
Scalable Integration of
Uncertainty Reasoning and
Semantic Web Technologies

Inauguraldissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Jörg Schönfisch
aus Ludwigshafen am Rhein

Mannheim, 2018

Dekan: Dr. Bernd Lübcke, Universität Mannheim
Referent: Prof. Dr. Heiner Stuckenschmidt, Universität Mannheim
Korreferent: Prof. Dr. Kristian Kersting, Technische Universität Darmstadt

Tag der mündlichen Prüfung: 25. Oktober 2018

Abstract

In recent years formal logical standards for knowledge representation to model real world
knowledge and domains and make them accessible for computers gained a lot of trac-
tion. They provide an expressive logical framework for modeling, consistency checking,
reasoning, and query answering, and have proven to be versatile methods to capture
knowledge of various fields. Those formalisms and methods focus on specifying knowl-
edge as precisely as possible.

At the same time, many applications in particular on the Semantic Web have to deal
with uncertainty in their data; and handling uncertain knowledge is crucial in many real-
world domains. However, regular logic is unable to capture the real-world properly due
to its inherent complexity and uncertainty, all the while handling uncertain or incomplete
information is getting more and more important in applications like expert system, data
integration or information extraction.

The overall objective of this dissertation is to identify scenarios and datasets where
methods that incorporate their inherent uncertainty improve results, and investigate
approaches and tools that are suitable for the respective task. In summary, this work is
set out to tackle the following objectives:

1. debugging uncertain knowledge bases in order to generate consistent knowledge
graphs to make them accessible for logical reasoning,

2. combining probabilistic query answering and logical reasoning which in turn uses
these consistent knowledge graphs to answer user queries, and

3. employing the aforementioned techniques to the problem of risk management in
IT infrastructures, as a concrete real-world application.

We show that in all those scenarios, users can benefit from incorporating uncertainty in
the knowledge base. Furthermore, we conduct experiments that demonstrate the real-
world scalability of the demonstrated approaches. Overall, we argue that integrating
uncertainty and logical reasoning, despite being theoretically intractable, is feasible in
real-world application and warrants further research.

i

Zusammenfassung

In den letzten Jahren haben logische Formalism für die Wissensrepräsentation, die es
ermöglichen Wissen und Domänen zu modellieren und sie für Computer zugänglich zu
machen, an großer Bedeutung gewonnen. Sie bieten einen aussagekräftigen logischen
Rahmen für Modellierung, Konsistenzprüfung, Argumentation und zur Beantwortung
von Abfragen, und haben sich als vielseitige Methoden zur Erfassung von Wissen in
verschiedensten Bereichen erwiesen. Diese Formalismen und Methoden konzentrieren
sich darauf, Wissen so genau wie möglich zu spezifizieren.

Gleichzeitig müssen viele Anwendungen, insbesondere im Semantic Web, mit Unsicher-
heiten in ihren Daten umgehen; die Berücksichtigung unsicherem Wissen ist in vielen
Bereichen der realen Welt von entscheidender Bedeutung. Formelle Logik ist jedoch nicht
in der Lage die reale Welt aufgrund ihrer Komplexität und Unsicherheit korrekt zu erfas-
sen. Allerdings wird der Umgang mit unsicheren oder unvollständigen Informationen in
Anwendungen wie Expertensystem, Datenintegration oder Informationsextraktion im-
mer wichtiger.

Das übergeordnete Ziel dieser Dissertation ist es, Szenarien und Datensätze zu identifi-
zieren, bei denen Methoden, die ihre inhärente Unsicherheit berücksichtigen, Ergebnisse
verbessern und Ansätze und Werkzeuge zu untersuchen, die für die jeweilige Aufgabe
geeignet sind. Zusammenfassend ist diese Arbeit auf die folgenden Ziele ausgerichtet:

1. Debuggen unsicherer Wissensbasen, um konsistente Wissensgraphen zu erzeugen,
die dadurch für logische Inferenz zugänglich werden,

2. die Kombination von logischer Inferenz und dem probabilistischen Beantworten
von Anfragen, was wiederum konsistente Wissenbasen vorraussetzt, und

3. die Anwendung der oben genannten Techniken auf das Problem des Risikomanage-
ments in IT-Infrastrukturen als eine konkrete reale Anwendung.

