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Abstract
In this paper, we propose a kernel-type estimator for the local characteristic function of locally
stationary processes. Under weak moment conditions, we prove joint asymptotic normality for local
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prove weak convergence of the local empirical characteristic process. We apply our asymptotic
results to parameter estimation. Furthermore, by extending the notion of distance correlation of
Szekely, Rizzo and Bakirov (2007) to locally stationary processes, we are able to provide asymptotic
theory for local empirical distance correlations. Finally, we provide a simulation study on minimum
distance estimation for α-stable distributions and illustrate the pairwise dependence structure over
time of log returns of German stock prices via local empirical distance correlations.
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1. Introduction

The classical theory of characteristic functions (CFs) provides a powerful methodology to
uniquely determine probability distributions of random variables and to characterize their
properties. For an Rd-valued random variable X on a probability space (Ω,A, P ), its CF
ϕX is defined via the inverse Fourier transform of P , i.e.

ϕX(s) = E
(
ei〈s,X〉

)
=
∫

Ω
ei〈s,X〉dP, s ∈ Rd, (1.1)

where 〈a, b〉 =
∑k
i=1 aibi for a, b ∈ Rk. Note that due to |ei〈s,X〉| = 1, the CF of a random

variable X does always exist. Hence, CFs are bounded and uniformly continuous. See
e.g. Ushakov (1999) for general results on CFs. In particular, the definition of CFs does
not require any moments of X to be finite. Nevertheless, the existence of moments of X
translates nicely into smoothness of the CF in the origin. Several other features of the
distribution PX of X indeed can be nicely described with the help of ϕX . For example,
stochastic independence of the components of a random vector X = (X1, . . . , Xd)′ is equiv-
alent to the fact that the joint CF ϕX of X equals the product of the marginal CFs ϕXi of
Xi, i = 1, . . . , d. That is, under independence, we have

ϕX(s) = E
(
ei〈s,X〉

)
=

d∏
i=1

E
(
eisiXi

)
=

d∏
i=1

ϕXi(si), s = (s1, . . . , sd)′ ∈ Rd. (1.2)

In general, the CF of a random variable X is a complex-valued function, but of particular
interest is the case, where the CF is real-valued. A vanishing imaginary part of the CF
translates to symmetry of the distribution of X, i.e. PX = P−X . By exploiting such
properties of CFs, several meaningful tools have been provided in statistical literature to
investigate distributional features of data and to analyze independence or symmetry; see
e.g. Bakirov, Rizzo, Székely (2006) or Leucht (2012) and references therein. In particular,
parameter estimation methods based on empirical characteristic functions (ECFs) are very
promising if the corresponding densities are complicated and higher order moments do not
exist since classical maximum-likelihood estimation or method-of-moments can hardly be
applied. CF based approaches have been considered, for example, by Press (1972), Höpfner
and Rüschendorf (1999) or Xu and Knight (2010). Corresponding statistics are based on
the ECF computed from the data. With data X1, . . . , XT at hand, the ECF of X is defined
by

ϕ̂X(s) = 1
T

T∑
t=1

ei〈s,Xt〉, s ∈ Rd. (1.3)

The common approach to quantify dependence between random variables X and Y is to
look at linear dependence measures such as covariances or correlations. Such measures
might be misleading for certain statistical inference procedures as any dependence struc-
ture beyond the linear one will not be captured. That is, in general, i.e. without assuming a
Gaussian distribution, covariances and correlations are suitable only to characterize uncor-
relatedness, but not independence. Furthermore, these linear dependence measures require
the second moments of random variables X and Y to exist, which may turn out to be too
restrictive in practice. Moreover, at least fourth moments need to exist to derive central
limit theorems (CLTs) for sample covariances or sample correlations.

In financial time series literature, the class of GARCH models is a prominent example
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of time series processes, where uncorrelatedness and independence do not coincide and mo-
ment conditions are indeed restrictive; compare e.g. Francq and Zakoian (2010), Section
2.4.1 for the number of existing moments of a GARCH(1,1) process. In fact, when GARCH
models are fitted to financial data, the resulting models usually tend to have only very few
finite moments. Motivated by such observations, Szekely, Rizzo and Bakirov (2007) pro-
posed an (unsigned) measure of dependence coined distance correlation; see also Szekely
and Rizzo (2009). For two real-valued random vectors X and Y of dimensions p and q,
respectively, their idea is to exploit the equivalence of stochastic independence and prop-
erty (1.2) to consider a weighted L2-distance between the joint CF ϕ(X′,Y ′)′((s′1, s′2)′) and
the product of the marginal CFs ϕX(s1)ϕY (s2). More precisely, they define the distance
covariance VX,Y by

V2
X,Y =

∫
Rp+q

∣∣∣ϕ(X′,Y ′)′((s′1, s′2)′)− ϕX(s1)ϕY (s2)
∣∣∣2 w(s1, s2) ds1 ds2, (1.4)

where w(·, ·) is a (non-integrable) weight function defined by

w(s1, s2) =
(
cpcq|s1|

1+p
2 |s2|

1+q
2

)−1
, s1 ∈ Rp \ {0}, s2 ∈ Rq \ {0} (1.5)

with cd = π(1+d)/2/Γ((1+d)/2). The distance correlation RX,Y is then easily deduced from
(1.4) and defined as

R2
X,Y =


V2
X,Y√
V2
XV

2
Y

, V2
XV2

Y > 0,

0, V2
XV2

Y = 0,
(1.6)

where VX := VX,X . This leads to an unsigned measure for dependenceR with 0 ≤ RX,Y ≤ 1
and such that RX,Y = 0 is equivalent to X and Y being independent. Due to the specific
choice of the weight function w in (1.5), it holds that R is scale invariant; see Szekely,
Rizzo and Bakirov (2007, p. 2771). In Szekely and Rizzo (2012), the authors show that
the choice of w is essentially unique to maintain certain properties of V that eventually
lead e.g. to the desired scale-invariance of R. Affinely invariant versions of distance cor-
relations have been studied in Dueck, Edelmann, Gneiting and Richards (2014). With
data ((X ′1, Y ′1)′, . . . , (X ′T , Y ′T )′) at hand, sample versions of V and R are defined by just
replacing the CFs ϕ by ECFs ϕ̂ in (1.4) and (1.6), respectively. Under mild assumptions
of existing first absolute moments in an independent, identically distributed (i.i.d.) setup,
Szekely, Rizzo and Bakirov (2007) show almost sure convergence of these empirical quan-
tities to their theoretical counterparts V and R, respectively. Furthermore, they provide
some limiting results that allow to construct tests for pairwise independence of X and Y .
Zhou (2012) employed the concept of distance correlation to measure nonlinear dependence
in time series by considering auto-distance correlation. In a recent paper, Davis, Matsui,
Mikosch, and Wan (2016) provide general asymptotic theory for distance correlations of
stationary time series.

Whereas most of the classical theory on CFs was originally developed for the case of
i.i.d. random variables, many results have been established more recently also for station-
ary time series processes; see e.g. Leucht (2012), Knight and Yu (2002) or Yu (2004) for
a review. However, in practice, it is rather unlikely to observe real time series data from
a perfectly (strictly) stationary data generating processes (DGP), that is, whose entire de-
pendence structure is invariant as time evolves. Also such an idealized stationary model
may not be suitable at all to describe the data at least approximately. To approximate non-
stationary processes locally (on segments) by stationary processes goes back to Priestley
(1965), who proposed time series with evolutionary spectra representation. In a series of
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papers, Dahlhaus (1996a,b, 1997) proposed the notion of local stationarity and provided an
asymptotic (in-fill) framework that allows for meaningful and rigorous theory; see Dahlhaus
(2012) for a recent review of the state-of-the-art. Locally stationary processes are indeed
globally non-stationary, but locally they can be sufficiently well approximated by stationary
processes. By rescaling the data to the unit interval and executing in-fill asymptotics, it is
assured that locally more and more data is observed, which allows e.g. consistent estimation
of model parameters. One common way in the literature is to define locally stationary pro-
cesses (Xt,T )Tt=1, T ∈ N, via a linear MA(∞) representation with time-varying coefficients,
that is,

Xt,T = µ

(
t

T

)
+

∞∑
j=−∞

At,T (j) εt−j , t = 1, . . . , T, (1.7)

where (εt)t∈Z is some d-dimensional noise process and (At,T (j))Tt=1, j ∈ Z, are coefficient
matrices smoothly varying over time. We make use of the concept (1.7) and define d-variate
linear locally stationary processes in Section 2, where we provide also detailed assumptions
used throughout this paper.

So far, many results for locally stationary processes are based on spectral methods and
therefore require the DGP to have at least finite second moments. In particular, this as-
sumption might be violated for financial time series. In view of the far reaching statistical
application possibilities of CFs, the main purpose of this paper is to extend the existing the-
ory for strictly stationary processes to the case of locally stationary processes in the sense
of (1.7). To extend the applicability of statistical procedures (as e.g. distance correlations
or minimum distance estimation) established for the stationary case to this more general
setup, we define the CF of locally stationary processes and propose a suitable kernel-type
estimator generalizing (1.1) and (1.3), respectively, to the locally stationary case. In a
second step we investigate asymptotic properties of the newly proposed estimator.

The paper is organized as follows. In Section 2, we present the basic notation of locally sta-
tionary processes, which allows us to define corresponding versions of the CF and the ECF.
We provide regularity conditions imposed on the locally stationary process and deduce from
these some important preliminary results that will be used frequently throughout this pa-
per. Asymptotic theory for the kernel-based local ECF is provided in Section 3, where we
first provide explicit formulas for the bias and for covariances of local ECFs. Based on these
results, we are then able to prove a CLT as well as process convergence for local ECFs. In
Section 4.1, we apply our results to derive theory for time-varying parameter estimation in
locally stationary models, and in Section 4.2, we define local (auto-)distance correlations
and prove consistency results. In Section 5, we provide a simulation study on two estima-
tion procedures for α-stable distributions and illustrate the pairwise dependence structure
over time of log returns of German stock prices via local empirical distance correlations.
All proofs are deferred to Section 6.

Finally, let us fix some notation. Throughout the paper, we underline vector-valued quan-
tities. Moreover, Z denotes the (entry-wise) complex conjugate of a matrix Z and X ′

indicates the transpose of a vector or matrix X. Let | · |1 denote the ”max column sum
matrix norm”, i.e. |M |1 = max1≤j≤r

∑n
i=1 |m(i,j)| for some (n × r) matrix M = (m(i,j)).

Further, let ‖M‖1 := E(|M |1) be the matrix-valued L1-norm. For n-dimensional vectors
v = (v1, . . . , vn)′, its p-norm | · |p is defined as usual as | · |p := (

∑n
j=1 |vj |p)1/p. Note that
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the matrix norm | · |1 is submultiplicative and it coincides with the usual 1-norm for n-
dimensional vectors, i.e. for r = 1. For x ∈ R, let bxc be the largest integer smaller as or
equal to x ∈ R and 〈·, ·〉 denotes the Euclidean inner product. Let <x and =x denote the
real and imaginary parts of x. With d→, we denote convergence in distribution and with P→
stochastic convergence.

2. Empirical characteristic functions for locally stationary processes

2.1. Setup and preliminaries. Throughout this paper, let (Xt,T )Tt=1 be a d-variate time
series process that has a time-varying MA(∞) representation. That is, we have

Xt,T = µ

(
t

T

)
+

∞∑
j=−∞

At,T (j) εt−j , (2.1)

where µ(·) = (µ1(·), . . . , µd(·))′ denotes a d-dimensional time-varying mean function, (At,T (j))j∈Z
are (d× d) coefficient matrices and (εt)t∈Z is a sequence of i.i.d. centered random vectors.

Of course the components of the coefficient matrices At,T (j) have to decay sufficiently fast
as |j| → ∞ to assure existence of the process. In order to establish a meaningful statistical
methodology, we require also the coefficients to vary slowly over time. More precisely, we
make the following assumptions on the process (Xt,T )Tt=1.

Assumption 2.1 (The process).
The process (Xt,T )Tt=1, T ∈ N, is of the form (2.1), where

(i) (εt)t∈Z is i.i.d., mean zero and satisfies E|ε0|1 <∞,
(ii) for some k ∈ N0 it holds:

(ii.1) E|ε0|kk <∞.
(ii.2) There exists a real-valued, deterministic sequence (l(j))j∈Z with

∑
j∈Z j

2l−1(j) <
∞ and a constant B <∞ such that

sup
t,T

∣∣At,T (j)
∣∣
1 ≤

B

l(j) . (2.2)

Further, for each j ∈ Z there exists an entry-wise k-times continuously dif-
ferentiable function A(·, j) : [0, 1] → Rd×d such that for all p, q = 1, . . . , d and
s = 0, 1, . . . , k, we have

sup
u

∣∣∣∣∣∂sa(p,q)(u, j)
∂us

∣∣∣∣∣ ≤ B

l(j) and sup
t,T

T

∣∣∣∣At,T (j)−A
(
t

T
, j

)∣∣∣∣
1
≤ B

l(j) , (2.3)

where A(u, j) = (a(p,q)(u, j))p,q=1,...,d and A(s)(u, j) = ∂s

∂usA(u, j) = ( ∂s

∂usa
(p,q)(u, j))p,q=1,...,d.

(ii.3) Each component of µ is k-times continuously differentiable.

The construction with At,T (j) and A(t/T, j) appears to be unnecessarily complicated. How-
ever, A(t/T, j) is needed for rescaling and to be able to impose smoothness conditions, while
At,T (j) makes the class of processes rich enough; compare Dahlhaus (2012). For instance,
a broad class of time-varying autoregressive (tvAR) processes of the form

Xt,T = rt,T (1)Xt−1,T + · · ·+ rt,T (p)Xt−p,T + εt, t = 1, . . . , T,
is included. Cardinali and Nason (2010) coined the term close pair for (At,T (j), A(t/T, j)).
Moreover, note that continuity and differentiability conditions on [0, 1] in Assumption 2.1
shall be understood in the one-sided sense at the boundary points.
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As an immediate consequence of Assumption 2.1 we get from (2.3) by straightforward
calculations

sup
u∈[0,1]

∣∣A(u, j)
∣∣
1 ≤

dB

l(j) . (2.4)

As discussed in Section 4 of Dahlhaus (2012), Assumption 2.1 forms a classical set of
conditions for statistical inference based on local estimators for locally stationary processes.
The basic idea is that in some neighborhood of a fixed time point u = t/T , the process
(Xt,T )Tt=1 can be locally approximated by (strictly) stationary processes (X̃t(u))t∈Z given
by

X̃t(u) = µ(u) +
∞∑

j=−∞
A(u, j) εt−j . (2.5)

Note that this equation indeed has a strictly stationary solution under Assumption 2.1 for
each fixed u. The following lemma provides results which will be used several times in the
remainder of this paper. In particular, the uniform decay of the covariances of the CFs of
(X̃t(u))t∈Z as well as the approximation of Xt,T by X̃t(t/T ) are quantified.

Lemma 2.1 (Preliminary consequences of Assumption 2.1).
Suppose that Assumption 2.1 holds true for k = 0.

(i) Then, for all (u1, s1), (u2, s2) ∈ [0, 1]× Rd and h ∈ Z, we have

sup
u1,u2∈[0,1]

∣∣∣Cov
(

exp (i 〈s1, X̃h(u1)〉), exp (i 〈s2, X̃0(u2)〉)
)∣∣∣

≤ 2d (|s1|1 + |s2|1) ‖ε0‖1
∑

|j|>b|h/2|c

B

l(j) .

(ii) It holds

sup
1≤t≤T

∥∥∥Xt,T − X̃t(t/T )
∥∥∥

1
≤ 1
T
·
∥∥ε0
∥∥

1

∞∑
j=−∞

B

l(j) = O(T−1).

(iii) Suppose now that Assumption 2.1 holds true for k = 1. Then, for all u, w ∈ [0, 1]
and all h ∈ Z, we have

∥∥X̃h(u)− X̃h(w)
∥∥

1 ≤ d

L+
∥∥ε0
∥∥

1 ·
∞∑

j=−∞

B

l(j)

 · |u− w|
for some L <∞.

Remark 1.
There are more general definitions of locally stationary processes as e.g. proposed in Vogt
(2012) that go beyond the linear representation in (2.1). However, we stick to the framework
of linear locally stationary processes of (2.1) to avoid causality of the process as well as
high-level assumptions. Nevertheless, we expect results similar to those displayed in Lemma
2.1 to hold e.g. under physical dependence-type conditions (as used e.g. in Zhou (2014)) or
other weak dependence assumptions as these allow for similar proof techniques.
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2.2. Local CF and ECF. We denote the CFs of X̃1(u) and Xt,T by ϕ(u, ·) and ϕt,T (·),
respectively, i.e. we define the close pair of characteristic functions by

ϕ(t/T, s) := E

(
ei〈s , X̃1(t/T )〉

)
and ϕt,T (s) := E

(
ei〈s ,Xt,T 〉

)
(2.6)

for all s ∈ Rd. For fixed u and fixed pair (t, T ), ϕ(u, ·) and ϕt,T (·) can be interpreted as local
characteristic functions of the corresponding time series (X̃t(u))t and (Xt,T )t at rescaled
time u and t/T , respectively. The next lemma shows that ϕt,T (s) can be approximated
(uniformly) well by ϕ(t/T, s).

Lemma 2.2 (Uniform approximation and derivatives of local CFs).
(i) Suppose Assumption 2.1 holds with k = 0. Then, for any S ∈ (0,∞) there exists a

constant C <∞ such that

sup
s∈[−S,S]d, 1≤t≤T

∣∣∣∣ϕt,T (s)− ϕ
(
t

T
, s

)∣∣∣∣ ≤ C

T
.

(ii) Let Assumption 2.1 hold for some k ≥ 1. Then, ϕ has continuous derivatives up to
order k with respect to (w.r.t.) its first argument, that is, for all u ∈ [0, 1],

ϕ(j)(u, s) = ∂j

∂uj
ϕ(u, s), j = 0, . . . , k,

exist.

If we had observations X̃1(u), . . . , X̃T (u) of the process (X̃t(u))t∈Z at hand, a natural
estimator of ϕ(u, s) would be the usual empirical CF from (1.3), that is,

̂̂ϕ (u, s) = 1
T

T∑
t=1

ei〈s , X̃t(u)〉,

but the process (X̃t(u))t∈Z cannot be observed. Of course, the CF of the variables that
form the locally stationary process (Xt,T )Tt=1, T ∈ N, varies smoothly by Assumption 2.1
with the indices t and T . Therefore, the idea is to approximate the CF of X [uT ],T by its
local sample analogue, that is,

ϕ̂(u, s) = 1
T

T∑
t=1

Kb

( t
T
− u

)
ei〈s ,Xt,T 〉, (2.7)

where Kb(·) = K(·/b)/b for some kernel function K and b is a bandwidth parameter.

To derive asymptotic theory for the local ECF defined in (2.7), we make the following
assumptions concerning the kernel K and the bandwidth b.

Assumption 2.2 (The kernel).
(i) The function K : R→ [0,∞) is symmetric, non-negative, and Lipschitz continuous.

