Discussion Paper No. 17-017

Dynamic Scoring of Tax Reforms in the European Union

Salvador Barrios, Mathias Dolls, Anamaria Maftei, Andreas Peichl, Sara Riscado, Janos Varga, and Christian Wittneben
Discussion Paper No. 17-017

Dynamic Scoring of Tax Reforms in the European Union

Salvador Barrios, Mathias Dolls, Anamaria Maftei, Andreas Peichl, Sara Riscado, Janos Varga, and Christian Wittneben

Download this ZEW Discussion Paper from our ftp server:

Dynamic scoring of tax reforms in the European Union

Salvador Barrios, Mathias Dolls, Anamaria Maftei, Andreas Peichl, Sara Riscado, Janos Varga and Christian Wittneben

Abstract

In this paper, we present the first dynamic scoring exercise linking a multi-country microsimulation and DSGE models for all countries of the European Union. We illustrate our novel methodology analysing a hypothetical tax reform for Belgium. We then evaluate real tax reforms in Italy and Poland. Our approach takes into account the feedback effects resulting from adjustments in the labor market and the economy-wide reaction to the tax policy changes. Our results suggest that accounting for the behavioral reaction and macroeconomic feedback to tax policy changes enriches the tax reforms’ analysis, by increasing the accuracy of the direct fiscal and distributional impact assessment provided by the microsimulation model for the tax reforms considered. Our results are in line with previous dynamic scoring exercises, showing that most tax reforms entail relatively smaller feedback effects in terms of the labor tax revenues for tax cuts benefiting workers, compared with the ones granted to firms.

1 Contact author: Salvador Barrios, European Commission, Joint Research Centre (JRC), Fiscal Policy Analysis Unit, c/ Inca Garcilaso 3, E-41092 Sevilla, salvador.barrios@ec.europa.eu, https://ec.europa.eu/jrc/en/person/salvador-barrios. The views expressed are purely those of the authors and may not in any circumstances be regarded as stating an official position of the European Commission.
Acknowledgments

We are thankful for the valuable comments of the participants of the APPAM Fall Conference 2016 and the pre-APPAM conference organised by the Urban Institute in Washington DC. We are also thankful to Douglas Holtz-Eakin, Salvador Espinosa, Athena Kalyva, Savina Princen, Adriana Reut, Viginta Ivaskaite-Tamosiune and Wouter van der Wielen for their helpful insights.
1. Introduction

Assessing the revenue, behavioral and macroeconomic effects of tax reform proposals before their introduction provides important information to feed the political and public debate. The interaction between tax reforms and changes induced in the economy are multi-faceted and it is necessary to capture not only the reaction of economic agents to the tax reforms (in particular labor adjustment effects), but also the overall economic effect, including in the product and factor markets. Dynamic scoring techniques provide a useful tool for such analyses. In the US, dynamic scoring analyses are now well established and legally required before significant changes in tax legislation are implemented. In contrast to the US, dynamic scoring has not been applied in the fiscal governance framework in the European Union (EU) so far. Yet, such analysis would allow an in-depth evaluation of discretionary tax measures and a better assessment of the true fiscal policy stance which remain important issues in the EU (Buti and Van den Noord, 2004). Moreover, in a policy context where the European Commission analyses the fiscal and structural reform policies of every Member State ̶ providing recommendations, and monitoring their implementation according to an annual round of policy dialogue (the so-called European Semester) ̶ the analysis of how fiscal and structural reforms can affect national budgets as well as Member States’ economic performance is required. Accounting for macroeconomic feedback effects of tax reforms is also crucial for the determination of the cyclically adjusted fiscal balance which plays a key role in the European fiscal framework (see in particular Larch and Turrini, 2010).

In this paper we develop a dynamic scoring framework for modelling and analysing tax and benefit reforms. A key feature of our dynamic scoring approach is to combine EUROMOD, the microsimulation model for all European Union Member States, with QUEST, the European Commission’s DSGE model used for the analysis of structural reforms (including fiscal reforms). We demonstrate our methodology and show that the use of EUROMOD enriches the analysis of fiscal reforms in many respects. First, it allows for a precise translation of actual tax reform measures into policy shocks which is not possible using macroeconomic models alone that only differentiate between capital and labor taxes (see e.g. Mankiw and Weinzierl 2006, Leeper and Yang 2008, Trabandt and Uhlig 2011, Strulik and Trimborn 2012). EUROMOD contains all relevant rules of the tax-benefit systems in the EU Member States and allows for the simulation of direct taxes and benefits according to actual legislation and hypothetical reform scenarios. Second, we augment EUROMOD with a discrete choice labor supply model in order to account for labor responses to the tax reforms. Third, microsimulation models alone tend to ignore how tax reforms endogenously affect prices and volumes as well as monetary and fiscal variables in the economy that can lead to non-negligible second-round effects on tax-revenues. These effects can be consistently modelled in dynamic general equilibrium models.

2 See Adam and Bozio 2009 for a comprehensive assessment of the dynamic scoring exercise.
3 In the US, dynamic scoring analyses are conducted by the Joint Committee on Taxation (JCT) and the Congressional Budget Office (CBO). The JCT has been responsible for a macroeconomic impact analysis of changes in tax law since 2003. In addition, the CBO has incorporated these macroeconomic feedback effects into their estimates of fiscal effects if revenue effects exceeded $5 billion in any fiscal year. Since 2015, the JCT and the CBO are obliged to provide precise estimates for output and revenue feedback effects of major tax and mandatory spending changes (see Altschuler et al. 2005, Auerbach 2005, Furman 2006, Gravelle 2014, 2015 and Holtz-Eakin 2015 for more details).
4 For example, recently the European Commission has also started to collect data on estimates of the impact of discretionary tax measures relying on the Member States’ own assessment and providing information at a more disaggregated level (see in particular Barrios and Fargnoli, 2010).
5 See Sutherland (2001) and Sutherland and Figari (2013) for a description of the EUROMOD microsimulation model and Ratto et al. (2009) for details on the QUEST III model.
Fourth, in addition to the analysis of the macroeconomic and fiscal effects, we provide insights into the distributional effects of the reform scenarios under consideration which is novel to the previous dynamic scoring literature.6 To the best of our knowledge, this is the first example of dynamic scoring linking a multi-country microsimulation model with a multi-country dynamic general equilibrium model. We illustrate our approach with an analysis of hypothetical reforms of the Belgian social insurance system consisting in a reduction of the social insurance contributions for employees and employers. We also examine reform proposals made for Italy’s and Poland’s tax system and provide various robustness checks in order to assess the sensitivity of the macroeconomic effects of the tax reforms to the assumptions and calibration of the QUEST model. All reform scenarios can be precisely simulated in EUROMOD, and are straightforward examples of reforms affecting personal income taxes or social insurance contributions.

Our results suggest that accounting for labor supply responses and the macroeconomic feedback to tax policy changes enriches the evaluation of the tax reforms, by providing more accurate fiscal and distributional effects. We find modest self-financing effects for tax reforms lowering the employees’ tax burden. After 3 (5) years, the self-financing effect ranges between 6-7% (8-13%) in the three countries under consideration. Both the Belgium reform reducing social insurance contributions paid by employees as well as the tax cuts in Italy and Poland generate opposite responses of wages and employment. The reforms induce extensions of labor supply leading to higher employment, but lower wages. These counteracting effects explain why first-round revenue effects derived from the microsimulation model and second-round effects reflecting behavioural responses and the macroeconomic trajectories derived from the DSGE model differ only slightly. In contrast, we find substantial self-financing effects amounting to roughly 49% (50%) after 3 (5) years resulting from cuts in employers’ social insurance contributions in Belgium. In this case both wages and employment evolve positively because of the expansionary labor demand effect generated by the tax break. Our results are in line with the US dynamic scoring evidence (see Gravelle, 2015 and Mankiw and Weinzierl, 2006) showing that the revenue feedback effect is small for labor and personal income taxes, but significantly higher when the tax break is granted employers (e.g. Mankiw and Weinzierl find that, under standard conditions, up to half of a capital tax cut can be self-financed). In terms of distributional implications, we show that reductions in social insurance contributions in Belgium have regressive effects with increasing gains along the income distribution. The opposite is true in the Italian and in particular in the Polish case with households in the bottom half of the distribution benefiting most from the reforms.

The rest of the paper is organized as follows. Section 2 presents our modelling choices and describes in detail the micro and the macroeconomic models used in the dynamic scoring exercise. Furthermore, we discuss consistency and aggregation issues. Sections 3 and 4 illustrate our approach for hypothetical tax reforms in Belgium and tax reform proposals in Italy and Poland. Section 5 concludes.

6 Note that in a different literature microsimulation models are combined with Computable General Equilibrium (CGE) models (see e.g. Cockburn et al. 2014 and Bourguignon and Bussolo 2013). While many of these micro-macro linkages are static, there are some approaches that introduce dynamics through projections into the model. However, these models don’t feature labor market dynamics from optimizing firms as in our analysis using QUEST.
2. Modelling second-round effects of tax reforms
In this section, we first present an overview the methodological steps of the dynamic scoring exercise. Afterwards, we describe individually the different models involved in the exercise (Appendix A and Appendix B provide further information on the discrete choice labor supply model and on QUEST, respectively). Finally, we discuss aggregation issues arising from linking the micro and macro models.

2.1. Methodological framework
The methodological steps followed in our dynamic scoring exercise are summarized in Figure 1.

As shown in Figure 1, the first step our analysis consists in running EUROMOD for the baseline, i.e. for the actual tax-benefit system, and the reform scenarios. This is done to obtain the change in the implicit tax rates for employees and employers. In addition, we estimate a discrete choice labor supply model following the approach by Bargain et al. (2014) in order to derive labor supply elasticities.

In the second step, the macroeconomic analysis of the tax reforms is conducted by simulating the tax reforms in QUEST. For that purpose, QUEST is calibrated using the implicit tax rates and various labor market parameters (gross wages, labor supply elasticities, non-participation rate) from the first step. After introducing the policy shocks on the implicit average tax rates, we run the model in order to obtain the three years trajectories for the price level, employment and gross wages. Importantly, the macroeconomic projections from QUEST account for the behavioral reaction of firms (i.e. labor demand) which is missing from typical microsimulation models.

In the third step, we study the fiscal and distributional effects of the tax reforms by imputing the macro projections obtained in the second step into EUROMOD. This includes setting EUROMOD’s uprating factors for prices and wages by skills according to the QUEST trajectories for the next three years. In addition, the weights of the employed and the rest of the population in the micro-data input file are adjusted in order to match the change in the employment variable in QUEST.

7 In EUROMOD the monetary variables are in nominal terms, so we need to take into account the evolution of prices whenever the year of the policy system does not coincide with the reference year of the survey.
2.2 The labor supply discrete choice model
Our labor supply model is based on the assumption that households maximize utility and thereby face the standard consumption-leisure trade-off. In contrast to the classical “continuous choice” approach, we estimate a discrete choice model where agents face a discrete set of alternatives in terms of working hours. Individuals can choose to work zero hours, part-time (20 hours), full-time (40 hours) or over-time (60 hours) so that the choice covers both the extensive and intensive margin.8 Econometrically, our methodology entails the specification and estimation of consumption-leisure preferences, and the evaluation of utility at each discrete alternative.9 Utility consists of a deterministic part which is a function of observable variables, and an error term which can reflect optimization errors of the household, measurement error concerning the explanatory variables, or unobserved preference characteristics. For the deterministic part, we specify a utility function that depends on both household characteristics and characteristics of the hours category, i.e. the associated work and leisure times and the disposable income from working the respective amount of time, but also fixed costs of taking up work. By letting household characteristics enter the utility function, we allow for observed heterogeneity in household preferences. Household characteristics also influence how gross income translates into disposable income through the tax-benefit-function: disposable income is a function of household earnings, non-labor income, and household characteristics (e.g. age, marital status, number of children). For identification, we exploit the variation provided by nonlinearities and discontinuities inherent in the tax-benefit systems. This is the usual source of variation for models estimated on cross-sectional data that cannot rely on variation over time. Effective tax rates vary with household characteristics (such as marital status, age, family composition, virtual income, etc.). Although we include some of these characteristics in the estimated utility functions, tax-benefit rules condition on a richer variety of household characteristics (for example, detailed age of children, regional information or home-ownership status). Hence, the data provide variation in net wages that allows identifying the parameters of the econometric model. Appendix A provides additional information on the discrete choice model.

2.3 The microsimulation model, EUROMOD
EUROMOD is a tax-benefit microsimulation model covering all 28 member states of the European Union. The model is a static tax and benefit calculator that makes use of representative microdata from the EU-SILC and national SILC surveys to simulate individual tax liabilities and social benefit entitlements according to the rules in place in each member state. Starting from gross incomes contained in the survey data, EUROMOD simulates most of the (direct) tax liabilities and (non-contributory) benefit entitlements. The model is unique in its area as it integrates taxes, social benefits and models tax expenditures in a consistent framework, thus accounting for interactions which - in the

8 Discrete choice models have their theoretical roots in the Random Utility Model of McFadden (1974). They have become increasingly popular in the labor supply literature (see Dagsvik (1994), Aaberge et al. (1995), van Soest (1995) or Hoyanes (1996) for early contributions).

9 In contrast to the classical labor supply model where households choose from a continuous set of working hours (Hausman 1985), it is not necessary to impose tangency conditions, and in principle the model is very general. In practice, a functional form for the utility function has to be explicitly specified. However, the choice of functional form has no major influence on the estimated elasticities (see Löffler et al. 2014).
European case - can have a non-negligible impact, in particular in terms of work incentives (see in particular Barrios et al., 2016a).10

EUROMOD is used for the simulation of the baseline and reformed tax-benefit policies.11 Thus we obtain the changes in the implicit tax rates levied on employees and employers. Furthermore, in order to estimate the labor supply model, disposable income \(C_{ij}\) is calculated for each discrete choice category \(j\) and each household \(i\) by aggregating all sources of household income, adding benefits (family and social transfers), and subtracting direct taxes (on labor and capital income) and social insurance contributions.12

\subsection*{2.4 The macroeconomic DSGE model, QUEST}

The macroeconomic model used in this analysis is an extension of the European Commission New-Keynesian model, QUEST III (see Ratto et al. 2009), to include different skilled workers, and hereafter referred simply as QUEST. The QUEST model is the standard model used by the European Commission to analyse the impact of fiscal scenarios and structural reforms in the EU Member States (see for instance Vogel, 2012, in ‘t Veld 2013, Varga and in ‘t Veld, 2014). As a fully forward-looking dynamic general equilibrium model, QUEST can capture the behavioral responses of major macroeconomic variables in an open economy context, going beyond the direct, static impact of specific tax reforms measured by EUROMOD. Moreover, the labor market modelled in QUEST is strongly based on microeconomic theory and sufficiently general to adapt to the different labor market institutions of the EU countries. More specifically, the model-version used for this exercise is a three-region open-economy model, calibrated for the country of interest, the (rest of) euro area and the rest of the world. For each region, the model economy is populated by households and final goods producing firms. There is a monetary and fiscal authority, both following rule-based stabilisation policies. The domestic and foreign firms produce a continuum of differentiated goods under monopolistic competition. In order to measure the distributional consequences of policies we introduce three skill groups into the model earning different wages. By using the ISCED education classification, we define the share of population with up to lower secondary education (ISCED 0-2) as low-skilled, with up to upper secondary, non-tertiary education (ISCED 3-4) as medium skilled and the rest of the population as high-skilled. Appendix B explains in detail the main blocks of our macro model – households, firms, policies and trade.