Wir zeigen, dass Nutzer in all diesen Szenarien davon profitieren können, wenn Unsicher-
heit in der Wissensbasis benhandelt wird. Darüber hinaus zeigen wir anhand von Expe-
rimenten, dass die angeführten Ansätze in realistischen Anwendungsszenarien skalierbar
sind. Insgesamt argumentieren wir, dass die Integration von Unsicherheit und logischer
Inferenz, obwohl theoretisch schlecht skalierbar, in realistischen Szenarien durchaus an-
wendbar ist.

iii

Contents

I. Introduction 1

1. Introduction 3
1.1. Motivation . 3
1.2. Research Objectives and Outline . 5

2. Preliminaries 9
2.1. Knowledge Graphs . 10

2.1.1. Uncertain Knowledge Graphs . 11
2.2. Ontologies and First-order Logic . 12

2.2.1. First-order Logic and Description Logic 12
2.3. Light-weight Description Logics . 18

2.3.1. The Description Logic EL++ . 18
2.3.2. The Description Logic DL-LiteR 19

2.4. Probabilistic Graphical Models . 20
2.5. Probabilistic Reasoning with Light-weight Description Logics 22

2.5.1. Log-linear Description Logics . 23
2.5.2. Tuple-independent OWL . 24

II. Research Contributions 27

3. Debugging Large-scale Uncertain Temporal Knowledge Graphs 29
3.1. Introduction . 29
3.2. Preliminaries . 30

3.2.1. Temporal Knowledge Graphs . 30
3.2.2. Uncertain Temporal Knowledge Graphs 31
3.2.3. Probabilistic Soft Logic . 31
3.2.4. Reasoning in Uncertain Temporal Knowledge Graphs 33

3.3. Conflict Detection in Uncertain Temporal Knowledge Graphs 39
3.3.1. Numerical Constraints for Conflict Detection 40

3.4. Datasets of Temporal Knowledge Graphs 41
3.4.1. FootballDB . 42
3.4.2. Wikidata . 42
3.4.3. Mining Rules from YAGO . 42

3.5. Tool Support . 43
3.5.1. System Overview . 43

3.6. Experiments . 47
3.6.1. Performance of MAP Inference . 47
3.6.2. Performance of Conflict Detection 48

v

Contents

3.7. Related Work . 50
3.8. Conclusion . 51

4. Scalable Probabilistic Query Answering and Logical Reasoning 53
4.1. Introduction . 53
4.2. Preliminaries . 56

4.2.1. Implementing Reasoning on Top of Probabilistic Databases 57
4.2.2. Complexity of Query Processing in TIP-OWL 59

4.3. Analysis of the SPARQL Dataset and Query Safeness 66
4.4. Benchmarks on Probabilistic Data . 68

4.4.1. Benchmark Data for Probabilistic OBDA 68
4.4.2. Experimental Evaluation . 71

4.5. Related Work . 76
4.5.1. Analysis of Real-World SPARQL Queries 76
4.5.2. Probabilistic Querying . 76
4.5.3. Probabilistic Ontology-Based Data Access 77

4.6. Conclusion . 77

5. IT Risk Management in Large-scale IT Infrastructures 79
5.1. Introduction . 79
5.2. Preliminaries . 81

5.2.1. Abduction in Markov Logic Networks 82
5.3. Root Cause Analysis with Markov Logic Networks 83

5.3.1. Scenario Setting . 84
5.3.2. Modeling Dependencies and Risks 85
5.3.3. Infrastructure Components and Background Knowledge 88
5.3.4. Computing Explanations . 89
5.3.5. Limitations . 92

5.4. Exemplary Scenarios . 93
5.4.1. Scenario Analysis . 93

5.5. Evaluation of Scalability . 94
5.5.1. Data Generation . 94
5.5.2. Scalability Results . 96

5.6. Tool Support . 97
5.6.1. Required Data . 97
5.6.2. User Interaction . 98

5.7. Estimating Availabilities in IT Infrastructures 99
5.7.1. Availability . 100
5.7.2. Summary of the Approach . 100
5.7.3. Case Study . 101

