equal to one if α < 1/2. If one does not want to use conservative
confidence sets with (too) large coverages, one can compensate this effect by randomization
techniques. More precisely, we proceed as follows: We calculate one confidence set for the
sample quantile with coverage larger than the prescribed size 1 − α and another one with a
coverage (asymptotically) smaller than 1 − α. Then, we choose randomly (with an appropriate
distribution) one of these sets and use this to construct a final confidence set for the population



12 CARSTEN JENTSCH AND ANNE LEUCHT

quantile of asymptotic level 1 − α. Another difficulty that has to be taken into account is that
we have bootstrap consistency only without centering, that is,

P ∗(Q̂∗
p,m ≤ x) ≈ P (Q̂p ≤ x), but P ∗(Q̂∗

p,m − Q̂p ≤ x) 6≈ P (Q̂p −Qp ≤ x), (21)

such that the standard construction of bootstrap confidence intervals is not possible. Let Vn

denote the support of the empirical marginal distribution based on X1, . . . ,Xn. Then, we define
large and small confidence sets CSL and CSS, respectively, for the sample quantile

CSL =

[
F ∗−1

Q̂∗
p,m

(α/2), F ∗−1

Q̂∗
p,m

(1 − α/2)

]
∩ Vn,

CSS =

[
F ∗−1

Q̂∗
p,m

(α/2), F ∗−1

Q̂∗
p,m

(1 − α/2)

)
∩ Vn,

and their coverages

covL = P ∗(Q̂∗
p,m ∈ CSL), covS = P ∗(Q̂∗

p,m ∈ CSS).

Note that covL ≥ 1 − α while the size of covS is not clear in finite samples. It will turn out to
be less than 1 − α in the limit. Finally, we specify

p∗ =
1 − α− covS

covL − covS

and define the bootstrap approximation of the confidence set for the sample quantile

C̃S =

{
CSL if Y ≤ p∗

CSS if Y > p∗
,

where Y ∼ Unif(0, 1) is chosen independently from all observations and all bootstrap variables.
A corresponding confidence set for the population quantile is then given by

CS = C̃S − Q̂p +H(Q̂∗
p,m).

Due to (21) and as P (Q̂p ∈ C̃S) → 1 − α holds, the use of a correction term H(Q̂∗
p,m) :=

F ∗−1

Q̂∗
p,m

(0.4) is necessary as an approximation of the true quantile Qp; see proof of Theorem 1.6

below. In principle, any value in (0, 1/2] can be used instead of 0.4.

Theorem 1.6. Suppose that either the assumptions of Theorem 1.4 or Theorem 1.5 hold true.
Then, for α ∈ (0, 1/2), we have

P (Qp ∈ CS) −→
n→∞

1 − α.

Remark 1.4 (On the use of V or Vn). The effect of using V or Vn is asymptotically negligible.
For applications it might be reasonable to assume either that V is known in advance or that it
is unknown. In the first case V should be used to construct the confidence intervals and in the
latter case Vn seems to be the more reasonable choice.

1.4. Simulations.
In this section, we illustrate the bootstrap performance by means of coverage rates of (1 − α)-
confidence sets CS for α = 0.05 as proposed in the previous section. To cover both cases of
i.i.d. as well as time series data, let X1, . . . ,Xn be either

a) an i.i.d. realization of a binomial distribution Xi ∼ Bin(N,π)

or

b) a realization of a (Poisson-)INAR(1) model Xt = β ◦Xt−1 + ǫt, where ǫt ∼ Poi(λ(1−β))
is Poisson-distributed and β ◦ k ∼ Bin(k, β) for k ∈ N0 denotes the binomial thinning
operator.
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iid N = 1

m\ n 100 500 1000 5000

n1/2 0.950 0.945 0.961 0.953

n2/3 0.967 0.969 0.966 0.964

n3/4 0.976 0.976 0.977 0.977

iid N = 2

m\ n 100 500 1000 5000

n1/2 0.976 0.960 0.947 0.952

n2/3 0.953 0.950 0.950 0.940

n3/4 0.956 0.945 0.953 0.948

iid N = 19

m\ n 100 500 1000 5000

n1/2 0.998 0.989 0.971 0.960

n2/3 0.993 0.973 0.964 0.967

n3/4 0.981 0.984 0.975 0.978

iid N = 20

m\ n 100 500 1000 5000

n1/2 0.889 0.977 0.999 1.000

n2/3 0.897 0.996 0.980 0.952

n3/4 0.903 0.986 0.965 0.946

iid N = 39

m\ n 100 500 1000 5000

n1/2 0.998 1.000 1.000 0.980

n2/3 0.995 0.993 0.964 0.966

n3/4 0.987 0.984 0.973 0.967

iid N = 40

m\ n 100 500 1000 5000

n1/2 0.976 0.938 0.981 1.000

n2/3 0.933 0.989 0.997 0.979

n3/4 0.903 0.978 0.980 0.967

Table 1. Coverage rates of (1−α)-bootstrap confidence sets CS with α = 0.05
for the median Xmed of Xt ∼ Bin(N, 0.5)

for several choices of N , sample sizes n and bootstrap sample sizes m.

Bootstrap Confidence Sets, n= 100 , m= 22

16 17 18 19 20 21 22

Bootstrap Confidence Sets, n= 500 , m= 63

16 17 18 19 20 21 22

Bootstrap Confidence Sets, n= 1000 , m= 100

16 17 18 19 20 21 22

Bootstrap Confidence Sets, n= 5000 , m= 292

16 17 18 19 20 21 22

Bootstrap Confidence Sets, n= 100 , m= 22

16 17 18 19 20 21 22

Bootstrap Confidence Sets, n= 500 , m= 63

16 17 18 19 20 21 22

Bootstrap Confidence Sets, n= 1000 , m= 100

16 17 18 19 20 21 22

Bootstrap Confidence Sets, n= 5000 , m= 292

16 17 18 19 20 21 22

Figure 3. Confidence sets CS for the median Xmed from five realizations of
X1, . . . ,Xn with Xi ∼ Bin(N, 0.5) i.i.d. for N = 39 (upper panels) and N = 40

(lower panels), several sample sizes n and bootstrap sample sizes m = n2/3. The
true median is marked with a red vertical line.
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INAR λ = 3.67206..., iid

m\ n 100 500 1000 5000

n1/2 0.989 0.993 0.963 0.972

n2/3 0.978 0.989 0.977 0.969

n3/4 0.985 0.980 0.984 0.988

INAR λ = 4, iid

m\ n 100 500 1000 5000

n1/2 0.801 0.778 0.882 0.957

n2/3 0.800 0.923 0.943 0.962

n3/4 0.820 0.901 0.940 0.939

INAR λ = 3.67206..., MBB, l = m1/2

m\ n 100 500 1000 5000

n1/2 0.989 0.990 0.969 0.966

n2/3 0.986 0.982 0.971 0.980

n3/4 0.981 0.979 0.986 0.986

INAR λ = 4, MBB, l = m1/2

m\ n 100 500 1000 5000

n1/2 0.829 0.762 0.868 0.962

n2/3 0.805 0.930 0.928 0.953

n3/4 0.818 0.895 0.942 0.955

Table 2. Coverage rates of (1−α)-bootstrap confidence sets CS with α = 0.05
for the median Xmed of the INAR(1) model Xt = β ◦Xt−1 + ǫt, β = 0.5 for two
choices of λ and several sample sizes n and bootstrap sample sizes m. Results
for i.i.d. resampling (iid, upper tables) and the moving block bootstrap (MBB,
lower tables) with block length l = m1/2 are given.

The quantity of interest is the (sample) median, where we consider different parameter settings
for both cases a) and b) that lead to degenerate one-point as well as non-degenerate two-point
limiting distributions, respectively. In all simulations we have used V to construct confidence
sets; compare Remark 1.4.

In Table 1, we show coverage rates of confidence sets for model a) for several sample sizes
n ∈ {100, 500, 1000, 5000} and parameter settings with π = 0.5 and N ∈ {1, 2, 19, 20, 39, 40},
where odd N leads to a non-degenerate limiting distribution (N = 1 is the fair coin flip) and
even N results in a degenerate one-point limiting distribution. In Figure 3, we show typical
bootstrap confidence sets for the examples Bin(39, 0.5) and Bin(40, 0.5). As our theory pro-
vided in Section 1.2 suggests, we use the m-out-of-n bootstrap to mimic correctly the limiting
behavior of sample quantiles in the degenerate as well as the non-degenerate case. To illustrate
how sensitive the bootstrap reacts on the choice of the bootstrap sample size, we show results
for several (rounded) values of m ∈ {n1/2, n2/3, n3/4}. For each parameter setting, we generate
K = 1000 time series and B = 1000 bootstrap replicates are used to construct the confidence
set as described in Section 1.3. Table 1 reports a good overall finite sample performance of our
procedure. Increasing binomial parameter N leads to higher variance of the data generating
process, i.e. var(Xt) = N/4. Hence confidence sets are larger and we observe a slight overcov-
erage. Moreover, we observe that confidence sets for even N are more conservative than for
odd N which is due to the degeneracy of the limit distribution of the sample median for even
N . Our simulation study shows that the bootstrap method is robust for different choices of the
intensity m. If N is large, small choices of m lead to more conservative confidence intervals than
large ones. The effect of overcoverage can be explained by larger variability caused by small
bootstrap sample sizes m.

In the set-up b), displayed in Table 2, we consider again the non-degenerate case for λ =
3.67206... such that Xmed = 3 as well as the degenerate case for λ = 4 such that Xmed = 4. As



BOOTSTRAPPING SAMPLE QUANTILES OF DISCRETE DATA 15

discussed in Remark 1.3, Table 2 shows that already the i.i.d. low intensity bootstrap leads to
valid results and the block bootstrap does not lead to visible improvements of the performance.