10 Note that some tax expenditures in EUROMOD are not modelled, especially when these are deductible against personal expenses, e.g. in particular education or health related tax expenditure. For an extension of spending-related tax expenditure in EUROMOD see Barrios et al. (2016b).

11 We use the latest available version “G3.0+” of EUROMOD for our study, which includes tax and benefit systems for 28 countries of the European Union, from 2005 (varies across countries) up to 2015. The underlying micro data have been further harmonized within the EUROMOD project, to ensure similar income concepts are used together with comparable variable definitions (e.g. for education).

12 In practical terms, the link between EUROMOD and the labor supply model is implemented according to the following methodological steps. First, we estimate the hourly wage rate using a Heckman selection model. Next, we calculate gross earnings for each hypothetical hours choice under the assumption that that the predicted hourly wage rate does not depend on the number of hours supplied in the labor market. For instance, for a single (couple) household, we obtain four (16) different gross labor incomes (describing all possible combinations of hours that can be chosen by the two partners).
2.5. Aggregation issues

The interaction between the micro and macroeconomic models described above raises consistency issues related with the way agents’ heterogeneity is handled in each of the frameworks. On the one hand, the discrete choice model allows us to obtain estimates of labor supply responses at the household micro data level. On the other hand, the QUEST model provides the general equilibrium effects focusing on representative households, workers and firms, and the impact on overall macromeconomic outcomes. This means that we need to combine different degrees of heterogeneity and methods of handling this heterogeneity among models. We will focus the discussion on aggregation on the choice of selected structural parameters of QUEST and the role of the labor market in shaping the interaction between the microsimulation model and the macro-DSGE model.

Aggregation is a controversial topic when using dynamic stochastic general equilibrium models for policy predictions. Chang et al. (2013) find biases in policy predictions due to the lack of invariance in the structural parameters in representative agent models. An important strand of the literature has been investigating the structural nature of the preferences and technology parameters of DSGE models under different policy regimes, including Altissimi, Siviero and Terlizzi (2002), Fernández-Villaverde and Rubio-Ramirez (2008), Cogley and Yagiashi (2010), to cite just a few. This question has direct implications for the methods chosen to take DSGE models to the data, i.e. to quantitatively evaluate these models. In this paper, we calibrate QUEST by selecting behavioral and technological parameters so that the model replicates important empirical ratios such as labor productivity, investment, consumption to GDP ratios, the wage share, the employment rate, given a set of structural indicators describing market frictions in goods and labor markets, tax wedges and skill endowments. 13 Most of the variables and parameters are taken from available statistical or empirical sources from the literature. The remaining parameters are pinned down by the mathematical relationships of the model equations and by the steady-state conditions. Regarding the labor market, we calibrate QUEST using the micro-econometric information supplied by EUROMOD extended by the labor supply discrete choice model, in order to ensure consistency between the two models. In this way, we use the estimates for labor supply elasticities, by skill level, to calibrate the parameter \(\kappa \) of the household utility function for the different skill groups considered (see Appendix B and C). In doing so, we assume that these elasticities are structural parameters which are tied to the utility function and remain unchanged under a policy reform scenario. This means that we implement the tax reform in QUEST by matching the tax rates on labor paid by employees (\(t_{lw} \)) and employers (\(t_{ler} \)) to the implicit tax rates obtained from our microsimulation model. Note finally that in QUEST households only decide on the amount of hours supplied in the labor market, but they do not choose between unemployment and non-participation, explicitly. The non-participation rate is calibrated as the proportion of inactive agents in the total population. The non-participation rate \(\left(N\text{PART} \right) \) must therefore be seen as an exogenous policy variable characterising the generosity of the benefit system. However, in our discrete choice model the choice of non-participation, or being unemployed voluntarily, is one of the possible alternatives of individual \(i \). The choice of participating in the labor market is nested together with the decision on supplying different number of hours (which can be seen as the different working modalities). We reconcile the two models on this issue by calibrating in QUEST the non-participation rate according to the expected number of individuals that choose to be out of the labor market. Technical derivations of the labor supply function and respective elasticities in

13 Supplementary data associated with the calibration of the QUEST III model can be found in the online version of Ratto et al. (2009) at http://publications.jrc.ec.europa.eu/repository/handle/JRC46465.
both the micro and macroeconomic settings are presented in Appendix C where we also present a detailed description on the tax incidence assumptions in QUEST.

3. Illustration: hypothetical social insurance contributions cuts in Belgium

To illustrate the usefulness of our methodology, we analyse tax reforms in three EU Member States: Belgium, Italy and Poland. In all three countries, the selected reforms aim at reducing the tax burden on labor. While in the Belgium case both employees and employers benefit from the tax reductions, the reform proposals for Italy and Poland only affect the labor supply side. In this section, we focus on a hypothetical reform in Belgium which would reduce the social insurance contributions paid by employees and employers. More precisely, we simulate:

i. a reduction of the social insurance contributions rate paid by employees from 13.07% to 9.07% (by cutting 3 pp from pensions and 1 pp from health contributions);

ii. a reduction of the standard social insurance contributions\(^{14}\) rate paid by employers from 25.36% to 17.75% (by cutting 5 pp from pensions and 2.6 pp from health contributions).

In both scenarios, the total statutory tax rate of the social insurance contributions paid by employees and employers is cut by 30%, and we have translated this tax cut on the same specific contributions – pensions and health contributions – so that the reforms "mirror" each other and their fiscal and distribution impact can be directly compared.

3.1. First step: Labor market characterization and policy shocks

We first estimate the labor supply elasticities, the expected voluntary unemployment rate (non-participation rate) and calculate the change in implicit tax rates (the policy shocks) which will be used to calibrate QUEST.\(^ {15}\)

Labor supply elasticities and non-participation rates

Labor supply elasticities are estimated using the discrete choice labor supply model described in section 2.2. They are used to calibrate the parameter \(\kappa\), that determines the Frisch elasticity in the DSGE model QUEST, as explained in detail in Appendix C (equations C.23 to C.41). The expected number of voluntary unemployed is also obtained from the discrete choice model based on the estimated probability of choosing to supply zero hours in the labor market (see equation (C.22) derived in Appendix C). The elasticities, the corresponding value for parameter \(\kappa\) as well as the non-participation rate – calculated for three skill categories, respectively – are shown in Table 1. In line

\(^{14}\) These standard social insurance contributions include contributions for pensions, healthcare, disabilities, unemployment, family allowances, accidents at work (standard and special), work-related illness (standard and asbestos fund), educational leave, integration and guidance programs for youth, daycare provision and (re)employment of vulnerable groups. The referred contributions have been substituted by the "global social insurance contribution", as for 2016.

\(^{15}\) In order to obtain the elasticities and the expected voluntary unemployment rate, we use version G3.0 of the EUROMOD microsimulation model, together with the datasets based on the 2012 version of EU-SILC. This is the most recent dataset available that can be linked with tax-benefit rules for the income reference period which is necessary for the estimation of the labor supply model. For the simulation of the tax reforms, we choose 2013 tax-benefit rules as the baseline. This is the most recent policy year that can be simulated with EUROMOD at the time of writing this paper. Uprating factors are used to update the non-simulated income components to 2013.
with the literature, we find that labor-supply elasticities as well as non-participation rates are highest for the low-skilled (see e.g. Bargain et al. 2014).

Table 1. Calibration of labor supply elasticity parameter and nonparticipation rates, by skill level, in QUEST

<table>
<thead>
<tr>
<th>Labor supply elasticities</th>
<th>Parameter (\kappa)</th>
<th>Non participation rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>0.357</td>
<td>0.395</td>
<td>0.716</td>
</tr>
<tr>
<td>0.351</td>
<td>0.631</td>
<td>0.978</td>
</tr>
<tr>
<td>0.057</td>
<td>0.107</td>
<td>0.246</td>
</tr>
</tbody>
</table>

Policy shocks
The reform of the Belgium tax and benefit system is implemented in EUROMOD by changing the social insurance contribution rates levied on employees and employers. We employ the implicit tax rate formula used by the European Commission (2013) in order to derive the implied change in employees’ and employers’ tax burden in the baseline and reform scenarios for low, medium and high-skilled workers, respectively:

\[
itr_s = \sum_i w_i * PIT_i + SIC_{EE} + SIC_{ER} \over \text{Gross Wages} + SIC_{ER}, \ s \in \{H, M, L\}
\]

\(w_i \) is the ratio of wages relative to the total taxable income of taxpayer \(i \):

\[
w_i = \frac{\text{Gross wages}_i}{\text{Total Taxable Income}_i}
\]

\(PIT_i \) is the personal income tax liability of individual \(i \), \(SIC_{EE} \) and \(SIC_{ER} \) are the social insurance contributions paid by employees and employers, respectively. From the \(itr_s \) expression, we can derive the implicit tax rates for employees (\(itr_{EE,s} \)) and employers (\(itr_{ER,s} \)):

\[
itr_{EE,s} = \sum_i w_i * PIT_i + SIC_{EE} \over \text{Gross Wages} + SIC_{ER}, \ s \in \{H, M, L\}
\]

and

\[
itr_{ER,s} = \frac{SIC_{ER}}{\text{Gross Wages} + SIC_{ER}}, \ s \in \{H, M, L\}
\]

In QUEST, the corresponding tax policy variables are the statutory tax rates on labor and firms, \(t_w \) and \(t_{er} \), respectively. They are defined in terms of gross wages, that is, the tax burden levied on employees and firms is given by \(t_w * \text{Gross Wages} \) and \(t_{er} * \text{Gross Wages} \), respectively.16 Statutory and implicit tax rates are related as follows:

\[
t_{w,s} * \text{Gross Wages} = \left(\sum_i w_i * PIT_i + SIC_{EE} \right) = itr_{EE,s} * \left(\text{Gross Wages} + SIC_{ER} \right)
\]

and

\[
t_{er,s} * \text{Gross Wages} = SIC_{ER} = itr_{ER,s} * \left(\text{Gross Wages} + SIC_{ER} \right)
\]

16 See Appendix C for a description of the tax incidence analysis in QUEST.
It follows that:

\[t_{er,s} = \frac{i \tau_{ER,s}}{1 - i \tau_{ER,s}} \]

and

\[t_{w,s} = \frac{i \tau_{EE,s}}{1 - i \tau_{ER,s}} \]

In this way, we are able to introduce the changes in the implicit tax rates simulated in EUROMOD as policy shocks in QUEST. Note that these changes are so-called ‘morning-after’ effects and do not include any behavioral responses, neither from workers nor from firms. Table 2 presents implicit tax rates, statutory tax rates as well as the policy shocks following the reforms.

Table 2. Implicit tax rates, statutory tax rates and policy shocks for the Belgium reforms

<table>
<thead>
<tr>
<th>REFORMS</th>
<th>30% Reduction on the SICee tax rate</th>
<th>30% Reduction on the SICer tax rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Implicit tax rates paid by employees (EUROMOD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>27.8%</td>
<td>22.9%</td>
</tr>
<tr>
<td>Reform</td>
<td>25.9%</td>
<td>20.9%</td>
</tr>
<tr>
<td>Change (pp)</td>
<td>-1.96</td>
<td>-2.00</td>
</tr>
<tr>
<td>Implicit tax rates paid by employers (EUROMOD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>16.9%</td>
<td>20.6%</td>
</tr>
<tr>
<td>Reform</td>
<td>16.9%</td>
<td>20.6%</td>
</tr>
<tr>
<td>Change (pp)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Tax rates on labor income paid by employees (QUEST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>33.5%</td>
<td>28.8%</td>
</tr>
<tr>
<td>Reform</td>
<td>31.1%</td>
<td>26.3%</td>
</tr>
<tr>
<td>Shocks (pp)</td>
<td>-2.35</td>
<td>-2.52</td>
</tr>
<tr>
<td>Tax rates on labor income paid by employers (QUEST)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>20.3%</td>
<td>25.9%</td>
</tr>
<tr>
<td>Reform</td>
<td>20.3%</td>
<td>25.9%</td>
</tr>
<tr>
<td>Shocks (pp)</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

The reforms reduce the implicit tax rates calculated with EUROMOD and, correspondingly, the statutory tax rates of employees and employers entering QUEST. It follows from the formulae for implicit tax rates shown above that the reduction of the social insurance contributions paid by employees changes the implicit tax rates of this group only, while the reduction of the employer contributions changes both the implicit tax rates of employers and employees. Table 2 shows further that the size of the policy shock in case of the reduction of employees’ contributions is relatively small (roughly -2.5 pp across skill groups) compared to the policy shock in case of the reduction of employers’ contributions. The latter ranges from -3.7pp for high-skilled to -5.5 pp for low-skilled workers.
Labor supply effects from the augmented microsimulation model

We report labor supply responses to the employees social insurance reform in terms of aggregate weekly full time equivalent jobs in Table 3,\(^{17}\) separately for the intensive and extensive margin.\(^{18}\) The predictions for the baseline and the employees social insurance contribution reform are based on the estimated labor supply model described in section 2.2.\(^{19}\)

Table 3: Employment effects from the Belgian employees reform

<table>
<thead>
<tr>
<th>Changes in full time equivalents</th>
<th>total</th>
<th>intensive</th>
<th>extensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% Reduction on the SICee tax rate</td>
<td>baseline</td>
<td>2,920,764</td>
<td>2,735,788</td>
</tr>
<tr>
<td></td>
<td>reform</td>
<td>2,957,053</td>
<td>2,768,090</td>
</tr>
<tr>
<td></td>
<td>% change</td>
<td>1.242</td>
<td>1.181</td>
</tr>
</tbody>
</table>

We find particular large effects on the extensive margin. This is in line with the literature,\(^{20}\) and also confirmed by our findings of larger extensive than intensive margin elasticities.

Recall that we consider a decrease in social insurance contributions on both the employer and the employee side. As we start our analysis with the microsimulation model, the labor supply effects reported in Table 3 for Belgium are the effects from the decrease in employee SIC only, as the decrease on employer SIC does not affect household disposable incomes at this stage.\(^{21}\) The reform leads to an increase in aggregate labor supply of 1.24%.

