
RDF Graph Embeddings for Content-based Recommender
Systems

Jessica Rosati1,2
1University of Camerino –

Piazza Cavour 19/f – 62032
Camerino, Italy

2Polytechnic University of Bari
– Via Orabona, 4 – 70125

Bari, Italy
jessica.rosati@unicam.it

Petar Ristoski
Data and Web Science Group,
University of Mannheim, B6,

26, 68159 Mannheim,
Germany

petar.ristoski@informatik.uni-
mannheim.de

Tommaso Di Noia
Polytechnic University of Bari

– Via Orabona, 4 – 70125
Bari, Italy

tommaso.dinoia@poliba.it

Renato De Leone
University of Camerino –

Piazza Cavour 19/f – 62032
Camerino, Italy

renato.deleone@unicam.it

Heiko Paulheim
Data and Web Science Group,
University of Mannheim, B6,

26, 68159 Mannheim,
Germany

heiko@informatik.uni-
mannheim.de

ABSTRACT
Linked Open Data has been recognized as a useful source
of background knowledge for building content-based rec-
ommender systems. Vast amount of RDF data, covering
multiple domains, has been published in freely accessible
datasets. In this paper, we present an approach that uses
language modeling approaches for unsupervised feature ex-
traction from sequences of words, and adapts them to RDF
graphs used for building content-based recommender sys-
tem. We generate sequences by leveraging local information
from graph sub-structures and learn latent numerical rep-
resentations of entities in RDF graphs. Our evaluation on
two datasets in the domain of movies and books shows that
feature vector representations of general knowledge graphs
such as DBpedia and Wikidata can be effectively used in
content-based recommender systems.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval

Keywords
Recommender System; Graph Embeddings; Linked Open Data

1. INTRODUCTION
One of the main limitations of traditional content-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CBRecSys 2016, September 16, 2016, Boston, MA, USA.
Copyright remains with the authors and/or original copyright holders

c© 2016 ACM. ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

recommendation approaches is that the information on which
they rely is generally insufficient to elicit user’s interests and
characterize all the aspects of her interaction with the sys-
tem. This is the main drawback of the approaches built
on textual and keyword-based representations, which can-
not capture complex relations among objects since they lack
the semantics associated to their attributes. A process of
“knowledge infusion” [40] and semantic analysis has been
proposed to face this issue, and numerous approaches that
incorporate ontological knowledge have been proposed, giv-
ing rise to the newly defined class of semantics-aware content-
based recommender systems [6]. More recently the Linked
Open Data (LOD) initiative [3] has opened new interesting
possibilities to realize better recommendation approaches.
The LOD initiative in fact gave rise to a variety of open
knowledge bases freely accessible on the Web and being
part of a huge decentralized knowledge base, the LOD cloud,
where each piece of little knowledge is enriched by links to re-
lated data. LOD is an open, interlinked collection of datasets
in machine-interpretable form, built on World Wide Web
Consortium (W3C) standards as RDF1, and SPARQL2. Cur-
rently the LOD cloud consists of about 1, 000 interlinked
datasets covering multiple domains from life science to gov-
ernment data [39]. It has been shown that LOD is a valu-
able source of background knowledge for content-based rec-
ommender systems in many domains [12]. Given that the
items to be recommended are linked to a LOD dataset, in-
formation from LOD can be exploited to determine which
items are considered to be similar to the ones that the user
has consumed in the past, allowing to discover hidden infor-
mation and implicit relations between objects [26]. While
LOD is rich in high quality data, it is still challenging to
find effective and efficient way of exploiting the knowledge
for content-based recommendations. So far, most of the pro-

1http://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/, 2004.
2http://www.w3.org/TR/rdf-sparql-query/, 2008

pasquale.lops
Rectangle

pasquale.lops
Rectangle



posed approaches in the literature are supervised or semi-
supervised, which means cannot work without human inter-
action.

In this work, we adapt language modeling approaches for
latent representation of entities in RDF graphs. To do so, we
first convert the graph into a set of sequences of entities us-
ing graph walks. In the second step, we use those sequences
to train a neural language model, which estimates the likeli-
hood of a sequence of entities appearing in the graph. Once
the training is finished, each entity in the graph is repre-
sented with a vector of latent numerical values. Projecting
such latent representation of entities into a lower dimen-
sional feature space shows that semantically similar entities
appear closer to each other. Such entity vectors can be di-
rectly used in a content-based recommender system.

In this work, we utilize two of the most prominent RDF
knowledge graphs [29], i.e. DBpedia [18] and Wikidata [42].
DBpedia is a knowledge graph which is extracted from struc-
tured data in Wikipedia. The main source for this extraction
are the key-value pairs in the Wikipedia infoboxes. Wiki-
data is a collaboratively edited knowledge graph, operated
by the Wikimedia foundation3 that also hosts various lan-
guage editions of Wikipedia.

The rest of this paper is structured as follows. In Sec-
tion 2, we give an overview of related work. In Section 3, we
introduce our approach, followed by an evaluation in Sec-
tion 4. We conclude with a summary and an outlook on
future work.