Moreover,
∫
K(u) du = 1, and K has compact support [−1, 1].

(ii) The sequence of bandwidths b = bT is non-negative and satisfies b→ 0 and Tb2 →∞
as T →∞.
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This assumption is standard in nonparametric statistics. All asymptotic results below
remain valid under weaker assumptions on K. For the sake of notational simplicity, we
stick to Assumption 2.2. Note that Assumption 2.2 implies that it holds for all m ≥ 0

1
T

T∑
t=1

Kb

( t
T
− u

) ∣∣∣ t
T
− u

∣∣∣m = 1
bT

T∑
t=1

K
( t/T − u

b

) ∣∣∣ t
T
− u

∣∣∣m = O(bm), (2.8)

since all summands with |t/T − u| > b vanish and since there are at most b2bT c + 1
summands with |t/T −u| ≤ b. Assertion (2.8) will be used multiple times in the remainder
of this work.

3. Asymptotic theory for the local ECF

In this section, we derive asymptotic results for the local ECF. First, in Section 3.1, we
derive explicit expressions for bias, variance and covariances before we provide CLTs and
process convergence for the local ECF in Sections 3.2 and 3.3, respectively.

3.1. Bias, Variance and Covariances. Under different sets of assumptions, we get the
following representations for bias, variance and covariances of our kernel-type local ECF
ϕ̂(u, s) as defined in (2.7).

Lemma 3.1 (Bias, variance and covariances).
Suppose Assumption 2.1 holds with some k ≥ 1 to be specified further below and Assump-
tion 2.2 is satisfied. Let (u, s), (u1, s1), (u2, s2) ∈ (0, 1)× Rd.

(i) If k ≥ 1, we have
sup

s∈[−S,S]d

∣∣E(ϕ̂(u, s)
)
− ϕ(u, s)

∣∣ = O(b) +O((bT )−1). (3.1)

(ii) If k ≥ 3, we have
E
(
ϕ̂(u, s)

)
− ϕ(u, s) = b2 · β(u, s) +O((bT )−1) +O(b3), (3.2)

where β(u, s) = (1/2)
∫ 1
−1K(x)x2 dx · ϕ(2)(u, s).

(iii) If k ≥ 1, we have
Cov

(
ϕ̂(u1, s1), ϕ̂(u2, s2)

)
= (bT )−1 V ((u1, s1), (u2, s2)) + o((bT )−1), (3.3)

where
V ((u1, s1), (u2, s2)) (3.4)

= 1{u1=u2} ·
∫ 1

−1
K2(x) dx ·

∞∑
h=−∞

Cov
(

exp (i 〈s1, X̃h(u1)〉), exp (i 〈s2, X̃0(u2)〉)
)
.

If ϕ̂(u1, s1) and ϕ̂(u2, s2) are replaced by their real or imaginary parts, a result ana-
logue to (3.3) remains true, as long as exp (i 〈s1, X̃h(u1)〉) and exp (i 〈s2, X̃0(u2)〉)
are also replaced in (3.4) in the same way by their real or imaginary parts, respec-
tively. See also the notation below in (3.5).

Note, that V ((u1, s1), (u2, s2)) is well-defined and finite for all (u1, s1), (u2, s2) ∈ [0, 1]×Rd
by Lemma 2.1(i) since

∞∑
h=−∞

Cov
(

exp (i 〈s1, X̃h(u1)〉), exp (i 〈s2, X̃0(u2)〉)
)
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≤
∞∑

h=−∞
2d (|s1|1 + |s2|1) ‖ε0‖1

∑
|j|>b|h/2|c

B

l(j)

≤ 8dB (|s1|1 + |s2|1) ‖ε0‖1
∑
|j|>0
|j| 1
l(j) <∞.

In the following section, the results above will be invoked to establish a CLT for the real and
imaginary parts of the estimator ϕ̂(u, s). In particular, we will use the following notation:

Cov
(
<ϕ̂(u1, s1),<ϕ̂(u2, s2)

)
= (bT )−1 V<<((u1, s1), (u2, s2)) + o((bT )−1),

Cov
(
=ϕ̂(u1, s1),=ϕ̂(u2, s2)

)
= (bT )−1 V==((u1, s1), (u2, s2)) + o((bT )−1), (3.5)

Cov
(
<ϕ̂(u1, s1),=ϕ̂(u2, s2)

)
= (bT )−1 V<=((u1, s1), (u2, s2)) + o((bT )−1),

Cov
(
=ϕ̂(u1, s1),<ϕ̂(u2, s2)

)
= (bT )−1 V=<((u1, s1), (u2, s2)) + o((bT )−1),

where V=<((u1, s1), (u2, s2)) etc. are defined analogue to V ((u1, s1), (u2, s2)), but with exp(i·)
replaced by cos(·) and sin(·) according to real and imaginary parts used, respectively.

3.2. Central limit theorem. The following theorem states results for the joint limiting
distribution of local ECF of the marginal distribution of (Xt,T )Tt=1, T ∈ N.

Theorem 3.1 (CLT).
Suppose Assumption 2.1 holds with some k ≥ 1 to be specified further below and Assump-
tion 2.2 is satisfied. Let J ∈ N and (uj , sj) ∈ (0, 1)× Rd, j = 1, . . . , J .

(i) If k ≥ 1, we have

√
bT

< (ϕ̂(uj , sj)− E(ϕ̂(uj , sj))
)

=
(
ϕ̂(uj , sj)− E(ϕ̂(uj , sj))

) , j = 1, . . . , J

 d−→ N (0,V), (3.6)

where V = (V(m,n))m,n=1,...,J is a (2J × 2J) block covariance matrix with

V(m,n) =
(
V<<((um, sm), (un, sn)) V<=((um, sm), (un, sn))
V=<((um, sm), (un, sn)) V==((um, sm), (un, sn))

)
(ii) If k ≥ 1 and b3T → 0 as T →∞ holds, we have

√
bT

< (ϕ̂(uj , sj)− ϕ(uj , sj)
)

=
(
ϕ̂(uj , sj)− ϕ(uj , sj)

) , j = 1, . . . , J

 d−→ N (0,V), (3.7)

(iii) If k ≥ 3 and b5T → C2 as T →∞ for some C ∈ [0,+∞), we have

√
bT

< (ϕ̂(uj , sj)− ϕ(uj , sj)
)

=
(
ϕ̂(uj , sj)− ϕ(uj , sj)

) , j = 1, . . . , J

 d−→ N (Cβ,V), (3.8)

where the bias vector β = (β(u1, s1), . . . , β(uJ , sJ))′ can be obtained from the results
of Lemma 3.1(ii).

The CLT is not directly applicable if one aims to estimate the joint local CF of lagged
variables Xt,T and Xt+h,T , say. However, the latter result can be deduced as a corollary. We
provide a counterpart to (ii) of Theorem 3.1 in the next section, where we additionally show
weak convergence of the corresponding process on any compact hyperrectangle [−S, S]d
(holding u fixed); see Corollary 3.1 below.
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3.3. Weak convergence of the local ECF process. Starting from Csörgő (1981), there
exists a wide range of articles considering the limit behavior of the (multivariate) empiri-
cal characteristic process in the case of a stationary DGP. As indicated there, one can in
general not expect convergence on the whole real line but only on compact intervals that
may increase with a certain rate as the sample size grows. We intend to generalize these
results to locally stationary DGPs since they are very useful for statistical applications;
see Section 4. While Csörgő (1981) provides a necessary and sufficient condition for weak
convergence if the observations are i.i.d., we give a sufficient condition only. This is due to
the fact that we allow for dependent observations.

We will verify distributional convergence of the real and imaginary part of the local ECF
process defined as {√

bT (ϕ̂(u, s)− ϕ(u, s))
}
s∈[−S,S]d

for any fixed S ∈ (0,∞) and any fixed u ∈ (0, 1). Obviously, convergence of the finite
dimensional distributions (fidis) is an immediate consequence of Theorem 3.1(ii) if b3 T → 0
as T →∞. It remains to prove tightness. As

sup
s∈[−S,S]d

√
bT (Eϕ̂(u, s)− ϕ(u, s)) = O(

√
b3T ) +O((bT )−1/2)

tends to zero if b3T → 0 due to Lemma 3.1(i), for such choices of bandwidths, it remains
to show tightness for the real and the imaginary part of{√

bT (ϕ̂(u, s)− Eϕ̂(u, s))
}
s∈[−S,S]d

.

It turns out that the situation can be simplified even more, since this quantity can be
approximated using the stationary accompanying process.

Lemma 3.2.
Suppose that Assumption 2.1 holds true for k = 1, Assumption 2.2 holds and that b3T → 0.
Then, as T →∞,

E

(
sup

s∈[−S,S]d

√
bT |ϕ̂(u, s)− Eϕ̂(u, s)− [ϕ̃(u, s)− Eϕ̃(u, s)]|

)
→ 0,

where ϕ̃(u, s) = 1
T

∑T
t=1Kb

(
t
T − u

)
exp(i〈s , X̃t(u)〉).

In comparison to the results in Sections 3.1 and 3.2, we obtain tightness of the real and
imaginary part of the stationary approximating local ECF process under a slightly more
restrictive moment condition of ‖ε0‖1+δ < ∞ for some δ > 0 if the coefficients of the
stationary accompanying process X̃t(u) decay sufficiently fast. More precisely, we get the
following result.

Lemma 3.3 (Tightness).
Suppose that Assumption 2.1 holds true for k = 1, Assumption 2.2 holds, and that b3T → 0.
Further, assume that ‖ε0‖1+δ <∞ for some δ ∈ (0, 1) and that

∑∞
j=1 j

m/l(j) <∞ for some
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m > 1 + 4/(3δ). Then, for all λ > 0, we have for any S ∈ (0,∞)

lim
r→0

lim sup
T→∞

P

{
sup

s1,s2∈[−S,S]d
|s1−s2|1<r

∣∣∣∣< (√bT (ϕ̃(u, s1)− Eϕ̃(u, s1)
)
−
[√
bT
(
ϕ̃(u, s2)− Eϕ̃(u, s2)

)]) ∣∣∣∣ > λ

}
= 0,

lim
r→0

lim sup
T→∞

P

{
sup

s1,s2∈[−S,S]d
|s1−s2|1<r

∣∣∣∣= (√bT (ϕ̃(u, s1)− Eϕ̃(u, s1)
)
−
[√
bT
(
ϕ̃(u, s2)− Eϕ̃(u, s2)

)]) ∣∣∣∣ > λ

}
= 0.

(3.9)

From the previous lemmas we can conclude convergence of the local ECF process.

Theorem 3.2 (Process convergence).
Suppose that Assumption 2.1 holds true for k = 1, Assumption 2.2 holds, and that b3T → 0.
Further, assume that ‖ε0‖1+δ < ∞ for some δ > 0 and that

∑∞
j=1 j

m/l(j) < ∞ for some
m > 1 + 4/(3δ). Then, it holds for all u ∈ (0, 1) and all S ∈ (0,∞),{√

bT

(
< (ϕ̂(u, s)− ϕ(u, s))
= (ϕ̂(u, s)− ϕ(u, s))

)}
s∈[−S,S]d

d−→ {Z(u, s)}s∈[−S,S]d . (3.10)

where {Z(u, s)}s∈[−S,S]d is a centered Gaussian process with continuous sample paths, zero
mean and covariance function V, given by

V(u, s) =
(
V<,<(u, s) V<,=(u, s)
V<,=(u, s) V=,=(u, s)

)
.

Here, convergence holds w.r.t. the uniform norm.

Remark 2.
One can obtain functional CLTs generalizing Theorem 3.1(i) and (iii) in a similar manner.
Since most statistical applications require results of the type (3.10), we focus on this result
only.

The local ECF ϕ̂(t/T, ·) as proposed in (2.7) is designed to analyze the marginal distribution
of the process (Xt,T )Tt=1 by estimating the corresponding local CF ϕ(t/T, ·). In particular,
it is not perfectly suitable to analyze the joint distribution of e.g. ((X ′t,T , X ′t+h,T )′)Tt=1.
First, note that the bivariate process does not directly satisfy Assumption 2.1 even though
(Xt,T )Tt=1 does. Still, under some regularity conditions on µ and (At,T (j))j∈Z, it holds

Xt,h,T :=
(
Xt,T

Xt+h,T

)
= µ̄

(
t

T

)
+

∞∑
j=−∞

Āt,T (j) ε̄t−j +OP
( 1
T

)
with

µ̄

(
t

T

)
=
(
µ(t/T )
µ(t/T )

)
, Āt,T (j) =

(
At,T (j) 0

0 At,T (j + h)

)
, and ε̄t =

(
εt
εt

)
.

Second, if one would naively apply our estimator ϕ̂h to (Xt,h,T )T−ht=1 , we would give more
weight to the observations with index close to t than to observations with index close to
t + h due to the properties of the kernel K. To obtain better finite sample results, we
propose to use

ϕ̂h(u, s) = 1
T

T∑
t=1

Kb

( t+ h/2
T

− u
)
ei〈s ,Xt,h,T 〉, s ∈ R2d, (3.11)
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instead, where we added the term h/2 in the kernel above to estimate

ϕh(u, s) = Eei〈s , X̃0,h(u)〉 = Eei〈s , (X̃0(u)′,X̃h(u)′)′〉

from those Xt,T and Xt+h,T , where u is near to the middle of t and t+ h, which is t+ h/2.
In general, ϕh(u, s) can be interpreted as a local lagged CF. Although Theorem 3.2 can not
be applied directly to ϕ̂h, we obtain a similar result for the modified estimator with the
same arguments as before.

Corollary 3.1 (A functional CLT for lagged variables).
Suppose that the assumptions of Theorem 3.2 are satisfied. Then, for all fixed h0 ∈ Z ,{√

bT

(
< (ϕ̂h0(u, s)− ϕh0(u, s))
= (ϕ̂h0(u, s)− ϕh0(u, s))

)}
s∈[−S,S]d

d−→ {Zh0(u, s)}s∈[−S,S]d , (3.12)

where {Zh0(u, s)}s∈[−S,S]d is a centered Gaussian process with continuous sample paths, zero
mean and covariance function Vh0. Here, Vh0 is defined similar to V in Theorem 3.2 with
X̃h(u) and X̃0(u) in Lemma 3.1(iii) substituted by (X̃ ′h(u), X̃ ′h+h0

(u))′ and (X̃ ′0(u), X̃ ′h0
(u))′,

respectively.

4. Applications to statistics

In this section, we exploit the theory derived in the previous section for the local ECF. We
use it for the purpose of parameter estimation in Section 4.1 and apply it to the concept of
distance correlation in Section 4.2.

4.1. Parameter estimation.

4.1.1. Parameter estimation in α-stable distributions. The univariate stable distribution
with location parameter µ ∈ R, characteristic exponent α ∈ (0, 2], skewness parameter
β ∈ [−1, 1], and scale parameter γ ≥ 0 is determined by the CF

ϕµ,α,β,γ(s) = exp {iµs− γ|s|α [1 + iβsgn(s) f(s, α)]} , s ∈ R, (4.1)

with

f(s, α) =
{

tan
(
πα
2
)

if α 6= 1
2
π log |s| if α = 1

.

This class includes normal distributions (α = 2) and Cauchy distributions (α = 1 and
β = 0) as special cases. In this sense, light and heavy tailed distributions are contained in
this class of distributions. Moreover, also asymmetry can be modeled if α < 2 and β 6= 0.
Therefore, this parametric family is very appealing to model economic and financial data;
see e.g. Borak, Misiorek, Weron (2005, Section 1.2.6) for a critical discussion. This class
turns out to be especially suitable for linear locally stationary processes in the following
sense. Suppose that the innovations have a (time-invariant) CF ϕ(ε)(s) = ϕ0,α,β,γ(s) with
α > 1, then ϕ(a ε)(s) = ϕ0,α,sgn(a)β,|a|αγ(s) which in turn implies that the process (X̃t(u))t∈Z
defined in (1.7) has a time-varying CF

ϕ(u, s) = ϕ
µ̃(u),α̃(u),β̃(u),γ̃(u)(s) (4.2)
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with
α̃(u) = α,

µ̃(u) = µ(u),

β̃(u) = β
∞∑

j=−∞
sgn(A(u, j)) |A(u, j)|α/

∞∑
j=−∞

|A(u, j)|α,

γ̃(u) = γ
∞∑

j=−∞
|A(u, j)|α.

Hence, X̃t(u) also admits a stable distribution with parameters α̃(u), µ̃(u), β̃(u) and γ̃(u).
Fitting stable distributions to data requires suitable parameter estimators. Due to the lack
of closed form representation of the density and the cdf for many parameter values, the
application of classical maximum likelihood methods can only be carried out numerically.
Moreover, higher order moments do not exist if α < 2 such that the classical method of
moments cannot be invoked. Therefore, procedures relying on the (empirical) CF seem to
be more appealing. We introduce two methods in the present and the following section.

In this section, we adapt the plug-in estimators proposed by Press (1972) and references
therein in the classical i.i.d. set-up. This approach has the great advantage that it pro-
vides closed-form estimators for all four parameters simultaneously, which is not the case
for maximum likelihood estimators and the minimum distance estimators discussed in the
following section. Based on our results on the ECF under local stationarity, we generalize
their results to univariate processes satisfying Assumption 2.1 with k = 1. Note that the
assumption of a finite first moment is equivalent to α > 1 in the stable family. We adapt
the plug-in approach of Press (1972) with α > 1 and assume γ > 0 to assure identifiability
of all parameters. Solving |ϕ

µ̃(u),α̃(u),β̃(u),γ̃(u)(s)| = exp(−γ̃(u)|s|α(u)) for non-zero values s1

and s2 with |s1| 6= |s2| gives in complete analogy to (2.1) and (2.2) in Press (1972) plug-in
estimators for the characteristic exponent

α̂(u) =
log

∣∣∣ log |ϕ̂(u,s1)|
log |ϕ̂(u,s2)|

∣∣∣
log |s1| − log |s2|

(4.3)

and for the scale parameter

γ̂(u) = exp
( log |s1| log(− log |ϕ̂(u, s2)|)− log |s2| log(− log |ϕ̂(u, s1)|)

log |s1| − log |s2|

)
. (4.4)

We rely on the imaginary part of the logarithm of the CF, denoted by ψ(u, s) = arg(ϕ(u, s)),
in order to establish estimators for β̃(u) and µ̃(u). Again in complete analogy to Press
(1972), we obtain

µ̃(u) =
|s4|α̃(u)−1 ψ(u,s3)

s3
− |s3|α̃(u)−1 ψ(u,s4)

s4

|s4|α̃(u)−1 − |s3|α̃(u)−1
(4.5)

and

β̃(u) =
ψ(u,s3)
s3
− ψ(u,s4)

s4(
|s4|α̃(u)−1 − |s3|α̃(u)−1

)
γ̃(u) tan(πα̃(u)/2)

(4.6)

for non-zero values s3 and s4 with |s3| 6= |s4| which might coincide with s1 and s2. In
particular, note that β is not identifiable in the normal case, i.e. for α = 2.