Part II: Mid-distribution quantiles

2.1. Asymptotics for sample mid-quantiles.
Suppose we observeX1, . . . ,Xn from a (τ -dependent) process with discrete support supp(PX1) =
V as defined in (19). Instead of considering classical quantiles as in Part I of the present paper,
Parzen (1997, 2004) and Ma, Genton and Parzen (2011) suggested to investigate a modified
quantile function of the corresponding so-called mid-distribution function Fmid, which is given
by

Fmid(x) = F (x) − 0.5 p(x), x ∈ R,

where, as before, F denotes the cdf of the random variable X with probability mass function
p(x) = P (X = x). Their concept allows for a meaningful interpretation of quantiles in the
discrete setup and appears to be beneficial in cases of tied samples. Here, we refer to the paper
of Ma, Genton and Parzen (2011) for details. In particular, it is argued there that the corre-
sponding mid-quantiles behave more favorably. That is, contrary to classical sample quantiles in
discrete setups, they showed that sample (mid-)quantiles based on the mid-distribution function
converge to non-degenerate limiting distributions when properly centered and inflated with the
usual

√
n-rate as long as they do not correspond to the boundary values of the support of the

underlying distribution. In the latter case the limiting distribution is degenerate for any choice
of the inflation factor. Moreover, they show that asymptotic theory coincides for mid-quantiles
and classical quantiles if the underlying distribution is absolutely continuous. In view of this,
mid-quantiles can be interpreted as a natural generalization of classical quantiles which appears
to be robust to discreteness of the underlying distribution.

We first assume the support V to be bounded, V = {v1 < · · · < vd}, say. However, it turns
out that the case of unbounded support can be treated similarly and the asymptotics are even
easier; see Remark 2.1 below. According to Ma, Genton and Parzen (2011) the mid-quantile
function is a linear interpolation of the points (Fmid(vj), vj), j = 1, . . . , d. More precisely, we
define the pth population mid-quantile Qp,mid as

Qp,mid =





v1 if p < Fmid(v1)

vk if p = Fmid(vk), k = 1, . . . , d

λvk + (1 − λ)vk+1 if p = λFmid(vk) + (1 − λ)Fmid(vk+1), λ ∈ (0, 1),

k = 1, . . . , d− 1

vd if p > Fmid(vd)

(22)

and its empirical counterpart Q̂p,mid as

Q̂p,mid =





v1 if p < F̂mid(v1)

vk if p = F̂mid(vk) < F̂mid(vk+1), k = 1, . . . , d

λnvk + (1 − λn)vk+1 if p = λF̂mid(vk) + (1 − λn)F̂mid(vk+1), λn ∈ (0, 1),

F̂mid(vk) < F̂mid(vk+1), k = 1, . . . , d− 1

vd if p > F̂mid(vd)

(23)

where F̂mid(x) = n−1
∑n

k=1{1(Xk ≤ x) − 0.5 · 1(Xk = x)} is the empirical counterpart of
Fmid(x); see also Figure 4 for illustration. Our goal first is to extend the asymptotic results
of Ma, Genton and Parzen (2011) from i.i.d. data to strictly stationary, τ -dependent processes.
Similar to Part I of the paper, any other concept of dependence might be applied as long as the
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CLT for the empirical distribution function holds. For sake of definiteness, we restrict ourselves
to τ -dependence here.

Theorem 2.1 (Asymptotics of sample mid-quantiles for discrete distributions). Suppose that
X1, . . . ,Xn are either i.i.d. or observations of a strictly stationary, τ -dependent process (Xt)t∈Z

with
∑∞

h=0 τ(h) < ∞. Let the support of PX1 be V = {v1 < · · · < vd} and denote the corre-
sponding probabilities by a1, . . . , ad. Further, define a0 = ad+1 = 0, v0 = v1 and vd+1 = vd.
Then, we have

√
n(Q̂p,mid −Qp,mid)

D−→





0 if p < Fmid(v1) or p > Fmid(vd)

Z1 if p = λFmid(vk+1) + (1 − λ)Fmid(vk+2), λ ∈ (0, 1),

k = 0, . . . , d− 2

Z2 if p = Fmid(vk+1), k = 1, . . . , d− 2

Z3 if p = Fmid(v1)

Z4 if p = Fmid(vd)

(24)

where Z1, Z2, Z3, Z4 are random variables having certain non-degenerate distributions as de-
scribed in the following. Z1 is centered and normally distributed with variance

σ2
1 = 4

(
vk+1 − vk+2

ak+2 + ak+1

)2

h′k+2Σ
(k+2)hk+2, (25)

where

hk+2 =

(
1, . . . , 1, 1 − Fmid(vk+2) − p

ak+1 + ak+2
,
1

2
− Fmid(vk+2) − p

ak+1 + ak+2

)′

and Σ(k+2) = (Σj1,j2)j1,j2=1,...,k+2 with Σj1,j2 =
∑

h∈Z
cov(1(Xh = vj1), 1(X0 = vj2)). The

density of Z2 is that of a centered normal distribution with variance

σ2
2− = 4

(
vk+1 − vk

ak + ak+1

)2 {
(1, . . . , 1, 0.5)Σ(k+1)(1, . . . , 1, 0.5)′

}

on the negative real line and that of a centered normal distribution with variance

σ2
2+ = 4

(
vk+2 − vk+1

ak+1 + ak+2

)2 {
(1, . . . , 1, 0.5)Σ(k+1)(1, . . . , 1, 0.5)′

}

on the positive real line; such distributions are termed half-Gaussian or two-piece normal dis-
tributions. The distribution of Z3 has point mass of 1/2 in zero and admits a density on the
positive real line which is that of a centered normal distribution with variance σ2

2+. Similarly,
Z4 has point mass of 1/2 in zero and admits a density on the negative real line which is that of
a centered normal distribution with variance σ2

2−.

Observe that depending on the situation, the limiting results established in Theorem 2.1 include
four different types of distributions. These are, degenerate, Gaussian, half-Gaussian and half-
Gaussian with point masses at the boundary. Also observe that we present the limiting results
for sample mid-quantiles in a different way than Ma, Genton and Parzen (2011). The results
displayed in (24) will turn out to be convenient for investigating the applicability of bootstrap
methods in the sequel. Nevertheless, in comparison to the i.i.d. case, only the covariance matrix
Σ(k+2) changes.

Remark 2.1 (Boundary issues).

(i) In the boundary cases p < Fmid(v0) and p > Fmid(vd) we even get Q̂p,mid = Qp,mid with
probability tending to one; see the proof of Theorem 2.1. These stronger results are used
in the proofs of bootstrap consistency later on.
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Figure 4. Comparison of quantile function (red, solid) and mid-quantile func-
tion (black, dashed) for Bin(1, 1/2) (left panel) and Bin(3, 1/2) (right panel).

(ii) Note that the results of Theorem 2.1 carry over to countable support V as long as it does
not contain an accumulation point. Then, the cases p < Fmid(v1) and/or p > Fmid(vd)
simply disappear; see also Remark 2 in Ma, Genton and Parzen (2011).

Remark 2.2. Similar to Theorem 1.3, it is possible to prove joint convergence of several sample
mid-quantiles. For clarity of exposition, we do not give the exact convergence results here, but
mention that multivariate limiting distributions of several sample mid-quantiles can be obtained
essentially by combining the univariate results of Theorem 2.1 above.

Before considering the bootstrap for mid-quantiles in Subsection 2.2, we first illustrate the
concept of mid-quantiles with the help of a continuation of the coin flip example discussed in
the Introduction; compare also Figure 4.

Toy example: Coin flip data for mid-quantiles.
Suppose a fair coin is flipped independently n times and we observe a sequence X1, . . . ,Xn

of zeros and ones such that P (Xt = 0) = 1/2 = 1 − P (Xt = 1). Let Xmed,mid = Q0.5,mid and

X̂med,mid = Q̂0.5,mid denote the population mid-median and the sample mid-median, respectively.
Then, (22) gives Xmed,mid = 1/2 and from Theorem 2.1, we get

√
n(X̂med,mid −Xmed,mid)

D−→ N (0, 1/4). (26)

Thus, the sample mid-median fulfills a CLT and, in particular, it is a
√
n-consistent estimator

for the mid-median.

2.2. Bootstrapping sample mid-quantiles.
We showed that standard bootstrap proposals may fail in the purely discrete data case for classi-
cal sample quantiles. A closer inspection of the bootstrap invalidity result of Theorem 1.1 shows
that this issue is caused by the discreteness of the distributions which in turn leads to quantile
functions having jumps. In view of this observation, the use of mid-quantiles may circumvent
this problem, because the corresponding mid-quantile function is piecewise linear and thus, in
particular, continuous by construction; compare Figure 4.

In a first step, we investigate to what extend m-out-of-n-type bootstraps (i.i.d. and block)
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are capable to mimic correctly the limiting distributions established in Theorem 2.1. Here, we
allow explicitly the case m = n to cover also Efron’s bootstrap and the standard moving block

bootstrap. To fix some notation, let Q̂∗
p,mid,m denote the pth bootstrap sample mid-quantile

based on bootstrap observations X∗
1 , . . . ,X

∗
m. More precisely and analogue to (23), we define

Q̂∗
p,mid,m =





v1 if p < F̂ ∗
mid,m(v1)

vk if p = F̂ ∗
mid,m(vk) < F̂ ∗

mid,m(vk+1), k = 1 . . . , d

λ∗mvk + (1 − λ∗m)vk+1 if p = λ∗mF̂
∗
mid,m(vk) + (1 − λ∗m)F̂ ∗

mid,m(vk+1), λ
∗
m ∈ (0, 1),

F̂ ∗
mid,m(vk) < F̂ ∗

mid,m(vk+1), k = 1, . . . , d− 1

vd if p > F̂ ∗
mid,m(vd)

(27)

where F̂ ∗
mid,m(x) = m−1

∑m
k=1{1(X∗

k ≤ x) − 0.5 · 1(X∗
k = x)} is the bootstrap counterpart of

F̂mid(x) based on X∗
1 , . . . ,X

∗
m.