3.2. Second step: The macroeconomic impact

We calibrate QUEST for Belgium, the rest of the euro area and the rest of the world.\(^{22}\) As explained in the previous section, we calibrate the parameter \(\kappa\) and the non-participation rate, \(\text{NPART}\), based on the elasticities and predicted labor supply responses obtained from the discrete choice model. The changes in the implicit tax rates on labor paid by employees and employers are introduced as permanent policy shocks in QUEST. For that we have also set off the debt-stabilization rule (equation (B.21) in Appendix B) for the first fifteen years, otherwise the tax rate on labor income paid by employees would automatically change after the shock in order to close the deficit generated by the tax cut, as expressed in equation (B.21) in Appendix B.

\(^{17}\) We calculate full time equivalents by dividing aggregate expected weekly working hours by 40.

\(^{18}\) The intensive margin is the hours effect on those observed to be working, while the extensive effect is the change in hours for those observed to be not working (see Bargain et al. 2014). The total effect is the average of intensive and extensive margin effects, weighted by their respective share of the population.

\(^{19}\) We only report results on aggregate hours. Detailed regression results of the discrete choice model are available on request.

\(^{21}\) In principle, second-round effects can occur if the decrease in employer SIC is not fully born by employers, but passed on to the workers. In our modelling framework, second-round effects are considered in QUEST.

\(^{22}\) For a complete description of the full calibration of QUEST see the online version of Ratto et al. (2009) at http://publications.jrc.ec.europa.eu/repository/handle/JRC46465. In this paper, we focus only on the calibration of selected parameters related directly to the labor market.
Impulse responses and tax incidence

The introduction of the shocks for each of the reforms in QUEST originates impulse responses for the model's endogenous variables. Selected impulse response functions for the labor market variables – net real wages, total compensation of employees, gross real wages, and employment – generated by the fiscal shocks produced by each of the reforms implemented above can be found in the Appendix D (graphs D.1 to D.8).

Graphs D.1 to D.4 show the impulse response functions of the reform on employees contributions. We observe that net real wages of all skill groups jump immediately after the tax cuts are introduced and remain relatively stable afterwards. The total compensation of employees falls for all skill groups but in a smoother way, since, for this reform, the tax burden of employers remains constant in our simulations and the changes derive only from the smooth decrease in gross wages, as we can observe from graph D.3. Employment increases over the simulation period.

Graphs D.5 to D.8 show the impulse response functions related with the reform on employers contributions. In this case, the total compensation of employees immediately drops for all skill groups after the tax cut is introduced. It then begins to smoothly recover along the period of analysis due to the increase in gross wages (see graph D.7) which is also driving the evolution of net real wages (graph D.5). Employment increases over the simulation period as in the previous reform.

Although the general equilibrium effects influence the numerical results – since output, consumption, capital utilisation and prices are fully endogenous in the model – the partial equilibrium analysis of Figures 2 and 3 can illustrate the basic wage setting mechanism in the QUEST model and explain the impulse response functions just described. These figures also illustrate the role played by tax incidence after the different policy shock are introduced in QUEST. In Figures 2 and 3, \(L_D \) is the labor demand function (corresponding to equation (B.15) in Appendix B), and \(L_S \) is the labor supply function (equivalent of equation (B.7) in Appendix B). For simplicity, we assume that all other variables are constant, except real gross wages and labor, and there are no adjustment costs. Let us also assume that in this partial equilibrium setting movements of the labor supply and labor demand functions are only due to the changes in the labor tax rates, \(t_w \) and \(t_{er} \), i.e. due to the policy shocks.

Figure 2. QUEST partial-equilibrium effects of the reduction of social insurance contributions paid by employees

Figure 3. QUEST partial-equilibrium effects of the reduction of social insurance contributions paid by employers

23 Net real wages are defined as gross wages minus taxes paid by employees, as in expression (C.42) in Appendix C.

24 Total compensation of employees is defined as the sum of gross wages with the taxes paid employers on labor income, as in expression (C.43) in Appendix C.
From Figure 2, we observe that when t_{w} decreases workers are willing to offer more labor services for all levels of the gross wage, and L_{S} moves down and to the right (i.e. from L_{S}^{0} to L_{S}^{1}). In the new equilibrium E_{1}, gross wages are lower and firms will be willing to hire more labor. This result is indeed confirmed by our impulse response functions for wages and employment (graphs D.3 and D.4). These results are also consistent with the partial equilibrium analysis of tax incidence described analytically in Appendix C. In particular, the responses of net wages and of the total compensation of employees to an increase in labor tax are negative and positive, respectively, and are constrained by the elasticity of labor supply ($\varepsilon_{L,S} > 0$) and labor demand ($\varepsilon_{L,d} < 0$). Our shocks imply that $\bar{t}_{w} < 0$ and $\bar{t}_{er} = 0$, then from equation (C.49) gross wages should go down, i.e. $\bar{W} < 0$. In the same way, and now from equation (C.51), we should expect the net wages to rise in the new equilibrium. Note that $(\bar{t}_{w} + \bar{t}_{er}) < 0$, and, according to equation (C.51), there is an inverse relationship between the change in total taxes on labor income and net wages. This is also confirmed by the impulse response functions of the net wages (graph D.1). Finally, in what concerns the total compensation of employees paid by the firms, and according to equation (C.53), we should expect it to decrease. Equation (C.53) implies a positive relationship between the change in total taxes on labor income and the total compensation. In our case, $(\bar{t}_{w} + \bar{t}_{er}) < 0$. So, the total compensation of employees will decrease in the new equilibrium. Again this is shown in the impulse response functions of the total compensation of employees, in graph D.2.

A similar analysis can be done from Figure 3. When t_{er} decreases firms are willing to hire more labor services for all levels of the gross wage, and L_{D} moves up and to the right (i.e. from L_{D}^{0} to L_{D}^{1}). In the new equilibrium E_{1}, gross wages are lower and firms are willing to hire more labor at the new wage rate. This result is indeed confirmed by the impulse response functions for wages and employment (graphs D.3 and D.4). Again drawing from our tax incidence analysis and since our shocks imply that $\bar{t}_{w} = 0$ and $\bar{t}_{er} < 0$, from equation (C.49) gross wages should go up, i.e. $\bar{W} < 0$. In the same way, and now from equation (C.51), we should expect the net wages to rise in the new equilibrium, $(\bar{t}_{w} + \bar{t}_{er}) < 0$, and, according to equation (C.51), there is an inverse relationship between the change in total taxes on labor income and net wages. This is also confirmed by the impulse response functions of the net wages (graph D.5). Finally, in what concerns the total compensation of employees paid by the firms, and according to equation (C.53), we should expect it to decrease. Since $(\bar{t}_{w} + \bar{t}_{er}) < 0$, the total compensation of employees will decrease in the new equilibrium. Again this is shown in the impulse response functions of the total compensation of employees, in graph D.6.
Sensitivity analysis

We have also performed a sensitivity analysis in order to understand how dependent our results are on the type of shocks considered and on selected QUEST parameters and variables. In this way, we have considered the following three alternative scenarios as a comparison with the reform on the employers contributions:

i. **Scenario 1:** To replicate the policy shocks of the employers contributions reform on the employees contributions leaving unchanged the baseline social insurance contributions rate paid by employers. This means that ex-ante, without any behavioral effect one would get exactly the same cut in labor tax revenues from this reform and the previous reform on employers contribution.

ii. **Scenario 2:** To consider a new baseline with half of the Frisch elasticities of the original estimates, for each skill group, and apply the policy shocks derived from the employers contributions reform.

iii. **Scenario 3:** To consider a new baseline with half of the nominal wage and price adjustment costs and apply the policy shocks derived from the employers contributions reform.

Figures 4 to 6 below show the impulse responses for selected variables – labor tax revenues, total gross wages and total employment – obtained for each of the three scenarios described above and for the reform on employers contributions. Besides these four scenarios, Figure 4 also plots the static revenue estimate scenario, which reflects only the mechanical tax cut on the employers social insurance contributions without the endogenous wage and employment response (denoted by "SICer reform no behavior").

Figure 4. Labor tax revenues impulse responses (quarterly pp deviations from baseline)

![Graph showing labor tax revenues impulse responses](image)

Figure 5. Total gross wages impulse responses (quarterly pp deviations from baseline)

Figure 6. Total employment impulse responses (quarterly pp deviations from baseline)
From Figure 4, we observe that labor tax revenues decrease upon the policy shock for all the cases considered, as expected. However, we observe that when the tax cut is implemented by cutting the employers social insurance contributions, the decrease in these revenues gets smaller over the period of analysis, revealing that this reform is to some extent self-financing. This self-financing effect can be explained by the trajectories of wages and employment: from Figures 5 and 6, we observe that when the tax cut affects firms, both the wage and employment have increasing trajectories. This result is robust with respect to the labor supply elasticity, the wage and price adjustment costs: the impulse responses obtained for scenarios 2 (lower Frisch elasticity) and 3 (lower nominal wage and price adjustment costs) follow closely the ones for the employers social insurance contribution reform. From Figure 4, we also observe that in scenario 1 – where exactly the same tax cuts assigned before to employers are now granted to employees – labor tax revenues decrease steadily over the period of analysis. This result can be explained by the wage and employment trajectories shown in Figures 5 and 6: when the tax cut affects employees only, the wage and employment effects cancel each other. As a consequence, we obtain only very modest self-financing effects which are close to the "no-behavior" situation. This result is in line with the trajectories obtained for wages and employment for employee social insurance contributions reform (see Table 4 below).

Feedback effects

Following the standard practice in dynamic scoring exercises, we can also quantify the behavioral feedback effects of the reforms. Table 3 shows the revenue feedback effect for each scenario which is defined as the percentage difference of the revenue effect produced by the macroeconomic model relative to the static revenue estimate (see JCT, 2005). This measure allows us to quantify the extent to which the reforms are self-financing through economic growth (in our context changes in wages and employment). We also decompose the revenue feedback effect into the endogenous feedback contribution from wages and employment respectively.

Table 3. Decomposing the revenue feedback effects of tax reform scenarios (% changes relative to static estimates)

<table>
<thead>
<tr>
<th>Years</th>
<th>3 ys</th>
<th>5 ys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee tax-cut, BE</td>
<td>6.4</td>
<td>12.9</td>
</tr>
</tbody>
</table>
The reform implemented on the workers’ side generates lower feedback effects compared to the reduction of firms’ tax burden. By the end of the three year period, the combined effect of wages and employment accounts for self-financing of about 6.4% of the reduction in total labor tax revenues in case of the reform of employees’ social insurance contributions. The self-financing effect amounts to almost 50% in case of the employers’ social insurance contribution reform. The magnitude of these feedback effects is close to the dynamic scoring results of Mankiw and Weinzierl (2006). These authors find that in a standard neoclassical model, up to half of a capital tax cut can be self-financing. However, they obtain substantially lower feedback effect from a labor tax cut, ranging from 0% to 17% depending on the labor supply elasticity.25 Other dynamic scoring studies including JCT (2005) and Trabandt and Uhlig (2011) report similar patterns for labor and capital tax reform scenarios. Our model-simulations confirm the same pattern with respect to cuts in employee vs. employer paid taxes on labor. In line with the theoretical predictions (see Figure 2-3), Table 3 illustrates that this result is due to the different behavioral effects of wages under the two scenarios: decreasing the firms’ tax burden induces an upward pressure on wages, increases the tax-base and the corresponding self-financing rate is up to 37½% after five years. On the other hand, cutting the tax burden on employees has the opposite effect on the tax-base due to the downward pressure on wages and the corresponding self-financing rate is down by around 10 pp.. Notice, that the feedback effect from employment is positive in both cases: higher employment increases the tax-base and the corresponding self-financing rates are up by around 23 pp. (employee tax-cut) and 13 pp. (employer tax-cut) respectively after five years.

Macroeconomic trajectories

The final annualized macroeconomic impact on the variables of interest from the tax reforms is summarized in Table 4 below.

Table 4. Macro impact of the tax reforms (annualized % deviation from baseline) on the variables of interest, based on QUEST simulations

<table>
<thead>
<tr>
<th>REFORMS</th>
<th>30% Reduction on the SICee tax rate</th>
<th>30% Reduction on the SICer tax rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T+1</td>
<td>T+2</td>
</tr>
<tr>
<td>Price level</td>
<td>-0.043</td>
<td>-0.101</td>
</tr>
<tr>
<td>Employment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low skilled</td>
<td>0.171</td>
<td>0.444</td>
</tr>
<tr>
<td>Medium skilled</td>
<td>0.233</td>
<td>0.556</td>
</tr>
<tr>
<td>High skilled</td>
<td>0.278</td>
<td>0.614</td>
</tr>
</tbody>
</table>

Note: Positive percentage change indicates that the estimated revenue loss is less when the macroeconomic effects are taken into account while negative percentage change indicates higher revenue loss compared to the static estimate.

25 In general, they find that, independently on how labor supply is calibrated, "if capital and labor tax rates start off at the same level, cuts in capital taxes have greater feedback effects in the steady state then cuts in labor taxes".
As already mentioned, the main difference between the two reforms consists in the sign of the trajectories for wages: while the cut in the social insurance contributions paid by workers generates downward trajectories for wages for all skill-groups, the reduction in the employers' contributions generates upward ones. This implies counteracting behavioral effects in the context of the employees reform, resulting in small but non-negligible differences between the "no behavior" and "behavior" scenarios considered in the last step of our analysis, as we will confirm in the next section.

3.3. Third step: Microsimulation results

In the third step of our dynamic scoring exercise, we input the impulse responses for employment, gross real wages and consumer price index generated by the QUEST model back into the microsimulation model in order to assess the medium-term projections in tax revenues, contributions, benefits and disposable incomes. In addition, we simulate a second scenario in which the second round effects, i.e. the macroeconomic feedback and behavioral response to the tax change, are disregarded.

We analyse both scenarios over the period t_1 to t_3 and compare the variation in tax revenues, social insurance contributions, and disposable income against the baseline. More precisely, we apply the tax system of the baseline policy year t_0 to the subsequent three years, accommodating only the adjustments in the monetary variables by using the standard uprating factors. As explained previously, in EUROMOD, the uprating factors are utilized as discount factors to update monetary variables to the price level of the year for which the tax system is analysed. This update is necessary because the input data files to EUROMOD always come with a lag, given that they are survey data. The input data files used here are based on EU-SILC 2012 survey data, which do not correspond with the most recent (simulated) tax-benefit system that is modified with the simulated reforms. Therefore, the uprating factors allow for time consistency between the monetary variables of the survey and the tax system under analysis.