To establish the corresponding estimators µ̂(u) and β̂(u), we substitute in (4.5) and (4.6)
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the unknown parameters α̃ and γ̃ by their estimates from (4.3) and (4.4), respectively, and
it remains to establish the empirical counterpart of ψ(u, s). Again applying the plug-in
principle, we obtain

ψ̂(u, s) = arg (ϕ̂(u, s)) .
Consistency of the parameter estimators follows as a corollary of Theorem 3.1.

Corollary 4.1 (Consistency for plug-in estimators).
Suppose that Assumption 2.1 with k = d = 1 and Assumption 2.2 hold true and that
b3T → 0 as T →∞. Moreover, assume that X̃t(u) has a stable distribution with parameters
µ(u) ∈ R, α̃(u) ∈ (1, 2), β̃(u) ∈ [−1, 1] and γ̃(u) > 0, u ∈ (0, 1). Then

(µ̂(u), α̂(u), β̂(u), γ̂(u)) P−→ (µ(u), α̃(u), β̃(u), γ̃(u)) ∀u ∈ (0, 1).

Remark 3.
(i) Asymptotic normality of the estimators can be deduced via the ∆ method from

Theorem 3.1. One can basically follow the lines of Section 3.4.1 in Ushakov (1999),
where the i.i.d. case is considered. Since the calculations are straightforward but
tedious, we skip details.

(ii) The theory can be extended to symmetric multivariate stable distributions. Again
one can follow the lines of Press (1972, Section 4).

(iii) Of course, the choice of s1 to s4 has an impact on the performance of the estimators.
A detailed discussion of this problem for the univariate i.i.d. problem can be found
in Fielitz and Rozelle (1981). For s1 and s2 they propose values ranging from 0.2
to 1 and found out that good choices of s3 and s4 will additionally depend on the
estimated values of the characteristic exponent and the scale parameter.

4.1.2. Minimum distance estimation. The estimation method described in the previous
section depends on the choice of the second argument of the CF used there. This can be
circumvented by not only evaluating the local ECF at fixed points but instead using an
approach that smooths over all possible values. In the sequel, we consider the L2 minimum
distance estimator based on local ECFs for an unknown parameter, θ0(u) say, defined as

θ̂(u) = arg min
θ∈Θ

∫
|ϕ̂(u, s)− ϕ(u, s; θ)|2 w(s) ds, (4.7)

where Θ ⊆ Rp denotes a compact parameter space, w is a weight function assuring existence
of the integral and ϕ(u, ·; θ) is the CF of X̃(u) ∼ P θ(u). Minimum distance estimators were
considered e.g. by Höpfner and Rüschendorf (1999) in a comparative overview of estimators
for the characteristic exponent in stable distributions based on i.i.d. data and turned out
to behave favorably.

In the sequel, we do not restrict ourselves to the stable family but allow for a broad para-
metric class of distribution. In order to establish asymptotic normality of the minimum
distance estimator, we assume:

Assumption 4.1.
(i) The prerequisites of Theorem 3.2 hold true.
(ii) The weight function w is integrable and strictly positive.
(iii) The parameter θ(u) ∈ Θ ⊆ Rp is identifiable, i.e. for θ1(u) 6= θ2(u) ∈ Θ it holds

P θ1(u) 6= P θ2(u).
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(iv) ϕ(u, s; θ) is continuously partially differentiable w.r.t. θ and∫
R

sup
θ(u)∈Θ

|ϕ(1)(u, s; θ(u))|21w(s)ds <∞. (4.8)

(v) Additionally, ϕ(u, s; θ) is twice continuously partially differentiable w.r.t. θ and∫
R

sup
θ(u)∈U(θ0)

|ϕ(2)(u, s; θ(u))|1w(s) ds <∞ (4.9)

for some open neighbourhood U(θ0) of θ0. It holds∫
R

(1 + |s|2) (1 + |ϕ(1)(u, s; θ0(u))|21 + |ϕ(2)(u, s; θ0(u))|21)w(s) ds <∞. (4.10)

Finally,

D0 :=
∫
R

(
<ϕ(1)(u, s; θ0(u))[<ϕ(1)(u, s; θ0(u))]′+=ϕ(1)(u, s; θ0(u))[=ϕ(1)(u, s; θ0(u))]′

)
w(s) ds

is invertible.

Under these assumptions we obtain consistency and asymptotic normality of the minimum
distance estimator similar to Ushakov (1999, Section 3.4.2) who considered the i.i.d. case.

Theorem 4.1 (CLT for minimum distance estimators).
Under Assumption 4.1(i) - (iv) and for u ∈ (0, 1), we have

(i) θ̂(u) P−→ θ0(u).
(ii) If additionally Assumption 4.1(v) holds and θ0(u) lies in the interior of Θ, then

√
bT (θ̂(u)− θ0(u)) d−→ ZMDE(u) ∼ N (0p,ΣMDE(u))

with

ΣMDE(u) = 1
4 D

−1
0

∫∫
R2

{
V<<((u, s1), (u, s2))<ϕ(1)(u, s1; θ0(u))[<ϕ(1)(u, s2; θ0(u))]′

+ V==((u, s1), (u, s2))=ϕ(1)(u, s1; θ0(u))[=ϕ(1)(u, s2; θ0(u))]′

− V<=((u, s1), (u, s2))
(
<ϕ(1)(u, s1; θ0(u))[=ϕ(1)(u, s2; θ0(u))]′

+ =ϕ(1)(u, s1; θ0(u))[<ϕ(1)(u, s2; θ0(u))]′
)}
w(s1)w(s2) ds1 ds2D

−1
0 .

Remark 4.
Under suitably modified assumptions, consistency can also be verified for Lp-minimum
distance estimators with p ∈ [1,∞].
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4.2. Applications to (auto-)distance correlation. Based on the concept of distance
correlation as introduced by Szekely, Rizzo and Bakirov (2007) for i.i.d. data and the defi-
nition of auto-distance correlation for stationary time series considered in Zhou (2012) and
more recently in Davis, Matsui, Mikosch, and Wan (2016), we propose a time-localized ver-
sion of (auto-)distance correlation in this section. Let (Xt,T )Tt=1 be a d = p+ q-dimensional
time series process with Xt,T = (Y ′t,T , Z ′t,T )′. Then, we define the local (auto-)distance
correlation RY,Z(u;h) at lag h between time series (Y t,T )Tt=1 and (Zt,T )Tt=1 of dimensions p
and q, respectively, at rescaled time u ∈ [0, 1] by

R2
Y,Z(u;h) =

V2
Y,Z(u;h)√

V2
Y (u; 0)V2

Z(u; 0)
1(V2

Y (u; 0)V2
Z(u; 0) > 0). (4.11)

Here, VY,Z(u;h) denotes the corresponding local (auto-)distance covariance defined by

V2
Y,Z(u;h) =

∫
Rq

∫
Rp
|ϕY,Z;h(u; s1, s2)− ϕY ;0(u; s1)ϕZ;h(u; s2)|2w(s1, s2)ds1ds2, (4.12)

where w is the (non-integrable) weight function defined in (1.5). For s1 ∈ Rp and s2 ∈ Rq,
the CFs are defined as follows

ϕY,Z;h(u; s1, s2) = E
(
exp

(
i〈s1 , Ỹ 0(u)〉

)
+ i〈s2 , Z̃h(u)〉

)
,

ϕY ;0(u; s1) = E
(
exp

(
i〈s1 , Ỹ 0(u)〉

))
,

ϕZ;h(u; s2) = E
(
exp

(
i〈s2 , Z̃h(u)〉

))
,

where (Ỹ ′t(t/T ), Z̃ ′t(t/T ))′)Tt=1 is the stationary approximation to the process ((Y ′t,T , Z ′t,T )′)Tt=1;
compare (2.5). Also we set VY (u;h) := VY,Y (u;h) and VZ(u;h) := VZ,Z(u;h). With data
((Y ′t,T , Z ′t,T ))Tt=1 at hand, empirical versions V̂Y,Z(u;h) and R̂Y,Z(u;h) of VY,Z(u;h) and
RY,Z(u;h), respectively, are obtained by simply replacing the CFs ϕ by suitable ECFs ϕ̂
(and by adding a factor κT for technical reasons; see Lemma 4.2 and Remark 5 below).
Hence, we define

R̂2
Y,Z(u;h) =

V̂2
Y,Z(u;h)√

V̂2
Y (u; 0)V̂2

Z(u; 0)
1(V̂2

Y (u; 0)V̂2
Z(u; 0) > 0), (4.13)

where

V̂2
Y,Z(u;h) =

∫
Rq

∫
Rp
|κT ϕ̂Y,Z;h(u; s1, s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)|2w(s1, s2)ds1ds2 (4.14)

and κT = T−1∑T
t=1Kb( tT − u) and again we set V̂Y (u;h) := V̂Y,Y (u;h), V̂Z(u;h) :=

V̂Z,Z(u;h). With a slight abuse of notation (as ϕ̂Y ;0(u; s1) indeed also depends on h),
the ECFs used in the definition above are defined for h ≥ 0 as

ϕ̂Y,Z;h(u; s1, s2) = 1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)

exp
(
i〈s1, Y t,T 〉+ i〈s2, Zt+h,T 〉

)
,

ϕ̂Y ;0(u; s1) = 1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)

exp
(
i〈s1, Y t,T 〉

)
, (4.15)

ϕ̂Z;h(u; s2) = 1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)

exp
(
i〈s2, Zt+h,T 〉

)
.

The latter definitions follow the lines of Dahlhaus (2012), equation (9), where local kernel-
type covariance estimators are defined in the same fashion. The special case of p = q
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and Y t,T = Zt,T for all t is of particular interest. In this case, RY,Y (u;h) measures the
auto-distance correlation at lag h of the p-dimensional process (Y t,T )Tt=1. For example, if
p = 1 we get the extension of the univariate case addressed in Zhou (2012) to the locally
stationary framework. In Section 5.2, we apply the local (auto-)distance correlation to log
returns of German stock prices to illustrate the pairwise dependence structure over time,
i.e. for p = q = 1.

The definitions of (4.12) and (4.14) involve integrations over Rp+q which becomes com-
putationally very demanding already for small p and q. Nevertheless, a fundamental prop-
erty of empirical distance covariances in the i.i.d. and stationary time series setups is that
V̂Y,Z(u;h) defined in (4.14) can actually be written in a much simpler form that gets rid
of the computational burden of numerical integration; cf. Theorem 1 in Szekely, Rizzo and
Bakirov (2007) and Proposition 1 in Zhou (2012). To achieve this, the crucial observation
is the following lemma; see also Dueck, Edelmann and Richards (2015) for a generalization.

Lemma 4.1 (Szekely, Rizzo and Bakirov (2007), Lemma 1).
If 0 < α < 2, then for all x ∈ Rd∫

Rd

1− cos(〈t, x〉)
|t|d+α

2
dt = C(d, α)|x|α2 ,

where

C(d, α) = 2πd/2Γ(1− α/2)
α2αΓ((d+ α)/2)

and Γ(·) is the complete gamma function.

Setting α = 1 in the result above and following essentially the steps in the proof of The-
orem 1 in Szekely, Rizzo and Bakirov (2007), we get the following much simpler form of
V̂Y,Z(u;h).

Lemma 4.2 (Alternative representation of V̂X,Y (u;h)).
We have

V̂2
Y,Z(u;h) = κ2

T Ŝ1,Y,Z(u;h) + Ŝ2,Y,Z(u;h)− 2κT Ŝ3,Y,Z(u;h), (4.16)

where

Ŝ1,Y,Z(u;h) = 1
T 2

T−h∑
t1,t2=1

Kb

( t1 + h/2
T

− u
)
Kb

( t2 + h/2
T

− u
)
|Y t1,T − Y t2,T |2|Zt1+h,T − Zt2+h,T |2

Ŝ2,Y,Z(u;h) =

 1
T 2

T−h∑
t1,t2=1

Kb

( t1 + h/2
T

− u
)
Kb

( t2 + h/2
T

− u
)
|Y t1,T − Y t2,T |2


×

 1
T 2

T−h∑
t3,t4=1

Kb

( t3 + h/2
T

− u
)
Kb

( t4 + h/2
T

− u
)
|Zt3+h,T − Zt4+h,T |2

 ,
Ŝ3,Y,Z(u;h) = 1

T 3

T−h∑
t1,t2,t3=1

Kb

( t1 + h/2
T

− u
)
Kb

( t2 + h/2
T

− u
)
Kb

( t3 + h/2
T

− u
)

×|Y t1,T − Y t2,T |2 |Zt1+h,T − Zt3+h,T |2.
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In the following theorem we prove consistency of empirical local (auto-)distance covariances
and correlations defined in (4.14) and (4.13), respectively. These results relate to Theo-
rem 2 and Corollary 1 in Szekely, Rizzo and Bakirov (2007), where almost sure convergence
was established in an i.i.d. setup, to Theorem 1 and Corollary 1 in Zhou (2012), where
consistency for stationary processes under a physical dependence condition was shown, and
to Theorem 3.1 in Davis, Matsui, Mikosch, and Wan (2016), who prove consistency under
strong mixing assumptions while allowing for a more flexible class of weight functions.

Theorem 4.2 (Consistency of V̂2
Y,Z(u;h) and R̂2

Y,Z(u;h)).
Suppose that the assumptions of Theorem 3.2 hold true for (Xt,T )Tt=1, T ∈ N, with Xt,T =
(Y ′t,T , Z ′t,T )′. Then, we have

V̂2
Y,Z(u;h) P−→ V2

Y,Z(u;h).

If Var(X̃(u)) > 0 and Var(Ỹ (u)) > 0, then additionally

R̂2
Y,Z(u;h) P−→ R2

Y,Z(u;h).

Remark 5 (On the necessity of κT ).
Taking a closer look at the proofs, it can be observed, why the introduction of κT in the
definition of V̂Y,Z(u;h) in (4.14) is indeed necessary. Without κT several terms in the proof
of Lemma 4.2 do not cancel exactly such that the simple representation in (4.16) does not
hold. More importantly, one can even show divergence of the integral defining V̂X,Y if κT
is not included.

5. Numerical Examples

5.1. A simulation study: Parameter estimation of α-stable distributions. In this
section we present results of a simulation study involving the two kinds of parameter estima-
tion for locally stationary processes with α-stable distributions as described in Section 4.1:
the moment-based plug-in method from Section 4.1.1, which in this section will simply be
called ’moment method’, as well as the minimum distance estimation from Section 4.1.2,
abbreviated by ’MDE method’ in the following. For the sake of simplicity, we will fo-
cus on centered and symmetric α-stable distributions, i.e. with mean µ = 0 and skewness
parameter β = 0.

The data were generated by the time-varying AR(1)-model

Xt,T = r

(
t

T

)
Xt−1,T + εt, (5.1)

with r(u) = 0.9 · sin(2πu), which can be locally approximated by the stationary process

X̃t(u) =
∞∑
j=0

r(u)j εt−j ,

corresponding to (2.5) with µ ≡ 0 and
A(u, j) = r(u)j · 1{j≥0},

cf. Dahlhaus (2012). Here, (εt)t∈N0 was generated as an i.i.d. sequence with a centered and
symmetric, α-stable marginal distribution, i.e. with CF (4.1) and

µ = 0, α = 1.5, β = 0, γ = 0.5.
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Figure 1. Sample path of length T = 500 from (5.1) with α-stable innova-
tions and parameters µ = 0, α = 1.5, β = 0, γ = 0.5.

A sample path of length T = 500 from (5.1) with the aforementioned choice of parameter
values is given in Figure 1. One can clearly observe the time-varying autoregressive structure
as well as some peaks resulting from the fact that the distribution of the innovations has
an infinite variance. The stationary processes (X̃t(u))t∈Z approximating (5.1) then possess
the CFs (4.2) with

µ̃(u) = 0, α̃(u) = 1.5, β̃(u) = 0, γ̃(u) = 0.5
1− |0.9 · sin(2πu)|1.5 .

First, we implemented the moment method from Section 4.1.1, based on a sample of length
T = 5000. Here, α̃(u) and γ̃(u) were estimated according to (4.3) and (4.4), respectively,
with s1 = 0.6 and s2 = 0.8 which have shown a favorable behavior of the corresponding
estimators in the classical i.i.d. case; see Fielitz and Rozelle (1981). Since only γ̃(u) actually
depends on its location u ∈ [0, 1], we focus our analysis mainly on this parameter. The ECF
was calculated with a bandwidth of bT = 0.25 ·T−1/5. Figure 2 shows the true function γ̃(u)
and boxplots of the estimators γ̂(u) at four different locations between u = 0.2 and u = 0.8,
each boxplot based on N = 100 iterations. However, the performance of this moment-based
method critically depends on the choice of parameters s1 and s2. For a different choice of
these values, namely s1 = 0.1 and s2 = 0.11, we get the results from Figure 3 which are
obviously considerably worse.

Next, we turn to the results for the joint minimum distance estimation of the parameters
α̃(u) and γ̃(u) as introduced in Section 4.1.2, also based on a sample of length T = 5000. The
minimum was determined simultaneously for both parameters by calculating the integrated
distance (4.7) for each combination of α̃(u)- and γ̃(u)-values on a grid of values within
the interval (1, 2] for α̃(u) and within [0, 6] for γ̃(u). For the sake of simplicity we used
w(s) = 1{−0.5 ≤ s ≤ 0.5} as a weight function, which suffices to ensure that all parameters
are identifiable for the class of centered, symmetric α-stable distributions which are under
consideration here. The results for γ̃(u) are shown in Figure 4. One can see that, although
using a simple weight function, the MDE method produces results comparable to the ones



20

●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0
1

2
3

4
5

6

Figure 2. True function γ̃(u) and boxplots of moment-based estimators at
locations (from left to right) u = 0.2, u = 0.4, u = 0.6 and u = 0.8.
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Figure 3. True function γ̃(u) and boxplots of moment-based estimators
(with ’bad’ choice of parameters s1 and s2) at locations (from left to right)
u = 0.2, u = 0.4, u = 0.6 and u = 0.8.

of the moment-based method, with a slightly higher variance but less bias. In addition, the
MDE method does not require a choice of tuning parameters s1 and s2 – a choice that the
moment-based method is rather sensitive to, as shown by Figure 3.

The results for estimation of the parameter α̃(u) were similar to the ones of γ̃(u) shown
in Figures 2 - 4. Since α̃(u) does not actually depend on u, we show results of the two
estimation methods for u = 0.4, only, in Figure 5. As observed for the estimation of γ̃(u)
before, the MDE method for α̃(u) shows a slightly higher variance but less bias compared
to the moment method with a ’good’ choice of tuning parameters s1 = 0.6 and s2 = 0.8.
However, taking the results for a ’bad’ choice of s1 = 0.1 and s2 = 0.11 into account, the
moment method is very sensitive w.r.t. these tuning parameters.
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Figure 4. True function γ̃(u) and boxplots of MDE estimators at locations
(from left to right) u = 0.2, u = 0.4, u = 0.6 and u = 0.8.
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Figure 5. Results for α̂(0.4) from the moment method with ’good’ choice
of parameters s1 and s2 (left), the moment method with ’bad’ choice of
parameters (center) and from the MDE method (right), each plot generated
from a sample of size T = 5000. The true value α = 1.5 is given by the
dashed line.