Theorem 2.2 (Asymptotics of bootstrap sample mid-quantiles for discrete distributions). Sup-
pose either (i) or (ii) hold, where

(i) X1, . . . ,Xn are i.i.d. and we draw i.i.d. bootstrap replicates X∗
1 , . . . ,X

∗
m such that m →

∞ and m = o(n) or m = n as n→ ∞
(ii) X1, . . . ,Xn are τ -dependent and we apply an m-out-of-n block bootstrap with block length

l to get X∗
1 , . . . ,X

∗
m such that l/m+1/m+1/l = o(1) and m = o(n) or m = n as n→ ∞

Then, we have

√
m(Q̂∗

p,mid,m − Q̂p,mid)
D−→





0 if p < Fmid(v1) or p > Fmid(vd)

Z1 if p = λFmid(vk+1) + (1 − λ)Fmid(vk+2), λ ∈ (0, 1),

k = 0, . . . , d− 2

(28)

and

√
m(Q̂∗

p,mid,m −Qp,mid)
D−→





Z2 if p = Fmid(vk+1), k = 1, . . . , d− 2

Z3 if p = Fmid(v1)

Z4 if p = Fmid(vd)

(29)

in probability, respectively. The distributions of Z1 to Z4 are described in Theorem 2.1.

At this point, it is worth noting that the results of Theorem 2.2 above do not require at all the use
of an m-out-of-n-type bootstrap procedure with m = o(n) to mimic correctly the complicated
limiting distributions in all cases presented in Theorem 2.1. However, a comparison of (24) with
(28) and (29) shows that the correct centering for the bootstrap sample mid-quantiles depends

on the true situation. That is, Q̂∗
p,mid,m has to be centered around the sample mid-quantile

Q̂p,mid for the first two cases and around the population quantile Qp,mid for the latter three.
However, as the true mid-quantile function is generally unknown, the true situation is also not
known. Consequently, the results of Theorem 2.2 are per se useless for practical applications as
it is not clear which centering has to be used.

To overcome this issue, we require the bootstrap procedure to be valid for all different cases
when centered around one and the same quantity. To achieve this, note that the difference of
the left-hand sides of (28) and (29) computes to

√
m(Q̂∗

p,mid,m −Qp,mid) −
√
m(Q̂∗

p,mid,m − Q̂p,mid) =

√
m

n

{√
n(Q̂p,mid −Qp,mid)

}

= OP

(√
m

n

)
(30)
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and vanishes for m = o(n), but not for m = n. This leads to the following result.

Corollary 2.1 (Consistency of m-out-of-n bootstraps for sample mid-quantiles). Suppose either
(i) or (ii) in Theorem 2.2 hold with m = o(n). Then, we have

dKS

(√
m(Q̂∗

p,mid,m − Q̂p,mid),
√
n(Q̂p,mid −Qp,mid)

) P−→ 0.

2.3. Randomized construction of confidence intervals.
We invoke the ideas of Section 1.3 to construct confidence intervals of level 1 − α for mid-
quantiles. These quantities take their values in the interval [v1, vd] if V = {v1 < . . . < vd} in
contrast to classical quantiles that take there values only in the countable set V . In particular, if
the image of the mid-quantile function is the whole real line, the limit distribution is continuous
by Theorems 2.1 and 2.2. Therefore no randomization techniques are required to construct
asymptotic exact (1 − α) confidence sets. If this is not the case, a randomization procedure as
described in the sequel has to be applied. Note that, the asymptotics in the previous section
do not rely on the (empirical) mid-quantile itself but on suitably centered and inflated versions.
Therefore, instead of CSL and CSS defined in Section 1.3, we consider large and small intervals
of the form

CIL,mid =

[
F ∗−1√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(α/2), F ∗−1√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(1 − α/2)

]
,

CI
(r)
S,mid =

[
F ∗−1√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(α/2), F ∗−1√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(1 − α/2)

)
,

CI
(l)
S,mid =

(
F ∗−1√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(α/2), F ∗−1√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(1 − α/2)

]

and their coverages

covL,mid = P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ∈ CIL,mid),

cov
(r)
S,mid = P ∗(

√
m(Q̂∗

p,mid,m − Q̂p,mid) ∈ CI
(r)
S,mid),

cov
(l)
S,mid = P ∗(

√
m(Q̂∗

p,mid,m − Q̂p,mid) ∈ CI
(l)
S,mid).

Finally, we specify the probability for choosing the large interval

p∗mid =





1−α−cov
(r)
S,mid

covL,mid−cov
(r)
S,mid

, cov
(r)
S,mid ≤ 1 − α

1−α−cov
(l)
S,mid

covL,mid−cov
(l)
S,mid

, otherwise

and define the bootstrap approximation of the confidence set for the p-level mid-quantile

CI =





[
Q̂p,mid −

F ∗−1
√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(1−α/2)

√
n

, Q̂p,mid −
F ∗−1
√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(α/2)

√
n

]
if Y ≤ p∗mid

(
Q̂p,mid −

F ∗−1
√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(1−α/2)

√
n

, Q̂p,mid −
F ∗−1
√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(α/2)

√
n

]
if Y > p∗mid

and cov
(r)
S,mid ≤ 1 − α[

Q̂p,mid −
F ∗−1
√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(1−α/2)

√
n

, Q̂p,mid −
F ∗−1
√

m(Q̂∗
p,mid,m

−Q̂p,mid)
(α/2)

√
n

)
otherwise

,

where Y ∼ Unif(0, 1) is chosen independently from all observations and all bootstrap variables.
This gives an asymptotic confidence interval of level 1 − α.
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Figure 5. Confidence intervals CI for the mid-median Xmed,mid from five real-
izations of X1, . . . ,Xn with Xi ∼ Bin(N, 0.5) i.i.d. for N = 39 (upper panels)
and N = 40 (lower panels), several sample sizes n and bootstrap sample sizes

m = n2/3. The true mid-median is marked with a red vertical line.

Theorem 2.3. Suppose that the assumptions of Corollary 2.1 hold true. Then, for α ∈ (0, 1/2),

P (Qp,mid ∈ CI) −→
n→∞

1 − α.

2.4. Simulations.
In this section, we illustrate the bootstrap performance by means of coverage rates of (1 − α)-
confidence intervals CI for α = 0.05 as proposed in the previous section. To make the simulation
results comparable to those obtained in Section 1.4, we use the same settings here. Recall that
the image of mid-quantile functions is continuous which leads to confidence intervals rather than
confidence sets; compare Figure 5. Contrary to the results in set-up a) obtained for classical
quantiles, all choices of the binomial parameter N lead to non-degenerate distributions for the
sample mid-median. In view of Table 3, we observe that the bootstrap works equally well in
both cases. Even though the concept of mid-quantiles slightly differs from the classical ones
in the discrete set-up, a smooth modification of the quantile function appears to be beneficial
wrt coverage rate performance of bootstrap confidence intervals. In comparison to the results
displayed in Table 2 for classical quantiles, Table 4 illustrates the necessity of a block-type
resampling scheme that takes the dependence structure of the INAR process in setting b) into
account.

Conclusion

In this paper, we investigated bootstrap validity for classical quantiles as well as so-called mid-
quantiles of discrete distributions. The classical quantile function is piecewise constant and
discontinuous which makes statistical inference challenging. The concept of mid-distribution
tries to overcome this deficiency by relying on piecewise linear mid-quantile functions that are
continuous, but not differentiable. This approach is partly motivated by the fact that the latter
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iid N = 1

m\ n 100 500 1000 5000

n1/2 0.950 0.920 0.940 0.957

n2/3 0.920 0.943 0.943 0.956

n3/4 0.955 0.954 0.947 0.944

iid N = 2

m\ n 100 500 1000 5000

n1/2 0.876 0.880 0.909 0.916

n2/3 0.877 0.917 0.929 0.940

n3/4 0.905 0.938 0.923 0.930

iid N = 19

m\ n 100 500 1000 5000

n1/2 0.910 0.944 0.937 0.957

n2/3 0.930 0.942 0.960 0.950

n3/4 0.940 0.950 0.959 0.944

iid N = 20

m\ n 100 500 1000 5000

n1/2 0.930 0.930 0.939 0.931

n2/3 0.937 0.928 0.941 0.942

n3/4 0.941 0.924 0.930 0.940

iid N = 39

m\ n 100 500 1000 5000

n1/2 0.914 0.946 0.930 0.950

n2/3 0.903 0.928 0.932 0.956

n3/4 0.918 0.939 0.950 0.966

iid N = 40

m\ n 100 500 1000 5000

n1/2 0.921 0.937 0.914 0.942

n2/3 0.928 0.941 0.944 0.944

n3/4 0.926 0.948 0.942 0.933

Table 3. Coverage rates of (1 − α)-bootstrap confidence sets CI with α = 0.05
for the mid-median Xmed,mid of Xi ∼ Bin(N, 0.5) for several choices of N , sample
sizes n and bootstrap sample sizes m.