We assess the fiscal and equity impact of the tax reforms embedding the second-round effects by amending the uprating factors and the weights in the household micro-data according to the macroeconomic feedback provided by the QUEST model (Table 4) for prices, employment and wages. This is done as follows:

a) We incorporate the macro impact of the tax reforms on employment by adapting the input dataset to accommodate the QUEST trajectories for the medium-term. In order to do so, we create micro-datasets for each year of analysis (t_1, t_2, t_3). For each skill group, the weights of the employed are increased according to the corresponding impulse response, while the

<table>
<thead>
<tr>
<th>Gross real wage</th>
<th>Low skilled</th>
<th>Medium skilled</th>
<th>High skilled</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.225</td>
<td>-0.334</td>
<td>-0.397</td>
</tr>
<tr>
<td></td>
<td>-0.437</td>
<td>-0.566</td>
<td>-0.628</td>
</tr>
<tr>
<td></td>
<td>-0.527</td>
<td>-0.619</td>
<td>-0.627</td>
</tr>
<tr>
<td></td>
<td>1.379</td>
<td>1.336</td>
<td>1.143</td>
</tr>
<tr>
<td></td>
<td>2.867</td>
<td>2.749</td>
<td>2.282</td>
</tr>
<tr>
<td></td>
<td>3.576</td>
<td>3.370</td>
<td>2.732</td>
</tr>
</tbody>
</table>

26 The only shortfall of this approach concerns the missing uprating factors for the policy year 2016 (as the latest available version of EUROMOD at the time of the analysis ran on the 2015 tax and social benefit system). In order to overcome this limitation, for each monetary variable we estimate the 2016 uprating factors by taking into account the European Commission forecast of proxy variables (or the same variable, when available). The macroeconomic forecasts are publicly available in the AMECO database (http://ec.europa.eu/economy_finance/db_indicators/ameco/index_en.htm).
weights of the unemployed are scaled down keeping the total population constant. In this way, the employment effect estimated in QUEST is fully implemented as an extensive margin effect in the household micro-data.

b) The impulse response for the consumer price index is integrated in EUROMOD as a correction of the correspondent uprating factor.

c) For gross wages we apply the same approach as for the CPI, with the only exception of having uprating factors for each skill category.

We subsequently run the microsimulation model to quantify the overall budgetary and distributional effects of the reforms under the two scenarios.

The microsimulation results are presented in detail in Figures 7-12. Figures 7 and 8 present the impact on the two affected subcomponents of employee and employer social insurance contributions – pension and health insurance contributions – while Figures 9 to 12 show the impact on broader categories of tax revenues (i.e. government revenue from personal income taxes and social insurance contributions) as well as the impact on household disposable income by income decile.

Figure 7. Employee contribution impact in EUROMOD incorporating macro feedback on prices, wages and employment – Belgium

Figure 8. Employer contribution impact in EUROMOD incorporating macro feedback on prices, wages and employment – Belgium
Figures 7 and 8 show that:

When the reform is implemented on the workers’ side, the employee social insurance contributions decrease both in the presence and in the absence of second-round effects. In t_1 and t_2, the drop is larger in the scenario accounting for second-round effects since the new equilibrium in the labor market implies lower gross wages, and consequently lower social insurance contributions. However, we find that the positive employment effect counterbalances the negative wage effect leading to a lower tax revenue loss in t_3. The overall tax revenue loss is similar in both scenarios. Pension (health) insurance contributions decrease by around 40% (28%).

When the reform is implemented on the firms’ side, the employer social insurance contributions decline at different rates, depending on the affected tax category. In the scenario ignoring behavioral responses, the loss in health insurance contributions amounts to almost 40% in year t_1. It is more significant for pension insurance contributions (roughly 57%). In the scenario accounting for second-round effects, the revenue loss is marginally smaller (by almost 1 pp. for both tax categories). Furthermore, the gap between the behavioral and non-behavioral scenario widens gradually from one year to another, reaching 2 pp. in year t_3. This results from the expansion in labor demand that pushes up both wages and employment.

Figures 9 and 10 below show the impact of the two tax reform on broader tax categories (total net tax revenues\(^\text{27}\), personal income taxes and social insurance contributions).

Figure 9. Impact of the employee SIC reform on aggregate tax revenues – Belgium

\(^{27}\text{By total net tax revenues we refer to the government revenues derived from simulated taxes and social security contributions net of means-tested and non means-tested benefits (excluding pensions).}\)
From these figures, we observe that:

i. **When the reform is implemented on the workers’ side**, the reduction in social insurance contributions paid by employees leads to a fall in total net government revenues of almost 3.8% in t3. This drop is the result of two direct (morning-after) effects that evolve in opposite directions: on the one hand, decreasing employees’ social insurance contributions, and, on the other, increasing revenues from personal income taxation (as the taxable income, which is net of social contributions, broadens). The evolution of total net tax revenues differs slightly when we consider second-round effects: in the first two years following the reform, total net tax revenues are lower compared to the no-behavior scenario, but are higher in year t3. The effect of decreasing gross wages pushing down total tax revenues dominates in t1 and t2. However, starting in year t1 the positive employment effect outweighs the negative wage effect.28 As regards the social insurance contributions paid by employers, we observe that they shrink in the first year, but start to recover afterwards slightly exceeding the baseline level by the end of the analysed period. This can again be explained by the simultaneous decrease in gross wages (and correspondent decrease in contributions paid) and the increase in employment with the latter effect being stronger at the end of the simulation period.

ii. **When the reform is implemented on the firms’ side**, the immediate revenue loss in t1 amounts to 9.8% (non-behavior scenario). Incorporating the macro feedback on prices, wages and employment we find that the revenue loss is smaller (7.2%) and shrinks to 3.9% by year t3, i.e. a reduction of roughly 60% (from 7.2 to 2.9 billion euros). This is due to the positive effect on

28 The positive employment effect also reduces unemployment benefit expenditure which contributes to the stronger increase in total net government revenues in the scenario including behavioral reactions.
both wages and employment, raising the revenues from personal income taxes by 5.2% in t_3 and from employees' social insurance contribution by 4.3%. In contrast to the previous reform, the positive employment effect is now amplified by a positive wage effect. In addition, non-means tested benefits decline by 2.3% due to the decrease in unemployment.

In Figures 11 and 12 below we look at the impact of the simulated reforms on equivalised disposable income by income deciles.

Figure 11. Impact of the employee SIC reform on disposable income (by income decile) – Belgium

29 Wages growth is up to 3.5% for the low-skilled in t_3.
From these figures, we observe that:

i. *When the reform is implemented on the workers’ side*, only the first decile is worse off at the end of the simulation period (scenario including behavioral reactions). This is mainly due to the small share of wage earners in this decile and due to the limited impact of the reform on their social insurance contributions. Consequently, the negative effect on wages offsets the positive (morning-after) effect on disposable income. The effect is regressive as lower deciles benefit less from the reform than the top of the distribution. The increase in disposable income for the bottom (top) three deciles is smaller (larger) than 1% (2%) by year t_3.

ii. *When the reform is implemented on the firms’ side*, the reform raises household disposable income only in the scenario including behavioral responses, with the exception of the first decile. The cut in the employers' contributions has no no direct first-order distributive effects. The positive effects on disposable income comes through the labor demand expansion, increasing both wages and employment. This expansion has a regressive impact with largest gains for the top deciles. In spite of improving labor market conditions, the first decile faces a loss in disposable income which can be explained by a reduced receipt of benefit payments caused by the wage and employment increase.

4. Extensions: Evaluating tax reforms in Italy and Poland
We use the methodology illustrated in the previous sections to evaluate two reforms: an already implemented refundable tax credit for workers in Italy and an announced, but not legislated increase in the universal tax credit in Poland. More specifically, the two reforms consist in:
The introduction, in May 2014, of a refundable in-work tax credit for low income earners. This measure has been made permanent as of 2015\(^{30}\), resulting in a tax credit of EUR 960 per year. The maximum amount (i.e. EUR 80 euro month) is given to employees with a taxable income below EUR 24,000 per year. Above this threshold, the tax credit is linearly decreasing up to a maximum taxable income of EUR 26,000. In order to be eligible for the bonus, the employees must earn at least 8,000 euro per year (below the limit, the employee does not pay income tax).

An increase in the income exempt from the personal income tax from PLN 3,090 to PLN 8,000 that was planned to be introduced by the recently appointed government on 1\(^{st}\) January 2017 (though there has been no official draft legislation). The increase in the tax-free amount implies that the amount of the universal tax credit rises from PLN 556 up to PLN 1,440, due to the fact that the tax base free of taxation is derived by dividing the universal tax credit\(^{31}\) to the tax rate of the first tax bracket (18%).

A priori, both reforms increase incentives to participate in the labor market.\(^{32}\) The labor supply elasticities and the non-participation rates computed in order to calibrate QUEST for each of the countries of interest are shown in Table 5.

Table 5. Calibration of labor supply elasticity parameter and nonparticipation rates, by skill level, in QUEST

<table>
<thead>
<tr>
<th>Countries</th>
<th>Labor supply elasticities</th>
<th>Parameter κ</th>
<th>Non participation rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
<td>Low</td>
</tr>
<tr>
<td>Italy</td>
<td>0.199</td>
<td>0.201</td>
<td>0.301</td>
</tr>
<tr>
<td>Poland</td>
<td>0.311</td>
<td>0.271</td>
<td>0.598</td>
</tr>
</tbody>
</table>

The changes in the implicit tax rates obtained from EUROMOD as well as the correspondent policy shocks to be introduced in the QUEST model are presented in Table 6.

Table 6. Implicit tax rates, statutory tax rates and policy shocks for the Italian and Polish reforms

<table>
<thead>
<tr>
<th>REFORMS</th>
<th>Introduction in-work tax credit in Italy</th>
<th>Increase in universal tax credit in Poland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>High</td>
<td>Medium</td>
</tr>
<tr>
<td>Implicit tax rates paid by employees (EUROMOD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>23.3%</td>
<td>19.7%</td>
</tr>
<tr>
<td>Reform</td>
<td>22.1%</td>
<td>17.6%</td>
</tr>
<tr>
<td>Change (pp)</td>
<td>-1.15</td>
<td>-2.12</td>
</tr>
<tr>
<td>Implicit tax rates paid by employers (EUROMOD)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Baseline</td>
<td>17.1%</td>
<td>17.2%</td>
</tr>
<tr>
<td>Reform</td>
<td>17.1%</td>
<td>17.2%</td>
</tr>
</tbody>
</table>

\(^{30}\) With the Stability Law for 2015 (n.190 of 2014).

\(^{31}\) The value of the universal tax credit in Poland is defined in The Natural Persons’ Income Tax Act (PLN 556 per year).

\(^{32}\) Similarly to the Belgium reform, we use version G3.0 of the EUROMOD microsimulation model, together with the datasets based on the 2012 release of EU-SILC for Italy and Poland. Moreover, the described reforms are implemented in the 2013 tax-benefit systems of the two countries, as in the Belgian case.
As expected, the two reforms reduce tax rates paid by employees on labor income. We also observe that low-skilled workers benefit relatively more from the tax cuts, especially in the case of Italy, where the reform has a stronger progressive nature.

Table 7: Employment effects from the reforms in Italy and Poland

<table>
<thead>
<tr>
<th>Changes in full time equivalents</th>
<th>total</th>
<th>intensive</th>
<th>extensive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction in-work tax credit in Italy</td>
<td>base</td>
<td>10,607,323</td>
<td>9,879,253</td>
</tr>
<tr>
<td></td>
<td>reform</td>
<td>10,570,537</td>
<td>9,841,150</td>
</tr>
<tr>
<td></td>
<td>% change</td>
<td>-0.347</td>
<td>-0.386</td>
</tr>
<tr>
<td>Increase in universal tax credit in Poland</td>
<td>base</td>
<td>7,124,988</td>
<td>6,520,299</td>
</tr>
<tr>
<td></td>
<td>reform</td>
<td>7,205,513</td>
<td>6,589,168</td>
</tr>
<tr>
<td></td>
<td>% change</td>
<td>1.13</td>
<td>1.056</td>
</tr>
</tbody>
</table>

Table 7 shows results from the discrete choice labor supply model on aggregate working hours. The in-work tax credit in Italy increases hours at the extensive margin, as it makes working more attractive relative to not working. However, for those already in work, the tax credit has an income effect on consumption and leisure for the recipients, so that it reduces working hours. The latter effect is larger, so that the overall change in aggregate hours is negative.

For Poland, we find a positive effect on intensive and extensive margin hours because of the nature of the reform. Again, the increase in participation is larger, as the extensive margin is in general more sensitive to changes in incentives. Overall, we find that total labor supply increases by 1% in Poland.

When introducing the shocks in QUEST, we obtain the three-year trajectories for the price level, employment and gross wages as shown in Table 8. These are then fed back into the household micro data.

Table 8. Macro impact of the tax reforms (annualized % deviation from baseline) on the variables of interest, based on QUEST simulations, for Italy and Poland
Similarly to the Belgium cut in employees social insurance contributions, the tax cuts implemented in the personal income tax systems of Italy and Poland generate negative trajectories for wages, while employment increases over the period for all three skill levels. The wage and employment trajectories determine the evolution of labor tax revenues throughout the period and hence the magnitude of the feedback effect. We obtain a total revenue feedback effect accruing over a 5-year period that amounts to 9% in the Italian and to 8% in the Polish case, as we can observe from Table 9 below. Our results are in line with estimates presented in other studies (see e.g. Gravelle 2014 who finds income tax feedback effects ranging between 3.3 to 10.5% for reasonable values of labor supply and capital stock elasticities). The decomposition of the revenue feedback effects illustrates the positive (negative) feedback effect of job creation (wages) on the tax-base.

Table 9. Decomposing the revenue feedback effects of tax reform in Italy and Poland (% changes relative to static estimates)

<table>
<thead>
<tr>
<th></th>
<th>Years</th>
<th>3 ys</th>
<th>5 ys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee tax-cut, IT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- effect from employment</td>
<td>6.9</td>
<td>12.4</td>
<td>13.3</td>
</tr>
<tr>
<td>- effect from wages</td>
<td>-5.5</td>
<td>-4.2</td>
<td></td>
</tr>
<tr>
<td>Employee tax-cut, PL</td>
<td>5.6</td>
<td>7.8</td>
<td></td>
</tr>
<tr>
<td>- effect from employment</td>
<td>11.6</td>
<td>12.8</td>
<td></td>
</tr>
<tr>
<td>- effect from wages</td>
<td>-6.0</td>
<td>-5.0</td>
<td></td>
</tr>
</tbody>
</table>

Note: Positive percentage change indicates that the estimated revenue loss is less when the macroeconomic effects are taken into account while negative percentage change indicates higher revenue loss compared to the static estimate.

Figures 13 and 14 show budgetary effects for the particular components of the personal income tax system that are affected by the reforms.\(^{33}\)

Figure 13. In work refundable tax credit impact in EUROMOD incorporating macro feedback on prices, wages and employment – Italy

\(^{33}\) Note that the numbers related with the Italian in-work tax credit are presented in absolute terms because in the baseline pre-reform scenario this tax credit did not exist as a component of the personal income tax system.
Figure 14. Universal tax credit impact in EUROMOD incorporating macro feedback on prices, wages and employment – Poland

From Figure 13, we observe that the change in expenditures for the Italian in-work refundable tax credit is higher in the scenario including second-round effects. This results from the increase in employment after the reform due to the positive reaction of labor supply. More people take advantage of the tax credit and expenditures increase when behavioral adjustments are taken into account. Figure 14 indicates that in the Polish case the positive labor supply does not change the direct costs of the universal tax credit.