5.2. A real data illustration: Measuring dependence of log returns from Ger-
man stock prices by local (auto-)distance correlations. In this section, we illustrate
the applicability of local distance correlations as introduced in Section 4.2 to measure de-
pendence between financial time series. In particular, this measure allows to study the
time-varying cross-dependence of two univariate locally stationary processes. Precisely, let
((Y1,T , Z1,T )′, . . . , (YT,T , ZT,T )′) be bivariate time series data, where Y and Z are log-returns
of German Stock Prices from July 1, 1991 till April 14, 2015 (6202 trading days). Based
on this data, we compute local distance correlations

R̂Y,Z(u;h), h = 0, 1, 2,

over rescaled time as defined in (4.13). Note that the weight function w in (1.5) that is
used in the definition of V̂Y,Z(u;h) simplifies to

w(t, s) = 1
π2t2s2 , t, s ∈ R\{0},

for this case of p = q = 1. We have used the bandwidth b = 0.05 and the kernel
K(x) = 3

4(1− x2)1(x ∈ [−1, 1]). For rescaled time u, this choice of b allows us to compute
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V̂Y,Z(u;h) (and R̂Y,Z(u;h)) for u ∈ [0.05, 0.95] without running into boundary issues.

In Figure 6, we show pairwise comparisons of log-returns of stock prices of the Ger-
man automobile companies Volkswagen and BMW and the automotive supplier Conti-
nental together with the corresponding R̂Y,Z(u;h) and local cross-correlation ρ̂Y,Z(u;h)
plotted over time for different lags. The local cross-correlation ρ̂Y,Z(u;h) is defined by
ρ̂Y,Z(u;h) = γ̂Y,Z(u;h)/γ̂Y,Z(u; 0), where

γ̂Y,Z(u;h) = 1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)

(Yt,T − µ̂Y ;0(u))(Zt+h,T − µ̂Z;h(u))

with µ̂Y ;0(u) = 1
T

∑T
t=1Kb

(
t
T − u

)
Yt,T and µ̂Z;h(u) = 1

T

∑T−h
t=1 Kb

(
t+h
T − u

)
Zt+h,T ; see

e.g. Dahlhaus (2012). The log-returns clearly reveal the turbulent times in the late 90s
and early 2000s with several crises (Asian crisis, Russian crisis, Argentine crisis, Dot-com
bubble) including the terror attacks on September 11, 2001 as well as the financial crisis
beginning in 2007 which also caused the Euro crisis, which reached its climax around 2012.
In terms of volatility, the crisis around 2008 appears to be more severe than those around
2000 and 2012. The third row of panels in Figure 6 shows contemporaneous local distance
correlation and local correlation between log-return time series at lag h = 0. Cross-sectional
dependence as well as its variation over time is clearly visible between all log-returns. Inter-
estingly, the local correlation turns out to be close to the distance correlation most of the
time. The only exceptions are between Volkswagen and Continental and between Volkswa-
gen and BMW during the financial crisis in 2008, where local distance correlation differs
considerably from local correlation and turns out to be much larger. This phenomenon is
not visible between BMW and Continental. As can be seen in fourth and fifth row of panels
in Figure 6, distance correlation as well as correlations drop considerably for lags h > 0.
At the same time, the variation over time is less pronounced in comparison to h = 0. To
explain some of the differences between distance correlation and correlation for h > 0, note
that distance correlation is a non-negative measure whereas correlation can be negative.

The fact that distance correlation and correlation are indeed close for most of the time
might be explained by Figure 1 in Szekely, Rizzo and Bakirov (2007), where the authors
demonstrate that squared distance correlation and squared correlation are actually close
under Gaussianity. Recall that this special case does not generate any non-linear depen-
dence at all. To explain the phenomenon that distance correlation and correlation between
Volkswagen and Continental as well as Volkswagen and BMW are not close during the
financial crisis, observe that Volkswagen shows very dominant peaks at that time. This
gives some strong evidence for the local distribution of log-returns of Volkswagen to be
heavy tailed and, consequently, non-Gaussian. In this case, the correlations actually might
not exist. Nevertheless, the sample correlation can always be computed and it is assured
to be finite between −1 and 1. However, it is not clear what the sample correlation is
measuring in this case, whereas the sample distance correlation does exist under the less
restrictive assumption of finite first absolute moments. Hence, it might be advisable in
particular in times of heavy tailedness to look at the non-linear dependence measure of
distance correlation instead of the linear dependence measure of correlations.



23

VOLKSWAGEN

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

BMW

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

VOLKSWAGEN

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

BMW

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

VOLKSWAGEN vs. CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

BMW vs. CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

VOLKSWAGEN vs. BMW

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

VOLKSWAGEN vs. CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

BMW vs. CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

VOLKSWAGEN vs. BMW

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

VOLKSWAGEN vs. CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

BMW vs. CONTINENTAL

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

VOLKSWAGEN vs. BMW

1.7.1991 11.6.1997 22.5.2003 1.5.2009 14.4.2015

−1.0

−0.5

0.0

0.5

1.0

Figure 6. Log returns of Stock data of German companies, Volkswagen,
BMW and Continental from July 1, 1991 till April 14, 2015 together with
corresponding empirical local cross-distance correlation (solid) plots and em-
pirical local cross-correlations (dashed) at lags h = 0, 1, 2 (from top to bot-
tom).
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6. Proofs

Throughout this section C denotes a generic constant in (0,∞) that may change its value
from line to line.

6.1. Proofs of Section 2.

Proof of Lemma 2.1. (i) We abbreviate v = b|h/2|c and define X̃(v)
t (u) = µ(u)+

∑
|j|≤v A(u, j) εt−j .

In the following we use the notation gs(x) := exp(i〈s , x〉). Now we obtain from indepen-
dence of the innovations, as well as |Cov(X,Y )| ≤ E|XY |+E|X|E|Y | for complex-valued
X, Y and |gs(x)| = 1,

sup
u1,u2∈[0,1]

∣∣Cov
(

exp (i 〈s1, X̃h(u1)〉), exp (i 〈s2, X̃0(u2)〉)
)∣∣

≤ sup
u1,u2∈[0,1]

∣∣Cov
(
gs1

(X̃h(u1))− gs1
(X̃(v)

h (u1)), gs2
(X̃0(u2))

)∣∣
+ sup
u1,u2∈[0,1]

∣∣Cov
(
gs1

(X̃(v)
h (u1)), gs2

(X̃0(u2))− gs2
(X̃(v)

0 (u2))
)∣∣

≤ sup
u1∈[0,1]

2E
∣∣gs1

(X̃h(u1))− gs1
(X̃(v)

h (u1))
∣∣
1 + sup

u2∈[0,1]
2E

∣∣gs2
(X̃0(u2))− gs2

(X̃(v)
0 (u2))

∣∣
1.

Now, we invoke a Taylor expansion of first order for gs. Note that the gradient ∇gs(·)
fulfills | ∇gs(x) |1 ≤ | s |1. Using (2.4), the first summand on the right-hand side equals

2 sup
u1∈[0,1]

∥∥(∇gs1
(ξ
h
))′ ·

(
X̃h(u1)− X̃(v)

h (u1)
)∥∥

1 ≤ 2 |s1|1 sup
u1∈[0,1]

∥∥X̃h(u1)− X̃(v)
h (u1)

∥∥
1

≤ 2 |s1|1
∑
|j|>v

sup
u1∈[0,1]

|A(u1, j)|1 ·
∥∥εh−j∥∥1

≤ 2d |s1|1 ‖ε0‖1
∑
|j|>v

B

l(j) ,

for suitable ξ
h

between X̃h(u1) and X̃(v)
h (u1). An analogous bound for the second summand

on the right-hand side above finally yields

sup
u1,u2∈(0,1]

∣∣∣Cov
(

exp (i 〈s1, X̃h(u1)〉), exp (i 〈s2, X̃0(u2)〉)
)∣∣∣ ≤ 2d (|s1|1 + |s2|1) ‖ε0‖1

∑
|j|>v

B

l(j) .

(ii) Using representations (2.1) and (2.5), Assumption 2.1, submultiplicativity of the | · |1-
norm and the i.i.d. property of (εt)t we get∥∥∥Xt,T − X̃t(t/T )

∥∥∥
1
≤

∞∑
j=−∞

|At,T (j)−A(t/T, j)|1
∥∥εt−j∥∥1

≤ 1
T

∥∥ε0
∥∥

1

∞∑
j=−∞

sup
t,T

T
∣∣At,T (j)−A(t/T, j)

∣∣
1

≤ 1
T

∥∥ε0
∥∥

1

∞∑
j=−∞

B

l(j)

= O(T−1).
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(iii) All components of the mean function µ are Lipschitz continuous due to the continuous
differentiability condition in Assumption 2.1. Hence, we get

∣∣µ(u)− µ(w)
∣∣
1 =

d∑
r=1

∣∣µr(u)− µr(w)
∣∣ ≤ Ld · |u− w|,

where L is the maximum of the d Lipschitz constants of the components of µ(·). Now, using
representation (2.5) and a Taylor expansion for each entry a(k,r)(q, j) of matrix A(q, j), it
follows from Assumption 2.1(ii.2)∥∥X̃h(u)− X̃h(w)

∥∥
1

≤
∣∣µ(u)− µ(w)

∣∣
1 +

∞∑
j=−∞

∣∣A(u, j)−A(w, j)
∣∣
1
∥∥εh−j∥∥1

≤ Ld |u− w|+
∥∥ε0
∥∥

1 ·
∞∑

j=−∞
max
r=1,...,d

d∑
k=1

∣∣a(k,r)(u, j)− a(k,r)(w, j)
∣∣

= Ld |u− w|+
∥∥ε0
∥∥

1 ·
∞∑

j=−∞
max
r=1,...,d

d∑
k=1

∣∣∣(∂a(k,r)(q, j)
∂q

∣∣∣
q=ξk,r,j

)
(u− w)

∣∣∣
≤

(
Ld+

∥∥ε0
∥∥

1 ·
∞∑

j=−∞

Bd

l(j)
)
· |u− w|,

for suitable ξk,r,j between a(k,r)(u, j) and a(k,r)(w, j). �

Proof of Lemma 2.2. (i) By Lipschitz continuity of the function exp (i·) with constant 1,
we get from Lemma 2.1(ii)

sup
s∈[−S,S]d,1≤t≤T

∣∣∣∣ϕt,T (s)− ϕ
(
t

T
, s

)∣∣∣∣ ≤ sup
s∈[−S,S]d,1≤t≤T

E

∣∣∣∣〈s,Xt,T − X̃t

(
t

T

)〉∣∣∣∣
≤ S sup

1≤t≤T

∥∥∥∥Xt,T − X̃t

(
t

T

)∥∥∥∥
1

(6.1)

≤

S ‖ε0‖1
∞∑

j=−∞

B

l(j)

 1
T
.

(ii) Let k ≥ 1. Under Assumption 2.1(ii), we get existence of

X̃
(l)
1 (u) = ∂l

∂ul

(
X̃1(u)

)
= µ(l)(u) +

∞∑
j=−∞

A(l)(u, j) εt−j , l = 0, . . . , k.

Similarly, by Lebesgue’s dominated convergence theorem and as exp(i〈s, X̃1(·)〉) is a compo-
sition of k-times continuously differentiable functions, we get also existence and continuity
of

ϕ(l) (u, s) = ∂l

∂ul
(ϕ (u, s)) = E

(
∂l

∂ul
exp(i〈s, X̃0(u)〉)

)
, l = 0, . . . , k.

To see this, we consider l = 1 in detail first. Note that

∂ei〈s,X̃0(u)〉

∂u
= i ei〈s,X̃0(u)〉 〈s, X̃(1)

0 (u)〉, u ∈ [0, 1],
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is absolutely integrable. The mean value theorem gives

lim
h→0

∣∣∣∣∣∣E
ei〈s,X̃0(u+h)〉 − ei〈s,X̃0(u)〉

h

− E (i ei〈s,X̃0(u)〉 〈s, X̃(1)
0 (u)〉

)∣∣∣∣∣∣
= lim

h→0

∣∣∣∣E (i ei〈s,X̃0(u+ξ(h))〉 〈s, X̃(1)
0 (u+ ξ(h))〉

)
− E

(
i ei〈s,X̃0(u)〉 〈s, X̃(1)

0 (u)〉
)∣∣∣∣

(6.2)

for some ξ(h) = ξ(h, ω) → 0 as h → 0 for each fixed ω. The right-hand side of (6.2)
equals zero by Lebesgue’s dominated convergence theorem. Similarly, we obtain continuity
of ϕ(l)(·, s).

For l = 2 we obtain absolute integrability of

∂2ei〈s,X̃0(u)〉

∂u2 = i ei〈s,X̃0(u)〉〈s, X̃(2)
0 (u)〉 − ei〈s,X̃0(u)〉

(
〈s, X̃(1)

0 (u)〉
)2
, u ∈ [0, 1],

from E|ε0|22 <∞. Hence, with the same arguments as before we can derive ϕ(2)(u, s). The
proofs for higher order derivatives are analogous and therefore omitted. �

6.2. Proofs of Section 3.

Proof of Lemma 3.1. (i) Bias – first part:
For the bias term we get

E
(
ϕ̂(u, s)− ϕ(u, s)

)
= 1

T

T∑
t=1

Kb

( t
T
− u

)
ϕt,T (s)− ϕ(u, s)

= 1
T

T∑
t=1

Kb

( t
T
− u

)
(ϕt,T (s)− ϕ(u, s)) +

(
1
T

T∑
t=1

Kb

( t
T
− u

)
− 1

)
· ϕ(u, s). (6.3)

In order to get a bound for the second summand on the right-hand side, consider that we
get for T large enough such that −u/b ≤ −1 and (1− u)/b ≥ 1∫ 1

0

1
b
K
(y − u

b

)
dy =

∫ (1−u)/b

−u/b
K(z) dz =

∫ 1

−1
K(z) dz = 1

by the standard substitution z = (y − u)/b and from Assumption 2.2 (i). Therefore, for
large T ,

1
T

T∑
t=1

Kb

( t
T
− u

)
− 1 = 1

b

T∑
t=1

∫ t/T

(t−1)/T

(
K
( t/T − u

b

)
−K

(y − u
b

))
dy. (6.4)

Since K is Lipschitz, each of the integrals on the right-hand side can be bounded in absolute
value by ∫ t/T

(t−1)/T
C ·

∣∣∣ t/T − y
b

∣∣∣ dy ≤ ∫ t/T

(t−1)/T
C · 1

bT
dy = C · 1

bT 2 .

Since K(x) is zero for all x 6∈ [−1, 1] it is easy to see that for T large enough at most d2bT e
of the T summands in (6.4) are non-zero. Hence, (6.4) can be bounded in absolute value
by

1
b
· d2bT e · C

bT 2 = O
( 1
bT

)
.
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Therefore, (6.3) is equal to

1
T

T∑
t=1

Kb

( t
T
− u

)
(ϕt,T (s)− ϕ(u, s)) +O

( 1
bT

)

= 1
T

T∑
t=1

Kb

( t
T
− u

) (
ϕt,T (s)− ϕ

( t
T
, s
))

(6.5)

+ 1
T

T∑
t=1

Kb

( t
T
− u

) (
ϕ
( t
T
, s
)
− ϕ(u, s)

)
+O

( 1
bT

)
. (6.6)

In order to derive the bound for the bias from assertion (3.1), which is uniform in s ∈
[−S, S]d, notice that the O((bT )−1) term in (6.6) is uniform in s since |ϕ(u, s)| ≤ 1. More-
over, using Lemma 2.2(i), the term in (6.5) can be bounded in absolute value (uniformly
in s ∈ [−S, S]d) by

C

T

T∑
t=1

1
bT
K
( t/T − u

b

)
= C

T
· O(1) = O(T−1) (6.7)

because of (2.8). Hence, assertion (3.1) holds if we can show that

sup
s∈[−S,S]d

1
T

T∑
t=1

Kb

( t
T
− u

) ∣∣∣ϕ( t
T
, s
)
− ϕ(u, s)

∣∣∣ = O(b). (6.8)

Lemma 2.2 (ii) ensures existence of ϕ(1)(u, s), which is continuous in both arguments and
therefore bounded on compact sets. Hence, we have from the mean value theorem

sup
s∈[−S,S]d

1
T

T∑
t=1

Kb

( t
T
− u

) ∣∣∣ϕ( t
T
, s
)
− ϕ(u, s)

∣∣∣
≤ 1

T

T∑
t=1

Kb

( t
T
− u

)
sup

s∈[−S,S]d

∣∣∣ϕ(1)(ũ, s)
( t
T
− u

)∣∣∣
≤ sup

s∈[−S,S]d, u∈[0,1]

∣∣ϕ(1)(u, s)
∣∣ · T∑

t=1

1
bT

K
( t/T − u

b

) ∣∣∣ t
T
− u

∣∣∣ = O(b)

for some ũ between u and t/T due to (2.8). It follows (6.8) which completes the proof of
part (i).

(ii) Bias – second part:
Following exactly the lines of the proof of (i) up to (6.7) yields

E
(
ϕ̂(u, s)− ϕ(u, s)

)
= 1
T

T∑
t=1

Kb

( t
T
− u

) (
ϕ
( t
T
, s
)
− ϕ(u, s)

)
+O

( 1
bT

)
.

By Lemma 2.2(ii) ϕ(·, s) is three times differentiable w.r.t. the first argument, hence, we
can use a Taylor expansion of ϕ(t/T, s) to derive for the leading term in (6.6)

1
T

T∑
t=1

Kb

( t
T
− u

) (
ϕ
( t
T
, s
)
− ϕ(u, s)

)

= 1
T

T∑
t=1

Kb

( t
T
− u

)
ϕ(1)(u, s)

( t
T
− u

)
+ 1
T

T∑
t=1

Kb

( t
T
− u

) 1
2ϕ

(2)(ũ, s)
( t
T
− u

)2
,(6.9)
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where ũ is between u and t/T . Now we use that K is symmetric, cf. Assumption 2.2, i.e.∫ 1
−1K(z) z dz = 0, to derive for T large enough such that −u/b ≤ −1 and (1− u)/b ≥ 1,∫ 1

0
Kb(y − u) (y − u) dy = b

∫ 1

0

1
b
K
(y − u

b

) (y − u
b

)
dy = b

∫ 1

−1
K(z) z dz = 0.