2. RELATED WORK
It has been shown that LOD can improve recommender

systems towards a better understanding and representation
of user preferences, item features, and contextual signs they
deal with. LOD has been used in content-based, collabo-
rative, and hybrid techniques, in various recommendation
tasks, i.e., rating prediction, top-N recommendations and
improving of diversity in content-based recommendations.
LOD datasets, e.g. DBpedia, have been used in content-
based recommender systems in [11] and [12]. The former
performs a semantic expansion of the item content based on
ontological information extracted from DBpedia and Linked-
MDB [16], the first open semantic web database for movies,
and tries to derive implicit relations between items. The lat-
ter involves DBpedia and LinkedMDB too, but is an adapta-
tion of the Vector Space Model to Linked Open Data: it rep-
resents the RDF graph as a 3-dimensional tensor where each
slice is an ontological property (e.g. starring, director,...)
and represents its adjacency matrix. It has been proven
that leveraging LOD datasets is also effective for hybrid
recommender systems [4], that is in those approaches that
boost the collaborative information with additional knowl-
edge, such as the item content. In [10] the authors propose
SPRank, a hybrid recommendation algorithm that extracts
semantic path-based features from DBpedia and uses them
to compute top-N recommendations in a learning to rank
approach and in multiple domains, movies, books and mu-
sical artists. SPRank is compared with numerous collab-
orative approaches based on matrix factorization [17, 34]
and with other hybrid RS, such as BPR-SSLIM [25], and
exhibits good performance especially in those contexts char-
acterized by high sparsity, where the contribution of the

3http://wikimediafoundation.org/

content becomes essential. Another hybrid approach is pro-
posed in [36], which builds on training individual base rec-
ommenders and using global popularity scores as generic rec-
ommenders. The results of the individual recommenders are
combined using stacking regression and rank aggregation.
Most of these approaches can be referred to as top-down ap-
proaches [6], since they rely on the integration of external
knowledge and cannot work without human intervention.
On the other side, bottom-up approaches ground on the dis-
tributional hypothesis [15] for language modeling, according
to which the meaning of words depends on the context in
which they occur, in some textual content. The resulting
strategy is therefore unsupervised, requiring a corpora of
textual documents for training as large as possible. Ap-
proaches based on the distributional hypothesis, referred to
as discriminative models, behave as word embeddings tech-
niques where each term (and document) becomes a point
in the vector space. They substitute the term-document
matrix typical of Vector Space Model with a term-context
matrix on which they apply dimensionality reduction tech-
niques such as Latent Semantic Indexing (LSI) [8] and the
more scalable and incremental Random Indexing (RI) [38].
The latter has been involved in [22] and [23] to define the
so called enhanced Vector Space Model (eVSM) for content-
based RS, where user’s profile is incrementally built sum-
ming the features vectors representing documents liked by
the user and a negation operator is introduced to take into
account also negative preferences.

Word embedding techniques are not limited to LSI and RI.
The word2vec strategy has been recently presented in [19]
and [20], and to the best of our knowldge, has been applied
to item recommendations in a few works [21, 28]. In partic-
ular, [21] is an empirical evaluation of LSI, RI and word2vec
to make content-based movie recommendation exploiting
textual information from Wikipedia, while [28] deals with
check-in venue (location) recommendations and adds a non-
textual feature, the past check-ins of the user. They both
draw the conclusion that word2vec techniques are promising
for the recommendation task. Finally there is a single exam-
ple of product embedding [14], namely prod2vec, which oper-
ates on the artificial graph of purchases, treating a purchase
sequence as a “sentence” and products within the sequence
as words.

3. APPROACH
In our approach, we adapt neural language models for

RDF graph embeddings. Such approaches take advantage
of the word order in text documents, explicitly modeling
the assumption that closer words in the word sequence are
statistically more dependent. In the case of RDF graphs, we
follow the approach sketched in [37], considering entities and
relations between entities instead of word sequences. Thus,
in order to apply such approaches on RDF graph data, we
have to transform the graph data into sequences of entities,
which can be considered as sentences. After the graph is
converted into a set of sequences of entities, we can train
the same neural language models to represent each entity in
the RDF graph as a vector of numerical values in a latent
feature space. Such entity vectors can be directly used in a
content-based recommender system.

3.1 RDF Graph Sub-Structures Extraction
We propose random graph walks as an approach for con-



verting graphs into a set of sequences of entities.

Definition 1. An RDF graph is a graph G = (V, E),
where V is a set of vertices, and E is a set of directed edges.

The objective of the conversion functions is for each vertex
v ∈ V to generate a set of sequences Sv, where the first
token of each sequence s ∈ Sv is the vertex v followed by a
sequence of tokens, which might be edges, vertices, or any
substructure extracted from the RDF graph, in an order
that reflects the relations between the vertex v and the rest
of the tokens, as well as among those tokens.

In this approach, for a given graph G = (V,E), for each
vertex v ∈ V we generate all graph walks Pv of depth d
rooted in the vertex v. To generate the walks, we use the
breadth-first algorithm. In the first iteration, the algorithm
generates paths by exploring the direct outgoing edges of the
root node vr. The paths generated after the first iteration
will have the following pattern vr ->e1i, where i ∈ E(vr).
In the second iteration, for each of the previously explored
edges the algorithm visits the connected vertices. The paths
generated after the second iteration will follow the following
pattern vr ->e1i ->v1i. The algorithm continues until d
iterations are reached. The final set of sequences for the
given graph G is the union of the sequences of all the vertices⋃

v∈V Pv.

3.2 Neural Language Models – word2vec
Until recently, most of the Natural Language Processing

systems and techniques treated words as atomic units, rep-
resenting each word as a feature vector using a one-hot rep-
resentation, where a word vector has the same length as the
size of a vocabulary. In such approaches, there is no notion of
semantic similarity between words. While such approaches
are widely used in many tasks due to their simplicity and
robustness, they suffer from several drawbacks, e.g., high di-
mensionality and severe data sparsity, which limit the per-
formance of such techniques. To overcome such limitations,
neural language models have been proposed, inducing low-
dimensional, distributed embeddings of words by means of
neural networks. The goal of such approaches is to estimate
the likelihood of a specific sequence of words appearing in a
corpus, explicitly modeling the assumption that closer words
in the word sequence are statistically more dependent.