INAR λ = 3.67206, iid

m\ n 100 500 1000 5000

n1/2 0.739 0.761 0.777 0.803

n2/3 0.748 0.773 0.794 0.798

n3/4 0.749 0.808 0.785 0.792

INAR λ = 4, iid

m\ n 100 500 1000 5000

n1/2 0.739 0.779 0.742 0.754

n2/3 0.758 0.764 0.768 0.765

n3/4 0.748 0.780 0.772 0.772

INAR λ = 3.67206, MBB, l = m1/2

m\ n 100 500 1000 5000

n1/2 0.825 0.887 0.925 0.931

n2/3 0.861 0.925 0.930 0.950

n3/4 0.867 0.927 0.942 0.936

INAR λ = 4, MBB, l = m1/2

m\ n 100 500 1000 5000

n1/2 0.827 0.903 0.899 0.924

n2/3 0.858 0.916 0.928 0.949

n3/4 0.853 0.935 0.922 0.950

Table 4. Coverage rates of (1 − α)-bootstrap confidence sets CI with α = 0.05
for the mid-median Xmed,mid of the INAR(1) model Xt = β ◦Xt−1 + ǫt, β = 0.5
for two choices of λ and several sample sizes n and bootstrap sample sizes m.
Results for i.i.d. resampling (iid, upper tables) and the moving block bootstrap
(MBB, lower tables) with block length l = m1/2 are given.
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Data Method Centering Classical quantiles Mid-quantiles
i.i.d. i.i.d. bootstrap yes/no X X

m-out-of-n i.i.d. bootstrap no X X
m-out-of-n i.i.d. bootstrap yes X X

weakly m-out-of-n i.i.d. bootstrap no X X
dependent block bootstrap yes/no X X

m-out-of-n-block bootstrap no X X
m-out-of-n-block bootstrap yes X X

Table 5. Bootstrap (in-)consistency for single sample (mid-)quantiles

function coincides with the classical quantile function if the underlying distribution is contin-
uous. Indeed, in contrast to classical quantiles, mid-quantiles can be estimated consistently.
Regarding the validity of bootstrap methods this concept alone is not entirely successful. In
both cases, low-intensity (block) bootstrap methods are required to mimic the distribution of
the (mid-)quantile estimators correctly. In particular two tuning parameters, i.e. the intensity
m and the block length l have to be chosen, irrespective of the type of quantiles. Moreover, in
order to overcome the issue of potentially too conservative intervals, randomization techniques
have to be invoked. An overview of the (in-)consistency of all bootstrap methods addressed in
this paper is given in Table 5.

Still, smoothness of mid-quantile functions in comparison to ordinary quantile functions turns
out to be beneficial wrt the finite sample performance. Despite the application of randomization
techniques, confidence sets for classical quantiles tend to be quite conservative. This effect is
not observed for the mid-distribution counterparts where bootstrap consistency for commonly
centered quantities lead to a straightforward construction of confidence intervals. Therefore, the
question arises whether further smooth modifications of mid-quantiles may lead to even better
results. A first attempt has been proposed by Wang and Hutson (2011) which is motivated
by the Harrell-Davis quantile estimator for continuous distributions. These quantile estimators
appear as sums of weighted order statistics where the weights are smooth functions of Beta
cdfs. However, while Harrell and Davis (1982) use this method for the order statistic of the
sample itself, Wang and Hutson (2011) apply this to the support instead. Hence, it is not
clear how their definition of quantiles can be used directly for continuous data and whether
there is a deep relationship between classical quantiles and these variants as in the case of mid-
quantiles. Therefore, we did not follow this line of research in the present paper. Nevertheless,
we conjecture that proving consistency of i.i.d. and block bootstrap methods is straightforward
since the proof of asymptotic normality in Wang and Hutson (2011) relies on the CLT for
the empirical cdf and the ∆-method only. The construction of other smooth modifications of
quantiles and even more importantly the identification of their relationship to classical quantiles
for continuous distributions and convenience for practitioners goes far beyond the scope of our
paper and should be investigated in future research.

Proofs and auxiliary results

Proofs of the main results.
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Proof of Theorem 1.1.
We first prove (14). With the notation

Zn =
√
n

F̂n(ǫ) − F (ǫ)√
var(1(X1 ≤ ǫ))

and Z∗
n =

√
n

F̂ ∗
n(ǫ) − F̂n(ǫ)√
var(1(X1 ≤ ǫ))

for any fixed ǫ ∈ (0, 1) and by using the fact that for any distribution function G on R, G(x) ≥ t
if and only if x ≥ G−1(t), we get

P ∗(X̂∗
med = 0) = P ∗(X̂∗

med ≤ ǫ) = P ∗
(

1

2
≤ F̂ ∗

n (ǫ)

)
= 1 − P ∗ (Z∗

n < −Zn)

= 1 − Φ (−Zn) +
(
Φ (−Zn) − P ∗ (Z∗

n < −Zn)
)

In conjunction with Polya’s Theorem, we get from Lemma A.1 that

|Φ (−Zn) − P ∗ (Z∗
n < −Zn)| ≤ sup

x∈R

|Φ (x) − P ∗ (Z∗
n < x)| = oP (1).

By Slutsky’s Theorem, it remains to show that

1 − Φ (−Zn)
D−→ U ∼ Unif(0, 1),

which follows from Zn
D−→ Z ∼ N (0, 1), the Simulation Lemma and from U := 1 − Ũ ∼

Unif(0, 1) if Ũ ∼ Unif(0, 1). The result in (i) follows immediately from (11) and
∣∣∣P ∗(X̂∗

med = 0) − P (X̂med = 0)
∣∣∣ D−→

∣∣∣∣U − 1

2

∣∣∣∣ ∼ Unif(0, 1/2).

Now, we show the result in (ii). As X̂med, X̂
∗
med ∈ {0, 1}, Xmed = 0 and due to (5) and (13), we

have to derive the asymptotics of the bivariate random variables
(
P ∗(X̂∗

med − X̂med ≤ −1) − P (X̂med −Xmed ≤ −1)

P ∗(X̂∗
med − X̂med ≤ 0) − P (X̂med −Xmed ≤ 0)

)
=

(
P ∗(X̂∗

med − X̂med ≤ −1)

P ∗(X̂∗
med − X̂med ≤ 0) − 1

2

)
+ oP (1)

to compute the supremum of both components. By straightforward calculations and due to

P ∗(X̂∗
med ≤ 0) = 1 − Φ(−Zn) + oP (1) as obtained in the first part of this proof, the last

expression becomes
(

1(X̂med = 0)P ∗(X̂∗
med ≤ −1) + 1(X̂med = 1)P ∗(X̂∗

med ≤ 0)

1(X̂med = 0)P ∗(X̂∗
med ≤ 0) + 1(X̂med = 1)P ∗(X̂∗

med ≤ 1) − 1
2

)
+ oP (1)

=

(
1(1

2 < Φ(−Zn))P ∗(X̂∗
med ≤ 0)

1(1
2 ≥ Φ(−Zn))P ∗(X̂∗

med ≤ 0) + 1(1
2 < Φ(−Zn)) − 1

2

)
+ oP (1)

=

(
1(1

2 < Φ(−Zn))(1 − Φ(−Zn))
1(1

2 ≥ Φ(−Zn))(1 − Φ(−Zn)) + 1(1
2 < Φ(−Zn)) − 1

2

)
+ oP (1),

which converges in probability by the continuous mapping theorem (see e.g. Pollard (1984, III.6))
towards
(

1(1
2 < Φ(−Z))(1 − Φ(−Z))

1(1
2 ≥ Φ(−Z))(1 − Φ(−Z)) + 1(1

2 < Φ(−Z)) − 1
2

)
=

(
1(1

2 < Ũ)(1 − Ũ)

1(1
2 ≥ Ũ)(1 − Ũ) + 1(1

2 < Ũ) − 1
2

)
.(31)

Further, it holds

1

(
1

2
< Ũ

)
(1 − Ũ) =

{
1 − Ũ , 1

2 < Ũ

0, 1
2 ≥ Ũ

≤
{

1
2 ,

1
2 < Ũ

1 − Ũ − 1
2 ,

1
2 ≥ Ũ

= 1

(
1

2
≥ Ũ

)
(1 − Ũ) + 1

(
1

2
< Ũ

)
− 1

2
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such that the second component of (31) is always the maximum of both. To derive the cdf, let

x ∈ R and, with U = 1 − Ũ , we get

P

(
1

(
1

2
≥ Ũ

)
(1 − Ũ) + 1

(
1

2
< Ũ

)
− 1

2
≤ x

)

= P

(
1

(
1

2
≤ U

)
U + 1

(
1

2
> U

)
− 1

2
≤ x

)

= P

(
1

(
1

2
≤ U

)
U + 1

(
1

2
> U

)
− 1

2
≤ x,U ≥ 1

2

)

+P

(
1

(
1

2
≤ U

)
U + 1

(
1

2
> U

)
− 1

2
≤ x,U <

1

2

)

= P

(
1

2
≤ U ≤ x+

1

2

)
+ P

(
1

2
≤ x,U <

1

2

)

=





0, x < 0

x, x ∈ [0, 1/2)

1/2, x ≥ 1/2

+





0, x < 0

0, x ∈ [0, 1/2)

1/2, x ≥ 1/2

= x1[0, 1
2
)(x) + 1[ 1

2
,∞)(x).

�

Proof of Theorem 1.2.
(i) This part is a special case of Theorem 1.4.
(ii) The second statement follows similarly to the proof of Theorem 1.1 by using part(i), the
results from above and from(

P ∗(X̂∗
m,med − X̂med ≤ −1) − P (X̂med −Xmed ≤ −1)

P ∗(X̂∗
m,med − X̂med ≤ 0) − P (X̂med −Xmed ≤ 0)

)

=

(
1(1

2 < Φ(−Zn))P ∗(X̂∗
m,med ≤ 0)

1(1
2 ≥ Φ(−Zn))P ∗(X̂∗

m,med ≤ 0) + 1(1
2 < Φ(−Zn)) − 1

2

)
+ oP (1)

=

(
1(1

2 < Ũ)1
2

1(1
2 ≥ Ũ)1

2 + 1(1
2 < Ũ) − 1

2

)
+ oP (1)

=

(
1(U < 1

2 )1
2

1(U ≥ 1
2 )1

2 + 1(U < 1
2) − 1

2

)
+ oP (1)

as 1(U < 1/2)1/2 = 1(U ≥ 1/2)1/2 + 1(U < 1/2) − 1/2 and 1(U < 1/2) = 2S̃ is Bernoulli-
distributed. �

Proof of Theorem 1.3. (i) Note that Q̂p and Qp take their values in V only. Under our
assumptions on V there exists an ǫ > 0 such that for each p ∈ (0, 1)

P (Q̂p = Qp) = P (Q̂p ∈ (Qp − ǫ,Qp + ǫ]).