This can be used to derive for the first summand in (6.9) with the same arguments as used
in (6.4)

ϕ(1)(u, s) · 1
T

T∑
t=1

Kb

( t
T
− u

) ( t
T
− u

)

= ϕ(1)(u, s) ·
( 1
T

T∑
t=1

Kb

( t
T
− u

) ( t
T
− u

)
−
∫ 1

0
Kb(y − u) (y − u) dy

)

= ϕ(1)(u, s) ·
T∑
t=1

∫ t/T

(t−1)/T

(
K
( t/T − u

b

) ( t/T − u
b

)
−K

(y − u
b

) (y − u
b

))
dy

= O(T−1),

since each of the integrals can be bounded by C/(bT 2) as above (note that K((y − u)/b) ·
((y − u)/b) is Lipschitz since K is zero outside [−1, 1]). Using this bound in (6.9) and
applying (6.7) to (6.5) shows that the bias term (6.3) is equal to

1
T

T∑
t=1

Kb

( t
T
− u

) 1
2ϕ

(2)(ũ, s)
( t
T
− u

)2
+O

( 1
bT

)
= 1

2ϕ
(2)(u, s) ·

∫ 1

0
Kb(y − u) (y − u)2 dy +O

( 1
bT

)
+1

2ϕ
(2)(u, s)

( 1
T

T∑
t=1

Kb

( t
T
− u

) ( t
T
− u

)2
−
∫ 1

0
Kb(y − u) (y − u)2 dy

)
(6.10)

+ 1
2T

T∑
t=1

Kb

( t
T
− u

) ( t
T
− u

)2(
ϕ(2)(ũ, s)− ϕ(2)(u, s)

)
. (6.11)

The expression in (6.10) can be bounded in absolute value by

1
2 |ϕ

(2)(u, s)| · b
T∑
t=1

∫ t/T

(t−1)/T

∣∣∣K( t/T − u
b

) ( t/T − u
b

)2
−K

(y − u
b

) (y − u
b

)2∣∣∣dy
= O

( b
T

)
(6.12)

with the same arguments as used before. Lemma 2.2 (ii) ensures that ϕ(3)(·, s) is continuous
and therefore bounded on [0, 1]. Hence, using the mean value theorem, expression (6.11)
can be bounded in absolute value by

sup
w∈[0,1]

|ϕ(3)(w, s)| · 1
2T

T∑
t=1

Kb

( t
T
− u

) ( t
T
− u

)2∣∣ũ− u∣∣
≤ sup

w∈[0,1]
|ϕ(3)(w, s)| · 1

2 ·
1
T

T∑
t=1

Kb

( t
T
− u

) ∣∣∣ t
T
− u

∣∣∣3 = O(b3),
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due to (2.8). Inserting the derived bounds into (6.10) and (6.11) yields that the bias term
equals

1
2ϕ

(2)(u, s)
∫ 1

0
Kb(y − u) (y − u)2 dy +O

( 1
bT

)
+O(b3). (6.13)

By substituting as before we get∫ 1

0
Kb(y − u) (y − u)2 dy = b

∫ 1

0
K
(y − u

b

) (y − u
b

)2
dy = b2

∫ 1

−1
K(z) z2 dz

and, with β(u, s) as defined in Lemma 3.1, (6.13) yields
E
(
ϕ̂(u, s)− ϕ(u, s)

)
= b2 · β(u, s) +O((bT )−1) +O(b3),

which finishes the proof for (ii).

(iii) Covariances:
For the covariances we show

bT Cov(ϕ̂(u1, s1), ϕ̂(u2, s2)) = V ((u1, s1), (u2, s2)) + o(1). (6.14)
Using the notation gs(x) := exp(i〈s, x〉) we immediately get

bT Cov(ϕ̂(u1, s1), ϕ̂(u2, s2))

= b

T

T∑
t1,t2=1

Kb

( t1
T
− u1

)
Kb

( t2
T
− u2

)
Cov

(
gs1

(Xt1,T ), gs2
(Xt2,T )

)
. (6.15)

In order to replace Xti,T by X̃ti(
ti
T ) on the right-hand side, we first show that

Cov
(
gs1

(Xt1,T ), gs2
(Xt2,T )

)
= Cov

(
gs1

(X̃t1( t1
T

)), gs2
(Xt2,T )

)
+O(T−1) (6.16)

uniformly for all t1, t2. Using a Taylor expansion of first order for gs1
we get

Cov
(
gs1

(Xt1,T ), gs2
(Xt2,T )

)
(6.17)

= Cov
(
gs1

(X̃t1( t1
T

)), gs2
(Xt2,T )

)
+ Cov

(
∇gs1

(ξ)′ (Xt1,T − X̃t1( t1
T

)), gs2
(Xt2,T )

)
,

where ξ is between Xt1,T and X̃t1( t1T ) and the gradient ∇gs(·) fulfills
∇gs(x) = (is1 gs(x), . . . , isd gs(x))′ = igs(x) · s.

It holds |gs(x)| = 1 for all x, which implies on the one hand | ∇gs(x) |1 = | s |1 and on the
other hand that the second summand in (6.18) can be bounded in absolute value by

2E
∣∣∣∣∇gs1

(ξ)′
(
Xt1,T − X̃t1( t1

T
)
)∣∣∣∣ ≤ 2E

(∣∣∇gs1
(ξ)
∣∣
1 ·
∣∣∣(Xt1,T − X̃t1( t1

T
)
∣∣∣
1

)
≤ 2 |s1|1 ·

∥∥∥Xt1,T − X̃t1( t1
T

)
∥∥∥

1
= O(T−1)

uniformly in t1, t2, due to Lemma 2.1 (ii). This proves (6.16) and with exactly the same
calculation the second argument can be replaced which yields

Cov
(
gs1

(Xt1,T ), gs2
(Xt2,T )

)
= Cov

(
gs1

(X̃t1( t1
T

)), gs2
(X̃t2( t2

T
))
)

+O(T−1) (6.18)

uniformly in t1, t2. Inserting this result into (6.15) gives
bT Cov(ϕ̂(u1, s1), ϕ̂(u2, s2))

= b

T

T∑
t1,t2=1

Kb

( t1
T
− u1

)
Kb

( t2
T
− u2

)
Cov

(
gs1

(X̃t1( t1
T

)), gs2
(X̃t2( t2

T
))
)
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+ O(T−1) · 1
bT

T∑
t1=1

K
( t1/T − u1

b

) T∑
t2=1

K
( t2/T − u2

b

)
.

The second summand on the right-hand side vanishes asymptotically with rate O(b) because
of (2.8). Therefore, the desired assertion follows if we can show that

b

T

T∑
t1,t2=1

Kb

( t1
T
− u1

)
Kb

( t2
T
− u2

)
Cov

(
gs1

(X̃t1( t1
T

)), gs2
(X̃t2( t2

T
))
)

= V ((u1, s1), (u2, s2)) + o(1).

From stationarity of (X̃t(u))t, we get

b

T

T∑
t1,t2=1

Kb

( t1
T
− u1

)
Kb

( t2
T
− u2

)
Cov

(
gs1

(X̃t1( t1
T

)), gs2
(X̃t2( t2

T
))
)

(6.19)

= 1
bT

T−1∑
h=−(T−1)

min{T,T−h}∑
t=max{1,1−h}

K
( t+h

T − u1

b

)
K
( t
T − u2

b

)
Cov

(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)
.

In the following, rather than the last right-hand side, we consider

1
bT

T−1∑
h=−(T−1)

T∑
t=1

K
( t+h

T − u1

b

)
K
( t
T − u2

b

)
Cov

(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)

(6.20)

with

X̃v(z) =
{
X̃v(1) if z ≥ 1
X̃v(0) if z ≤ 0

.

This can be justified by the fact that via Lemma 2.1 (i) the modulus of the difference of
(6.20) and (6.20) can be bounded by

1
bT

T−1∑
h=0

T∑
t=T−h+1

K
( t+h

T − u1

b

)
K
( t
T − u2

b

)∣∣∣Cov
(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)∣∣∣

+ 1
bT

−1∑
h=−(T−1)

−h∑
t=1

K
( t+h

T − u1

b

)
K
( t
T − u2

b

)∣∣∣Cov
(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)∣∣∣

≤ 1
bT

T−1∑
h=−(T−1)

|h|C 2d(|s1|1 + |s2|1)
∥∥ε0
∥∥

1

∑
|j|>b|h/2|c

B

l(j)

≤ 1
bT

C 2d(|s1|1 + |s2|1)
∥∥ε0
∥∥

1

T−1∑
h=−(T−1)

∑
|j|>b|h/2|c

2|j| B
l(j)

≤ 1
bT

16Cd (|s1|1 + |s2|1)
∥∥ε0
∥∥

1

∑
j∈Z

j2 B

l(j) ,

since K(·) is bounded by a constant C. The right-hand side is asymptotically vanishing of
order O((bT )−1) under the summability condition on (l(j))j stated in Assumption 2.1. In
the next step, we replace the Riemann sum in (6.20) by its integral, i.e. we consider

1
b

T−1∑
h=−(T−1)

∫ 1

0
K
(y + h

T − u1

b

)
K
(y − u2

b

)
Cov

(
gs1

(X̃h(y + h

T
)), gs2

(X̃0(y))
)
dy. (6.21)
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To be allowed to consider (6.21) in the following, we have to show that the difference of
(6.20) and (6.21) vanishes asymptotically. By standard arguments, its modulus can be
bounded by

1
b

T−1∑
h=−(T−1)

T∑
t=1

∫ t
T

t−1
T

∣∣∣∣∣K( t+hT − u1

b

)
K
( t
T − u2

b

)
Cov

(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)

−K
(y + h

T − u1

b

)
K
(y − u2

b

)
Cov

(
gs1

(X̃h(y + h

T
)), gs2

(X̃0(y))
)∣∣∣∣∣ dy

and by adding three zeros, it remains to show that

I = 1
b

T−1∑
h=−(T−1)

T∑
t=1

∫ t
T

t−1
T

∣∣∣∣∣K( t+hT − u1

b

)
−K

(y + h
T − u1

b

)∣∣∣∣∣K( t
T − u2

b

)
×
∣∣∣Cov

(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)∣∣∣dy,

II = 1
b

T−1∑
h=−(T−1)

T∑
t=1

∫ t
T

t−1
T

K
(y + h

T − u1

b

) ∣∣∣∣∣K( t
T − u2

b

)
−K

(y − u2
b

)∣∣∣∣∣
×
∣∣∣Cov

(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)∣∣∣dy,

III = 1
b

T−1∑
h=−(T−1)

T∑
t=1

∫ t
T

t−1
T

K
(y + h

T − u1

b

)
K
(y − u2

b

)
×
∣∣∣Cov

(
gs1

(X̃h( t+ h

T
))− gs1

(X̃h(y + h

T
)), gs2

(X̃0( t
T

))
)∣∣∣dy,

IV = 1
b

T−1∑
h=−(T−1)

T∑
t=1

∫ t
T

t−1
T

K
(y + h

T − u1

b

)
K
(y − u2

b

)
×
∣∣∣Cov

(
gs1

(X̃h(y + h

T
)), gs2

(X̃0( t
T

))− gs2
(X̃0(y))

)∣∣∣dy
vanish asymptotically. By Lipschitz continuity of the kernel K, b2T →∞ and the absolute
summability of the covariances Cov

(
gs1

(X̃h((t+ h)/T )), gs2
(X̃0(t/T ))

)
, cf. Lemma 2.1 (i),

the first two terms I and II are of order O((b2T )−1) and vanish asymptotically. Hence,
it remains to consider III and IV , where we focus on III only, as the arguments are
completely analogous for IV . In order to consider limT→∞ |III|, note that

|III| ≤
∞∑

h=−∞
1{|h|≤T−1}|fT (h)|

with an obvious notation for fT (h). We want to apply Lebesgue’s dominated convergence
theorem and derive the following bound for |fT (h)| using Lemma 2.1 (i) and the fact that
K is bounded by a constant C:

|fT (h)|

≤ 1
b

T∑
t=1

∫ t
T

t−1
T

C K
(y − u2

b

)
×
(∣∣∣Cov

(
gs1

(X̃h( t+ h

T
)), gs2

(X̃0( t
T

))
)∣∣∣+ ∣∣∣Cov

(
gs1

(X̃h(y + h

T
)), gs2

(X̃0( t
T

))
)∣∣∣)dy
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≤ 2C 2d(|s1|1 + |s2|1)
∥∥ε0
∥∥

1
1
b

T∑
t=1

∫ t
T

t−1
T

K
(y − u2

b

)
dy

∑
|j|>b|h/2|c

B

l(j)

≤ 4Cd (|s1|1 + |s2|1)
∥∥ε0
∥∥

1

∫ 1

−1
K(z) dz

∑
|j|>b|h/2|c

B

l(j) , (6.22)

where the standard substitution z = (y − u2)/b was used. The bound on the right-hand
side does not depend on T and is summable in h since∑

h∈Z

∑
|j|>b|h/2|c

B

l(j) ≤ 4
∑
j∈Z
|j| B
l(j) <∞.

Hence, we can apply Lebesgue’s dominated convergence theorem to III and obtain

lim
T→∞

∣∣III∣∣ ≤ ∞∑
h=−∞

lim
T→∞

1
b

T∑
t=1

∫ t
T

t−1
T

K
(y + h

T − u1

b

)
K
(y − u2

b

)
×
∣∣∣Cov

(
gs1

(X̃h( t+ h

T
))− gs1

(X̃h(y + h

T
)), gs2

(X̃0( t
T

))
)∣∣∣dy

≤
∞∑

h=−∞
lim
T→∞

1
b

T∑
t=1

∫ t
T

t−1
T

C K
(y − u2

b

)
×2E

∣∣∣gs1
(X̃h( t+ h

T
))− gs1

(X̃h(y + h

T
))
∣∣∣dy, (6.23)

because |Cov(X,Y )| ≤ 2E|X| if |Y | = 1. The expectation in (6.23) can be bounded using a
Taylor expansion of gs1

exactly as the one for the covariance term in (6.18). Thus, invoking
Lemma 2.1 (iii), we get

E
∣∣∣gs1

(X̃h( t+ h

T
))− gs1

(X̃h(y + h

T
))
∣∣∣

= E
∣∣∣∇gs1

(ξ)′
(
X̃h( t+ h

T
)− X̃h(y + h

T
)
)∣∣∣

≤ |s1|1 ·
∥∥∥X̃h( t+ h

T
)− X̃h(y + h

T
)
∥∥∥

1

≤ |s1|1
(
Ld+

∥∥ε0
∥∥

1 ·
∞∑

j=−∞

Bd

l(j)
)
·
∣∣∣ t
T
− y

∣∣∣, (6.24)

where ξ is between X̃h((t + h)/T ) and X̃h(y + (h/T )). With the bound from (6.24) the
expression in (6.23) can be bounded by

2C |s1|1
(
Ld+

∥∥ε0
∥∥

1 ·
∞∑

j=−∞

Bd

l(j)
)
·
∞∑

h=−∞
lim
T→∞

1
b

T∑
t=1

∫ t
T

t−1
T

K
(y − u2

b

) ∣∣∣ t
T
− y

∣∣∣ dy
≤ 2C |s1|1

(
Ld+

∥∥ε0
∥∥

1 ·
∞∑

j=−∞

Bd

l(j)
)
·
∞∑

h=−∞
lim
T→∞

1
T

∫ 1

0

1
b
K
(y − u2

b

)
dy

= 2C |s1|1
(
Ld+

∥∥ε0
∥∥

1 ·
∞∑

j=−∞

Bd

l(j)
)
·
∞∑

h=−∞
lim
T→∞

1
T

∫ 1

−1
K(z) dz

= 0.

Therefore, III vanishes asymptotically and, by the same arguments, it follows IV = o(1).
This allows us to consider (6.21) in the sequel.
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We first consider the case u1 6= u2. In order to obtain a preliminary result, consider the
integral ∫ 1

−1
K
(
z + h

bT
+ u2 − u1

b

)
K(z) dz

for a fixed h ∈ Z. If T → ∞, it follows h/(bT ) → 0 and |(u2 − u1)/b| → +∞. Therefore,
there exists T0 ∈ N such that for all T ≥ T0 it holds∣∣∣z + h

bT
+ u2 − u1

b

∣∣∣ > 1 ∀ z ∈ [−1, 1].

Since K has support [−1, 1], this immediately implies

lim
T→∞

∫ 1

−1
K
(
z + h

bT
+ u2 − u1

b

)
K(z) dz = 0. (6.25)

Now we turn back to (6.21). With the same calculations as in (6.22), we get for each h ∈ Z
the bound

1
b

∫ 1

0
K
(y + h

T − u1

b

)
K
(y − u2

b

)∣∣∣Cov
(
gs1

(X̃h(y + h

T
)), gs2

(X̃0(y))
)∣∣∣ dy

≤ C 2d(|s1|1 + |s2|1)
∥∥ε0
∥∥

1

∫ 1

−1
K(z) dz

∑
j>b|h/2|c

B

l(j) ,

which is summable in h. This allows for the application of Lebesgue’s dominated con-
vergence theorem to (6.21) which, together with Lemma 2.1(i) and again z = (y − u2)/b,
yields

lim
T→∞

∣∣∣∣∣∣1b
T−1∑

h=−(T−1)

∫ 1

0
K
(y + h

T − u1

b

)
K
(y − u2

b

)
Cov

(
gs1

(X̃h(y + h

T
)), gs2

(X̃0(y))
)
dy

∣∣∣∣∣∣
≤

∞∑
h=−∞

lim
T→∞

1
b

∫ 1

0
K
(y + h

T − u1

b

)
K
(y − u2

b

)∣∣∣Cov
(
gs1

(X̃h(y + h

T
)), gs2

(X̃0(y))
)∣∣∣ dy

≤ 2d(|s1|1 + |s2|1)
∥∥ε0
∥∥

1

∞∑
h=−∞

∑
|j|>b|h/2|c

B

l(j) lim
T→∞

∫ 1

−1
K
(
z + h

bT
+ u2 − u1

b

)
K(z) dz

= 0,

due to (6.25). This proves the first part of assertion (6.14), i.e.

bT Cov(ϕ̂(u1, s1), ϕ̂(u2, s2)) = o(1), ∀u1 6= u2.

In the second step we consider the case u1 = u2. Then, using the substitution z = (y−u1)/b,
(6.21) becomes

T−1∑
h=−(T−1)

∫ 1

−1
K
(
z + h

bT

)
K(z) Cov

(
gs1

(X̃h(u1 + bz + h

T
)), gs2

(X̃0(u1 + bz))
)
dz

=
T−1∑

h=−(T−1)

∫ 1

−1
K2(z) dz · Cov

(
gs1

(X̃h(u1)), gs2
(X̃0(u1))

)
+R1 +R2 +R3, (6.26)

where

R1 =
T−1∑

h=−(T−1)

∫ 1

−1

(
K
(
z + h

bT

)
−K(z)

)
K(z)
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×Cov
(
gs1

(X̃h(u1 + bz + h

T
)), gs2

(X̃0(u1 + bz))
)
dz,

R2 =
T−1∑

h=−(T−1)

∫ 1

−1
K2(z) Cov

(
gs1

(X̃h(u1 + bz + h

T
))− gs1

(X̃h(u1)), gs2
(X̃0(u1 + bz))

)
dz,

R3 =
T−1∑

h=−(T−1)

∫ 1

−1
K2(z) Cov

(
gs1

(X̃h(u1)), gs2
(X̃0(u1 + bz))− gs2

(X̃0(u1))
)
dz.