Figures 15 and 16 show the impact of the Italian and Polish reforms on the aggregated tax revenues.

Notice that the positive macroeconomic trajectories for labour from QUEST were introduced in EUROMOD as changes in the weights of employed and unemployed in the micro-data used in the microsimulation model. This means that the positive labor effect obtained in QUEST was fully translated into the extensive margin in the microsimulation set-up. Furthermore, and as explained in section 2.5, QUEST labor effects are not directly comparable with the ones obtained from the labor supply discrete choice model, reported in this section, where the intensive margin negative effect more that compensates the positive extensive margin one in the Italian case.
Figures 15 and 16 suggest modest self-financing effects of the reforms as total tax revenues recover faster in the scenario including behavioural reactions. These are driven by higher revenues from personal income taxes and social insurance contributions.
Additional results related with the Italian and Polish reforms are shown in Appendix E. Graph E.1 suggests that taxpayers in the 2nd-6th decile benefit most from the introduction of the in-work tax credit. In Poland, the effect is more progressive with taxpayers in the bottom half of the distribution benefiting most as shown in Graph E.2.

5. Conclusion
We propose a dynamic scoring framework to analyse the impact of tax reforms in EU Member States, taking into account first and second order effects of the reforms. For this purpose, we have combined a microsimulation model, augmented with a microeconometric discrete choice labor supply model, with a New-Keynesian DSGE model. We establish a coherent link between the micro and macro models, in particular in terms of aggregation, by calibrating the macro-model with parameters derived from the micro data and by ensuring labor supply elasticities are consistent in both models. In order to illustrate our methodology, we have quantified the fiscal and distributional effects of tax cuts in Belgium implemented as reductions in social insurance contributions paid by employees and employers. Furthermore, we have also evaluated reform proposals for the personal income tax systems in Italy and Poland.

Our results indicate that accounting for behavioural responses and macroeconomic feedback effects is essential for a comprehensive and precise evaluation of tax reforms, in particular in case of reforms affecting firms. We find a self-financing effect of a reduction in employers’ social insurance contribution in Belgium of roughly 50%. The self-financing effect is smaller in case of a comparable reduction in employees’ social insurance contributions in Belgium amounting to 13%. Our analyses of personal income tax reforms in Italy and Poland yield self-financing effects of similar magnitude (8-9%) compared to the latter reform in Belgium. The larger effect for the social insurance reforms affecting employers rather than employees can be explained by the fact that the former increases both wages and employment, while the latter leads to higher employment, but lower wages. In addition to the self-financing effects, we pay special attention to the distributional implications of the reforms. We show that the cuts in social insurance contributions in Belgium have regressive effects, while the simulated tax reforms in Italy and Poland benefit households located in the lower and middle part of the income distribution.

Besides allowing for a very accurate and detailed implementation of "real-life" tax reforms, our approach combines the analyses of first-order fiscal and distributional effects of tax reforms using microsimulation methods and of second-order general equilibrium effects derived from a DSGE model. This opens up venues for future research and policy analysis in the European Union context. Our analysis could be extended to account for other types of behavioral adjustments to tax policy reforms, in particular consumption or saving responses. Ongoing extensions of the EUROMOD model broadening the coverage of EUROMOD to include consumption taxes (see Decoster et al. 2014) could be used for this purpose. For instance tax shifting between labor and consumption taxes aims at reducing the distortionary effect of labor taxation, but is also likely to impact on consumption and equity. The framework developed here could be used to analyse these important policy questions as well. Future analyses could also be devoted to the analysis of more sizeable tax reforms combined with structural reforms in order to investigate possible complementarities between these different policy instruments.
References

Appendix

A. The discrete choice labor supply model
B. The QUEST model
C. Labor market modelling: labor supply function, labor supply elasticities and tax incidence
D. QUEST impulse responses
E. Budgetary and redistributive effects of the reforms
Appendix A. The discrete choice labor supply model
As Bargain, Orsini, and Peichl (2014), we opt for a flexible discrete choice model. In our baseline, we specify consumption-leisure preferences using a quadratic utility function with fixed costs. The deterministic part of utility of a couple i at each discrete choice $j=1,\ldots,J$ can be written as:

$$u_{ij} = \alpha_{c1} c_{ij} + \alpha_{cc} c_{ij}^2 + \alpha_{hf} H_{ij}^f + \alpha_{hm} H_{ij}^m + \alpha_{hff}(H_{ij}^f)^2 + \alpha_{hmh}(H_{ij}^m)^2 + \alpha_{chf} c_{ij} H_{ij}^f + \alpha_{chm} c_{ij} H_{ij}^m + \alpha_{hmf} H_{ij}^f H_{ij}^m - \eta^f \cdot 1(H_{ij}^f > 0) - \eta^m \cdot 1(H_{ij}^m > 0)$$ (A.1)

with household consumption C_{ij} and spouses’ work hours H_{ij}^f and H_{ij}^m. The J choices for a couple correspond to all combinations of the spouses’ discrete hours (for singles, the model above is simplified to only one hour term H_{ij}, and J is simply the number of discrete hour choices for this person). Coefficients on consumption and work hours are specified as:

$$\begin{align*}
\alpha_{c1} &= \alpha_{c1}^0 + Z_{c1} + u_{i} \\
\alpha_{hf} &= \alpha_{hf}^0 + Z_{hf} \\
\alpha_{hm} &= \alpha_{hm}^0 + Z_{hm}
\end{align*}$$ (A.2)

i.e. they vary linearly with observable taste-shifters Z_{c1} (including polynomial form of age, presence of children or dependent elderly persons and dummies for education). The term α_{c1} can incorporate unobserved heterogeneity, in the form of a normally-distributed error term u_{i}, for the model to allow random taste variation and unrestricted substitution patterns between alternatives. We include fixed costs of work into the model that help explain that there are very few observations with a small positive number of hours worked. These costs, denoted by η^k for $k = f, m$, are non-zero for positive hours choices. In general, the approach is flexible and allows imposing few constraints. One restriction sometimes taken in the literature is to require the utility function to be monotonically increasing in consumption, as this can be seen as a minimum consistency requirement of the econometric model with economic theory. When the fraction of observations with an implied negative marginal utility of consumption is more than 5% we impose positive marginal utility as a constraint in the likelihood function. For each labor supply choice j, disposable income is calculated as a function

$$C_{ij} = d(w^f_i H_{ij}^f, w^m_i H_{ij}^m, y_i, X_i)$$ (A.3)

of female and male earnings, $w^f_i H_{ij}^f, w^m_i H_{ij}^m$, non-labor income y_i and household characteristics X_i. We denote disposable income by C to stress its equivalence with consumption. In this static setting,
we do not model a savings decision of the household. The elasticities we estimate are hence Marshallian elasticities.41 We argue below that this elasticity concept is appropriate to use for calibration of the elasticity in the macroeconomic model. We simulate the tax-benefit function d in (A.1.3) using the tax-benefit calculator EUROMOD. Disposable income needs to be calculated at the discrete set of choices, that is, only certain points on the budget curve have to be evaluated. We obtain wage rates for individuals by dividing earnings by working hours in the choice category.42 As our sample includes individuals that are not observed to be working, we estimate a Heckman selection model for wages and use predicted wages for all observations.43 As the model is stochastic in nature, the full specification of the labor supply model is obtained after including i.i.d. error terms ϵ_{ij} for each choice $j = 1, \ldots, J$. That is, total utility at each alternative is

$$V_{ij} = U_{ij} + \epsilon_{ij},$$

(A.4)

with the observable part of utility U_{ij} being defined as above in (A.1). The error terms can represent measurement errors or optimization errors of the household. Under the assumption that errors follow an extreme value type I (EV-I) distribution, the (conditional) probability for each household i of choosing a given alternative j has the explicit analytical solution below:44

$$p_{ij} = \frac{e^{U_{ij}}}{\sum_{k=1}^{J} e^{U_{ik}}}$$

(A.5)

41 Hicksian elasticities can be obtained by additionally estimating income elasticities and using the Slutsky decomposition.

42 We use hours normalized through rounding to the nearest hours category instead of actual hours to reduce division bias, as in Bargain, Orsini, and Peichl (2014).

43 Using predicted wages for all observations further reduces selection bias (see Bargain, Orsini, and Peichl 2014). It is common practice to first estimate wage rates and then use them in a labor supply estimation, (see Creedy and Kalb 2005; Creedy and Kalb 2006; Löffler, Peichl, and Siegloch 2014).

44 See McFadden (1974) or Creedy and Kalb (2006).
Appendix B. The QUEST model

The household sector consists of a continuum of households \(h \in [0,1] \). A share \((1-\epsilon)\) of these households is not liquidity constrained and indexed by \(i \in [0,1-\epsilon] \). They have access to financial markets where they can buy and sell domestic assets (government bonds), accumulate physical capital which they rent out to the final goods sector. The remaining share \(\epsilon \) of households is liquidity constrained and indexed by \(k \in (1-\epsilon,1] \). These households cannot trade in financial and physical assets and consume their disposable income each period. We identify the liquidity constrained households as low-skilled and the non-liquidity constrained households as medium- and high-skilled. For each skill group we assume that households (liquidity and non-liquidity constrained) supply differentiated labor services to unions which act as wage setters in monopolistically competitive labor markets. The unions pool wage income and distribute it in equal proportions among their members. Nominal rigidity in wage setting is introduced by assuming that the households face adjustment costs for changing wages. Non-liquidity constrained households maximise an intertemporal utility function in consumption and leisure subject to a budget constraint. These households make decisions about consumption \((C_{t,i}) \) and labor supply \((L_{z,t,i}) \), the purchases of investment good \((J_{t,i}) \) and government bonds \((B_{t,i}) \), the renting of physical capital stock \((K_{t,i}) \), and receive wage income \((W_{z,t,i}) \), unemployment benefits \((bW_{z,t,i}) \), transfer income from the government \((TR_{z,t,i}) \), and interest income on bonds and capital \((i_{b}i_{K,t,i}) \). Hence, non-liquidity constrained households face the following Lagrangian

\[
\max_{\{C_{t,i},L_{z,t,i},A_{t,i}\}} V_{t,0} = E_{0} \sum_{i=0}^{\infty} \beta^{t} \left(U(C_{t,i}) + \sum_{z} V(1-L_{z,t,i}) \right) \\
- E_{0} \sum_{i=0}^{\infty} \lambda_{i,t} \beta^{t} \left((1+t_{C,t})P_{c,t}C_{t,i} + B_{t,i} + P_{J,t}(J_{t,i} + \Gamma(J_{t,i})) - (1+i_{z})B_{t,i} \right) \\
- \sum_{z} \lambda_{i,t} \beta^{t} \left(t_{w,z,t}W_{z,t,i} - bW_{z,t,i}(1-NPART_{z,t,i} - L_{z,t,i}) \\
- (1-t_{k})i_{K,t} - t_{k}\delta_{z}K_{t,i} - TP_{z,t,i} - PR_{z,t,i} \right) \\
- E_{0} \sum_{i=0}^{\infty} \lambda_{i,t} \beta^{t} \left(K_{t,i} - J_{t,i} - (1-\delta_{k})K_{t,i} \right)
\]

(B.1)

where \(z \) is the index for the corresponding medium \((M)\) and high-skilled \((H)\) labor type respectively \(z \in \{M,H\} \). The budget constraints are written in real terms with the price for consumption and investment \((P_{c,t}, P_{J,t}) \) and wages \((W_{z,t}) \) divided by GDP deflator \((P_{t}) \). All firms of the economy are owned by non-liquidity constrained households who share the total profit of the final goods sector firms, \(PR_{z,t,i} \). As shown by the budget constraints, all households pay consumption taxes \(t_{c,t} \), wage income taxes \(t_{w,z,t} \) and capital income taxes \(t_{k} \) less depreciation allowances \(t_{k}\delta_{z} \) after their earnings on physical capital. When investing into tangible capital the household requires premium \(rP_{k} \) in order to cover the increased risk on the return related to these assets. The utility function is additively separable in consumption \((C_{t,i}) \) and leisure \((1-L_{z,t,i}) \). We assume log-utility for consumption and allow for habit persistence in consumption (with parameter \(habc \)) as follows:

\[
U(C_{t,i}) = (1-habc) \log(C_{t,i} - habcC_{t-1})
\]

(B.2)
We assume CES preferences with common elasticity but a skill specific weight (ω_s) on leisure. This is necessary in order to capture differences in employment levels across skill groups. Thus preferences for leisure are given by:

$$V(1-L_{i,s,t}) = \frac{\omega_s}{1-\kappa}(1-L_{i,s,t})^{1-\kappa}, \ s \in \{L,M,H\}$$ \hspace{1cm} (B.3)

with $\kappa > 0$. The investment decisions with respect to real capital are subject to convex adjustment costs, which are given by:

$$\Gamma_j(J_{i,j,t}) = \gamma_K^j \left(\frac{J_{i,j,t}}{K_{i,t-1}} \right)^2 + \gamma_l^j (\Delta J_{i,j,t})^2.$$ \hspace{1cm} (B.4)

where γ_K^j and γ_l^j are parameters.