This implies

P (Q̂p = Qp) = P (p ≤ F̂n(Qp + ǫ)) − P (p ≤ F̂n(Qp − ǫ)) (32)

due to the monotonicity of F̂n. The first term on the rhs tends to one by the WLLN,
which is a consequence of Theorem A.1, and the second term vanishes asymptotically
with the same reasoning.
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(ii) This follows from part (iii) with d = k = 1 and symmetry of a univariate, centered
normal random variable.

(iii) As we proved consistency of the sample quantiles if F (Qpi
) > pi in (i), we can restrict the

computations to the case where F (Qpi
) = pi and i = 1, . . . , k in the following. Similarly

to (32), we get

P (Q̂ = q)

= P
(
0 ∈ ×k

j=1

(√
n(F̂n(qj − ǫ) − F (Qpj

+ ǫ)),
√
n(F̂n(qj + ǫ) − F (Qpj

+ ǫ))
])

→
n→∞

P
(
0 ∈ ×k

j=1

(
−∞1(qj = Qpj

) + Zj1(qj = vlj+1),∞1(qj = vlj+1) + Zj1(qj = Qpj
)
))

= P




k⋂

j=1

{
(2 · 1(qj = Qpj

) − 1)Zj ≥ 0
}

 , (33)

where the multivariate CLT

√
n




F̂n(Qp1) − F (Qp1)
...

F̂n(Qpk
) − F (Qpk

)


 D→ Z ∼ N (0,W)

has been used; see Theorem A.1.
�

Proof of Theorem 1.4. It suffices to verify

sup
x∈Rd

∣∣∣P ∗(Q̂
∗
m

≤ x) − P (Q̂ ≤ x)
∣∣∣ = sup

k∈V d

∣∣∣P ∗(Q̂
∗
m

≤ k) − P (Q̂ ≤ k)
∣∣∣ = oP (1)

due to the discrete nature of the underlying process. First we get from Theorem 1.3(i) above
with Qpj

= vlj that

lim
n→∞

P (Q̂pj
< Qpj

) = lim
n→∞

P (Q̂pj
> vlj+1) = 0.

Similarly, deducing a bootstrap WLLN from Lemma A.1, we get

P ∗(Q̂∗
pj ,m < Qp) + P ∗(Q̂∗

pj ,m > vlj+1) = oP (1)

as well. Using the notation of Theorem 1.3(iii), it remains to show that

P ∗(Q̂
∗
m

= q)
P−→ P




k⋂

j=1

{
(2 · 1(qj = Qpj

) − 1)Zj ≥ 0
}

 .

Actually, we get

P ∗(Q̂
∗
m

= q)

= P ∗
(
0 ∈ ×k

j=1

(√
m(F̂ ∗

m(qj − ǫ) − F (Qpj
+ ǫ)),

√
m(F̂ ∗

m(qj + ǫ) − F (Qpj
+ ǫ))

))

= P ∗
(
0 ∈ ×k

j=1

(√
m(F̂ ∗

m(qj − ǫ) − F̂n(Qpj
+ ǫ)) +OP ((m/n)1/2),

√
m(F̂ ∗

m(qj + ǫ) − F̂n(Qpj
+ ǫ)) +OP ((m/n)1/2)

))
.

Further, as m = o(n) and from Lemma A.1 the last right-hand side converges in probability to

P
(⋂k

j=1

{
(2 · 1(qj = Qpj

) − 1)Zj ≥ 0
})

, which proves bootstrap consistency. �



26 CARSTEN JENTSCH AND ANNE LEUCHT

Proof of Theorem 1.5. The proof follows in analogy to the proof of Theorem 1.4 from Theo-
rem A.2. �

Proof of Theorem 1.6. For a specific j ∈ Z we have Qp = vj . From bootstrap consistency

we obtain P ∗(Q̂∗
p,m ∈ [Qp, vj+1])

P−→ 1 and P ∗(Q̂∗
p,m = vj+1)

P−→ 1/2 or 0 if F (Qp) = p and

F (Qp) > p, respectively. Hence, covL
P−→ 1.

Concerning the coverage of the small set we obtain

covS
P−→
{

1/2 if F (Qp) = p

0 if F (Qp) > p
.

In particular, this implies that

p∗
P−→
{

1 − 2α if F (Qp) = p

1 − α if F (Qp) > p
.

From Theorem 1.3 and Theorem 1.5, we get H(Q̂∗
p,m) = Qp with probability tending to one.

Noting that the difference between both coverages is larger than 1/4 with probability tending
to one, we obtain

P (Qp ∈ CS) = P (Q̂p ∈ CSL 1(Y ≤ p∗) + CSS 1(Y > p∗), covL − covS ≥ 1/4) + o(1)

= E
(
p∗1(Q̂p ∈ CSL, covL − covS ≥ 1/4) + (1 − p∗)1(Q̂p ∈ CSS, covL − covS ≥ 1/4)

)

+ o(1)

= (1 − α)E

(
1

covL − covS
1(Q̂p ∈ CSL\CSS , covL − covS ≥ 1/4)

)

− E

(
covS

covL − covS
1(Q̂p ∈ CSL, covL − covS ≥ 1/4)

)
+ o(1)

+ E

(
covL

covL − covS
1(Q̂p ∈ CSS, covL − covS ≥ 1/4)

)
+ o(1)

=: P1 + P2 + P3 + o(1).

Moreover, it holds

P
(
Q̂p ∈ CSL

)
= P

(
Q̂p ∈

[
F ∗−1

Q̂∗
p,m

(α/2), F ∗−1

Q̂∗
p,m

(1 − α/2)

])
−→
n→∞

1,

and

P
(
Q̂p ∈ CSS

)
= P

(
Q̂p ∈

[
F ∗−1

Q̂∗
p,m

(α/2), F ∗−1

Q̂∗
p,m

(1 − α/2)

))

−→
n→∞

{
1/2 if F (Qp) = p

0 if F (Qp) > p
,

and therefore

P
(
Q̂p ∈ CSL\CSS

)
−→
n→∞

{
1/2 if F (Qp) = p

1 if F (Qp) > p
.

Bringing all together, we get from Theorem 25.11 in Billingsley (1995)

P1 −→
n→∞

1 − α, P2 −→
n→∞

{
−1 if F (Qp) = p

0 if F (Qp) > p
, and P3 −→

n→∞

{
1 if F (Qp) = p

0 if F (Qp) > p
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since the random variables whose expectations we calculate in P1, . . . , P3 are bounded by 4. This
finally implies that CS has asymptotically exact level 1 − α. �

Proof of Theorem 2.1. The proofs of the first two cases p < Fmid(v1) and p > Fmid(vd) follow
the same lines. They can be carried out in complete analogy to the proofs of Theorem 2, Case 1
and Case 2 in Ma, Genton and Parzen (2011) if we can show that

1

n

n∑

t=1

1(Xt = vk)
P−→ P (X1 = vk), k = 1, . . . , d. (34)

This in turn follows from the WLLN that can be deduced from Theorem A.1 noting that 1(Xt =
vk) = 1(Xt ≤ vk) − 1(Xt ≤ vk−1) for k = 2, . . . , d and 1(Xt = v1) = 1(Xt ≤ v1).
If p = λFmid(vk+1)+(1−λ)Fmid(vk+2) such that λ ∈ (0, 1), we can pursue the steps of the proof
of Theorem 2, Case 3 in Ma, Genton and Parzen (2011) to get

√
n
(
Q̂p,mid −Qp,mid

)

=
√
n (vk+1 − vk+2)

[
F̂mid(vk+2) − p

F̂mid(vk+2) − F̂mid(vk+1)
− Fmid(vk+2) − p

Fmid(vk+2) − Fmid(vk+1)

]
.

(35)

Now, asymptotics of (35) can be deduced easily using the ∆-method, if we can show that

1√
n

n∑

t=1

(Y1 + · · · + Yn)
d−→ N (0d,Σ), (36)

where Yt = (1(Xt = v1) − P (Xt = v1), . . . , 1(Xt = vd) − P (Xt = vd))
′, t = 1, . . . , n and

Σ = (Σj1,j2)j1,...,j2=1,...,d. Now using the same representation of the indicator functions as in the
first part of the proof, (36) follows from Theorem A.1 and the continuous mapping theorem.

To this end, note that F̂mid(vk) = n−1
∑n

t=1{
∑k

i=1 1(Xt = vi) − 0.5 1(Xt = vk)} and similarly

Fmid(vk) =
∑k

i=1 ai − 0.5 ak.
The assertion for the case p = Fmid(vk+1), k = 1, . . . , d − 2 can be deduced from Theorem A.1
in the same manner as in the proof of Theorem 2, Case 4 in Ma, Genton and Parzen (2011).
The proofs of the last two boundary cases p = Fmid(v1) and p = Fmid(vd) follow the same lines

and we show only the first one. As
√
n(F̂mid(v1) − Fmid(v1)) = OP (1) by Theorem A.1, for

sufficiently large n, there is a λn such that 0 < λn < 1 and p = λnF̂mid(v2) + (1 − λn)F̂mid(v1)

if F̂mid(v1) < p. Then, from the definition of Q̂p,mid, we get

√
n(Q̂p,mid −Qp,mid) = Z̃n

v2 − v1

F̂mid(v2) − F̂mid(v1)
1(0 < Z̃n), (37)

where Z̃n =
√
n(p − F̂mid(v1)) =

√
n(Fmid(v1) − F̂mid(v1)). From (37), we get

P (
√
n(Q̂p,mid −Qp,mid) ≤ x) =





0, x < 0

P (Z̃n ≥ 0), x = 0

P (Z̃n ≥ 0) + P
(
Z̃n

v2−v1

F̂mid(v2)−F̂mid(v1)
∈ (0, x]

)
, x > 0

and the cases on the last right-hand side converge corresponding to the claimed limiting distri-
bution again by using Theorem A.1. �

Proof of Theorem 2.2. To prove the first case of (28), let â∗j = m−1
∑m

t=1 1(X∗
t = j), âj =

n−1
∑n

t=1 1(Xt = j), j = 1, . . . , d, and â0 = âd+1 = â∗0 = â∗d+1 = 0. For sufficiently large n, with

probability tending to 1 and because of
√
n(âj −aj) = OP (1) and

√
m(â∗j − âj) = OP ∗(1) due to



28 CARSTEN JENTSCH AND ANNE LEUCHT

Lemma A.1 and Theorem A.2, we can find a λ∗m with 0 < λ∗m < 1 such that p = λ∗mâ
∗
0+(1−λ∗m)â∗1.