From boundedness and Lipschitz continuity of K, as well as Lemma 2.1(i), R1 can be
bounded in absolute value by

O((bT )−1)
∞∑

h=−∞
|h| 2d(|s1|1 + |s2|1)

∥∥ε0
∥∥

1

∑
|j|>b|h/2|c

B

l(j)

≤ O((bT )−1) 2d(|s1|1 + |s2|1)
∥∥ε0
∥∥

1

∞∑
h=−∞

∑
|j|>b|h/2|c

|j| B
l(j)

= O((bT )−1) 2d(|s1|1 + |s2|1)
∥∥ε0
∥∥

1

∑
j∈Z

j2 B

l(j)

= O((bT )−1).

Therefore, R1 vanishes asymptotically. For R2 we have

|R2| ≤
∞∑

h=−∞
1{|h|≤T−1}|f̃T (h)|

with an obvious notation for f̃T (h). Via Lemma 2.1(i) we have the bound

|f̃T (h)| ≤
∫ 1

−1
K2(z) dz · 4d(|s1|1 + |s2|1)

∥∥ε0
∥∥

1

∑
|j|>b|h/2|c

B

l(j) ,

which is summable in h and not depending on T . Hence, we can apply Lebesgue’s dominated
convergence theorem which yields, again using the fact that |Cov(X,Y )| ≤ 2E|X| if |Y | = 1,

lim
T→∞

∣∣R2
∣∣ ≤ ∞∑

h=−∞
lim
T→∞

∫ 1

−1
K2(z) 2E

∣∣∣gs1
(X̃h(u1 + bz + h

T
))− gs1

(X̃h(u1))
∣∣∣ dz.

Following exactly the lines of (6.24), we can bound the right-hand side by
∞∑

h=−∞
lim
T→∞

∫ 1

−1
K2(z) 2|s1|1

(
Ld+

∥∥ε0
∥∥

1

∞∑
j=−∞

Bd

l(j)
) ∣∣∣ h
T

+ bz
∣∣∣ dz

≤ 2|s1|1
(
Ld+

∥∥ε0
∥∥

1

∞∑
j=−∞

Bd

l(j)
) ∫ 1

−1
K2(z) dz

∞∑
h=−∞

lim
T→∞

( |h|
T

+ |b|
)

= 0.

Therefore, R2 vanishes asymptotically and with exactly the same arguments, R3 also con-
verges to zero. Applying these results to (6.26), it holds

bT Cov(ϕ̂(u1, s1), ϕ̂(u1, s2))

=
T−1∑

h=−(T−1)

∫ 1

−1
K2(z) dz · Cov

(
gs1

(X̃h(u1)), gs2
(X̃0(u1))

)
+ o(1)
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=
∫ 1

−1
K2(z) dz ·

∞∑
h=−∞

Cov
(
gs1

(X̃h(u1)), gs2
(X̃0(u1))

)
+ o(1) (6.27)

= V ((u1, s1), (u1, s2)) + o(1).

The assertion for the real and imaginary parts follows immediately from <x = (x + x)/2
and =x = (x − x)/(2i) and exp(ix) = cos(x) + i sin(x) which completes the proof of part
(iii). �

Proof of Theorem 3.1. For any u ∈ (0, 1) and s ∈ [−S, S]d, we can write
√
bT (ϕ̂(u, s)− ϕ(u, s)) =

√
bT (ϕ̂(u, s)− E[ϕ̂(u, s)]) +

√
bT (E[ϕ̂(u, s)]− ϕ(u, s)) ,(6.28)

where the second summand on the right-hand side above converges to zero if b3T → 0 holds
and to Cβ(u, s) if b5T → C2 holds, respectively, by Lemma 3.1(i,ii). Hence, it remains to
show the CLT in (3.6). By Cramér-Wold device, this is equivalent to show for all c ∈ R2J

the corresponding CLT

ZT :=
√
bTc′

 < (ϕ̂(uj , sj)− E(ϕ̂(uj , sj))
)

=
(
ϕ̂(uj , sj)− E(ϕ̂(uj , sj))

)  , j = 1, . . . , J

 d−→ N (0, c′Vc).

Now, we have to distinguish the two cases of a positive variance c′Vc and a vanishing
variance c′Vc = 0. In the latter case, we get from Lemma 3.1(iii) that Var(Z)→ c′Vc = 0
holds such that

ZT
d−→ N (0, c′Vc) = N (0, 0) = δ0

is degenerate. Now, suppose c′Vc > 0 holds. Further, let (X(M)
t,T ) be the truncated version

of (Xt,T ), i.e.

X
(M)
t,T = µ

( t
T

)
+

M∑
j=−M

At,T (j) εt−j ,

and define

Z
(M)
T :=

√
bTc′

 < (ϕ̂(M)(uj , sj)− E(ϕ̂(M)(uj , sj))
)

=
(
ϕ̂(M)(uj , sj)− E(ϕ̂(M)(uj , sj))

)  , j = 1, . . . , J

 ,
where ϕ̂(M)(u, s) is defined analogue to ϕ̂(u, s), but with Xt,T replaced by X(M)

t,T . Further,
we define the block covariance matrix VM analogous to V, but based on

VM ((u1, s1), (u2, s2)) =
∫ 1

−1
K2(x) dx ·

M∑
h=−M

Cov
(

exp (i 〈s1 , X̃0(u1)〉), exp (i 〈s2 , X̃h(u2)〉)
)

instead of V ((u1, s1), (u2, s2)). Now, we can make use of Proposition 6.3.9 in Brockwell and
Davis (1991) and we have to show

(a) ∃M0 ∈ N ∀M ≥M0 : Z
(M)
T

D−→ N (0, c′VMc) as T →∞,
(b) c′VMc −→ c′Vc as M →∞,
(c) ∀ δ > 0 : lim

M→∞
lim sup
T→∞

P (|ZT − Z(M)
T | ≥ δ) = 0.
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First, we get immediately from Lemma 2.1 (i) that c′VMc→ c′Vc <∞ as M →∞, which
proves (b). Now turn to part (a). By using completely the same arguments as used to
compute the variance in Lemma 3.1(iii), we can show that

Var(Z(M)
T ) = c′VMc+ o(1).

From c′Vc > 0 and as VM → V for M →∞, we get also c′VMc > 0 for all M ≥ M0 and
M0 sufficient large. Hence, it suffices to show that

Z
(M)
T√

Var(Z(M)
T )

d→ N (0, 1) as T →∞. (6.29)

To prove this, we write

Z
(M)
T =

T∑
t=1

√
b

T
c′
(
Kb

(
t

T
− uj

)( cos(〈sj , X
(M)
t,T 〉)− E[cos(〈sj , X

(M)
t,T 〉)]

sin(〈sj , X
(M)
t,T 〉)− E[sin(〈sj , X

(M)
t,T 〉)]

)
, j = 1, . . . , J

)

=
T∑
t=1

Y
(M)
t,T

with an obvious notation for Y (M)
t,T , where we suppress the dependence on uj and sj . Note

that all summands in Y (M)
t,T with |(t/T −u)/b| > 1 are zero since the kernel K has compact

support [−1, 1]. Consequently, as we consider u1, . . . , uJ , at most dT = J(2bbT c + 1)
(subsequent) of the summands Y (M)

t,T above fulfill |(t/T − uj)/b| ≤ 1 for at least one j. Let
Y

(M)
t1,T

, . . . , Y
(M)
tdT ,T

denote these non-vanishing summands such that we can write

Z
(M)
T =

dT∑
r=1

Y
(M)
tr,T

.

Note that (Y (M)
tr,T

, r = 1, . . . , dT ) forms a triangular array of centered (2M)-dependent ran-
dom variables such that we can use the CLT in Theorem 2.1 in Romano and Wolf (2000),
which is tailor-made for m-dependent random variables. In the following, we adapt their
notation and we have to check their Conditions (1) - (6). We refer to Romano and Wolf
(2000) for details. Since

E[|Y (M)
tr,T
|2+δ]

= E
[∣∣∣
√
b

T
c′
(
Kb

(
tr
T
− uj

)( cos(〈sj , X
(M)
tr,T
〉)− E[cos(〈sj , X

(M)
tr,T
〉)]

sin(〈sj , X
(M)
tr,T
〉)− E[sin(〈sj , X

(M)
tr,T
〉)]

)
, j = 1, . . . , J

) ∣∣∣2+δ]
≤ C∆ (bT )−(1+ δ

2 )

for some finite constant C∆ and any δ > 0, we get that Condition (1) holds with ∆T =
C∆ (bT )−(1+ δ

2 ). As |Cov
(
cos(〈sj , X

(M)
t1,T
〉), cos(〈sj , X

(M)
t2,T
〉)
)
|, |Cov

(
sin(〈sj , X

(M)
t1,T
〉), sin(〈sj , X

(M)
t2,T
〉)
)
|

and |Cov
(
sin(〈sj , X

(M)
t1,T
〉), cos(〈sj , X

(M)
t2,T
〉)
)
| can always be bounded by 2, we get that

|Cov
(
Y

(M)
tr1

, Y
(M)
tr2

)
| = O((bT )−1). Hence, with γ = 0 in their notation, we have for all

a and all k ≥ 1 that

1
k

Var
(
a+k−1∑
r=a

Y
(M)
tr,T

)
= 1

k

k∑
r1,r2=1

Cov(Y (M)
tr1+a−1,T

, Y
(M)
tr2+a−1,T

)
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=
min(k−1,2M)∑

h=max(−(k−1),−2M)

1
k

min(k,k−h)∑
s=max(1,1−h)

Cov(Y (M)
ts+h+a−1,T

, Y
(M)
ts+a−1,T

)

≤ CK · (bT )−1

for some suitable positive and finite constant CK . This means that Condition (2) holds
with KT = CK · (bT )−1. Further, since c′VMc > 0 for all M ≥ M0 and M0 sufficiently
large, and as Var

(∑dT
r=1 Y

(M)
tr,T

)
= c′VMc + o(1), we obtain for sufficiently large T , that

there exists a strictly positive and finite constant CL such that

1
dT

Var

 dT∑
r=1

Y
(M)
tr,T

 ≥ CL · (bT )−1.

This means that Condition (3) holds with LT = CL · (bT )−1. Altogether, this leads to
Conditions (4) and (5) being satisfied, i.e.

(4) KT

LT
= CK(bT )−1

CL(bT )−1 = CK
CL

= O(1), (5) ∆T

L
1+δ/2
T

= C∆ (bT )−(1+ δ
2 ))

(CL(bT )−1)1+δ/2 = O(1).

As their Condition (6) is trivially fulfilled as M is fixed here, this proves the CLT in (6.29)
and completes part (a). Finally, to show (c), by Markov inequality, it suffices to consider
E
(
|ZT − Z(M)

T |2
)

in more detail. To avoid lengthy notation, we treat only the case of J = 1
and consider only the real part. Similar to (6.27) in the proof of Lemma 3.1(iii), we get

bT Var
(
<ϕ̂(u, s)−<ϕ̂(M)(u, s)

)
=

T−1∑
h=−(T−1)

∫ 1

−1
K2(z) dzCov

(
<gs(X̃h(u))−<gs(X̃

(M)
h (u)),<gs(X̃0(u))−<gs(X̃

(M)
0 (u))

)
+ o(1)

=: IT,M + o(1)

as T →∞, where X̃(M)
t (u) = µ(u) +

∑M
j=−M A(u, j) εt−j is the truncated version of X̃t(u)

and gs(x) := exp(i〈s, x〉). Hence, it suffices to prove

lim
M→∞

lim sup
T→∞

|IT,M | = 0

by making use of Lebesgue’s Theorem. By using the same approach as in the proof of
Lemma 3.1(iii) to show the finiteness of the variance V, the modulus of the covariances in
IT,M above can be bounded by∣∣∣Cov

(
<gs(X̃h(u))−<gs(X̃

(M)
h (u))−

{
<gs(X̃

(v)
h (u))−<gs(X̃

(M,v)
h (u))

}
,<gs(X̃0(u))−<gs(X̃

(M)
0 (u))

) ∣∣∣
+
∣∣∣Cov

(
<gs(X̃

(v)
h (u))−<gs(X̃

(M,v)
h (u)), g(X̃0(u))−<gs(X̃

(M)
0 (u))−

{
<gs(X̃

(v)
0 (u))−<gs(X̃

(M,v)
0 (u))

}) ∣∣∣,
where X̃(M,v)

t (u) = µ(u) +
∑
|j|<min(M,v)A(u, j) εt−j and v = b|h/2|c. The first summand

above can be bounded by

4E
(∣∣∣∣<gs(X̃h(u))−<gs(X̃

(M)
h (u))−

{
<gs(X̃

(v)
h (u))−<gs(X̃

(M,v)
h (u))

}∣∣∣∣)
≤ 4

{
E

(∣∣∣∣<gs(X̃h(u))−<gs(X̃
(v)
h (u))

∣∣∣∣)+ E

(∣∣∣∣<gs(X̃(M)
h (u))−<gs(X̃

(M,v)
h (u))

∣∣∣∣)}
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≤ 4 |s|1‖ε0‖1

∑
|j|>v
|A(u, j)|1 +

∑
M≥|j|>min(v,M)

|A(u, j)|1


≤ 8 |s|1‖ε0‖1

∑
|j|>v

sup
u
|A(u, j)|1

≤ 8 d |s|1 ‖ε0‖1
∑
|j|>v

B

l(j)

and the second summand can be treated completely analogue. Altogether, the summands
can be bounded by summable coefficients not depending on M , which allows to bound
limM→∞ lim supT→∞ |IT,M | applying Lebesgue’s theorem as follows

lim
M→∞

lim sup
T→∞

|IT,M |

≤ lim
M→∞

lim
T→∞

∞∑
h=−∞

∫ 1

−1
K2(z) dz

∣∣∣Cov
(
<gs(X̃h(u))−<gs(X̃

(M)
h (u)),<gs(X̃0(u))−<gs(X̃

(M)
0 (u))

) ∣∣∣
≤

∞∑
h=−∞

∫ 1

−1
K2(z) dz

{
lim
M→∞

∣∣∣Cov
(
<gs(X̃h(u))−<gs(X̃

(M)
h (u)),<gs(X̃0(u))−<gs(X̃

(M)
0 (u))

) ∣∣∣}

≤ 4
∞∑

h=−∞

∫ 1

−1
K2(z) dz

{
lim
M→∞

E

(
|<gs(X̃h(u))−<gs(X̃

(M)
h (u))|

)}

≤ 4|s|1‖ε0‖1
∞∑

h=−∞

∫ 1

−1
K2(z) dz

 lim
M→∞

∑
|j|>M

sup
u
|A(u, j)|1


≤ 4d|s|1‖ε0‖1

∞∑
h=−∞

∫ 1

−1
K2(z) dz

 lim
M→∞

∑
|j|>M

B

l(j)


= 0,

which proves part (c) and concludes this proof. �

Proof of Lemma 3.2. Applying Lemma 2.1(ii) and (iii) we obtain

E

(
sup

s∈[−S,S]d

√
bT

{
ϕ̂(u, s)− Eϕ̂(u, s))− 1

T

T∑
t=1

Kb

(
t

T
− u

)) [
exp(i〈s, X̃t(u)〉)− E exp(i〈s, X̃t(u)〉)

]}

≤ 2S√
bT

T∑
t=1

K

(
t/T − u

b

){∥∥∥Xt,T − X̃t(t/T )
∥∥∥

1
+
∥∥∥X̃t(t/T )− X̃t(u)

∥∥∥
1

}

≤O

√ b

T

+O(
√
b3T ),

which vanishes asymptotically. �

Proof of Lemma 3.3. We restrict ourselves to the first assertion since the second one can
be derived in complete analogy. For notational simplicity, we define ḡs(X) = cos(s′X) −
E cos(s′X) for any s ∈ Rd and any Rd-valued random variable X. Recall that the number
of nonvanishing summands is bounded by b2bT c+ 1 (see end of Section 2) and that these
summands are subsequent. Let t1 denote the smallest of these indices. Inspired by Arcones,
Yu (1994, Section 2), we divide this set of indices into blocks Ht, Tt (both of equal length
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κT ) for t = 1, . . . , µT and a remainder term R, where

Ht :=
{
i | 2(t− 1)κT + t1 ≤ i < (2t− 1)κT + t1

}
,

Tt :=
{
i | (2t− 1)κT + t1 ≤ i < 2tκT + t1

}
,

R :=
{
i | 2µTκT + t1 ≤ i < t1 + d2bT e

}
.

Here κT and µT have the following form for all T ∈ N:

κT :=
⌊
(bT )

1
2m
⌋

and µT :=
⌊
bT

κT

⌋
. (6.30)

Further, let ρ(s1, s2) = |s1 − s2|1. This gives

lim
r→0

lim sup
T→∞

P

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

∣∣∣∣(bT )−
1
2

bT∑
t=1

K

(
t/T − u

b

)[
ḡs1

(X̃t(u))− ḡs2
(X̃t(u))

]∣∣∣∣ > λ

)

≤ lim
r→0

lim sup
T→∞

P

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

∣∣∣∣(bT )−
1
2

µT∑
t=1

∑
i∈Ht

K

(
i/T − u

b

)[
ḡs1

(X̃i(u))− ḡs2
(X̃i(u))

]∣∣∣∣ > λ

3

)

+ lim
r→0

lim sup
T→∞

P

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

∣∣∣∣(bT )−
1
2

µT∑
t=1

∑
i∈Tt

K

(
i/T − u

b

)[
ḡs1

(X̃i(u))− ḡs2
(X̃i(u))

]∣∣∣∣ > λ

3

)

+ lim
r→0

lim sup
T→∞

P

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

∣∣∣∣(bT )−
1
2
∑
i∈R

K

(
i/T − u

b

)[
ḡs1

(X̃i(u))− ḡs2
(X̃i(u))

]∣∣∣∣ > λ

3

)

=: I + II + III.
(6.31)

As the second summand can be treated similarly to the first one, we focus on I and III in
the sequel. For the third summand III of (6.31), we have

III ≤ lim
r→0

lim sup
T→∞

P

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

‖K‖∞(bT )−
1
2
∑
i∈R

∣∣ḡs1
(X̃i(u))− ḡs2

(X̃i(u))
∣∣ > λ

3

)

≤ lim lim sup
T→∞

P

(
C (bT )−1/2κT >

λ

3

)
= 0,

as it follows fromm > 1 that κT = o((bT )1/2). In the next step we approximate the statistics
under consideration by a statistic based on variables that are constructed such that the
involved random variables with indices in different blocks H1, . . . ,HµT are independent. To
this end, we define

X̃
(M)
i (u) = µ(u) +

∑
|k|≤M

A(u, k) εi−k
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for M = bκT /2c. Using a first order Taylor expansion of ḡs, the first summand I of (6.31)
can be rewritten as follows

I = lim
r→0

lim sup
T→∞

P

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

∣∣∣∣(bT )−
1
2

µT∑
t=1

∑
i∈Ht

K

(
i/T − u

b

)[
ḡs1

(
X̃

(M)
i (u)

)
− ḡs2

(
X̃

(M)
i (u)

)

+∇
(
ḡs1

(
Y ∗i
)
− ḡs2

(
Y ∗i
))(

X̃i(u)− X̃(M)
i (u)

)]∣∣∣∣ > λ

3

)

≤ lim
r→0

lim sup
T→∞

P

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

∣∣∣∣(bT )−
1
2

µT∑
t=1

∑
i∈Ht

K

(
i/T − u

b

)[
ḡs1

(
X̃

(M)
i (u)

)
− ḡs2

(
X̃

(M)
i (u)

)]∣∣∣∣ > λ

6

)

+ lim sup
T→∞

P

(
2dS |K|∞(bT )−

1
2

µT∑
t=1

∑
i∈Ht

|X̃i(u)− X̃(M)
i (u)|1 >

λ

6

)
=: lim

r→0
lim sup
T→∞

Ia + lim sup
T→∞

Ib

(6.32)
for some Y ∗i between X̃i(u) and X̃

(M)
i (u). Now Ib goes to 0 with T → ∞ since Markov’s

inequality gives

lim sup
T→∞

Ib ≤ lim sup
T→∞

12
λ
dS |K|∞ (bT )−

1
2

µT∑
t=1

∑
i∈Ht

‖X̃i(u)− X̃(M)
i (u)‖1

= lim sup
T→∞

C (bT )−
1
2 µT

∑
i∈H1

∑
|k|>M

1
l(k)

≤ lim sup
T→∞

C (bT )−
1
2µTκ

−m+1
T

∑
|k|>κT

2

km

l(k)

= 0.
Hence, it remains to consider term Ia, which is more involved. Note that the random
variables (X̃(M)

i (u)))i∈Ht1 and (X̃(M)
i (u)))i∈Ht2 are independent for t1 6= t2, which will

allow us to apply standard empirical process theory in the sequel. We adapt the arguments
of Arcones, Yu (1994) and introduce some notation first. Let νT (s) and νT (s1, s2) with
s, s1, s2 ∈ [−S, S]d be defined as

νT (s) := (bT )−
1
2

µT∑
t=1

∑
i∈Ht

K

(
i/T − u

b

)
ḡs
(
X̃

(M)
i (u)

)
and νT (s1, s2) := νT (s1)− νT (s2).