While some of the initially proposed approaches suffered
from inefficient training of the neural network models, with
the recent advancements in the field several efficient ap-
proaches has been proposed. One of the most popular and
widely used is the word2vec neural language model [19, 20].
Word2vec is a particularly computationally-efficient two-layer
neural net model for learning word embeddings from raw
text. There are two different algorithms, the Continuous
Bag-of-Words model (CBOW) and the Skip-Gram model.

3.2.1 Continuous Bag-of-Words Model
The CBOW model predicts target words from context

words within a given window.The input layer is comprised
from all the surrounding words for which the input vectors
are retrieved from the input weight matrix, averaged, and
projected in the projection layer. Then, using the weights
from the output weight matrix, a score for each word in the
vocabulary is computed, which is the probability of the word
being a target word. Formally, given a sequence of training

words w1, w2, w3, ..., wT , and a context window c, the ob-
jective of the CBOW model is to maximize the average log
probability:

1

T

T∑
t=1

log p(wt|wt−c...wt+c), (1)

where the probability p(wt|wt−c...wt+c) is calculated using
the softmax function:

p(wt|wt−c...wt+c) =
exp(v̄T v′wt

)∑V
w=1 exp(v̄T v′w)

, (2)

where v′w is the output vector of the word w, V is the com-
plete vocabulary of words, and v̄ is the averaged input vector
of all the context words:

v̄ =
1

2c

∑
−c≤j≤c,j 6=0

vwt+j (3)

3.2.2 Skip-Gram Model
The Skip-Gram model does the inverse of the CBOW

model and tries to predict the context words from the tar-
get words. More formally, given a sequence of training words
w1, w2, w3, ..., wT , and a context window c, the objective of
the skip-gram model is to maximize the following average
log probability:

1

T

T∑
t=1

∑
−c≤j≤c,j 6=0

log p(wt+j |wt), (4)

where the probability p(wt+j |wt) is calculated using the soft-
max function:

p(wo|wi) =
exp(v′Twovwi)∑V
w=1 exp(v′Tw vwi)

, (5)

where vw and v′w are the input and the output vector of the
word w, and V is the complete vocabulary of words.

In both cases, calculating the softmax function is compu-
tationally inefficient, as the cost for computing is propor-
tional to the size of the vocabulary. Therefore, two opti-
mization techniques have been proposed, i.e., hierarchical
softmax and negative sampling [20]. The empirical studies
show that in most cases negative sampling leads to better
performances than hierarchical softmax, which depends on
the selected negative samples, but it has higher runtime.

Once the training is finished, semantically similar words
appear close to each other in the feature space. Furthermore,
basic mathematical functions can be performed on the vec-
tors, to extract different relations between the words.

4. EVALUATION
We evaluate different variants of our approach on two dis-

tinct datasets, and compare them to common approaches
for creating content-based item representations from LOD
and with state of the art collaborative approaches. Further-
more, we investigate the use of two different LOD datasets
as background knowledge, i.e., DBpedia and Wikidata.

4.1 Datasets
In order to test the effectiveness of our proposal, we eval-

uate it in terms of ranking accuracy and aggregate diversity
on two datasets belonging to different domains, i.e. Movie-

lens 1M4 for movies and LibraryThing5 for books. The

4http://grouplens.org/datasets/movielens/
5https://www.librarything.com/



former contains 1 million 1-5 stars ratings from 6,040 users
on 3,883 movies. The LibraryThing dataset contains more
than 2 millions ratings from 7,564 users on 39,515 books.
As there are many duplicated ratings in the dataset, when
a user has rated more than once the same item, we select
her last rating. This choice brings to have 626,000 rat-
ings in the range from 1 to 10. The user-item interactions
contained in the datasets are enriched with side informa-
tion thanks to the item mapping and linking to DBpedia
technique detailed in [27], whose dump is available at http:
//sisinflab.poliba.it/semanticweb/lod/recsys/datasets/. In
the attempt to reduce the popularity bias from our final
evaluation we decided to remove the top 1% most popular
items from both datasets [5]. Moreover we keep out, from
LibraryThing, users with less than five ratings and items
rated less than five times, and to have a dataset character-
ized by lower sparsity we retain for Movielens only users
with at least fifty ratings, as already done in [10]. Table 1
contains the final statistics for our datasets.

Movielens LibraryThing
Number of users 4,186 7,149
Number of items 3,196 4,541
Number of ratings 822,597 352,123
Data sparsity 93.85% 98.90%

Table 1: Statistics about the two datasets

4.1.1 RDF Embeddings
As RDF datasets we use DBpedia and Wikidata.
We use the English version of the 2015-10 DBpedia dataset,

which contains 4, 641, 890 instances and 1, 369 mapping-based
properties. In our evaluation we only consider object prop-
erties, and ignore the data properties and literals.

For the Wikidata dataset we use the simplified and de-
rived RDF dumps from 2016-03-286. The dataset contains
17, 340, 659 entities in total. As for the DBpedia dataset, we
only consider object properties, and ignore the data proper-
ties and literals.

4.2 Evaluation Protocol
As evaluation protocol for our comparison, we adopted the

all unrated items methodology presented in [41] and already
used in [10]. Such methodology asks to predict a score for
each item not rated by a user, irrespective of the existence
of an actual rating, and to compare the recommendation list
with the test set.