Consequently from (27), we get

Q̂∗
p,mid,m = λ∗mv0 + (1 − λ∗m)v1 = v1 = Qp,mid

with probability tending to one as v0 = v1. By analogue arguments, we get also Q̂∗
p,mid,m = vd =

Qp,mid with probability tending to one if p > Fmid(vd).
Similarly, for the second case of (28), we can find a λ∗m with 0 < λ∗m < 1 such that p =

λ∗mF̂
∗
mid,m(vk+1) + (1 − λ∗m)F ∗

mid,m(vk+2). Similar to (35), this leads to
√
m(Q̂∗

p,mid,m − Q̂p,mid)

= (vk+1 − vk+2)

[
F̂ ∗

mid,m(vk+2) − p

F̂ ∗
mid,m(vk+2) − F̂ ∗

mid,m(vk+1)
− F̂mid,m(vk+2) − p

F̂mid,m(vk+2) − F̂mid,m(vk+1)

]

which converges conditionally to the claimed normal distribution by Lemma A.1 and Theo-
rem A.2 and by the ∆-method similar to the proof of Theorem 2.1.

To prove (29), as
√
m(F̂ ∗

mid,m(vk+1) − F̂mid(vk+1)) = OP ∗(1) by Lemma A.1 and Theorem A.2,

we get similar to the proof of Case 4 of Theorem 2 in Ma, Genton and Parzen (2011) that

F̂mid(vk+1) = F̂ ∗
mid,m(vk+1) + 1(F̂ ∗

mid,m(vk+1) ≥ F̂mid(vk+1))λ
∗
m1(F̂

∗
mid,m(vk) − F̂ ∗

mid,m(vk+1))

+1(F̂ ∗
mid,m(vk+1) < F̂mid(vk+1))λ

∗
m2(F̂

∗
mid,m(vk+2) − F̂ ∗

mid,m(vk+1))

holds for some 0 ≤ λ∗m1, λ
∗
m2 < 1. With Z̃∗

m =
√
m(F̂mid(vk+1) − F̂ ∗

mid,m(vk+1)) and (27), this
leads to

Q̂∗
p,mid,m

= 1(0 ≥ Z̃∗
m) {λ∗m1vk + (1 − λ∗m1)vk+1} + 1(0 < Z̃∗

m) {λ∗m2vk+2 + (1 − λ∗m2)vk+1}

= vk+1 +

(
1(0 ≥ Z̃∗

m)
vk+1 − vk

F̂ ∗
mid,m(vk+1) − F̂ ∗

mid,m(vk)
+ 1(0 < Z̃∗

m)
vk+2 − vk+1

F̂ ∗
mid,m(vk+2) − F̂ ∗

mid,m(vk+1)

)
Z̃∗

m√
m

and
√
m(Q̂∗

p,mid,m −Qp,mid)

=

(
1(0 ≥ Z̃∗

m)
vk+1 − vk

F̂ ∗
mid,m(vk+1) − F̂ ∗

mid,m(vk)
+ 1(0 < Z̃∗

m)
vk+2 − vk+1

F̂ ∗
mid,m(vk+2) − F̂ ∗

mid,m(vk+1)

)
Z̃∗

m.

Finally, we can show for all x ∈ R that

P ∗(
√
m(Q̂∗

p,mid,m −Qp,mid) ≤ x) →





0, x < 0, k = 0

P
(
Z̃ ≤ x

Fmid(vk+1)−Fmid(vk)
vk+1−vk

)
, x < 0, k > 0

1
2 , x = 0, k ∈ {0, 1, . . . , d− 2}
1
2 + P

(
Z̃ ∈ (0, x

Fmid(vk+2)−Fmid(vk+1)
vk+2−vk+1

]
)
, x > 0, k < d− 1

1, x ≥ 0, k = d− 1

in probability, where Z̃ ∼ N (0, σ2
Z̃
) and

σ2
Z̃

=
∑

h∈Z

cov




k+1∑

j=1

1(Xh ≤ vj) − 0.5 · 1(Xh = vk+1),
k+1∑

j=1

1(X0 ≤ vk+1) − 0.5 · 1(X0 = vk+1)




can be obtained from Lemma A.1 and Theorem A.2, respectively. This concludes this proof. �
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Proof of Corollary 2.1. First it follows from Theorem 2.2 and (30) that the distribution of√
m(Q̂∗

p,mid,m−Q̂p,mid) converges in probability to the same limit as the distribution of
√
n(Q̂∗

p,mid−
Qp,mid), i.e. either to zero or to one of the distributions of Z1 to Z4. To prove convergence of the
corresponding distribution functions in the Kolmogorov-Smirnov metric we treat the different
cases separately. First, let p < Fmid(v1) (or p > Fmid(vd) which can be considered in the same
manner and hence, the proof is omitted). From Remark 2.1(i) we obtain

sup
x∈R

∣∣∣P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ x) − P (
√
n(Q̂p,mid −Qp,mid) ≤ x)

∣∣∣

≤ sup
x<0

∣∣∣P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ x) − P (
√
n(Q̂p,mid −Qp,mid) ≤ x)

∣∣∣

+ 1 − P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ 0) + 1 − P (
√
n(Q̂p,mid −Qp,mid) ≤ 0)

≤ lim
x↑0

P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ x) + lim
x↑0

P (
√
n(Q̂p,mid −Qp,mid) ≤ x) + oP (1)

≤ P ∗(Q̂∗
p,mid,m < Q̂p,mid) + P (Q̂p,mid < Qp,mid) + oP (1)

= oP (1).

In the second and third case, i.e. when the limiting distribution is Z1 or Z2, Polya’s theorem
can be applied do deduce convergence in the Kolmogorov-Smirnov metric from distributional
convergence since the limiting distribution function is continuous. It remains to consider the
p = Fmid(v1) and p = Fmid(vd). Since they are similar again, we focus on the first set-up. With
the same arguments as in the proof of Polya’s theorem we get

sup
x∈R

∣∣∣P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ x) − P (
√
n(Q̂p,mid −Qp,mid) ≤ x)

∣∣∣

≤ sup
x≤0

∣∣∣P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ x) − P (
√
n(Q̂p,mid −Qp,mid) ≤ x)

∣∣∣+ oP (1).

Now, we proceed similarly to the first case and, finally, we get

sup
x≤0

∣∣∣P ∗(
√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ x) − P (
√
n(Q̂p,mid −Qp,mid) ≤ x)

∣∣∣

≤
∣∣∣P ∗(Q̂∗

p,mid,m < Q̂p,mid) − P (Q̂p,mid < Qp,mid)
∣∣∣

+
1

2
− P ∗(

√
m(Q̂∗

p,mid,m − Q̂p,mid) ≤ 0) +
1

2
− P (

√
n(Q̂p,mid −Qp,mid) ≤ 0) = oP (1).

�

Proof of Theorem 2.3. First, note that

P (Qp,mid ∈ CI) =P
(√

n(Q̂p,mid −Qp,mid) ∈ CI(r)
S,mid ∩ CI

(l)
S,mid

+ CIL,mid\(CI(r)
S,mid ∩ CI

(l)
S,mid) 1(Y ≤ p∗mid)

+ CIL,mid\CI(l)
S,mid 1(Y > p∗mid, cov

(r)
S,mid ≤ 1 − α)

+ CIL,mid\CI(r)
S,mid 1(Y > p∗mid, cov

(r)
S,mid > 1 − α)

)
,

where + above indicates the disjoint union. We consider the rhs in a case-by-case manner.
The cases p < Fmid(v1) and p > Fmid(vd) can be treated similarly and we only give the cal-

culations for the first set-up. Here, covL,mid
P−→ 1 and cov

(r)
S,mid

P−→ 0 which then implies that

p∗mid
P−→ 1−α. Now the proof can be carried out in complete analogy to the proof of Theorem 1.6

(case of F (Qp) > p).
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Also the cases where Z1 and Z2 are the limiting variables have a similar structure which results
from continuity of the corresponding limiting cdfs. Here, we get

P (Qp,mid ∈ CI) = P
(√

n(Q̂p,mid −Qp,mid) ∈ CI
(r)
S,mid ∩ CI

(l)
S,mid

)
+ oP (1)

where the latter probability tends to 1 − α as n→ ∞.
Next we consider the case p = Fmid(v1). Since α is assumed to be less than 1/2 and the limiting

distribution has a normal density on the positive half line, cov
(r)
S,mid

P−→ 1 − α/2 which in turn

implies

P (Qp,mid ∈ CI) = P
(√

n(Q̂p,mid −Qp,mid) ∈ CI
(r)
S,mid ∩CI

(l)
S,mid

)

+ CIL,mid\(CI(r)
S,mid ∩ CI

(l)
S,mid) 1(Y ≤ p∗mid)

+ CIL,mid\CI(r)
S,mid 1(Y > p∗mid, cov

(r)
S,mid > 1 − α) + o(1).