Now, we use a classical chaining argument inspired by Arcones, Yu (1994). To this end, we
introduce a decreasing sequence

rk := r2−k, k = 0, . . . , kT ,
for some r specified below and such that

(bT )3(1−m)/(4m) ≤ rkT ≤ (bT )−1/(mδ). (6.33)
Note that for our choice of m such a kT exists since for large T

(bT )3(1−m)/(4m) ≤ (bT )−1/(mδ) ⇔ m ≥ 1 + 4
3δ .



41

Let Fk ⊂ [−S, S]d for k ∈ N0 be a collection of indices with

#Fk = Dk = D(rk, [−S, S]d, ρ) and sup
s1∈[−S,S]d

min
s2∈Fk

ρ(s1, s2) < rk,

where D(u, [−S, S]d, ρ) = max{#T0 | T0 ⊆ [−S, S]d, ρ(s1, s2) > u ∀ s1 6= s2 ∈ [−S, S]d}
denotes the usual packing number defined e.g. in van der Vaart and Wellner (2000, Definition
2.2.3). Obviously, for any u > 0

D(u, [−S, S]d, ρ) ≤
(2Sd

u
+ 1

)d

and hence, Dk = O(r−dk ). Then there exists maps πk : [−S, S]d → Fk such that

|s− πks|1 ≤ rk ∀s ∈ [−S, S]d.

Thereby, we have

sup
s1,s2∈[−S,S]d
ρ(s1,s2)<r

|νT (s1, s2)|

≤ sup
s1,s2∈[−S,S]d
ρ(s1,s2)<r

{|νT (s1)− νT (s2)− νT (πkT s1) + νT (πkT s2)|+ |νT (π0s1)− νT (π0s2)|}

+ sup
s1,s2∈[−S,S]d
ρ(s1,s2)<r

∣∣∣∣∣∣
kT∑
k=1

νT (πks1)− νT (πk−1s1)− νT (πks2) + νT (πk−1s2)

∣∣∣∣∣∣
≤ 2 sup

s1,s2∈[−S,S]d
ρ(s1,s2)≤rkT

|νT (s1, s2)|+ sup
s1,s2∈F0
ρ(s1,s2)≤2r

|νT (s1, s2)|+ 2
kT∑
k=1

sup
s1∈Fk,s2∈Fk−1
ρ(s1,s2)≤3rk

|νT (s1, s2)|.

Moreover, we define for k ∈ N and for some C∗ specified below

λk := r
1
6
k ∨

(
C∗ r

1
3
k (logDk)

1
2

)
(6.34)

and let r be small enough to ensure

2
∞∑
k=1

λk ≤
λ

18 . (6.35)

Note that Dk = O(r−dk ) guaranties summability of (λk)k. Hence, we have for Ia in (6.32)
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Ia = P

{
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<r

|νT (s1, s2)| > λ

6

}

≤ P

{
2 sup
s1,s2∈[−S,S]d
ρ(s1,s2)≤rkT

|νT (s1, s2)| > λ

18

}
+ P

{
2
kT∑
k=1

sup
s1∈Fk,s2∈Fk−1
ρ(s1,s2)≤3rk

|νT (s1, s2)| > 2
kT∑
k=1

λk

}

+ P

{
sup

s1,s2∈F0
ρ(s1,s2)≤2r

|νT (s1, s2)| > λ

18

}

=: I + II + III.
(6.36)

Hence, it remains to show asymptotic negligibility of I, II, and III in order to prove the
lemma. We start with the second summand an apply Bernstein’s inequality for sums of
independent random variables to the outer sum in the definition of νT :

II ≤
kT∑
k=1

P

(
sup

s1∈Fk,s2∈Fk−1
ρ(s1,s2)≤3rk

|νT (s1, s2)| > λk

)

≤
kT∑
k=1

∑
s1∈Fk,s2∈Fk−1
ρ(s1,s2)≤3rk

P
(∣∣∣(bT )

1
2 νT (s1, s2)

∣∣∣ > (bT )
1
2λk

)

≤ 2
kT∑
k=1

DkDk−1 exp

−1
2

bTλ2
k

AII,k + 4|K|∞κT (bT )
1
2 λk

3


≤ 2

kT∑
k=1

exp

2 logDk −
1
2

bTλ2
k

AII,k + 4|K|∞κT (bT )
1
2 λk

3

 .

(6.37)

Here,

AII,k ≥ sup
s1∈Fk,s2∈Fk−1
ρ(s1,s2)≤3rk

Var
(
(bT )

1
2 νT (s1, s2)

)
.

For the variance term, we obtain

bT Var
(
νT (s1, s2)

)
(6.38)

≤ Var
( µT∑
t=1

∑
i∈Ht

K

(
i/T − u

b

)[
ḡs1

(
X̃

(M)
i (u)

)
− ḡs2

(
X̃

(M)
i (u)

)])
≤ C µT

∑
i1,i2∈H1

Cov
[(
ḡs1

(
X̃

(M)
i1 (u)

)
− ḡs2

(
X̃

(M)
i1 (u)

))
,
(
ḡs1

(
X̃

(M)
i2 (u)

)
− ḡs2

(
X̃

(M)
i2 (u)

))]
.

In analogy to the proof of Lemma 2.1(i) we can bound the latter term by

bT Var
(
νT (s1, s2)

)
≤ C µT

∑
i1,i2∈H1

min

|s1 − s2|1 ,
∑

j>b|i1−i2|/2c

1
l(j)
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≤ C µT
κT−1∑
t=0

(κT − t) min

|s1 − s2|1 ,
∑

j>bt/2c

1
l(j)


≤ C bT

[R0−1∑
t=0
|s1 − s2|1 +

κT−1∑
t=R0

t−3
]

≤ C bT
[
R0 |s1 − s2|1 +

∫ ∞
R0/2

u−3 du
]

≤ C bT
[
R0 |s1 − s2|1 +R−2

0
]

for any R0 ≥ 2. This holds for

R0 :=
⌊
|s1 − s2|

− 1
3

1

⌋
,

if r is sufficiently small. Then we have

sup
s1∈Fk,s2∈Fk−1
ρ(s1,s2)≤3rk

Var
(
(bT )

1
2 νT (s1, s2)

)
≤ C bT r2/3

k =: AII,k. (6.39)

Hence, we obtain from (6.37) and (6.39)

II ≤ 2
kT∑
k=1

exp
{

2 logDk −
1
2

bTλ2
k

AII,k + 4‖K‖∞κT (bT )
1
2 λk

3

}

≤ 2
kT∑
k=1

exp
{

2 logDk − C
λ2
k

r
2/3
k + (bT )(1−m)/(2m)λk

}

≤ 2
kT∑
k=1

exp
{

2 logDk − C
λ2
k

r
2/3
k + r

2/3
kT

λk

}

≤ 2
kT∑
k=1

exp
{

2 logDk − C
λ2
k

r
2/3
k + r

2/3
k λ

}

≤ 2
kT∑
k=1

exp
{

2 logDk − C̄λ2
k r
−2/3
k

}

for some C̄ ∈ (0,∞). Setting C∗ = (4/C̄)1/2 in definition (6.34) of λk yields

II ≤ 2
kT∑
k=1

exp
{
− C̄

2 λ
2
k r
−2/3
k

}
≤ 2

∞∑
k=1

exp
{
− C̄

2 r
−1/3
k

}
−→
r→0

0.

Analogously, we have for summand III in (6.36)

P

{
sup

s1,s2∈F0
ρ(s1,s2)≤2r

|νT (s1, s2)| > λ

}
≤ 2 exp

{
2 logD0 −

1
2

bTλ2

AIII,k + 4‖K‖∞κT (bT )
1
2 λ

3

}
,

where AIII,k = C bT r2/3. Using the same arguments as before, we get asymptotic negligi-
bility as r → 0.
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Finally, we look at the first summand I in (6.36). Applying Markov’s inequality, it suffices
to verify

lim
r→0

lim sup
T→∞

E
(

sup
s1,s2∈[−S,S]d
ρ(s1,s2)<rkT

|νT (s1, s2)|
)

= 0, (6.40)

which then implies convergence of I and completes the proof. To this end, we introduce
some further notation:

Lt,T (s) := (bT )−
1
2
∑
i∈Ht

K

(
i/T − u

b

)
cos(s′X̃(M)

i (u)) and L0
t,T (s) := ζtLt,T (s)

for s ∈ [−S, S]d, where are (ζt)t∈N are i.i.d. Rademacher variables independent of (εt)t∈Z.
Note that (Lt,T (s))t is a sequence of independent random variables by construction. Hence,
with a standard symmetrization lemma (see van der Vaart and Wellner (2000), Lemma
2.3.1) we get

E

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<rkT

|νT (s1, s2)|
)

= E

(
sup

s1,s2∈[−S,S]d
ρ(s1,s2)<rkT

∣∣∣∣∣
µT∑
t=1

[Lt,T (s1)− ELt,T (s1)− Lt,T (s2) + ELt,T (s2)]
∣∣∣∣∣
)

≤ 2E
(

sup
s1,s2∈[−S,S]d
ρ(s1,s2)<rkT

∣∣∣∣∣
µT∑
t=1

[L0
t,T (s1)− L0

t,T (s2)]
∣∣∣∣∣
)
.

Note that
∑µT
t=1 L

0
t,T has sub-Gaussian increments conditionally on L1,T , . . . , LµT ,T , T ∈ N.

This is because for s1, s2 ∈ [−S, S]d and η > 0 we can apply Hoeffding’s inequality to obtain

P

(∣∣∣∣ µT∑
t=1

L0
t,T (s1)− L0

t,T (s2)
∣∣∣∣ > ρ̂T,2(s1, s2)η

∣∣∣∣∣L1,T , . . . , LµT ,T

)

≤ 2 exp
{
− ρ̂T,2(s1, s2)2η2

2
∑µT
t=1

(
Lt,T (s1)− Lt,T (s2)

)2
}

= 2 exp
{
− η2

2

}
with the random semimetric

ρ̂T,2(s1, s2) :=

√√√√ µT∑
t=1

(
Lt,T (s1)− Lt,T (s2)

)2
, s1, s2 ∈ [−S, S]d.

Therefore, we aim at applying a maximal inequality for sub-Gaussian processes to prove (6.40).
It turns out to be easier to use a slightly modified semimetric. To this end, first note that(

Lt,T (s1)− Lt,T (s2)
)2 ≤ (∣∣Lt,T (s1)

∣∣+ ∣∣Lt,T (s2)
∣∣)1−δ∣∣Lt,T (s1)− Lt,T (s2)

∣∣1+δ

≤ 21−δ |Lt,T |1−δ∞ |Lt,T |1+δ
Lip ρ(s1, s2)1+δ (6.41)
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for s1, s2 ∈ [−S, S]d. Here, |f |Lip denotes the Lipschitz constant of a function f . We define

QT := 2(1−δ)/2

√√√√ µT∑
t=1
|Lt,T |1−δ∞ |Lt,T |1+δ

Lip

and in order to establish an upper bound for QT we derive

‖Lt,T ‖∞ = (bT )−
1
2κT ‖K‖∞, and ‖Lt,T ‖Lip ≤ (bT )−

1
2 ‖K‖∞

∑
i∈Ht

∣∣∣∣X̃(M)
i (u)

∣∣∣∣
1
,

which give

QT ≤ C

√√√√√κ1−δ
T

bT

µT∑
t=1

∑
i∈Ht

∣∣∣∣X̃(M)
i (u)

∣∣∣∣
1

1+δ

.

Using the definition of QT we have

ρ̂T,2(s1, s2) ≤ QT ρ(s1, s2)(1+δ)/2 =: ρ̆T (s1, s2).

Note that ρ̆T is again a random semimetric since we obtain from (1 + δ)/2 ∈ (0, 1]

ρ̆T (s1, s2) ≤ QT
(
ρ(s1, s3) + ρ(s3, s2)

)(1+δ)/2

= ρ̆T (s1, s3) + ρ̆T (s3, s2).

Hence, we can apply Corollary 2.2.8 of van der Vaart and Wellner (2000) as follows

E

 sup
s1,s2∈[−S,S]d
ρ(s1,s2)<rkT

∣∣∣∣∣
µT∑
t=1

[L0
t,T (s1)− L0

t,T (s2)]
∣∣∣∣∣
 = E

 sup
s1,s2∈[−S,S]d

ρ̆T (s1,s2)<QT r
(1+δ)/2
kT

∣∣∣∣∣
µT∑
t=1

[L0
t,T (s1)− L0

t,T (s2)]
∣∣∣∣∣


≤ C E

∫ QT r
(1+δ)/2
kT

0

√
logD(u, [−S, S]d, ρ̆T ) du

 .
The packing number can be calculated as

D(u, [−S, S]d, ρ̆T ) = D

((
u

QT

)2/(1+δ)
, [−S, S]d, ρ

)
≤
(

2Sd(
u
QT

)2/(1+δ) + 1
)d
,

which gives

E

 sup
s1,s2∈[−S,S]d
ρ(s1,s2)<rkT

∣∣∣∣∣
µT∑
t=1

[L0
t,T (s1)− L0

t,T (s2)]
∣∣∣∣∣
 ≤ C E

∫ QT r
1+δ

2
kT

0

√√√√√√log
(

2Sd(
u
QT

) 2
1+δ

+ 1
)d

du



= C E

QT ∫ r
1+δ

2
kT

0

√√√√√log
(

2Sd
u

2
1+δ

+ 1
)d

du

 .
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To sum up, we obtain by Jensen’s inequality, the definitions of κT and rkT , and log(x+1) ≤ x
for x > 0

E

 sup
s1,s2∈[−S,S]d
ρ(s1,s2)<rkT

∣∣∣∣∣
µT∑
t=1

[L0
t,T (s1)− L0

t,T (s2)]
∣∣∣∣∣


≤ C E


√√√√√κ1−δ

T

bT

µT∑
t=1

∑
i∈Ht

∣∣∣∣X̃(M)
i (u)

∣∣∣∣
1

1+δ
∫ r

1+δ
2

kT

0

√√√√√log
(

2Sd
u

2
1+δ

+ 1
)d

du

≤ C

√√√√κ2
T

bT
µT

(∥∥∥∥X̃(M)
i (u)

∥∥∥∥
1+δ

)1+δ ∫ r
1+δ

2
kT

0

√√√√log
(

2Sd
u

2
1+δ

+ 1
)

du

≤ C
√
κT

∫ r
1+δ

2
kT

0
u−

1
1+δ du

= C
√
κT r

δ/2
kT

≤ C (bT )−1/(4m),

which obviously tends to zero and thus gives (6.40) which completes the proof.
�

Proof of Theorem 3.2. By Theorem 1.5.4 and Theorem 1.5.7 of van der Vaart and Wellner
(2000), we have to show convergence of the fidis and tightness in the sense of Lemma 3.3.
Convergence of the fidis follows from Theorem 3.1 and tightness from Lemma 3.3. By their
Addendum 1.5.8 we can deduce continuity of the sample path of the limiting process. �

Proof of Corollary 3.1. From Assumption 2.1(ii.2) and (ii.3) we obtain

Xt,h,T = µ̄

(
t

T

)
+

∞∑
j=−∞

Āt,T (j) ε̄t−j +OP
( 1
T

)
=: X̄t,T +OP

( 1
T

)

with µ̄ and Āt,T (j) satisfying Assumption 2.1 again. This leads to

√
bT sup

s∈R2d

∣∣∣∣∣ϕ̂h(u, s)− 1
T

T∑
t=1

Kb

( t+ h/2
T

− u
)
ei〈s , X̄t,T 〉

∣∣∣∣∣ = oP (1) ∀u ∈ (0, 1).

Moreover, it follows from Lipschitz continuity of K that

√
bT sup

s∈R2d

∣∣∣∣∣ 1T
T∑
t=1

[
Kb

( t+ h/2
T

− u
)
−Kb

( t
T
− u

)]
ei〈s , X̄t,T 〉

∣∣∣∣∣ = oP (1) ∀u ∈ (0, 1).

Since X̄t,T satisfies Assumption 2.2 with k = 1, the assertion now follows from Theorem 3.2.
�
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6.3. Proofs of Section 4.