5.8. Related Work . 104
5.8.1. Root Cause Analysis . 104
5.8.2. Applications of Abductive Reasoning 107
5.8.3. Estimating Availability . 107

vi

Contents

5.9. Discussion and Conclusion . 109

III. Conclusion and Future Work 113

6. Conclusion 115
6.1. Extracting Consistent Knowledge Graphs from Uncertain Information . . 115
6.2. Assessing the Real-World Usability of the Combination of Probabilistic

and Logical Reasoning through Query Rewriting 116
6.3. IT Risk Management in Large-scale IT Infrastructures using Probabilistic

Models . 116
6.4. Closing Remarks . 117

7. Future Work 119

Bibliography 121

vii

List of Figures

3.1. The diagram describes the grounding of a Markov Network. The grounded
formulas G are generated by substituting each occurrence of every vari-
able in the MLN Formulas with constants of the domain C. The possible
worlds X are generated by giving all possible groundings of each predicate.
Both the possible worlds X and the grounded formulas G are checked and
assigned a value of 1 if they are true, and 0 otherwise. (Adapted from
(Jain, 2011; von Stülpnagel et al., 2014)). 36

3.2. TeCoRe system overview. 43
3.3. Interface to select the input data, inference rules, and temporal constraints. 44
3.4. Constraints editor (predicate auto-completion). 44
3.5. Illustration of Allen’s interval algebra (Jobczyk, 2016). 45
3.6. Display of result statistics and result data (with browsable consistent and

conflicting statements). 46
3.7. Runtimes on datasets of various sizes . 48
3.8. Precision and recall for nRockIt and PSL on datasets inject with various

amounts of wrong data. 49
3.9. F1 measure for nRockIt and PSL on datasets inject with various amounts

of wrong data. 50

4.1. Runtimes on datasets of various sizes . 74
4.2. Runtimes on datasets of various sizes . 75

5.1. Case Study: Office multifunction printer with multiple risks/threats at-
tached (for brevity risks are grouped as Device Failure). In this small
example we do not consider redundant components, i.e. all edges repre-
sent specificallyDependsOn relations. 84

5.2. Process flow for our approach on root cause analysis. Rectangles denote
automatic action. Trapezoids require manual interaction by an adminis-
trative user. Clouds represents observations made and entered by a user. . 91

5.3. Runtimes on infrastructures of various sizes 97
5.4. Screenshot of the visual representation of the dependency network and

provided evidence (green and red) about the availability of components. . 98
5.5. The dependency network of the small IT infrastructure of our case study.

Solid arrows indicate specific dependencies, dashed arrows symbolize generic
dependencies and the dotted line represents a redundancy. 101

5.6. The predicates for the dependency network of the base configuration. . . . 102
5.7. The change of the unavailabilities in the different scenarios of our case

study. 103

ix

List of Tables

3.1. Runtime Performance (in seconds, averaged over 10 runs) over the Foot-
ball Database (FBD) and various sizes of Wikidata for nRockIt and PSL.
TO denotes a timeout after 30 minutes. 47

3.2. Precision (P), recall (R), F1 measure, and runtime (in seconds, averaged
over 10 runs) for running the MAP inference with increasing percentage
of wrong temporal facts injected. The Wikidata 50k dataset was used as
baseline. 49

4.1. Overview of queries in the LSQ dataset 66
4.2. Used SPARQL features . 67
4.3. Analysis results for queries in the LSQ dataset 68
4.4. Size of the different NELL and LUBM datasets. 69
4.5. Number of results with and without reasoning, and increase in query size

(predicates) . 72
4.6. Dataset loading times (sec) . 73
4.7. Query performance in seconds, averaged over 10 runs 73
4.8. Query response times (seconds) of our implementation on various sizes of

the probabilistic LUBM dataset. A timeout (response time > 60 minutes)
is denoted as “-”. 74