The first order conditions of the household with respect to consumption, financial and real assets are given by the following equations:

$$\frac{\partial V_0^j}{\partial C_{i,j,t}} \Rightarrow U_{C_{i,j,t}} - \lambda_{i,j,t} (1+i_{i,j}) \frac{P_{C_{i,j,t}}}{P_t} = 0$$ \hspace{1cm} (B.5a)

$$\frac{\partial V_0^j}{\partial B_{i,j,t}} \Rightarrow -\lambda_{i,j,t} + E_t \left(\lambda_{i,t+1} \beta (1+i_t) \frac{P_t}{P_{t+1}} \right) = 0$$ \hspace{1cm} (B.5b)

$$\frac{\partial V_0^j}{\partial K_{i,j,t}} \Rightarrow E_t \left(\lambda_{i,t+1} \beta \frac{P_{i,t+1}}{P_{t+1}} \left((1-t_k)(i_{K_{i,j,t}}-rp_K) + t_k \delta_k \right) - \lambda_{i,t} \xi_{i,t} + E_t \left(\lambda_{i,t+1} \xi_{i,t+1} \beta (1-\delta_k) \right) = 0$$ \hspace{1cm} (B.5c)

$$\frac{\partial V_0^j}{\partial J_{i,j,t}} \Rightarrow \left(1 + \gamma_K^j \left(\frac{J_{i,j,t}}{K_{i,t-1}} \right) + \gamma_l^j (\Delta J_{i,j,t}) \right) + E_t \left(\frac{1}{1+i_t} \frac{P_{i,t+1}}{P_{t+1}} \gamma_l^j (\Delta J_{i,j,t+1}) \right) + \frac{\xi_{i,t}}{P_{t,j}} = 0$$ \hspace{1cm} (B.5d)

Liquidity constrained households do not optimize but simply consume their current income at each date. Real consumption of these households is thus determined by the net wage income plus benefits and net transfers, as follows:

$$(1+t_{C_{i,j,t}})P_{C_{i,j,t}} C_{i,j,t} = (1-t_{w,L_{i,t}})W_{L_{i,t}} L_{i,t} + bW_{L_{i,t}} (1-\text{PART}_{L_{i,t}} - L_{i,t}) + TR_{L_{i,t}}$$ \hspace{1cm} (B.6)

Within each skill group a variety of labor services are supplied which are imperfect substitutes to each other. Thus, trade unions can charge a wage mark-up $(1/\eta_{w,j})$ over the reservation wage45. The

45 The mark-up depends on the intra-temporal elasticity of substitution between differentiated labor services within each skill groups (σ_s) and fluctuations in the mark-up arise because of wage adjustment costs and the fact that a fraction $(1-sfw)$ of workers is indexing the growth rate of wages π_w to wage inflation in the previous period

$$\eta_{w,j} = 1 - 1/\sigma_s - \gamma_W^j/\sigma_s (\delta (sfw\pi_{W_{j+1}} - (1-sfw)\pi_{W_{j-1}}) - \pi_{W_{j+1}}), \ \eta_{s,j} = 1 - 1/\sigma_s - \gamma_W^j/\sigma_s (\delta (sfw\pi_{W_{j+1}} - (1-sfw)\pi_{W_{j-1}}) - \pi_{W_{j+1}}).$$
reservation wage is given as the marginal utility of leisure divided by the corresponding marginal utility of consumption. The relevant net real wage to which the mark up adjusted reservation wage is equated is the gross wage adjusted for labor taxes, consumption taxes and unemployment benefits, which act as a subsidy to leisure. Thus, the wage equation is given as

\[
\frac{V_1(L_{h,s,t})}{U_{C,h,s,t}} \left(1 - \frac{W_{s,t}(1-t_{W,s,t} - b)}{P_{C,t}(1+\eta_{C,t})} \right) \text{ for } s \in \{L, M, H\}, \tag{B.7}
\]

where \(b \) is the benefit replacement rate. The aggregate of any household specific variable \(X_{h,t} \) in per capita terms is given by

\[
X_{t} = \int_{0}^{1} X_{h,t} dh = (1-\varepsilon) X_{i,t} + \varepsilon X_{h,t}.
\tag{B.8}
\]

Hence, aggregate consumption and employment are given by

\[
C_{t} = (1-\varepsilon) C_{i,t} + \varepsilon C_{h,t},
\tag{B.9}
\]

and

\[
L_{t} = (1-\varepsilon) L_{i,t} + \varepsilon L_{h,t}.
\tag{B.10}
\]

We assume that final goods producers work under monopolistic competition setting and each firm produces a variety of the domestic good which is an imperfect substitute for varieties produced by other firms. Final output of firm \(j \) \((Y_{j,t})\) is produced using capital \(K_{j,t} \) and a labor aggregate \((L_{j,t}) \) in a Cobb-Douglas technology, subject to a fixed cost \(FC_{j,t} \), as follows:

\[
Y_{j,t} = \left(L_{j,t} - FC_{j,t}\right) \left(u_{j,t}K_{j,t}\right)^{\alpha} - FC_{j,t},
\tag{B.11}
\]

with

\[
L_{j,t} = \left(\frac{N_{L}^{\alpha}}{\alpha} \left(\chi_{L}L_{j,t}\right)^{\frac{\alpha-1}{\alpha}} + \frac{N_{M}^{\alpha}}{\alpha} \left(\chi_{M}L_{j,t}\right)^{\frac{\alpha-1}{\alpha}} + \frac{N_{H}^{\alpha}}{\alpha} \left(\chi_{H}L_{j,t}\right)^{\frac{\alpha-1}{\alpha}}\right)^{\frac{\alpha}{\alpha-1}},
\tag{B.12}
\]

\[46\] In order to find the wage equation, consider the problem of representative household \(i \) of a subgroup \(s \) of the population given by (B.1). Then, the first order conditions with respect to labor \((L_{i,t})\) is the following:

\[
\frac{\partial V}{\partial L_{i,t}} = 0 \iff V'(1-L_{i,t}) = \frac{\lambda_{i}}{\rho_{i}}(1-t_{W,i,t} - b)W_{z,t},
\]

We can now combine the above condition with the first order condition with respect to consumption, given by condition (2.2.5a), to obtain the intra-temporal condition on the optimal household choices on consumption and labor:

\[
\frac{V'(1-L_{i,t})}{V'(C_{0})} = \frac{1-t_{W,i,t} - b}{\rho_{i}(1+\tau_{i})} W_{z,t}.
\]

We can recognize in the above condition equation (B.7), which determines the equilibrium wage. In fact, and as mentioned before, since within each sub-group \(s \) the labor services supplied are imperfect substitutes of each other, the trade unions can charge a wage mark-up \((1/\eta_{f,s,t}) \) over the reservation wage, which is given by the ratio of the marginal utilities of leisure and consumption, i.e. the left-hand side of the above equation.
where $L_{L,t}^j$, $L_{M,t}^j$, and $L_{H,t}^j$ denote the employment of low, medium and high-skilled by firm j respectively. Parameter λ_i is the corresponding share parameter ($s \in \{L, M, H\}$), χ_i is the efficiency unit, and μ is the elasticity of substitution between different labor types. The term FC^j_t represents overhead labor and u^j_t is the measure of capacity utilisation. The objective of the firm is to maximise the present discounted value of profits:

$$PR_{j,t} = P_{j,t}Y_{j,t} - \sum_s \left(1 + t_{s,t} \right) W_{j,s,t}L_{j,s,t}\eta - i^k_j \eta K_{j,t} - (\Gamma^L(P_{j,t}) + \Gamma^L(L_{j,t,L},L_{j,t,M},L_{j,t,H}) + \Gamma^\omega(u_{j,t}))$$

(B.13)

where i^k_j denotes the rental rate of capital $t_{s,t}$ stands for the implicit tax rate on labor of employers. Following Ratto et al. (2009), we assume that firms face technological constraints which restrict their price setting, employment and capacity utilisation decisions. These constraints are captured by the corresponding adjustment costs ($\Gamma^L + \Gamma^\omega$). It can be shown that in a symmetric equilibrium, when $P_{j,t} = P_t$, $\forall j$, firms charge a mark-up over the marginal cost of production (MC):

$$P_{j,t} = \frac{1}{\eta_{j,t}}MC_{j,t}$$

(B.14)

where $\eta_{j,t}$ is the inverse price mark-up factor which is defined as a function of the elasticity of substitution (σ^d), changes in inflation (Π) and the mark-up shock ($\epsilon_{m kp}$). Skill-specific labor demand can be obtained from the first order condition with respect to labor:

$$P_{j,t} \frac{\partial Y_{j,t}}{\partial L_{j,s,t}}\eta = \left(1 + t_{s,t} \right) W_{j,s,t} + \frac{\partial \Gamma^L(L_{j,t,L},L_{j,t,M},L_{j,t,H})}{\partial L_{j,s,t}} s \in \{L, M, H\}$$

(B.15)

where the marginal product of labor, the corresponding adjustment costs and the gross mark-up factor will jointly determine the optimally chosen level of low-, medium- and high-skilled employment level. Similarly, the demand for capital is constrained by the corresponding first order condition:

$$(1-\alpha)P_{j,t} \frac{\partial Y_{j,t}}{\partial K_{j,t}}\eta_{j,t} = i_{K,t}P_{j,t}$$

(B.16)

where $P_{j,t}$ is the price of investment goods while $i_{K,t}$ is the rental rate of capital. Finally, the first order condition for capacity utilisation is:

$$(1-\alpha)P_{j,t} \frac{\partial Y_{j,t}}{\partial K_{j,t,ucap_{j,t}}}\eta_{j,t} = i_{K,t}P_{j,t}$$

(B.17)

We follow Ratto et al. (2009) and allow for additional backward looking elements by assuming that a fraction $(1-\gamma_p)$ of firms index price increases to inflation in t-1, $\eta_{j,t} = \eta = 1 - 1/\sigma^d - \gamma_p \left(\beta \left((1-sfp)\pi_{t-1} + \pi_t \right) + \epsilon_{m kp} \right)$, where γ_p, γ_p is the corresponding adjustment cost parameter.
In this model we have a fiscal authority which manages a public budget. On the expenditure side we distinguish between government consumption \((G_t) \), government investment \((IG_t) \), government transfers \((TR_t) \) and unemployment benefits \((BEN_t) \), where

\[
BEN_t = \sum s bW_{s,t}(1 - NPART_{s,t} - L_{s,t}), s \in \{L, M, H\}. \tag{B.18}
\]

Government revenues \(R_t^G \) are made up of taxes on consumption as well as capital and labor income:

\[
R_t^G = t_{C,t}p_{C,t}c_{t,t} + \sum_s (t_{w,s,t} + t_{e,s,t})W_{s,t}L_{s,t} + t_k K_{i,j,t-1}P_{1,j,t-1}K_{i,j-1,t-1} - t_k \delta_k P_{1,j,t-1}K_{i,j-1,t-1}. \tag{B.19}
\]

Government debt \((B_t) \) evolves according to

\[
B_t = (1 + i_t)B_{t-1} + G_t + IG_t + TR_t + BEN_t - R_t^G. \tag{B.20}
\]

The labor tax \((t_{w,t}) \) is used for controlling the debt to GDP ratio, according to the following rule:

\[
\Delta t_{w,t} = \tau_B \left(\frac{B_{t-1}}{Y_{t-1}} - b^r \right) + \tau_{DEF} \Delta \left(\frac{B_t}{Y_t} \right). \tag{B.21}
\]

where \(\tau_B \) captures the sensitivity with respect to deviations from \(b^r \), the government debt target, and \(\tau_{DEF} \) controls the sensitivity of the tax-rule with respect to changes in the debt to output ratio. Note that this budget balanced rule is turned off when simulating the tax reforms considered in this paper.

Monetary policy is modelled via the following Taylor rule, which allows for some smoothness of the interest rate response \((i_t) \) to the inflation and output gap:

\[
i_t = \gamma_{lag}t_{t-1} + (1 - \gamma_{lag}) \left(r_{EQ} + \pi_{TAR} + \gamma_{inf}(\pi_{C,t} - \pi_{TAR}) + \gamma_{gap}(\tilde{y}_t) \right). \tag{B.22}
\]

The central bank has a constant inflation target \((\pi_{TAR}) \) and it adjusts interest rates whenever actual consumer price inflation \((\pi_{C,t}) \) deviates from the target and it also responds to the output gap \((\tilde{y}_t) \) via the corresponding \(\gamma_{inf} \) and \(\gamma_{gap} \) coefficients. There is also some inertia in nominal interest rate setting over the equilibrium real interest rate \(r_{EQ} \) determined by \(\gamma_{lag} \). Output gap is defined as deviation of capital and labor utilisation from their long run trends. Note that in our multi-country setting, members of the euro area do not have independent monetary policy. In this way, we assume that the European Central Bank sets interest rate by taking into account the euro area wide aggregate inflation and output gap changes in its Taylor-rule.

Finally, concerning the trading sector in order to facilitate aggregation, we assume that households, the government and the final goods sector have identical preferences across goods used for private consumption, investment and public expenditure. Let \(Z_t \in \{C_t, I_t, G_t, IG_t\} \) be the demand of
households, investors or the government as defined in the previous section. Then their preferences are given by the following utility function:

\[
Z_t = \left((1 - \rho) \sigma_{im}^{-1} \frac{Z_{d,t}^{\max - 1}}{Z_{d,t}} + \rho \sigma_{im} \frac{Z_{f,t}^{\max - 1}}{Z_{f,t}} \right)^{\frac{1}{\rho - 1}},
\]

(B.23)

where \(\rho \) is the share parameter and \(\sigma_{im} \) is the elasticity of substitution between domestic \((Z_{d,t}) \) and foreign produced goods \((Z_{f,t}) \).
Appendix C. Labor market modelling: labor supply function, labor supply elasticities and tax incidence

Labor supply function
The labor market plays the key role in linking the micro and macro models in our analysis. Here we follow the analysis of Magnani and Mercenier (2009),\(^{48}\) which to some extent can be seen as a simplified version of linking the micro and macro models we use in our dynamic scoring analysis, in order to ensure consistency between our discrete choice labor supply model and the labor supply modelling in QUEST. Our aim is to compare the optimal labor supply produced in the micro and macroeconomic settings, in terms of how the decision is modelled. We also derive the labor supply elasticities for both the micro and macro models. Finally, we describe in detail how tax incidence works in the labor market modelled in QUEST.

Let us focus first on the modelling of the labor supply side of the labor market from the microeconomic perspective. We assume that each individual \(i\) faces alternatives of working 0, 20, 40 or 60 hours per week such that her preferences can be described by the following stochastic utility function:

\[
V_{ij} = U_{ij}(C_{ij}, H_{ij}, \ldots) + \epsilon_{ij}
\]

(C.1)

where \(\epsilon_{ij}\) is an independent and identically distributed error term for the each of the choice \(j\), and follows an extreme value type I (EV-I) distribution. Then we can define the probability of \(i\) choosing alternative \(j \in \{0,20,40,60\}\) as follows:

\[
Prob_{ij} = \text{prob} [V_{ij} \geq V_{ik}, \forall k \in \{0,20,40,60\}, k \neq j]
\]

\[
= \text{prob} [U_{ij}(C_{ij}, H_{ij}, \ldots) + \epsilon_{ij} \geq U_{ik}(C_{ik}, H_{ik}, \ldots) + \epsilon_{ik}, \forall k \in \{0,20,40,60\}, k \neq j]
\]

\[
= \text{prob} [U_{ij}(C_{ij}, H_{ij}, \ldots) - U_{ik}(C_{ik}, H_{ik}, \ldots) \geq \epsilon_{ik} - \epsilon_{ij}, \forall k \in \{0,20,40,60\}, k \neq j]
\]

\[
= \text{prob} [\epsilon_{ik} - \epsilon_{ij} \leq U_{ij}(C_{ij}, H_{ij}, \ldots) - U_{ik}(C_{ik}, H_{ik}, \ldots), \forall k \in \{0,20,40,60\}, k \neq j]
\]

\[
= F(\epsilon_{ik} - \epsilon_{ij})
\]

(C.2)

Since we have assumed that \(\epsilon_{ij} \sim EV - I\), then we can write the generalized extreme value distribution function as follows:

\[
F(\epsilon_{i0}, \epsilon_{i20}, \epsilon_{i40}, \epsilon_{i60}) = \exp[-H(\epsilon_{i0}, \epsilon_{i20}, \epsilon_{i40}, \epsilon_{i60})]
\]

(C.3)