The metrics involved in the experimental comparison are
precision, recall and nDCG as accuracy metrics, and cata-
log coverage and Gini coefficient for the aggregate diversity.
precision@N represents the fraction of relevant items in the
top-N recommendations. recall@N indicates the fraction of
relevant items, in the user test set, occurring in the top-N
list. As relevance threshold, we set 4 for Movielens and 8 for
LibraryThing, as previously done in [10]. Although preci-
sion and recall are good indicators to evaluate the accuracy
of a recommendation engine, they are not rank-sensitive.
nDCG@N [2] instead takes into account also the position in
the recommendation list, being defined as

6http://tools.wmflabs.org/wikidata-exports/rdf/index.
php?content=dump\ download.php\&dump=20160328

nDCG@N =
1

iDCG
·

N∑
i=1

2rel(u,i) − 1

log2(1 + i)
(6)

where rel(u, i) is a boolean function representing the rel-
evance of item i for user u and iDCG is a normalization
factor that sets nDCG@N value to 1 when an ideal ranking
is returned [2]. As suggested in [41] and set up in [10], in
the computation of nDCG@N we fixed a default “neutral”
value for those items with no ratings, i.e. 3 for Movielens

and 5 for LibraryThing.
Providing accurate recommendations has been recognized

as just one of the main task a recommender system must be
able to perform. We therefore evaluate the contribution of
our latent features in terms of aggregate diversity, and more
specifically by means of catalog coverage and Gini coeffi-
cient [1]. The catalog coverage represents the percentage of
available candidate items recommended at least once. It is
an important quality dimension for both user and business
perspective [13], since it exhibits the capacity to not settle
just on a subset of items (e.g. the most popular). This met-
ric however should be supported by a distribution metric
which has to show the ability of a recommendation engine
to equally spread out the recommendations across all users.
Gini coefficient [1] is used for this purpose, since it measures
the concentration degree of top-N recommendations across
items and is defined as

Gini = 2

n∑
i=1

(
n + 1− i

n + 1

)
·
(
rec(i)

total

)
(7)

In Equation (7), n is the number of candidate items avail-
able for recommendation, total represents the total num-
ber of top-N recommendations made across all users, and
rec(i) is the number of users to whom item i has been rec-
ommended. Gini coefficient gives therefore an idea of the
“equity” in the distribution of the items. It is worth to re-
mind that we are following the notion given in [1], where
the complement of the standard Gini coefficient is used, so
that higher values correspond to more balanced recommen-
dations.

4.3 Experimental Setup
The first step of our approach is to convert the RDF

graphs into a set of sequences. Therefore, to extract the
entities embeddings for the large RDF datasets, we use only
random graph walks entity sequences. More precisely, we
follow the approach presented in [32] to generate only a lim-
ited number of random walks for each entity. For DBpedia,
we experiment with 500 walks per entity with depth of 4
and 8, while for Wikidata, we use only 200 walks per entity
with depth of 4. Additionally, for each entity in DBpedia
and Wikidata, we include all the walks of depth 2, i.e., di-
rect outgoing relations. We use the corpora of sequences to
build both CBOW and Skip-Gram models with the follow-
ing parameters: window size = 5; number of iterations =
5; negative sampling for optimization; negative samples =
25; with average input vector for CBOW. We experiment
with 200 and 500 dimensions for the entities’ vectors. All
the models are publicly available7.

We compare our approach to several baselines. For gener-
ating the data mining features, we use three strategies that

7http://data.dws.informatik.uni-mannheim.de/rdf2vec/



take into account the direct relations to other resources in
the graph [30], and two strategies for features derived from
graph sub-structures [7]:

• Features derived from specific relations. In the ex-
periments we use the relations rdf:type (types), and
dcterms:subject (categories) for datasets linked to DB-
pedia.

• Features derived from generic relations, i.e., we gen-
erate a feature for each incoming (rel in) or outgoing
relation (rel out) of an entity, ignoring the value of the
relation.

• Features derived from generic relations-values, i.e, we
generate feature for each incoming (rel-vals in) or out-
going relation (rel-vals out) of an entity including the
value of the relation.

• Kernels that count substructures in the RDF graph
around the instance node. These substructures are
explicitly generated and represented as sparse feature
vectors.

– The Weisfeiler-Lehman (WL) graph kernel for RDF [7]
counts full subtrees in the subgraph around the
instance node. This kernel has two parameters,
the subgraph depth d and the number of itera-
tions h (which determines the depth of the sub-
trees). We use d = 1 and h = 2 and therefore we
will indicate this strategy as WL12.

– The Intersection Tree Path kernel for RDF [7]
counts the walks in the subtree that span from the
instance node. Only the walks that go through
the instance node are considered. We will there-
fore refer to it as the root Walk Count (WC) ker-
nel. The root WC kernel has one parameter: the
length of the paths l, for which we test 2. This
strategy will be denoted accordingly as WC2.

The strategies for creating propositional features from Linked
Open Data are implemented in the RapidMiner LOD exten-
sion8 [31, 35].

4.4 Results
The target of the experimental section of this paper is

two-fold. On the one hand, we want to prove that the la-
tent features we extracted are able to subsume the other
kind of features in terms of accuracy and aggregate diver-
sity. On the other hand we aim at qualifying our strategies
as valuable means for the recommendation task, through a
first comparison with state of the art approaches. Both goals
are pursued implementing an item-based K-nearest-neighbor
method, hereafter denoted as ItemKNN, with cosine simi-
larity among features vectors. Formally, this method deter-
mines similarities between items through cosine similarity
between relative vectors and then selects a subset of them –
the neighbors – for each item, that will be used to estimate
the rating of user u for a new item i as follows:

r∗(u, i) =
∑

j∈ratedItems(u)

cosineSim(j, i) · ru,j

8http://dws.informatik.uni-mannheim.de/en/research/
rapidminer-lod-extension

where ratedItems(u) is the set of items already evaluated
by user u, ru,j indicates the rating for item j by user u
and cosineSim(j, i) is the cosine similarity score between
items j and i. In our experiments, the size of the considered
neighbourhood is limited to 5. The computation of recom-
mendations has been done with the publicly available library
RankSys9. All the results have been computed @10, that is
considering the top-10 lists recommended to the users: pre-
cision, recall and nDCG are computed for each user and then
averaged across all users, while diversity metrics are global
measures.