4.9. Query mixes per hour (QMpH) for different dataset sizes. The number
indicates how often the set of benchmark queries could be executed within
one hour. The queries are executed in random order. 75

5.1. Average runtimes on infrastructures of various sizes 96
5.2. The measured and predicted unavailabilities for the different scenarios of

the case study. Scenario 1 is the base configuration, Scenario 2 is the base
configuration with the overheating threat, Scenario 3 is the configuration
with a second WiFi AP, and Scenario 4 is the configuration with a second
WiFi AP and the overheating threat. 102

5.3. The learned weights for the measured unavailabilities in the base config-
uration. 104

5.4. The predicates for the dependency network with a second WiFi AP. . . . 104
5.5. The new learned weights for the configuration with a second WiFi AP. . . 105

xi

List of Theorems

1.1. Example (Logic and Uncertainty) . 3

2.1. Definition (Knowledge Graph) . 11
2.1. Example (Knowledge Graph) . 11
2.2. Definition (Uncertain Knowledge Graphs) 12
2.2. Example (First-order Logic Model) . 13
2.3. Definition (The Description Logic ALC) 14
2.3. Example (Description Logic Model) . 15
2.4. Example (Incoherent TBox) . 16
2.5. Example (Inconsistent ABox and TBox) 17
2.4. Definition (The Description Logic EL++) 18
2.5. Definition (The Description Logic DL-LiteR (Calvanese et al., 2007)) . . . 19
2.6. Example . 20
2.7. Example (Markov Logic Network) . 22
2.6. Definition (The Log-linear description logic EL++-LL (Niepert et al., 2011b)) 23
2.7. Definition (Translating EL++-LL into Markov Logic Networks) 23
2.8. Definition (Inference in EL++-LL) . 24
2.9. Definition (Tuple-independent OWL (TIP-OWL)) 25

3.1. Definition (Temporal Knowledge Graph) 30
3.2. Definition (Uncertain Temporal Knowledge Graphs) 31
3.1. Example (MLN with Numerical Constraints) 32
3.3. Definition (Uncertain Temporal Knowledge Graph (UTKG)) 33
3.4. Definition (Membership and Subset Relation in UTKGs) 33
3.5. Definition (Semantics of UTKGs) . 33
3.6. Definition (Temporal Inference Rules) . 33
3.7. Definition (Mapping UTKGs into FOL) 34
3.1. Theorem . 35
3.2. Theorem . 37
3.2. Example (MAP State) . 37
3.8. Definition (Inclusion Dependencies with Inequalities (IDIs)) 40
3.3. Example (Inclusion Dependencies with Inequality Constraints) 40
3.9. Definition ((In)equality Generating Dependencies (IGDs)) 41
3.4. Example ((In)equality Generating Dependency Constraints) 41
3.10. Definition (Disjointness Constraints (DCs)) 41
3.5. Example (Disjointness Constraints) . 41
3.6. Example (Allen’s Interval Algebra) . 45

4.1. Example (Query Answering) . 55
4.1. Definition (Derived Query) . 57

xiii

List of Theorems

4.1. Theorem (FOL-Reducibility of DL-Lite (Calvanese et al., 2007)) 58
4.1. Corollary . 59
4.2. Definition (Syntactic Independence (Suciu et al., 2011)) 60
4.3. Definition (Separator Variable (Suciu et al., 2011)) 60
4.4. Definition (Six Rules for Query Safeness (Suciu et al., 2011)) 60
4.2. Example (Extensional Processing of a Safe Query) 64
4.5. Definition (Safeness) . 65
4.2. Theorem (Dichotomy Theorem (adapted from (Suciu et al., 2011))) 65

xiv

Part I.