Proof of Corollary 4.1. The parameter estimators are continuous functions of ϕ̂. Theo-
rem 3.1(ii) yields (pointwise) consistency of ϕ̂ for ϕ. Hence the continuous mapping theorem
implies consistency of the estimators for the parameters of the stable distribution. �

Proof of Theorem 4.1. (i) First note that in analogy to the proof of Theorem 3.4.1 in
Ushakov (1999),∫ ∣∣∣ϕ(u, s; θ̂(u))− ϕ(u, s; θ0(u))

∣∣∣2 w(s) ds P−→ 0 as T →∞ (6.42)

follows from Theorem 3.2 and integrability of w. From this we can deduce that
θ̂(u) P−→ θ0(u) as follows. First we get, that every sequence (Tk)k ⊆ N contains a
subsequence (Tkl)l such that (6.42) holds a.s. for this subsequence. Assume that for
a subsequence (Tklm)m thereof, (θ̂Tklm(u))m → θ̄(u) 6= θ0(u) a.s. which implies that
the corresponding CFs differ on an open set, say U0, in view of Assumption 4.1(iii).
Thus, we have∫ ∣∣∣ϕ(u, s; θ̂Tklm(u))− ϕ(u, s; θ0(u))

∣∣∣2w(s)ds

≥
∫
U0

∣∣∣ϕ(u, s; θ0(u))− ϕ(u, s; θ̄(u))
∣∣∣2w(s)ds−

∫
R

∣∣∣ϕ(u, s; θ̂Tklm(u))− ϕ(u, s; θ̄(u))
∣∣∣2w(s)ds

> η

under Assumption 4.1(iii) for all large k and some η > 0, which yields a contradic-
tion.

(ii) We abbreviate the integral on the right-hand side of (4.7) by DT (u; θ(u)). The (uni-
form) consistency properties of our estimator ϕ̂(u, s) implies that its first derivative
w.r.t. θ satisfies D̂(1)

T (u; θ̂(u)) = 0p with probability tending to one. Hence, Taylor
expansion of order two gives
√
bT (θ̂(u)− θ0(u)) = −

√
bT

[
D

(2)
T (u; θ0(u) + ξ(θ̂(u)− θ0(u)))

]−1
D

(1)
T (u; θ0(u))

for some random ξ ∈ [−1, 1]. By Assumption 4.1(iv), the order of differentiation
and integration is commutable. Hence, in a neighborhood of θ0(u) gradient and
Hessian can be represented as

D
(1)
T (u; θ(u)) = −2

∫
R

[
(<ϕ̂(u, s)−<ϕ(u, s; θ(u)))<ϕ(1)(u, s; θ(u))

+ (=ϕ̂(u, s)−=ϕ(u, s; θ(u)))=ϕ(1)(u, s; θ(u))
]
w(s) ds

and

D
(2)
T (u; θ(u)) = 2

∫
R

(
<ϕ(1)(u, s; θ(u))[<ϕ(1)(u, s; θ(u))]′ + =ϕ(1)(u, s; θ(u))[=ϕ(1)(u, s; θ(u))]′

− (<ϕ̂(u, s)−<ϕ(u, s; θ(u)))<ϕ(2)(u, s; θ(u))

− (=ϕ̂(u, s)−=ϕ(u, s; θ(u)))=ϕ(2)(u, s; θ(u))
)
w(s) ds,

respectively. By part (i) and Theorem 3.2 D(2)
T (u; θ0(u) + ξ(θ̂(u)− θ0(u))) P−→ 2D0,

which is invertible by assumption. Hence, it remains to show that
√
bT D

(1)
T (u; θ0(u)) d−→ 2D0 ZMDE .
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Applying Theorem 3.2 and the continuous mapping theorem, we obtain

RS,T :=
√
bT

∫
[−S,S]d

[
(<ϕ̂(u, s)−<ϕ(u, s; θ0(u)))<ϕ(1)(u, s; θ0(u))

+ (=ϕ̂(u, s)−=ϕ(u, s; θ0(u)))=ϕ(1)(u, s; θ0(u))
]
w(s) ds

d−→ RS :=
∫

[−S,S]d

[
Z1(u, s)<ϕ(1)(u, s; θ0(u)) + Z2(u, s)=ϕ(1)(u, s; θ0(u))

]
w(s) ds

for any S ∈ (0,∞), where Z = (Z1, Z2)′ is the limiting process in Theorem 3.2
applied to ϕ(u, s) = ϕ(u, s; θ0). It follows from a usual Riemann approximation of
the integral that the limit RS is a centered normal random variable. By (4.10),

Var(RS) −→ Var(D0 ZMDE) <∞ as S →∞,
which implies that

RS
d−→ D0 ZMDE .

Now, the assertion follows from Proposition 6.3.9 in Brockwell and Davis (1991) if
additionally

lim
S→∞

lim sup
T→∞

P
(
|RS,T −

√
bT D

(1)
T (u; θ0(u))

)
| > η) = 0.

In view of (4.10), Lemma 3.1(i) implies

lim
S→∞

lim sup
T→∞

E
∣∣∣RS,T −√bT D(1)

T (u; θ0(u))
∣∣∣2 = 0,

which then completes the proof.
�

Proof of Lemma 4.2. By expanding the squared term of the integrand in (4.14), we get

|κT ϕ̂Y,Z;h(u; s1, s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)|2

= |κT ϕ̂Y,Z;h(u; s1, s2)|2 − κT ϕ̂Y,Z;h(u; s1, s2)ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)
−κT ϕ̂Y,Z;h(u; s1, s2)ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2) + |ϕ̂Y ;0(u, s1)ϕ̂Z;h(u, s2)|2

= I + II + III + IV.

From (4.15) and expanding exp(i·) = cos(·) + i sin(·), we get for the first term

I = 1
T 4

T−h∑
t1,t2,t3,t4=1

4∏
j=1

Kb

( tj + h/2
T

− u
)

cos
(
s′1(Y t3,T − Y t4,T )

)
cos

(
s′2(Zt3+h,T − Zt4+h,T )

)
+RI ,

where RI is a remainder term that leads to vanishing terms for the integral in (4.14) (note
that sin(·) is an odd function). By using the identity

cos(u) cos(v) = 1− (1− cos(u))− (1− cos(v)) + (1− cos(u))(1− cos(v))
we get

I = RI + 1
T 4

T−h∑
t1,t2,t3,t4=1

4∏
j=1

Kb

( tj + h/2
T

− u
){

1−
(
1− cos

(
s′1(Y t3,T − Y t4,T )

))
−
(
1− cos

(
s′2(Zt3+h,T − Zt4+h,T )

))
+
(
1− cos

(
s′1(Y t3,T − Y t4,T )

)) (
1− cos

(
s′2(Zt3+h,T − Zt4+h,T )

))}
=: I1 − I2 − I3 + I4 +RI .
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The same calculation for terms II, III and IV leads to similar expressions, where the first
three terms cancel out, i.e. Ij + IIj + IIIj + IVj = 0 for j = 1, 2, 3 and II4 = III4 . Note
that the cancellation is due to the inclusion of the factor κT in the definition of (4.13).
Altogether, this leads to

|κT ϕ̂Y,Z;h(u; s1, s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)|2

= 1
T 4

T−h∑
t1,t2,t3,t4=1

4∏
j=1

Kb

( tj + h/2
T

− u
){(

1− cos(s′1(Y t3,T − Y t4,T ))
) (

1− cos(s′2(Zt3+h,T − Zt4+h,T ))
)

− 2
(
1− cos(s′1(Y t2,T − Y t4,T ))

) (
1− cos(s′2(Zt3+h,T − Zt4+h,T ))

)
+
(
1− cos(s′1(Y t1,T − Y t2,T ))

) (
1− cos(s′2(Zt3+h,T − Zt4+h,T ))

)}
+R,

(6.43)
where R is a remainder term that leads to vanishing terms for the integral in (4.14). Now,
we plug the above into (4.14) and make use of Lemma 4.1 to get the claimed result. �

Proof of Theorem 4.2. To prove consistency of V̂2
Y,Z(u;h) we proceed in three steps and

show:
1. For δ ∈ (0, 1)

V̂2
Y,Z;δ(u;h) :=

∫
Dδ

|κT ϕ̂Y,Z;h(u; s1, s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)|2w(s1, s2)d(s1, s2)

P−→ V2
Y,Z;δ(u;h) :=

∫
Dδ

|ϕY,Z;h(u; s1, s2)− ϕY ;0(u; s1)ϕZ;h(u; s2)|2w(s1, s2)d(s1, s2),

where Dδ = {(s′1, s′2)′ ∈ Rp+q | δ ≤ |s1|2 ≤ 1/δ, δ ≤ |s2|2 ≤ 1/δ}.
2. V2

Y,Z;δ(u;h) −→ V2
Y,Z(u;h) with δ → 0.

3. limδ→0 lim supT→∞ P
(∣∣∣V̂2

Y,Z;δ(u;h)− V̂2
Y,Z(u;h)

∣∣∣ > ε
)

= 0 ∀ ε > 0.
Then, the assertion for distance covariance can be deduced from Proposition 6.3.9 in Brock-
well and Davis (1991) and it remains to consider the distance correlation. Under the as-
sumptions of the theorem V2

Y (u; 0)V2
Z(u; 0) > η for some η > 0. Hence, with probability

tending to one, we have 1(V̂2
Y (u; 0) V̂2

Z(u; 0) > 0) = 1. Thus, stochastic convergence of
R̂2
Y,Z(u;h) follows immediately from convergence of the distance covariance and it remains

to carry out steps 1 to 3 mentioned above.
Step 1.
We rewrite

V̂2
Y,Z;δ(u;h) =

∫
Dδ

∣∣κT ϕ̂Y,Z;h(u; s1, s2)− ϕY,Z;h(u; s1, s2)

+ ϕY,Z;h(u; s1, s2)− ϕY ;0(u; s1)ϕZ;h(u; s2)

+ ϕY ;0(u; s1)ϕZ;h(u; s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)
∣∣2w(s1, s2) d(s1, s2).

By Cauchy-Schwarz inequality and recognizing that∫
Dδ

|ϕY,Z;h(u; s1, s2)− ϕY ;0(u; s1)ϕZ;h(u; s2)|2w(s1, s2) d(s1, s2) <∞,

it remains to show that∫
Dδ

∣∣κT ϕ̂Y,Z;h(u; s1, s2)− ϕY,Z,h(u; s1, s2)
∣∣2w(s1, s2) d(s1, s2) P−→ 0 (6.44)
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and ∫
Dδ

∣∣ϕY ;0(u; s1)ϕZ;h(u; s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)
∣∣2w(s1, s2) d(s1, s2) P−→ 0. (6.45)

For (6.44) note that∫
Dδ

∣∣κT ϕ̂Y,Z;h(u; s1, s2)− ϕY,Z;h(u; s1, s2)
∣∣2w(s1, s2) d(s1, s2)

≤ 2
∫
Dδ

(κT − 1)2|ϕ̂Y,Z;h(u; s1, s2)|2w(s1, s2) d(s1, s2)

+ 2
∫
Dδ

∣∣ϕ̂Y,Z;h(u; s1, s2)− ϕY,Z;h(u; s1, s2)
∣∣2w(s1, s2) d(s1, s2).

(6.46)

The first summand on the right-hand side tends to zero in probability since κT → 1 and
ϕ̂Y,Z;h is bounded (uniformly in T ). Following the lines of the proof of Corollary 4.1, we
obtain that

√
bT (ϕ̂Y,Z;h(u; s1, s2) − ϕY,Z;h(u; s1, s2))(s′1,s′2)′∈Dδ converges in distribution to

a complex centered Gaussian process with continuous sample paths. Together with the
continuous mapping theorem this gives asymptotic negligibility of the second summand
in (6.46). With the same arguments (6.45) can be obtained.
Step 2.
The assertion is an immediate consequence of the monotone convergence theorem.
Step 3.
We follow the lines of the proof of Theorem 2 in Szekely, Rizzo and Bakirov (2007). First,
note that

V̂2
Y,Z(u;h)− V̂2

Y,Z;δ(u;h)

=
∫
Rp+q\Dδ

|κT ϕ̂Y,Z;h(u; s1, s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)|2w(s1, s2) d(s1, s2).

and
Rp+q\Dδ ={(s′1, s′2)′ ∈ Rp+q | |s1|2 < δ} ∪ {(s′1, s′2)′ ∈ Rp+q | |s1|2 > 1/δ}

∪ {(s′1, s′2)′ ∈ Rp+q | |s2|2 < δ} ∪ {(s′1, s′2)′ ∈ Rp+q | |s2|2 > 1/δ}.
Hence, for symmetry reasons it suffices to show that ∀ε > 0

lim
δ→0

lim sup
T→∞

P

(∫
{(s′1,s′2)′∈Rp+q ||s1|2>1/δ}

|κT ϕ̂Y,Z;h(u; s1, s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)|2w(s1, s2) d(s1, s2) > ε

)
(6.47)

and

lim
δ→0

lim sup
T→∞

P

(∫
{(s′1,s′2)′∈Rp+q ||s1|2<δ}

|κT ϕ̂Y,Z;h(u; s1, s2)− ϕ̂Y ;0(u; s1)ϕ̂Z;h(u; s2)|2w(s1, s2) d(s1, s2) > ε

)
(6.48)

are equal to zero. For (6.47) we invoke expansion (6.43) of the integrand and Lemma 4.1∫
{(s′1,s′2)′∈Rp+q ||s1|2>1/δ}

|κT ϕ̂X,Y ;h(u, (s1, s2))− ϕ̂X;0(u, s1)ϕ̂Y ;h(u, s2)|2w(s1, s2)d(s1, s2)

=
∫
{(s′1,s′2)′∈Rp+q ||s1|2>1/δ}

∣∣∣ 1
T 4

T−h∑
t1,t2,t3,t4=1

4∏
j=1

Kb

( tj + h/2
T

− u
)

×
{(

1− cos(s′1(Y t3,T − Y t4,T ))
) (

1− cos(s′2(Zt3+h,T − Zt4+h,T ))
)

−2
(
1− cos(s′1(Y t2,T − Y t4,T ))

)
(1− cos

(
s′2(Zt3+h,T − Zt4+h,T ))

)
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+
(
1− cos(s′1(Y t1,T − Y t2,T ))

) (
1− cos(s′2(Zt3+h,T − Zt4+h,T ))

)}∣∣∣w(s1, s2) d(s1, s2)

≤ 8
∫
|s1|2>1/δ

1
cp |s1|

1+p
2

ds1

×
∫
Rq

1
T 4

T−h∑
t1,t2,t3,t4=1

4∏
j=1

Kb

( tj + h/2
T

− u
) (

1− cos
(
s′2(Zt3+h,T − Zt4+h,T )

)) 1
cq |s2|

1+q
2

ds2

≤ C

∫
|s1|2>1/δ

1
|s1|

1+p
2

ds1
1
T 2

T−h∑
t3,t4=1

4∏
j=3

Kb

( tj + h/2
T

− u
)
|Zt3+h,T − Zt4+h,T |

≤ C

∫
|s1|2>1/δ

1
|s1|

1+p
2

ds1

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
|Zt+h,T |.

Now, Markov’s inequality gives

(6.47) ≤ C lim
δ→0

∫
|s1|2>1/δ

1
|s1|

1+p
2

ds1 lim sup
T→∞

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
E|Zt+h,T | = 0.

The verification of (6.48) is more involved. We denote by X̄(u) = (Ȳ ′(u), Z̄ ′(u))′ a copy
of X̃1(u) which is independent of the DGP (Xt,T )Tt=1, T ∈ N. Using the inequalities of
Cauchy-Schwarz and Jensen, we obtain

∫
{(s′1,s′2)′∈Rp+q ||s1|2<δ}

|κT ϕ̂X,Y ;h(u, (s1, s2))− ϕ̂X;0(u, s1)ϕ̂Y ;h(u, s2)|2w(s1, s2)d(s1, s2)

=
∫
{(s′1,s′2)′∈Rp+q ||s1|2<δ}

w(s1, s2)
∣∣∣∣∣κTT

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
(eis

′
1Y t,T − Eeis′1Ȳ (u))(eis

′
2Zt+h,T − Eeis′2Z̄(u))

− 1
T 2

T−h∑
t1,t2=1

Kb

( t1 + h/2
T

− u
)
Kb

( t2 + h/2
T

− u
)
(eis

′
1Y t1,T − Eeis′1Ȳ (u))(eis

′
2Zt2,T − Eeis′2Z̄(u))

∣∣∣∣∣
2

d(s1, s2)

≤ 2
∫
{(s′1,s′2)′∈Rp+q ||s1|2<δ}

(
κT
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
|eis

′
1Y t,T − Eeis′1Ȳ (u)|2

)

×
(
κT
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
|eis

′
2Zt+h,T − Eeis′2Z̄(u)|2

)
w(s1, s2) d(s1, s2)

+ 2
∫
{(s′1,s′2)′∈Rp+q ||s1|2<δ}

1
T 2

∣∣∣∣∣∣
T−h∑
t1=1

Kb

( t1 + h/2
T

− u
)
(eis

′
1Y t1,T − Eeis′1Ȳ (u))

∣∣∣∣∣∣
2

×

∣∣∣∣∣∣
T−h∑
t2=1

Kb

( t2 + h/2
T

− u
)
(eis

′
2Zt2+h,T − Eeis′2Z̄(u))

∣∣∣∣∣∣
2

w(s1, s2) d(s1, s2)

≤ 4κ2
T

∫
|s1|2≤δ

1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
|eis

′
1Y t,T − Eeis′1Ȳ (u)|2 1

cp|s1|
1+p
2

ds1

×
∫
s2∈Rq

1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
|eis

′
2Zt+h,T − Eeis′2Z̄(u)|2 1

cq|s2|
1+q
2

ds2.
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With the same arguments as in Szekely, Rizzo and Bakirov (2007, page 2777f.), we obtain∫
s2∈Rq

1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
|eis

′
2Zt,T − Eeis′2Z̄(u)|2 1

cq|s2|
1+q
2

ds2

≤ 2
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
) (
|Zt+h,T |+ E|Z̄(u)|

)
and ∫

|s1|2≤δ

1
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
|eis

′
1Y t,T − Eeis′1Ȳ (u)|2 1

cp|s1|
1+p
2

ds1

≤ 2
T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
E
(
|Y t,T − Ȳ (u)|G(|Y t,T − Ȳ (u)|δ) |Y t,T

)
,

where
G(y) =

∫
|z|2≤y

1− cos(z1)
|z|1+p

2
dz, z = (z1, . . . , zp)′.

Summing up, we have for (6.48) by Markov’s inequality and Lebesgue’s dominated conver-
gence theorem
(6.48)

≤ lim
δ→0

lim sup
T→∞

P

(
16
T 2 κ

2
T

T−h∑
t1=1

Kb

( t1 + h/2
T

− u
) (
|Zt1+h,T |+ E|Z̄(u)|

)

×
T−h∑
t2=1

Kb

( t2 + h/2
T

− u
)
E
(
|Y t2,T − Ȳ (u)|G(|Y t2,T − Ȳ (u)|δ) |Y t2,T

)
> ε

)

≤ ηM + lim
δ→0

lim sup
T→∞

P

(
M

T

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
E
(
|Y t,T − Ȳ (u)|G(|Y t,T − Ȳ (u)|δ) |Y t,T

)
> ε

)

≤ ηM + lim
δ→0

lim sup
T→∞

M

T ε

T−h∑
t=1

Kb

( t+ h/2
T

− u
)
E
(
|Y t,T − Ȳ (u)|G(|Y t,T − Ȳ (u)|δ)

)
≤ ηM

with ηM → 0 as M → ∞. This leads to the desired result as G is bounded and G(y) → 0
with y → 0. �
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