\(^{48}\) These authors describe an exact aggregation of the results of a discrete choice model and a representative agent macroeconomic model, with constant elasticity of substitution/transformation utility function. They show that in order to ensure consistency between the micro and macro models, whereby both models can be characterized by similar equilibrium/optimality conditions, the calibration of the macro model labor parameters (labor elasticities and labor shares, fundamentally) must be tied to the statistical parameters of the probability distribution of the micro data. In Magnani and Mercenier (2009), like in our case, the labor market decisions at the micro level are modelled as a discrete-choice model, where choice probabilities are derived from a multinomial-logit distribution. They show that the micro and macro optimality conditions are identical if the “deep” parameter of the macroeconomic model – elasticity of substitution in the utility function – coincides with the dispersion parameter of the multinomial logit population from the discrete choice model, and the shares of time spent in leisure activities are matched to measures of the disutility of working (wage).
Function H satisfies all the necessary conditions to ensure that F is a cumulative distribution function. Following Magnani and Mercenier (2009), we assume that the following functional form for H^f is:

$$H^f(e_{i0}, e_{i20}, e_{i40}, e_{i60}) = \sum_{s \in \{0,20,40,60\}} e_{is}^{1/\mu}$$

(C.4)

Given the functional form of H, then the cumulative distribution F is equal to the product of double exponential distributions that characterize the behavior of V_{ij} for each alternative of working hours such that:

$$H^f(e^{-e_{i0}}, e^{-e_{i20}}, e^{-e_{i40}}, e^{-e_{i60}}) = \sum_{s \in \{0,20,40,60\}} (e^{-e_{is}})^{1/\mu} = \sum_{s \in \{0,20,40,60\}} e^{-e_{is}/\mu}$$

(C.5)

and F assumes the following form:

$$F(e_{i0}, e_{i20}, e_{i40}, e_{i60}) = \exp \left[-\sum_{s \in \{0,20,40,60\}} e^{-e_{is}/\mu} \right] = \prod_{s \in \{0,20,40,60\}} \exp \left[-e^{-e_{is}/\mu} \right]$$

(C.6)

Then, according to McFadden theorem, the probability of i choosing alternative j is given by:

$$\text{Prob}_i = \mu \frac{u_{ij}}{\sum_{s \in \{0,20,40,60\}} e^{u_{is}/\mu}}$$

(C.7)

where μ is the dispersion parameter of the extreme value distribution. The probability we are looking for can be obtained by substituting (C.5) into (C.7) to obtain:

$$\text{Prob}_i = \frac{e^{u_{ij}/\mu}}{\sum_{s \in \{0,20,40,60\}} e^{u_{is}/\mu}}$$

(C.8)

which, when $\mu = 1$, is equivalent to:

$$\text{Prob}_i = \frac{e^{u_{ij}}}{\sum_{s \in \{0,20,40,60\}} e^{u_{is}}}$$

(C.9)

Then, the expected number of hours supplied by individual i will be given by:

$$L_i = \sum_{j \in \{0,20,40,60\}} P_{ij} \cdot j = \sum_{j \in \{0,20,40,60\}} \left(\frac{e^{u_{ij}}}{\sum_{s \in \{0,20,40,60\}} e^{u_{is}}} \right) \cdot j = \frac{\sum_{j \in \{0,20,40,60\}} j \cdot e^{u_{ij}}}{\sum_{s \in \{0,20,40,60\}} e^{u_{is}}}$$

(C.10)

Consider now that a given individual i belongs to a particular sub-population group that share the same socio-economic characteristics, and that there are N statistically identical and independent individuals in this sub-population group. Then, within this group, the expected number of hours supplied will be given by:

$$L = \sum_{i=1}^{N} L_i = \sum_{i=1}^{N} \left[\frac{\sum_{j \in \{0,20,40,60\}} j \cdot e^{u_{ij}}}{\sum_{s \in \{0,20,40,60\}} e^{u_{is}}} \right]$$

(C.11)

Note that equation (C.11) is a simplified analytical expression of the labor supply function for a group of individuals sharing the same socio-economic characteristics. We can also compute the expected number of individuals in this population subgroup that will choose any of the working hours’ alternatives. For instance, the expected number of individuals supplying zero hours, i.e. individuals deciding not to participate in the labor market, is equal to:
\[L_{j=0} = \text{Prob}_{10} \times N = \left(\frac{e^{U_{10}}}{\sum_{x \in (0,20,40,60)} e^{U_{ix}}} \right) \times N \tag{C.12} \]

Similarly, the expected number of working individuals, i.e. individuals supplying non-zero working hours, is equal to:

\[L_{j \neq 0} = (1 - \text{Prob}_{10}) \times N = \left(1 - \frac{e^{U_{10}}}{\sum_{x \in (0,20,40,60)} e^{U_{ix}}} \right) \times N = N - L_{j=0} \tag{C.13} \]

In more general terms, the expected number of individuals choosing any alternative \(j \) of the setting of alternatives is equal to:

\[L_{j} = \text{Prob}_{ij} \times N = \left(\frac{e^{U_{ij}}}{\sum_{x \in (0,20,40,60)} e^{U_{ix}}} \right) \times N \tag{C.14} \]

We turn now to the macroeconomic setting. In QUEST the labor market is populated by workers, and firms. The QUEST model therefore takes into account both the supply and demand of labor. Focusing only on the partial equilibrium, this translates into a system of equations that allows finding the equilibrium wage and working hours. In this way, and abstracting from other general equilibrium effects, the referred system is presented below:49

\[
\begin{align*}
\left\{ \begin{array}{l}
\frac{V_{1-L,b,s,t}}{U_{C,h,s,t}} \frac{1}{\eta_{s,t}} W_{s,t} (1-t_{w,s,t} - b) \\
P_{j,t} \frac{\partial Y_{j,t}}{\partial L_{j,s,t}} \eta_{j,t} = (1 + t_{w,s,t}) W_{s,t} + \frac{\partial \Gamma^{L_{j}}(L_{j,i,t}, L_{j,M,t}, L_{j,H,t})}{\partial L_{j,s,t}}
\end{array} \right. \\
\text{for } s \in \{H,M,L\} \tag{C.15}
\end{align*}
\]

where the first equation of the system50 results from the combination between the first order conditions with respect to consumption and labor – i.e. is the inter-temporal and the intra-temporal optimality conditions, respectively – resulting from the household problem, and the second equation of the system results from maximizing firms profits with respect to labor.51 From the system in \((C.15)\), we obtain the partial equilibrium pair of hours worked and wage rate \((L_{H,s,t}, W_{s,t}^H), s \in \{H,M,L\} \). Notice that the decisions modelled in the supply side of the labor market have similar aspects in both micro and macro settings: both consider maximization of individual/household utilities, which depend on consumption and leisure. However, in the macro setting, the number of hours worked in equilibrium is derived from intersecting labor supply and labor demand functions, i.e. QUEST take into
account the demand of labor. This demand effect, which is basically constrained by the labor demand elasticity to wages, is not considered in the micro framework but rather taken as given by the macro-economic conditions described by the DSGE model.\footnote{Notice that not considering labor demand in the micro model can be problematic in what concerns the coherence between the micro and macro settings. It may be difficult to obtain convergence on the main economic aggregates between the two models.} Considering the following functional form of the household utility function in QUEST, given by expressions (C.16) and (C.17) below, for skill group \(s \in \{H, M, L\} \),
\[
V_{1-L,h,s,t} = \frac{\omega_s}{(1-L_{i,s,t})^\kappa}, s \in \{H, M, L\}
\]
(C.16)

and,
\[
U_{c,h,s,t} = \frac{1-habc}{c_{t-1}}, s \in \{H, M, L\}
\]
(C.17)

and substituting them in the inter-temporal condition of the system in (C.15), we obtain the expression for the labor supply function in QUEST:
\[
L_{i,s,t} = 1 - \left[\frac{\omega_s}{\eta_{s,t}(1-habc)} \frac{P_{c,t}(1+t_{c,t})}{W_{s,t}(1-t_{W,s,t}-b)} \right]^{1/\kappa} \Leftrightarrow L_{i,s,t} = 1 - \left[\frac{\omega_s}{\eta_{s,t}W_{s,t}(1-t_{W,s,t}-b)} \frac{P_{c,t}(1+t_{c,t})}{U_{c,h,s,t}} \right]^{1/\kappa}
\]
(C.18)

If we now consider that there are \(N \) identical households on the skill group \(s \in \{H, M, L\} \) we can rewrite (C.18) as follows:
\[
L_{s,t} = N \left(1 - \left[\frac{\omega_s}{\eta_{s,t}W_{s,t}(1-t_{W,s,t}-b)} \frac{P_{c,t}(1+t_{c,t})}{U_{c,h,s,t}} \right]^{1/\kappa} \right)
\]
(C.19)

Expression (C.19) can be compared with expression (C.13), the expected number of individuals that was derived in our simplified discrete choice setting. First of all, notice that both expressions are optimality conditions derived from a utility maximization problem, conditional on how much the household wants to consume. To see this better, we can write expression (C.19) in the following terms:
\[
L_{s,t} = N \left(1 - g(X_t; T_t; \Omega) \right)
\]
(C.20)

where \(g(.) \) is a function of a vector of aggregated endogenous variables, \(X_t \), a vector of policy exogenous variables, \(T_t \), and a vector of parameters, \(\Omega \), with \(X_t = (C_{l,t}, W_{s,t}, P_{c,t}; \eta_{s,t}) \), \(T_t = (t_{W,s,t}, t_{c,t}, b) \), \(\Omega = (\kappa, \omega_s, habc) \).

In a similar way, we can rewrite (C.13) as follows:
\[
L_{f \neq 0} = N \left(1 - F(U_{ij}; \theta) \right)
\]
(C.21)

where \(F(.) \) is the distribution function depending on the arguments of the deterministic utility function \(U_{ij} = (C_{ij}, H_{ij}, Z_{ij}) \) and on a set of parameters \(\theta \). However, while expression (C.19) denotes the

\footnote{These correspond to expressions B.2 and B.3 in Appendix B.}
optimal amount of labor services supplied, in terms of total number of hours, for any level of the net adjusted wage – intensive margin –, expression (C.13) denotes the expected number of individuals working in the economy – extensive margin. Furthermore, notice that, in QUEST, unemployment is obtained endogenously and is equal to:

\[\text{UNEMPL} = 1 - N\text{PART}_{i,t} - L_{i,t} \] \hspace{1cm} (C.22)

where \(N\text{PART} \) is the non-participation rate. In QUEST households only decide on the amount of hours supplied in the labor market, but they do not choose between unemployment and non-participation, explicitly. The non-participation rate is calibrated as the proportion of inactive in the total population. The non-participation rate (\(N\text{PART} \)) must therefore be seen as an exogenous policy variable characterising the generosity of the benefit system. However, in our discrete choice model the choice of non-participation, or being unemployed voluntarily, is one of the possible alternatives of individual \(i \). The choice of participating in the labor market is nested together with the decision on supplying different number of hours (which can be seen as the different working modalities). We reconcile the two models on this issue by calibrating in QUEST the non-participation rate according to the expected number of individuals that choose to be out of the labor market, i.e. equation (C.12) in the discrete choice model.

Labor market elasticities

In our dynamic scoring exercise, labor market elasticities are crucial to understand the effects of a particular tax reforms on the households’ disposable income, in particular, and on the economy as a whole. More specifically, the labor supply elasticity is a good measure of the work effort incentives, and, in this way, crucial to understand the effects of the tax reforms implemented on the workers behavior. Moreover, the analysis of the elasticities in both models is important to see whether we can calibrate QUEST with the elasticities obtained from our microeconometric model, so that a greater consistency can be achieved in linking the two models. In what follows we derive analytically the labor supply elasticities in the micro and macro settings, and see how these relate to each other. Recall that in what concerns QUEST, the parameter that we are interested in calibrating is the parameter \(\kappa \). This parameter relates the Frisch elasticity to the inter-temporal elasticity of substitution, as we will see in what follows.

In QUEST, the Frisch elasticity is defined as the elasticity of the labor supply, as defined in equation (C.19), with respect to the wage, maintaining the marginal utility of consumption constant. In this way, we can define the Frisch elasticity as follows:

\[\varepsilon^F_{L,W} = \frac{\partial L_{x,t}}{W_{x,t}} \Longleftrightarrow \varepsilon^F_{L,W} = \frac{1}{\kappa} \left(\frac{N - L_{x,t}}{L_{x,t}} \right) \] \hspace{1cm} (C.23)

The elasticity in (C.23) suggests a positive relationship between wages and labor supply, depending on the level of labor hours supplied. This implies that the Frisch elasticity might differ (and, in fact, it will) for the three skill groups considered in QUEST. In this way, we expect that some groups will be more reactive to changes in the wage level than others. Besides the Frisch elasticity, another important

\[^{54}\text{Please check the functional form given in expression (B.3) in Appendix B.}\]
result in macroeconomic models such as QUEST is how labor supply evolves over time, given temporary changes in the wages path. This is known as the inter-temporal elasticity of substitution, e^{IES}. In this way, this elasticity measures the relation between the changes in the ratio of labor supplied tomorrow and today, and the ratio of wages paid tomorrow and today. In order to derive this elasticity, we need to find the inter-temporal labor supply function, where we can relate the path of labor supply with the path of wages. For that consider the QUEST model described in Appendix B. Consider also the labor supply function in equation (C.19) of this appendix section. In order to derive the inter-temporal labor supply function, one needs to combine the intra-temporal optimality condition with the inter-temporal one (the Euler equation). Let us consider first the intra-temporal optimality condition given by equation (B.7) and write it one period ahead, as follows:

$$\frac{V_{1-L_{h,s,t+1}}}{U_{C,h,s,t+1}} = \frac{W_{t+1}(1-tW_{s,t+1}-b)}{P_{c,t+1}(1+t_{c,t+1})}$$ \hfill (C.24)

From this condition we can obtain the labor supply function of the N households in group s, one period ahead:

$$L_{s,t+1} = N \left(1 - \left[\frac{\omega_s}{\eta_{s,t+1} W_{s,t+1}(1-tW_{s,t+1}-b)} \frac{P_{c,t+1}(1+t_{c,t+1})}{U_{C,h,s,t+1}} \right]^{1/k} \right)$$ \hfill (C.25)

We can now substitute in (C.25) the marginal utility of consumption $U_{C,h,s,t+1}$ by its expression one period ahead, given the functional form in expression (B.2):

$$L_{s,t+1} = N \left(1 - \left[\frac{\omega_s}{\eta_{s,t+1} W_{s,t+1}(1-tW_{s,t+1}-b)} \frac{P_{c,t+1}(1+t_{c,t+1})}{1-habc} \frac{(C_{i,t+1} - habcC_t)}{C_{i,t+1}} \right]^{1/k} \right)$$ \hfill (C.26)