Introduction

1

1
Introduction

1.1. Motivation

In recent years several standards for knowledge representation, e.g. the Resource De-
scription Framework (RDF)1 (Schreiber and Raimond, 2014) or the Web Ontology Lan-
guage (OWL)2 (Parsia et al., 2012) by the World Wide Web Consortium (W3C) gained
a lot of traction. There are also some prominent de facto standards and formalisms like
schema.org Guha et al. (2016) or Linked Open Data. In general, the purpose of these
Semantic Web technologies is to model real world knowledge and domains and make
them accessible for computers. They provide an expressive framework for modeling,
consistency checking, reasoning, and query answering, and have proven to be versatile
methods to capture knowledge of various fields. Those formalisms and methods focus
on specifying knowledge as precisely as possible. OntoClean (Guarino and Welty, 2009),
for example, categorizes expressions in an ontology into rigid and non-rigid ones and
discourages the usage of non-rigid knowledge to avoid false reasoning results.

At the same time, many applications in particular on the Semantic Web have to deal
with uncertainty in their data; and handling uncertain knowledge is crucial in many real-
world domains. However, Russell et al. (2010, p. 481) note that regular logic is unable
to capture the real-world properly due to its inherent complexity and uncertainty, and
illustrate this by the following example:

Example 1.1 (Logic and Uncertainty)
Consider a simple logical rule which says that a toothache is implying that a person has
a cavity:

Toothache → Cavity (1.1)

However, this rule is too simple, as there are other reasons for toothache, like gum
problems:

Toothache → Cavity ∨GumProblems ∨ . . . (1.2)

Obviously, making this rule complete requires us to add an almost infinite number of
causes for toothache, which is infeasible to do. We can turn the rule around, stating a

1http://www.w3.org/standards/techs/rdf
2http://www.w3.org/standards/techs/owl

3

http://www.w3.org/standards/techs/rdf
http://www.w3.org/standards/techs/owl

Chapter 1. Introduction

causal implication:
Cavity → Toothache (1.3)

but again, this is not sufficient as not all cavities cause a toothache, and we have to
add multiple preconditions as to when the ache really occurs. For both rules, the only
solution to making them valid in the real-world is to make them logically exhaustive and
add all causes and preconditions for toothache. △

Russell et al. (2010) name three main reasons why logic fails like this in the real world:

• Laziness: It takes too much effort to exhaustively model such rules, and it makes
those rules hard to use.

• Theoretical ignorance: For many domains, there exists no complete theory,
e.g. not every cause of an observation is known.

• Practical ignorance: Even if there is a complete theory for a domain, all the
relevant information for a concrete instantiation of the rule might not be available,
for example we are still waiting for results of some medical test.

The Semantic Web – with description logic as its formal underpinning – is also hindered
by these limitations. The impact for Linked Data or ontologies can be so severe that
IBM decided not to use structured knowledge bases for their famous Jeopardy-winning
Watson system, as it would only have been able to answer about two percent of the
posed questions (Kalyanpur et al., 2012). Instead, they developed a system that allows
for imprecise or uncertain knowledge and achieves a better overall performance. The
handling of uncertain or incomplete information is getting more and more important,
not only in the domain of expert systems or query-answering systems like Watson, but
also in other real world applications like data integration and information extraction.
Some examples for sources of uncertainty from those areas are:

• Data entered manually by some person like in Wikipedia3 or Wikidata4, a bug
report from a user, or a filing from a worker. A user can either knowingly (like
when changing Wikipedia articles about a person to put them in a more favorable
light) or unknowingly (e.g. when a user is unaware about the correct version of a
used product) enter wrong information.

• Data obtained through open information extraction (OIE), like the knowledge
bases created by NELL5 (Carlson et al., 2010), YAGO6 (Hoffart et al., 2013), Mi-
crosoft’s Concept Graph7 (Wu et al., 2012), or Google’s Knowledge Vault8 (Dong

3https://www.wikipedia.org/
4https://www.wikidata.org/
5http://rtw.ml.cmu.edu/rtw/
6http://www.yago-knowledge.org/
7https://concept.research.microsoft.com/Home/Introduction
8https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html

4

https://www.wikidata.org/
http://rtw.ml.cmu.edu/rtw/
http://www.yago-knowledge.org/
https://concept.research.microsoft.com/Home/Introduction
https://www.google.com/intl/bn/insidesearch/features/search/knowledge.html

1.2. Research Objectives and Outline

et al., 2014a). Those knowledge bases have in common that they extract infor-
mation from publicly available sources found on the web. Some of those might
be more trustworthy than others, and there can be contradicting information on
different sites. Additionally, the process of automatic extraction can lead to fur-
ther errors (for example misrecognized characters when scanning documents) in
the created knowledge base

• Information automatically gathered by sensors, like the status of services in infor-
mation systems, weather data, or readings from industry process control systems.
Sensors naturally have some margin of error that needs to be accounted for. Their
readings (response time, temperature, pressure, ...) are different from information
in text, and usually you have multiple values from the same source, contrary to
one reading from multiple sources as with text.