Tables 2 and 3 contain the values of precision, recall and
nDCG, respectively for Movielens and LibraryThing, for
each kind of features we want to test. The best approach
for both datasets is retrieved with a Skip-Gram model and
with a size of 200 for vectors built upon DBpedia. For the
sake of truth, on the Movielens dataset the highest value
of precision is achieved using vector size of 500, but the
size 200 is prevalent according to the F1 measure, i.e. the
harmonic mean of precision and recall. A substantial dif-
ference however concerns the exploratory depth of the ran-
dom walks, since for Movielens the results related to depth
4 outdo those computed with depth 8, while the tendency
is reversed for LibraryThing. The advantage of the Skip-
Gram model over the CBOW is a constant both on DBpedia
and Wikidata. Moreover, the employment of the Wikidata
RDF dataset turns out to be more effective for Library-

Thing, where the Skip-Gram vectors with depth 4 exceeds
the corresponding DBpedia vectors. Moving to the features
extracted from direct relations, the contribution of the “cat-
egories” stands clearly out, together with relations-values
“rel-vals”, especially when just incoming relations are con-
sidered. The extraction of features from graph structures,
i.e. WC2 and WL12 approaches, seems not to provide sig-
nificant advantages to the recommendation algorithm.

To point out that our latent features are able to capture
the structure of the RDF graph, placing closely semantically
similar items, we provide some examples of the neighbouring
sets retrieved using our graph embeddings technique and
used within the ItemKNN. Table 4 is related to movies and
displays that neighboring items are highly relevant and close
to the query item, i.e. the item for which neighbors are
searched for.

To further analyse the semantics of the vector represen-
tations, we employ Principal Component Analysis (PCA)
to project the “high”-dimensional entities’ vectors in a two
dimensional feature space, or 2D scatter plot. For each of
the query movies in Table 4 we visualize the vectors of the
5 nearest neighbors as shown in Figure 1. The figure illus-
trates the ability of the model to automatically cluster the
movies.

The impact on the aggregate diversity. As a further valida-
tion of the interactiveness of our latent features for recom-
mendation task, we report the performances of the ItemKNN
approach in terms of aggregate diversity. The relation be-
tween accuracy and aggregate diversity has gained the at-
tention of researchers in the last few years and is generally
characterized as a trade-off [1]. Quite surprisingly, however,
the increase in accuracy, shown in Tables 2 and 3, seems not
to rely on a concentration on a subset of items, e.g. the most

9http://ranksys.org/



Strategy P@10 R@10 nDCG@10
DB2vec CBOW 200 4 0.03893 0.02167 0.30782
DB2vec CBOW 500 4 0.03663 0.02088 0.30557
DB2vec SG 200 4 0.05681 0.03119 0.31828
DB2vec SG 500 4 0.05786 0.0304 0.31726

DB2vec CBOW 200 8 0.01064 0.00548 0.29245
DB2vec CBOW 500 8 0.01137 0.00567 0.29289
DB2vec SG 200 8 0.04424 0.02693 0.30997
DB2vec SG 500 8 0.02191 0.01478 0.29863

WD2vec CBOW 200 4 0.01217 0.00596 0.29362
WD2vec CBOW 500 4 0.01027 0.00427 0.29211
WD2vec SG 200 4 0.02902 0.01479 0.30189
WD2vec SG 500 4 0.02644 0.01246 0.29967

types 0.00313 0.00145 0.28864
categories 0.0305 0.02093 0.30444

rel in 0.01122 0.00589 0.29183
rel out 0.02844 0.01607 0.30274

rel in & out 0.02852 0.01566 0.3006
rel-vals in 0.03883 0.02293 0.29411
rel-vals out 0.01279 0.00971 0.29378

rel-vals in & out 0.01174 0.00913 0.29333
WC2 0.00684 0.00343 0.29032
WL12 0.00601 0.00288 0.28977

Table 2: Results of the ItemKNN approach on
Movielens dataset. P and R stand respectively for
precision and recall, SG indicates the Skip-Gram
model, and DB and WD represent DBpedia and
Wikidata respectively.

Strategy P@10 R@10 nDCG@10
DB2vec CBOW 200 4 0.05127 0.11777 0.21244
DB2vec CBOW 500 4 0.05065 0.11557 0.21039
DB2vec SG 200 4 0.05719 0.12763 0.2205
DB2vec SG 500 4 0.05811 0.12864 0.22116

DB2vec CBOW 200 8 0.00836 0.02334 0.14147
DB2vec CBOW 500 8 0.00813 0.02335 0.14257
DB2vec SG 200 8 0.07681 0.17769 0.25234
DB2vec SG 500 8 0.07446 0.1743 0.24809

WD2vec CBOW 200 4 0.00537 0.01084 0.13524
WD2vec CBOW 500 4 0.00444 0.00984 0.13428
WD2vec SG 200 4 0.06416 0.14565 0.23309
WD2vec SG 500 4 0.06031 0.14194 0.22752

types 0.01854 0.04535 0.16064
categories 0.06662 0.15258 0.23733

rel in 0.04577 0.10219 0.20196
rel out 0.04118 0.09055 0.19449

rel in & out 0.04531 0.10165 0.20115
rel-vals in 0.06176 0.14101 0.22574
rel-vals out 0.06163 0.13763 0.22826

rel-vals in & out 0.06087 0.13662 0.22615
WC2 0.00159 0.00306 0.12858
WL12 0.00155 0.00389 0.12937