At this point, we need to consider also the intertemporal optimality condition of the household problem – the Euler equation. This condition is obtained by combining the first order conditions with respect to consumption and bonds of the household problem, i.e. equations (B.5a) and (B.5b) in Appendix B respectively, and it explains the path of consumption over time. From these two conditions, we obtain an expression for the Lagrangian multiplier, $\lambda_{i,t}$:

$$\lambda_{i,t} = \frac{P_t}{P_{c,t}} \frac{U_{c,i,t}}{1+t_{c,t}}$$ \hfill (C.27)

And writing (C.27) one period ahead, we get:

$$\lambda_{i,t+1} = \frac{P_{t+1}}{P_{c,t+1}} \frac{U_{c,i,t+1}}{1+t_{c,t+1}}$$ \hfill (C.28)

Now that we have the expressions of the Lagrangian multiplier, at t and $t+1$, we can substitute them in the first order condition with respect to bonds to obtain the Euler equation:

$$\frac{U_{c,i,t}}{P_{c,t}(1+t_{c,t})} \beta(1+i_t) = E_t \left[\frac{U_{c,i,t+1}}{P_{c,t+1}(1+t_{c,t+1})} \right]$$ \hfill (C.29)

where we can explicitly include the expressions of the marginal utility of consumption at t and $t+1$. Then, the Euler equation can be re-written as follows:

$$E_t[P_{c,t+1}(1+t_{c,t+1})(C_{i,t+1} - habcC_t)] = \beta(1+i_t) P_{c,t}(1+t_{c,t})(C_{i,t} - habcC_{t-1})$$ \hfill (C.30)
The next step is to include the Euler equation derived in equation (C.30) in the labor supply function, equation (C.26) to obtain a relation between the labor supplied tomorrow and consumption today, as follows:

\[L_{s,t+1} = N \left(1 - \left[\frac{\omega_x}{\eta_{s,t+1} W_{s,t+1}(1-t_{W,t+1}-b)} \frac{\beta(1+i_t)P_{c,t}(1+t_{c,t})(C_{i,t-habcC_{t-1}})}{1-habc} \right]^{1/k} \right) \]
(C.31)

Recurring again to the intra-temporal optimality condition, and substituting the marginal utilities of leisure and consumption, we find that:

\[P_{c,t} (1 + t_{c,t}) (C_{i,t} - habcC_{t-1}) = \frac{\eta_{st}(1-habc)}{\omega_s} W_{s,t} (1 - t_{W,t} - b) (1 - L_{i,s,t})^k \]
(C.32)

Substituting the previous result in the labor supply equation given by (C.31), we will obtain finally an expression which includes \(L_{s,t+1}, L_{i,s,t}, W_{s,t+1}\) and \(W_{s,t}\), shown below.

\[L_{s,t+1} = N \left(1 - \left[\frac{\eta_{st}}{\eta_{s,t+1} W_{s,t+1}(1-t_{W,t}-b)} \frac{\beta(1+i_t) (1 - L_{i,s,t})^k}{1-habc} \right]^{1/k} \right) \]
(C.33)

After some algebraic computations we can derive the following expression, which relates the path of leisure hours (and labor supply) with the path of wages, as follows:

\[\frac{1 - L_{i,s,t+1}}{1 - L_{i,s,t}} = \left[\beta(1+i_t) \frac{\eta_{st}}{\eta_{s,t+1} W_{s,t+1}(1-t_{W,t}-b)} \right]^{1/k} \left(\frac{W_{s,t+1}}{W_{s,t}} \right)^{-1/k} \]
(C.34)

Similarly to the Euler equation, equation (C.34) represents the inter-temporal optimality condition for leisure (labor). We can now denote \(\frac{1 - L_{i,s,t+1}}{1 - L_{i,s,t}} = (1 - \overline{L}_{i,s})\) and \(\frac{W_{s,t+1}}{W_{s,t}} = \overline{W}_S\) and rewrite equation (C.34) as follows:

\[(1 - \overline{L}_{i,s}) = \left[\beta(1+i_t) \frac{\eta_{st}}{\eta_{s,t+1} W_{s,t+1}(1-t_{W,t}-b)} \right]^{1/k} \left(\overline{W}_S \right)^{-1/k} \]
(C.35)

We can now compute the elasticity of inter-temporal substitution for leisure since the results are very easily extrapolated in terms of labor supply. We apply logarithms to equation (C.35) and then compute the derivative of the \(\ln(1 - \overline{L}_{i,s})\) with respect to \(\ln(\overline{W}_S)\). In this way, we obtain the following expression:

\[\ln(1 - \overline{L}_{i,s}) = \frac{1}{k} \ln \left[\beta(1+i_t) \frac{\eta_{st}}{\eta_{s,t+1}} \frac{1-t_{W,t}-b}{1-t_{W,t+1}-b} \right] - \frac{1}{k} \ln(\overline{W}_{s,t}) \]
(C.36)

and

\[\frac{d\ln(1 - \overline{L}_{i,s})}{d\ln(\overline{W}_{s,t})} = -\frac{1}{k} \leftrightarrow \frac{d(1 - \overline{L}_{i,s})}{d(\overline{W}_{s,t})} = -\frac{1}{k} \leftrightarrow \overline{W}_{s,t} = -\frac{1}{k} \]
(C.37)

As we can observe from expression (C.37), parameter \(k\) guides the elasticity of inter-temporal substitution, and the smaller this parameter is, the higher (in absolute terms) is this elasticity, and the more willing is the household to change the path of leisure (or labor), given temporary changes in
wages. Moreover, we can see clearly that the relation between the Frisch elasticity and the inter-temporal elasticity of substitution depends on the parameter k. In this way, we can establish the following relation between the two elasticities:

$$
\varepsilon_{L,W}^F = -\varepsilon_{L,s}^{IES} \left(\frac{N-L_{xt}}{L_{xt}} \right)
$$

(C.38)

In the nonlinear discrete choice econometric model, labor supply elasticities cannot be derived analytically. However, using the estimated structural utility function, we can calculate choice probabilities for varying incomes. Wage elasticities are calculated after simulating a marginal increase in the wage rate and predicting the probability distribution over the choice categories for the increased wage rate. The wage elasticity is defined as the change in expected working hours (that is, the probability-weighted average of working hours) with respect to the change in the wage rate. Similarly, we calculate expected incomes, benefits, and tax payments before and after the simulated income change. In this way, using the estimated structural utility function, we predict the probability distribution over the hour's categories that emerge after simulating a marginal increase in the wage rates. As the estimated utility function depends on the net income, the predicted probability distribution will change after the simulated income change. Recall from equation (C.10) the expected hours supplied by household i. Denote by \bar{U}_{ij} the predicted utility of the household from working j hours at the marginally increased wage rate. Then expected hours for the new wage can be calculated in the same way:

$$
\bar{L}_i = \Sigma_{j \in (0,0,40,60)} P \bar{U}_{ij} = \Sigma_{j \in (0,0,40,60)} \text{Prob}_{ij} * j.
$$

(C.39)

The labor supply elasticity can be calculated as the change in predicted hours with respect to the marginal change in the wage rate:

$$
\varepsilon_{L,W} = \frac{(L_i - L_i)}{L_i} \left(\frac{\partial L_i}{\partial W_i} \right) = \left(\frac{\partial L_i}{\partial W_i} \right) \left(\frac{W_i - W_i}{W_i} \right)
$$

(C.40)

The econometric framework from which the elasticity is calculated is static in nature. We rely on cross sectional data and do not observe households at multiple points in time. Moreover, the econometric model does not encompass saving decisions. The elasticities we estimate are uncompensated – Marshallian – elasticities. The Marshallian elasticity is related by the Slutsky equation to the compensated – Hicksian Hicksian) income elasticity. In studies focusing on the deadweight loss of taxation or steady state responses to tax changes, the Hicksian elasticity is the crucial parameter. However, these studies usually assume that tax revenue is redistributed as a lump sum payment to households, shutting off the income effect. As we do not make this assumption, tax changes have income effects, and the Marshallian elasticity is the appropriate parameter to use. In principle, we could obtain the Hicksian elasticity as the residual of the Marshallian elasticity (the one we estimate)
and the income effect (which we could calculate by simulating a marginal increase in non-labor income) but since we focus on a situation with income effects, we refrain from doing so.55

Comparing the elasticities defined both in the micro and in macroeconomic settings, we conclude that, in fact, the elasticity defined in (C.40) is the micro-equivalent to the elasticity derived in (C.23), i.e. the Frisch elasticity, in the macro setting. This is a very important result, because we can greatly improve the consistency between the two models by calibrating the Frisch elasticity with the labor supply elasticities estimated from the discrete choice model. In this way, parameter \(\kappa \) in QUEST can be obtained from the following expression:

\[
\kappa = \frac{1}{\hat{\varepsilon}_{L,W}} \frac{N-L_{xt}}{L_{xt}}
\]

(C.41)

where \(\hat{\varepsilon}_{L,W} = \varepsilon_{L,\hat{w}} \).

Tax incidence in QUEST

For our exercise is very important to assess how the tax incidence mechanism works in the labor market defined in the QUEST model. In this way, following Fullerton and Metcalf (2002) analysis of tax incidence and considering the labor market of the QUEST model, workers face the statutory burden of paying the fraction \(t_{w} \) of the gross wage, receiving the net wage defined as follows (for simplicity we abstract here from time and skill type indices):

\[
NW = (1 - t_{w})W
\]

(C.42)

The firms pay gross wages and social insurance contributions, i.e. a total compensation of employees defined by:

\[
TC = (1 + t_{e})W
\]

(C.43)

where \(W \) is the gross wage, facing, in this way, the statutory tax rate of \(t_{e} \). However, the economic incidence of these taxes may be different from their legal incidence, and this will basically depend on the labor supply and demand elasticities with respect to wages. As in Fullerton and Metcalf (2002), let us define labor supply elasticity with respect to net wage as follows:

\[
\varepsilon_{LS} = \frac{dL_{s}/L_{s}}{dNW/NW} = \frac{dL_{s}/L_{s}}{d[(1-t_{w})W]/[(1-t_{w})W]} \approx \frac{L_{s}}{W-t_{w}}
\]

(C.44)

where the symbol \(^{\wedge}\) represents percent changes. The changes in labor supply will depend on the changes on gross wages, taxes and on the elasticity parameter as follows:

\[
\hat{L}_{s} = (\hat{W} - \hat{t}_{w})\varepsilon_{LS}
\]

(C.45)

In the same way, we can define labor demand elasticity with respect to the total compensation of employees as follows:

55 Note that Bargain et al. (2014) estimate uncompensated, income and compensated elasticities using EUROMOD. They find that income effects are almost zero and hence the difference between compensated and uncompensated elasticities is small.
and the changes in labor demand will depend equally on gross wages, taxes and on the elasticity parameter as follows:

\[\bar{L}_d = (\bar{W} + \bar{t}_w)\varepsilon_{LD} \]

(C.47)

Tax changes will lead to a new equilibrium in the labor market, which implies that:

\[\bar{L}_s = \bar{L}_d . \]

(C.48)

Substituting (C.45) and (C.47) into (C.48), we find that, in order to reach the new equilibrium, changes in gross wages will be given by the following expression:

\[\bar{W} = \frac{\varepsilon_{LS}}{\varepsilon_{LS} - \varepsilon_{LD}} \bar{t}_w + \frac{\varepsilon_{LD}}{\varepsilon_{LS} - \varepsilon_{LD}} \bar{t}_{er}. \]

(C.49)

Since in QUEST, \(0 < \varepsilon_{LS} < \infty \) and \(\varepsilon_{LD} < 0 \), the final change in the equilibrium wage will depend on the relative magnitude of the elasticities and the signs and magnitude of the fiscal policy shocks, i.e., the relative changes in \(t_w \) and \(t_{er} \). In the same way, we can also find the changes in the net wages and total compensation of employees, given the changes in the tax rates for employees and employers.

Consider the definition of net wages in (C.41). Applying logarithms and differentiating, we obtain:

\[\bar{N}W = \bar{W} - \bar{t}_w . \]

(C.50)

Substituting (C.49) in (C.50), we obtain that:

\[\bar{N}W = \frac{\varepsilon_{LD}}{\varepsilon_{LS} - \varepsilon_{LD}} (\bar{t}_w + \bar{t}_{er}) . \]

(C.51)

The ratio \(\frac{\varepsilon_{LD}}{\varepsilon_{LS} - \varepsilon_{LD}} \) is negative. This means that there is an inverse relationship between the change in total taxes on labor and net wages. The same algebraic reasoning can be done in order to find the change in the total compensation of employees. Consider in this case the definition of the total compensation in (C.43). Applying logarithms and differentiating, we obtain:

\[\bar{T}C = \bar{W} + \bar{t}_{er} . \]

(C.52)

Substituting (C.49) in (C.52), we obtain that:

\[\bar{T}C = \frac{\varepsilon_{LS}}{\varepsilon_{LS} - \varepsilon_{LD}} (\bar{t}_w + \bar{t}_{er}) . \]

(C.53)

The ratio \(\frac{\varepsilon_{LS}}{\varepsilon_{LS} - \varepsilon_{LD}} \) is positive. This means that there is a direct relationship between the change in total taxes on labor and the total compensation. As we can conclude, tax incidence in QUEST, i.e. the sharing of the tax burden between workers and firms, will depend on the sign and magnitude of the elasticities of supply and demand.
Appendix D. QUEST impulse responses

D.1 Net real wage of employees, per skill level (% quarterly change from baseline) – Reform on employees contributions

High skilled

Medium skilled

Low skilled

High skilled

Medium skilled

Low skilled
D.2 Total compensation of employees, per skill level (% quarterly change from baseline) – Reform on employees contributions

High skilled

Medium skilled

Low skilled
D.3 Gross real wage, per skill level (% quarterly change from baseline) – Reform on employees contributions

High skilled

Medium skilled

Low skilled

High skilled

Medium skilled

Low skilled
D.4 Employment, per skill level (% quarterly change from baseline) – Reform on employees contributions

High skilled

Medium skilled

Low skilled

High skilled

Medium skilled

Low skilled
D.5 Net real wage of employees, per skill level (% quarterly change from baseline) – Reform on employers contributions

High skilled

Medium skilled

Low skilled

High skilled

Medium skilled

Low skilled
D.6 Total compensation of employees, per skill level (% quarterly change from baseline) – Reform on employers contributions

High skilled

Medium skilled

Low skilled

High skilled

Medium skilled

Low skilled

57
D.7 Gross real wage, per skill level (% quarterly change from baseline) – Reform on employers contributions

- **High skilled**

 - **Medium skilled**

 - **Low skilled**

The diagrams illustrate the percentage change in gross real wages for high-skilled, medium-skilled, and low-skilled workers over a period of 12 quarters. Each line represents different levels of reform on employers' contributions, with increments ranging from 0% to 3.5%.
D.8 Employment, per skill level (% quarterly change from baseline) – Reform on employers contributions
Appendix E. Budgetary and redistributive effects of the reforms

E.1. Impact of the refundable tax credit reform on disposable income (by income decile) – Italy
E.2. Impact of the universal tax credit reform on disposable income (by income decile) – Poland