• Data uncertain in its nature, like the occurrence of risks and threats in information
systems, or forecasts of any kind. This data is inherently uncertain as it makes
predictions about the future.

A number of approaches have been proposed for combining description logics with prob-
abilistic or uncertain reasoning. An overview of early approaches is given by Lukasiewicz
and Straccia (2008), more recent approaches include probabilistic description logics – e.g.
Disponte/Bundle by Riguzzi et al. (2013, 2015) or Pronto by Klinov and Parsia (2013)
– and Log-linear Description Logics by Niepert et al. (2011b). On the other hand, the
logic programming and statistical relational learning community has developed proba-
bilistic versions of Datalog-style languages – like ProbLog by De Raedt et al. (2007) –
that can be used to partially model ontological background knowledge.

While for many of these languages efficient subsets have been identified, for example
by Riguzzi et al. (2015) or Klinov and Parsia (2013), and optimized reasoning algorithms
have been proposed, none of the existing approaches is designed to handle large amounts
of data as we find on the Web, or it is unclear how well these approaches works in practice
due to missing practical evaluation.

1.2. Research Objectives and Outline

The overall objective of this dissertation is to identify scenarios and datasets where
methods that incorporate their inherent uncertainty improve results, and investigate
approaches and tools that are suitable for the respective task. In summary, this work is
set out to tackle the following objectives:

1. debugging uncertain knowledge bases in order to generate consistent knowledge
graphs to make them accessible for logical reasoning,

2. combining probabilistic query answering and logical reasoning which in turn uses
these consistent knowledge graphs to answer user queries, and

5

Chapter 1. Introduction

3. employing the aforementioned techniques to the problem of risk management in
IT infrastructures, as a concrete real-world application.

In the following we outline the goals of the different chapters. Afterwards, we introduce
description logic and probabilistic reasoning, and how both can be combined in one
formalism.

Debugging Large-scale Uncertain Temporal Knowledge Graphs

Uncertain knowledge graphs which were created automatically have an exceptionally
high chance of containing contradicting or inconsistent information. This risk further
increases when integrating data from multiple sources.

In Chapter 3 we look at the specific problem of debugging large-scale temporal infor-
mation in uncertain knowledge graphs (containing hundreds of thousands or millions
of statements). There is already a body of work in debugging and repairing regular
knowledge graphs (cf. Fleischhacker (2014) for an overview). However, temporal data
is special in the sense that it also needs reasoning for instants and intervals of time, for
example the following two statements

playsFor(CristianoRonaldo,Manchester)
playsFor(CristianoRonaldo,Chelsea)

contradict each other as a player can only play for a single team at a time, however,
with the temporal context like

playsFor(CristianoRonaldo,Manchester, 2003, 2009)
playsFor(CristianoRonaldo,Chelsea, 2009,Now)

they are valid.

Scalable Probabilistic Query Answering and Logical Reasoning

The SPARQL recommendation9 (The W3C SPARQL Working Group, 2013) provides an
expressive query language for retrieving information from knowledge bases. Furthermore,
ontology-based data access (ODBA) has received a lot of attention in the Semantic Web
community. In particular, results on light-weight description logics that allow efficient
reasoning and query answering provide new possibilities for using ontologies in data
access. One approach for ontology-based data access is to rewrite a given query using
the background ontology in such a way that the resulting – more complex – query can
directly be executed on a relational database. This is possible for different light-weight
ontology languages, in particular the DL-Lite family (Artale et al., 2009).