Table 3: Results of the ItemKNN approach on Li-

braryThing dataset.

popular ones, according to the results proposed in Tables 5
and 6. Here we are reporting, for the sake of concisenesses,
only the best approaches for each kind of features. More
clearly, we are displaying the best approach for latent fea-
tures computed on DBpedia, the best approach for latent
features computed on Wikidata and the values for the strat-
egy involving categories, since it provides the highest scores
among features extracted through direct relations. We are
not reporting the values related to WL12 and WC2 algo-
rithms, since their contribution is rather low also in this

Query Movie K Nearest Neighbours
Batman Batman Forever, Batman Re-

turns, Batman & Robin, Su-
perman IV: The Quest for
Peace, Dick Tracy

Bambi Cinderella, Dumbo, 101 Dal-
matians , Pinocchio, Lady and
the Tramp

Star Trek: Generations Star Trek VI: The Undiscov-
ered Country, Star Trek: In-
surrection, Star Trek III: The
Search for Spock, Star Trek V:
The Final Frontier, Star Trek:
First Contact (1996)

Table 4: Examples of K-nearest-neighbor sets on
Movielens, for the Skip-Gram model with depth of
4 and size vectors 200, on DBpedia.

Figure 1: Two-dimensional PCA projection of the
200-dimensional Skip-gram vectors of movies in Ta-
ble 4.

analysis. For both movies and books domain, the best ap-
proaches found on DBpedia for the accuracy metrics, i.e.
respectively “DB2vec SG 200 4” and “DB2vec SG 200 8”,
perform better also in terms of aggregate diversity. For the
LibraryThing dataset the Skip-Gram model computed with
random walks on Wikidata and size vector limited to 200 is
very close to the highest scores retrieved in DBpedia, while
for Movielens is the CBOW model, with depth 4, to gain
the best performance on Wikidata. The contribution of the
categories, despite being lower than the best approach on
each dataset, is quite significant for diversity measures too.

Comparison with state of the art collaborative approaches.
It is a quite common belief in the RS field that using pure
content-based approaches would not be enough to provide
accurate suggestions and that the recommendation engines
must ground on collaborative information too. This moti-
vated us to explicitly compare the best approaches built on
graph embeddings technique with the well-known state of
the art collaborative recommendation algorithms listed be-



Strategy Coverage Gini
DB2vec SG 200 4 0.35198 0.07133

WD2vec CBOW 200 4 0.27749 0.04052
categories 0.29798 0.04714

Table 5: Methods comparison in terms of aggregate
diversity on the Movielens dataset. Coverage stands
for catalog coverage and Gini for Gini coefficient.

Strategy Coverage Gini
DB2vec SG 200 8 0.76386 0.29534
WD2vec SG 200 4 0.73037 0.28525

categories 0.7246 0.26409

Table 6: Methods comparison in terms of aggregate
diversity on the LibraryThing dataset.

low, and implemented with the publicly available software
library MyMediaLite10.

• Biased Matrix Factorization (MF) [17], recognized as
the state of the art for rating prediction, is a ma-
trix factorization model that minimizes RMSE using
stochastic gradient descent and both user and item
bias.

• PopRank is a baseline based on popularity. It recom-
mends the same recommendations to all users accord-
ing to the overall items popularity. Recent studies have
point out that recommending the most popular items
could already result in a high performance [5].

• Bayesian Personalized Ranking (BPRMF) combines a
matrix factorization approach with a Bayesian Person-
alized Ranking optimization criterion [34].

• SLIM [24] is a Sparse LInear Method for top-N recom-
mendation that learns a sparse coefficient matrix for
the items involved in the system by only relying on
the users purchase/ratings profile and by solving a L1-
norm and L2-norm regularized optimization problem.

• Soft Margin Ranking Matrix Factorization (RankMF)
is a matrix factorization approach for ranking, whose
loss function is ordinal regression [43].

Tables 7 and 8 provide the comparison results for Movie-

lens and LibraryThing respectively. Table 7 shows that
matrix factorization techniques and the SLIM algorithm ex-
ceed our approach based only on content information. This
outcome was somehow expected, especially considering that,
in our experimental setting, Movielens dataset retains only
users with at least fifty ratings. The community-based in-
formation is unquestionably predominant for this dataset,
whose sparsity would probably be unlikely for most real-
world scenarios. The behaviour however is completely over-
turned on the LibraryThing dataset, whose results are col-
lected in Table 8. In this case, the mere use of our features
vectors (i.e. the “DB2vec SG 200 8” strategy) is able to
outperform the competitor algorithms, which are generally
regarded as the most efficient collaborative algorithms for
both rating and ranking prediction.

10http://www.mymedialite.net

Strategy P@10 R@10 nDCG@10
DB2vec SG 200 4 0.0568 0.0312 0.3183

MF 0.2522 0.1307 0.4427
PopRank 0.1673 0.0787 0.3910
BPRMF 0.2522 0.1307 0.4427
SLIM 0.2632 0.1474 0.4599

RankMF 0.1417 0.0704 0.3736

Table 7: Comparison with state of the art collabo-
rative approaches on Movielens.