Since p∗mid
P−→ 1 − α, it can be shown in analogy to the proof of Theorem 1.6 that P (Qp,mid ∈

CI) −→
n→∞

1−α. It remains to investigate the case p = Fmid(vd). Here, covL,mid
P−→ 1−α/2 and

cov
(r)
S,mid

P−→ 1/2 − α/2 which then implies that p∗mid
P−→ 1− α. The desired result follows with

the same arguments as before. �

Auxiliary results.

Theorem A.1 (CLT under τ -dependence). Suppose that (Xt)t∈Z is a τ -dependent process with∑∞
h=0 τ(h) <∞. Then for all x1, . . . , xD ∈ R, D ∈ N,

1√
n

n∑

t=1

(1(Xt ≤ x1) − F (x1), . . . , 1(Xt ≤ xD) − F (xD))′
D−→ N (0,W)

with

W =

(
∑

h∈Z

cov(1(Xh ≤ xj1), 1(X0 ≤ xj2))

)

j1,j2=1,...D

Proof. We apply the multivariate central limit theorem for weakly dependent data of Leucht
and Neumann (2013, Theorem 6.1). To this end, we check its prerequisites with Zt := (1(Xt ≤
x1) − F (x1), . . . , 1(Xt ≤ xD) − F (xD))′/

√
n. Obviously, these variables are centered and∑n

t=1E‖Zt‖2
2 <∞. Also the Lindeberg condition clearly holds true by stationarity and bound-

edness of the underlying process (Xt)t∈Z. Next we have to show that
[
cov

(
n∑

t=1

Zt

)]

j1,j2

−→
n→∞

Wj1,j2.

We consider the component-wise absolute difference between both terms
∣∣∣∣∣∣
1

n

n∑

s,t=1

cov(1(Xs ≤ xj1), 1(Xt ≤ xj2)) −
∑

h∈Z

cov(1(Xh ≤ xj1), 1(X0 ≤ xj2))

∣∣∣∣∣∣

≤
∑

h∈Z

min

{ |h|
n
, 1

}
|cov(1(Xh ≤ xj1), 1(X0 ≤ xj2))|

which converges to zero by dominated convergence theorem if
∑

h∈Z
|cov(1(Xh ≤ xj1), 1(X0 ≤

xj2))| < ∞. This in turn can be deduced from the presumed summability of the τ -coefficients
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if |cov(1(Xh ≤ xj1), 1(X0 ≤ xj2))| ≤ const. τ(h). To see this, first note that for any ν <
mink{vk+1 − vk}, and for vk ≤ x < vk+1

1(X1 ≤ x) = 1(X1 ≤ vk) = 1(X1 ≤ vk + ν) − X1 − vk

ν
1(vk ≤ X1 ≤ vk + ν) a.s.

where the rhs is a Lipschitz continuous function in X1. Now we use coupling arguments to obtain
an upper bound for the absolute values of the covariances under consideration when h > 0. The

case h < 0 can be treated similarly and is therefore omitted. Let X̃h denote a copy of Xh that

is independent of X0 and such that E|X̃h −Xh| ≤ τ(h). With xj1 ∈ [vk, vk+1) for a suitable k,
we obtain

|cov(1(Xh ≤ xj1), 1(X0 ≤ xj2))|

≤ E
∣∣∣1(Xh ≤ xj1) − 1(X̃h ≤ xj1)

∣∣∣

≤ E

∣∣∣∣∣1(Xh ≤ vk + ν) − Xh − vk

ν
1(vk ≤ Xh ≤ vk + ν) − 1(X̃h ≤ vk + ν) +

X̃h − vk

ν
1(vk ≤ X̃h ≤ vk + ν)

∣∣∣∣∣

≤ 1

ν
E|X̃h −Xh|

≤ τ(h)

ν
.

(38)
Finally we have to check two conditions of weak dependence. Let g : R

du → R be a measurable
function with ‖g‖∞ ≤ 1 and 1 ≤ s1 < s2 < · · · < su < su + h = t1 ≤ t2 ∈ N. Again, in analogy
to (38), we obtain

cov(g(Zs1 , . . . , Zsu)Zsu,j1, Zt1,j2) ≤
1

ν n
τ(t1 − su),

which implies condition (6.27) with θh = τ(h)/ν in Leucht and Neumann (2013). Validity of
their condition (6.28) follows from

cov(g(Zs1 , . . . , Zsu), Zt1,j1 Zt2,j2) ≤
4

ν n
τ(t1 − su),

which completes the proof of the multivariate CLT. �

Lemma A.1 (Bootstrap analogue to Theorem A.1 for i.i.d. data). Suppose that (Xt)t∈Z is a

sequence of i.i.d. random variables. Let X∗
1 , . . . ,X

∗
m be drawn independently from F̂n. Suppose

that m→ ∞ and m = o(n) or m = n. Then, for all x1, . . . , xD ∈ R, D ∈ N,

1√
m

m∑

t=1

(1(X∗
t ≤ x1) − F̂n(x1), . . . , 1(X

∗
t ≤ xD) − F̂n(xD))′

D−→ N (0,W)

in probability, where

W =
(
cov(1(X0 ≤ xj1), 1(X0 ≤ xj2))

)
j1,j2=1,...D

.

Proof. This is an immediate consequence of Theorem 2.2 in Bickel and Friedman (1981). �

Theorem A.2 (Block bootstrap analogue to Theorem A.1). Suppose that the assumptions of
Theorem A.1 hold true and that

∑∞
h=1 h τ(h) < ∞. Let X∗

1 , . . . ,X
∗
m be an m-out-of-n block

bootstrap sample. Suppose that l/m + 1/l + 1/m = o(1) as well as m = o(n) or m = n as
n→ ∞. Then, for all x1, . . . , xD ∈ R, D ∈ N,

1√
m

m∑

k=1

(1(X∗
k ≤ x1) − F̂n(x1), . . . , 1(X

∗
k ≤ xD) − F̂n(xD))′

D−→ N (0,W)



32 CARSTEN JENTSCH AND ANNE LEUCHT

in probability, where

W =

(
∑

h∈Z

cov (1(Xh ≤ xj1), 1(X0 ≤ xj2))

)

j1,j2=1,...D

.

Proof. For notational convenience, we suppose m = lb and let us introduce the notation

Z∗
k =

1√
m

(
1(X∗

k ≤ x1) − F̂n(x1), . . . , 1(X
∗
k ≤ xD) − F̂n(xD)

)′
,

Z̃∗
k =

1√
m

(1(X∗
k ≤ x1) − E∗(1(X∗

k ≤ x1)), . . . , 1(X
∗
k ≤ xD) − E∗(1(X∗

k ≤ xD)))′ ,

such that it suffices to show
∑m

k=1(Z
∗
k − Z̃∗

k) = oP ∗(1) and
∑m

k=1 Z̃
∗
k

D−→ N (0,W) in probability.
Considering the first part component-wise, for all j, we get

m∑

k=1

(Z∗
k − Z̃∗

k)j =
1√
m

m∑

k=1

(
E∗(1(X∗

k ≤ xj)) − F̂n(xj)
)

=
√
m

(
1

n− l + 1

n∑

t=1

1(Xt ≤ xj) −
1

n

n∑

t=1

1(Xt ≤ xj)

)

√
m

n− l + 1

l−1∑

t=1

t− l

l
1(Xt ≤ xj) +

√
m

n− l + 1

n∑

t=n−l+2

n− l + 1 − t

l
1(Xt ≤ xj)

= A1 +A2 +A3.

Taking unconditional expectation of the last right-hand side gives a zero such that it suffices to
show Ai − E(Ai) = oP (1) for i = 1, 2, 3. For the first term, we get from Theorem A.1 that

A1 − E(A1) =

√
m√
n

l − 1

n− l + 1

(
1√
n

n∑

t=1

(
1(Xt ≤ xj) − E(1(Xt ≤ xj))

)
)

= OP

(√
m√
n

l

n

)

vanishes as l = o(m) by assumption. For the second term, we obtain

var(A2) =
m

(n− l + 1)2

l−1∑

t1,t2=1

(t1 − l)(t2 − l)

l2
cov(1(Xt1 ≤ xj), 1(Xt2 ≤ xj))

≤ ml

(n− l + 1)2

l−2∑

h=−(l−2)

1

l

min(l−1,l−1−h)∑

t=max(1,1−h)

∣∣∣∣
(h+ t− l)(t− l)

l2

∣∣∣∣ · |cov(1(Xh+t ≤ xj), 1(Xt ≤ xj))|

= O

(
ml

n2

)

since the covariances are summable by
∑∞

h=1 τ(h) < ∞; see also (38) for details. Hence A2

vanishes under the same conditions for l and m as for term A1 above. The arguments for A3 are
completely analogue and we omit the details. To prove the (conditional) CLT along the lines of
Section 4.2.2 in Wieczorek (2014) for

m∑

k=1

Z̃∗
k =

b∑

r=1




rl∑

s=(r−1)l+1

Z̃∗
s


 =:

b∑

r=1

Ỹ ∗
r ,

observe that {Ỹ ∗
r , r = 1, . . . , b} forms a triangular array of (conditionally) i.i.d. random variables

with E∗(Ỹ ∗
r ) = 0 by construction. Further, for (the (j1, j2)-component of) the conditional
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covariance, we have
[
cov∗

(
b∑

r=1

Ỹ ∗
r

)]

j1,j2

=
b∑

r=1

rl∑

s1,s2=(r−1)l+1

cov∗
(
Z̃∗

s1,j1, Z̃
∗
s2,j2

)

=
1

l

l∑

s1,s2=1

cov∗(1(X∗
s1

≤ xj1), 1(X
∗
s2

≤ xj2))

=
1

l

l∑

s1,s2=1

(
1

n− l + 1

n−l∑

t=0

1(Xt+s1 ≤ xj1)1(Xt+s2 ≤ xj2)

)

−1

l

(
1

n− l + 1

n−l∑

t1=0

l∑

s1=1

1(Xt1+s1 ≤ xj1)

)(
1

n− l + 1

n−l∑

t2=0

l∑

s2=1

1(Xt2+s2 ≤ xj2)

)
.

=
1

l

l∑

s1,s2=1

(
1

n− l + 1

n−l∑

t=0

Tt+s1,j1Tt+s2,j2

)

−
(

1√
l(n− l + 1)

n−l∑

t1=0

l∑

s1=1

Tt1+s1,j1

)(
1√

l(n− l + 1)

n−l∑

t2=0

l∑

s2=1

Tt2+s2,j2

)

=: I1 − I2 ∗ I3,
where we have set Tt,j = 1(Xt ≤ xj) − P (Xt ≤ xj). The terms I2 and I3 behave similarly and
we only consider I2. Since EI2 = 0, we show I2 = oP (1) by proving that its variance vanishes
asymptotically. We get

var(I2) ≤
1

n− l + 1

n−l∑

h1=−(n−l)

l−1∑

h2=−(l−1)

(
n− l + 1 − |h1|

n− l + 1

)(
l − |h2|

l

)
|cov(1(Xh1+h2 ≤ j1), 1(X0 ≤ j1))|

which is of order O(l/n) by (38).
By taking unconditional expectation of the first term I1, we obtain

E(I1) =

l−1∑

h=−(l−1)

l − |h|
l

cov(1(Xh ≤ xj1), 1(X0 ≤ xj2))

and, by dominated convergence, the latter tends to Wj1,j2 as desired. Hence, it remains to show
that var(I1) = o(1) holds. By rewriting the arising covariances in terms of cumulants, we get

var(I1)

=
1

l2(n− l + 1)2

l∑

s1,s2,s3,s4=1

n−l∑

t1,t2=0

cov (Tt1+s1,j1Tt1+s2,j2, Tt2+s3,j1Tt2+s4,j2)

=
1

l2(n− l + 1)2

l∑

s1,s2,s3,s4=1

n−l∑

t1,t2=0

{
E (Tt1+s1,j1Tt2+s3,j1)E (Tt1+s2,j2Tt2+s4,j2)

+E (Tt1+s1,j1Tt2+s4,j2)E (Tt1+s2,j2Tt2+s3,j1) + cum (Tt1+s1,j1, Tt1+s2,j2, Tt2+s3,j1, Tt2+s4,j2)

}
,

where we have used that cum(A,B,C,D) = E(ABCD) − E(AB)E(CD) − E(AC)E(BD) −
E(AD)E(BC) for centered random variables A,B,C,D holds. As E (Tt1+s1,j1Tt2+s3,j1) =
cov(1(Xt1+s1≤xj1

), 1(Xt2+s3≤xj1
)) ≤ Cτ(|t1 + s1 − t2 − s3|), by invoking the covariance inequal-

ity (38), the first and second summands above can shown to be of order O(l/n).
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Next, we establish an upper bound bound for |cum(Tt1,j1, Tt2,j2, Tt3,j3, Tt4,j4)|, where we assume
w.l.o.g. that t1 ≤ · · · ≤ t4. Let R = max{t4 − t3, t3 − t2, t2 − t1}. We consider each of the three
possible values of R separately. First, suppose that R = t4 − t3. Then using the same coupling
techniques as in the proof of Theorem A.1, we get similarly to (38)

|cum(Tt1,j1, Tt2,j2, Tt3,j3, Tt4,j4)| ≤ Cτ(R) [1 + |ETt1,j1Tt2,j2| + |ETt1,j1Tt3,j3| + |ETt2,j2Tt3,j3|]
≤ 4C τ(R)

(39)
with some finite constant C since ‖Ttl ,jl

‖∞ ≤ 1. If R = t3 − t2, we obtain

|cum(Tt1,j1, Tt2,j2, Tt3,j3, Tt4,j4)| ≤ cov(Tt1 ,j1Tt2,j2, Tt3,j3Tt4,j4) + C τ(R) [|ETt2 ,j2Tt4,j4| + |ETt1,j1Tt4,j4|]
≤ 4C τ(R).

(40)
Finally, in case of R = t2 − t1 the cumulant can be bounded as follows

|cum(Tt1,j1, Tt2,j2, Tt3,j3, Tt4,j4)| ≤ 3Cτ(R) + Cτ(R) [|ETt3,j3Tt4,j4|] + |ETt2,j2Tt4,j4| + |ETt2,j2Tt3,j3|]
≤ 5C τ(R).

(41)
To sum up, we obtain

var(I1) ≤ 1

l2(n− l + 1)2

l∑

s1,s2,s3,s4=1

n−l∑

t1,t2=0

|cum (Tt1+s1,j1, Tt1+s2,j2, Tt2+s3,j1, Tt2+s4,j2) | + o(1)

≤ 5C l

n

n−l∑

h=1

h τ(h) + o(1),

which vanishes asymptotically since we assumed
∑∞

h=1 h τ(h) <∞.
To complete the proof of the bootstrap CLT, it remains to show the Lindeberg condition to
be able to apply (a multivariate version of) Lindeberg-Feller’s CLT for independent triangular

arrays. That is, as cov∗(
∑b

r=1 Ỹ
∗
r ) = OP (1) holds by the calculations above, for all ǫ > 0, it

remains to show

b∑

r=1

E∗
(
‖Ỹ ∗

r ‖2
21(‖Ỹ ∗

r ‖2 ≥ ǫ)
)

= bE∗
(
‖Ỹ ∗

1 ‖2
21(‖Ỹ ∗

1 ‖2 ≥ ǫ)
)

= oP (1)

as {Ỹ ∗
r , r = 1, . . . , b} forms a triangular array of (conditionally) i.i.d. random variables. Com-

puting the conditional expectation leads to

bE∗
(
‖Ỹ ∗

1 ‖2
21(‖Ỹ ∗

1 ‖2 ≥ ǫ)
)

=
b

n− l + 1

n−l∑

t=0

∥∥∥∥∥

l∑

s=1

Z̃s+t

∥∥∥∥∥

2

2

1

(
‖

l∑

s=1

Z̃s+t‖ ≥ ǫ

)
, (42)

where

Z̃t+s =
1√
m

(
1(Xt+s ≤ x1) − E∗(1(X∗

s ≤ x1)), . . . , 1(Xt+s ≤ xD) −E∗(1(X∗
s ≤ xD))

)′

with E∗(1(X∗
s ≤ x1)) = 1

n−l+1

∑n−l
t1=0 1(Xt1+s ≤ xi). Now, we want to replace ‖∑l

s=1 Z̃s+t‖2
2 by

‖∑l
s=1 Zs+t‖2

2, where

Zt+s =
1√
m

(
1(Xt+s ≤ x1) − F (x1), . . . , 1(Xt+s ≤ xD) − F (xD)

)′
,
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which leads to the upper bound

2b

n− l + 1

n−l∑

t=0

∥∥∥∥∥

l∑

s=1

Zs+t

∥∥∥∥∥

2

2

1

(
‖

l∑

s=1

Z̃s+t‖ ≥ ǫ

)

+
2b

n− l + 1

n−l∑

t=0

∥∥∥∥∥

l∑

s=1

(Z̃s+t − Zs+t)

∥∥∥∥∥

2

2

1

(
‖

l∑

s=1

Z̃s+t‖ ≥ ǫ

)

=: II1 + II2

for (42). Considering the second summand above component-wise, it is straightforward to show
that for all j, it holds

l∑

s=1

(Zs+t − Z̃s+t) =
1√

m(n − l + 1)

l∑

s=1

n−l∑

t1=0

(Tt1+s,1, · · · , Tt1+s,D)′

which is independent of t, such that with Tt = (Tt,1, · · · , Tt,D)′

II2 ≤ 2b

m

∥∥∥∥∥
1

n− l + 1

l∑

s=1

n−l∑

t1=0

Tt1+s

∥∥∥∥∥

2

2

= OP

(
l

n

)

by the same arguments as used before to treat I2. Concerning II1, as all summands are non-
negative, it suffices to show E|II1| = E(II1) = o(1). From stationarity and by application of
Cauchy-Schwarz inequality, we get

E2(II1) = E2


2b

∥∥∥∥∥

l∑

s=1

Zs

∥∥∥∥∥

2

2

1

(
‖

l∑

s=1

Z̃s‖2 ≥ ǫ

)
 ≤ 4b2E



∥∥∥∥∥

l∑

s=1

Zs

∥∥∥∥∥

4

2


P

(∥∥∥∥∥

l∑

s=1

Z̃s

∥∥∥∥∥
2

≥ ǫ

)
.

As the second factor above is vanishing by Markov inequality and since E(‖∑l
s=1 Z̃s‖2

2) =

O(l/m), it remains to show that b2E(‖∑l
s=1 Zs,j‖4

4) = O(1) for all j. Rewriting things in terms
of cumulants, we get

b2E(‖
l∑

s=1

Z̃s,j‖4
4) = b2

l∑

s1,s2,s3,s4=1

E(Zs1,jZs2,jZs3,jZs4,j)

= 3


1

l

l∑

s1,s2=1

cov(1(Xs1 ≤ xj), 1(Xs2 ≤ xj))




2

+
1

l2

l∑

s1,s2,s3,s4=1

cum (Ts1,j, Ts2,j, Ts3,j, Ts4,j)

as higher-order cumulants are invariant to shifts. The first summand on the last rhs is uniformly
bounded. The second summand is also of order O(1) by (39) to (41) and

∑∞
h=1 h τ(h) <∞.

�
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