Strategy P@10 R@10 nDCG@10
DB2vec SG 200 8 0.0768 0.1777 0.2523

MF 0.0173 0.0209 0.1423
PopRank 0.0397 0.0452 0.1598
BPRMF 0.0449 0.0751 0.1858
SLIM 0.0543 0.0988 0.2317

RankMF 0.0369 0.0459 0.1714

Table 8: Comparison with state of the art collabo-
rative approaches on LibraryThing.

5. CONCLUSION
In this paper, we have presented an approach for learn-

ing low-dimensional real-valued representations of entities in
RDF graphs, in a completely domain independent way. We
have first converted the RDF graphs into a set of sequences
using graph walks, which are then used to train neural lan-
guage models. In the experimental section we have shown
that a content-based RS relying on the similarity between
items computed according to our latent features vectors,
outdo the same kind of system but grounding on explicit
features (e.g. types, categories,...) or features generated
with the use of kernels, from both perspectives of accuracy
and aggregate diversity. Our purely content-based system
has been further compared to state of the arts collaborative
approaches for rating prediction and item ranking, giving
outstanding results on a dataset with a realistic sparsity de-
gree.

As future work, we intend to introduce the features vec-
tors deriving from the graph embeddings technique within a
hybrid recommender system in order to get a fair comparison
against state of the art hybrids approaches such as SPRank
[10] and BRP-SSLIM [25]. In this perspective we could take
advantage of the Factorization Machines [33], general pre-
dictor working with any features vector, that combine Sup-
port Vector Machines and factorization models. We aim to
extend the evaluation to additional metrics, such as the in-
dividual diversity [44, 9], and to provide a deeper insight
into cold-start users, i.e. users with a small interaction with
the system for whom the information inference is difficult to
draw and that generally benefit most of content “infusion”.

6. REFERENCES
[1] Gediminas Adomavicius and YoungOk Kwon. Improving

aggregate recommendation diversity using ranking-based
techniques. IEEE Trans. on Knowl. and Data Eng.,
24(5):896–911, May 2012.

[2] Alejandro Belloǵın, Iván Cantador, and Pablo Castells. A
comparative study of heterogeneous item recommendations in
social systems. Inf. Sci., 221:142–169, February 2013.

[3] Christian Bizer, Tom Heath, and Tim Berners-Lee. Linked
Data – The Story So Far. International journal on semantic
web and information systems, 5(3):1–22, 2009.

[4] Robin Burke. Hybrid recommender systems: Survey and
experiments. User Modeling and User-Adapted Interaction,
12(4):331–370, November 2002.



[5] Paolo Cremonesi, Yehuda Koren, and Roberto Turrin.
Performance of recommender algorithms on top-n
recommendation tasks. In Proceedings of the Fourth ACM
Conference on Recommender Systems, RecSys ’10, pages
39–46, New York, NY, USA, 2010. ACM.

[6] Marco de Gemmis, Pasquale Lops, Cataldo Musto, Narducci
Fedelucio, and Giovanni Semeraro. Semantics-aware
content-based recommender systems. In Francesco Ricci, Lior
Rokach, and Bracha Shapira, editors, Recommender Systems
Handbook, pages 119–159. Springer, 2nd edition, 2015.

[7] Gerben Klaas Dirk de Vries and Steven de Rooij. Substructure
counting graph kernels for machine learning from rdf data. Web
Semantics: Science, Services and Agents on the World Wide
Web, 35:71–84, 2015.

[8] Scott Deerwester, Susan T. Dumais, George W. Furnas,
Thomas K. Landauer, and Richard Harshman. Indexing by
latent semantic analysis. JOURNAL OF THE AMERICAN
SOCIETY FOR INFORMATION SCIENCE, 41(6):391–407,
1990.

[9] T. Di Noia, V. C. Ostuni, J. Rosati, P. Tomeo, and
E. Di Sciascio. An analysis of users’ propensity toward diversity
in recommendations. In ACM RecSys ’14, RecSys ’14, pages
285–288. ACM, 2014.

[10] T. Di Noia, V. C. Ostuni, P. Tomeo, and E. Di Sciascio.
Sprank: Semantic path-based ranking for top-n
recommendations using linked open data. ACM Transactions
on Intelligent Systems and Technology (TIST), 2016.

[11] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni, and
Davide Romito. Exploiting the web of data in model-based
recommender systems. In Proceedings of the Sixth ACM
Conference on Recommender Systems, RecSys ’12, pages
253–256, New York, NY, USA, 2012. ACM.

[12] Tommaso Di Noia, Roberto Mirizzi, Vito Claudio Ostuni,
Davide Romito, and Markus Zanker. Linked open data to
support content-based recommender systems. In Proceedings of
the 8th International Conference on Semantic Systems,
I-SEMANTICS ’12, pages 1–8, New York, NY, USA, 2012.
ACM.

[13] Mouzhi Ge, Carla Delgado-battenfeld, and Dietmar Jannach.
Beyond accuracy: evaluating recommender systems by coverage
and serendipity. In In RecSys ’10, page 257, 2010.

[14] Mihajlo Grbovic, Vladan Radosavljevic, Nemanja Djuric,
Narayan Bhamidipati, Jaikit Savla, Varun Bhagwan, and Doug
Sharp. E-commerce in your inbox: Product recommendations at
scale. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD
’15, pages 1809–1818, New York, NY, USA, 2015. ACM.

[15] Z. S. Harris. Mathematical Structures of Language. Wiley,
New York, NY, USA, 1968.

[16] Oktie Hassanzadeh and Mariano Consens. M.: Linked movie
data base. In In: Workshop on Linked Data on the Web, 2009.

[17] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix
factorization techniques for recommender systems. Computer,
42(8):30–37, August 2009.

[18] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch,
Dimitris Kontokostas, Pablo N. Mendes, Sebastian Hellmann,
Mohamed Morsey, Patrick van Kleef, SÃűren Auer, and
Christian Bizer. DBpedia – A Large-scale, Multilingual
Knowledge Base Extracted from Wikipedia. Semantic Web
Journal, 2013.

[19] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013.

[20] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and
Jeff Dean. Distributed representations of words and phrases
and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[21] Cataldo Musto, Giovanni Semeraro, Marco De Gemmis, and
Pasquale Lops. Word embedding techniques for content-based
recommender systems: an empirical evaluation. In RecSys
Posters, ser. CEUR Workshop Proceedings, P. Castells, Ed,
volume 1441.

[22] Cataldo Musto, Giovanni Semeraro, Pasquale Lops, and Marco
de Gemmis. Random Indexing and Negative User Preferences
for Enhancing Content-Based Recommender Systems, pages
270–281. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

[23] Cataldo Musto, Giovanni Semeraro, Pasquale Lops, and Marco
de Gemmis. Contextual eVSM: A Content-Based
Context-Aware Recommendation Framework Based on
Distributional Semantics, pages 125–136. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2013.

[24] Xia Ning and George Karypis. SLIM: sparse linear methods for
top-n recommender systems. In 11th IEEE International
Conference on Data Mining, ICDM 2011, Vancouver, BC,
Canada, December 11-14, 2011, pages 497–506, 2011.

[25] Xia Ning and George Karypis. Sparse linear methods with side
information for top-n recommendations. In Proceedings of the
Sixth ACM Conference on Recommender Systems, RecSys
’12, pages 155–162, New York, NY, USA, 2012. ACM.

[26] Tommaso Di Noia, Vito Claudio Ostuni, Jessica Rosati, Paolo
Tomeo, Eugenio Di Sciascio, Roberto Mirizzi, and Claudio
Bartolini. Building a relatedness graph from linked open data:
A case study in the it domain. Expert Systems with
Applications, 44:354 – 366, 2016.

[27] V. C. Ostuni, T. Di Noia, E. Di Sciascio, and R. Mirizzi. Top-n
recommendations from implicit feedback leveraging linked open
data. In ACM RecSys ’13, pages 85–92, 2013.

[28] Makbule Gulcin Ozsoy. From word embeddings to item
recommendation. arXiv preprint arXiv:1601.01356, 2016.

[29] Heiko Paulheim. Knowledge graph refinement: A survey of
approaches and evaluation methods. Semantic Web,
(Preprint):1–20, 2016.

[30] Heiko Paulheim and Johannes Fümkranz. Unsupervised
generation of data mining features from linked open data. In
Proceedings of the 2nd international conference on web
intelligence, mining and semantics, page 31. ACM, 2012.

[31] Heiko Paulheim, Petar Ristoski, Evgeny Mitichkin, and
Christian Bizer. Data mining with background knowledge from
the web. RapidMiner World, 2014.

[32] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk:
Online learning of social representations. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 701–710. ACM, 2014.

[33] Steffen Rendle. Factorization machines with libfm. ACM
Trans. Intell. Syst. Technol., 3(3):57:1–57:22, May 2012.

[34] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and
Lars Schmidt-Thieme. Bpr: Bayesian personalized ranking from
implicit feedback. In Proceedings of the Twenty-Fifth
Conference on Uncertainty in Artificial Intelligence, UAI ’09,
pages 452–461, Arlington, Virginia, United States, 2009.

[35] Petar Ristoski, Christian Bizer, and Heiko Paulheim. Mining
the web of linked data with rapidminer. Web Semantics:
Science, Services and Agents on the World Wide Web,
35:142–151, 2015.

[36] Petar Ristoski, Eneldo Loza Menćıa, and Heiko Paulheim. A
hybrid multi-strategy recommender system using linked open
data. In Semantic Web Evaluation Challenge, pages 150–156.
Springer, 2014.

[37] Petar Ristoski and Heiko Paulheim. Rdf2vec: Rdf graph
embeddings for data mining. In International Semantic Web
Conference (To Appear). Springer, 2016.

[38] Magnus Sahlgren. An introduction to random indexing. In In
Methods and Applications of Semantic Indexing Workshop at
the 7th International Conference on Terminology and
Knowledge Engineering, TKE 2005, 2005.

[39] Max Schmachtenberg, Christian Bizer, and Heiko Paulheim.
Adoption of the linked data best practices in different topical
domains. In International Semantic Web Conference, pages
245–260. Springer, 2014.

[40] Giovanni Semeraro, Pasquale Lops, Pierpaolo Basile, and
Marco de Gemmis. Knowledge infusion into content-based
recommender systems. In Proceedings of the Third ACM
Conference on Recommender Systems, RecSys ’09, pages
301–304, New York, NY, USA, 2009. ACM.

[41] Harald Steck. Evaluation of recommendations:
Rating-prediction and ranking. In Proceedings of the 7th ACM
Conference on Recommender Systems, RecSys ’13, pages
213–220, New York, NY, USA, 2013. ACM.

[42] Denny Vrandečić and Markus Krötzsch. Wikidata: a free
collaborative knowledgebase. Communications of the ACM,
57(10):78–85, 2014.

[43] Markus Weimer, Alexandros Karatzoglou, and Alex Smola.
Improving maximum margin matrix factorization. Mach.
Learn., 72(3):263–276, September 2008.

[44] Mi Zhang and Neil Hurley. Avoiding monotony: Improving the
diversity of recommendation lists. In Proceedings of the 2008
ACM Conference on Recommender Systems, RecSys ’08,
pages 123–130, New York, NY, USA, 2008. ACM.