9https://www.w3.org/standards/techs/sparql#stds

6

https://www.w3.org/standards/techs/sparql#stds

1.2. Research Objectives and Outline

Research in probabilistic databases has shown that there is a strict dichotomy of safe
(data complexity in PTime) and unsafe (in #P-hard) queries (Suciu et al., 2011). For
the probabilistic extension of OBDA the distinction between safe and unsafe queries is
highly crucial. Jung et al. have shown that query rewriting for OBDA can directly be
lifted to the probabilistic case (Jung and Lutz, 2012). Furthermore, they prove that
the complexity results and the dichotomy of safe and unsafe queries also carries over to
probabilistic query answering in an OBDA setting.

Chapter 4 analyzes the information needs of users sending queries to various public
SPARQL endpoints, and how uncertain knowledge used to answer those queries can
be processed efficiently. Furthermore, we investigate the performance of probabilistic
OBDA both on real-world data and a benchmark dataset we created specifically for this
task.

IT Risk Management in Large-scale IT Infrastructures

In this chapter, we apply some of the aforementioned formalisms –especially ontolo-
gies and Markov logic networks – to the area of IT risk management. IT risk man-
agement tries to find, analyze and reduce risks in an IT infrastructure. Most com-
monly risk is defined as a set of triplets, each triplet consisting of a scenario, its po-
tential impact, and its probability (Kaplan and Garrick, 1981). In the IT environment
these scenarios are often also called threats. A very simple example would be the risk
⟨HardriveCrash-Mailserver,Mail-Outage, 1%⟩.

If a new possible threat surfaces, the IT risk management needs to assess its probability
and evaluate its potential impact. Today’s IT has complex dependencies and a threat
to a single component can threaten a whole infrastructure. Furthermore, single threats
often have a very low probability but the combination of many threats can be a major risk
to an IT infrastructure. Therefore, it is not enough to look at infrastructure components
individually to determine the possible impact of a threat. Thus, a manual threat analysis
takes a lot of time. However, a fast response to a new threat is important to minimize
the chance of exploitation (Ernst & Young, 2012).

Additionally, once an outage occurs it is crucial to quickly identify the source of the
problem. An efficient procedure for root cause analysis is thus an important tool in
IT risk management. However, it suffers from the same problems as identifying and
estimating threats in the first place.

In Chapter 5 we investigate the two scenarios of a) estimating the impact of risks on the
availability of components in an infrastructure, and b) the task of root cause analysis.
We propose and evaluate two novel approaches using Markov Logic Networks to solve
these problems.

7

Chapter 1. Introduction

Conclusion and Future Work

We finish with an overall conclusion in Chapter 6 of the dissertation. Afterwards we
provide an outlook for future work in handling uncertain information in Chapter 7.

We have published parts of the research presented in this dissertation in the following
workshop & conference papers and journal articles:

• Chapter 3 uses results from (Schoenfisch, 2014), (Schoenfisch and Stuckenschmidt,
2015), (Schoenfisch and Stuckenschmidt, 2016), and (Schoenfisch and Stucken-
schmidt, 2017)

• Chapter 4 is based on (Chekol et al., 2017a) and (Chekol et al., 2017b)

• Chapter 5 on (von Stülpnagel et al., 2014), (Schoenfisch et al., 2016), and (Schoen-
fisch et al., 2017)

8

2
Preliminaries

In this chapter we introduce the underlying foundations for the remainder of this thesis.
The ultimate idea of the approaches presented here is to provide a sound and complete
translation of entailment in a logical formalism to a rule-based probabilistic formalism.
This framework offers a high flexibility, as it can be used to combine a range of different
logics and uncertainty formalisms.

Combining logics and uncertainty is an extensive and long standing field of research.
In one of the earliest works, Nilsson (1986) proposes to assign probabilities instead of
Boolean truth values to logical formulas. This generalizes ordinary logical entailment
and provides a clear semantics for the entailment problem. However, a major prob-
lem is the complexity of reasoning which already makes entailment intractable for very
small knowledge bases. To avoid this problem, other logical formalism have been con-
sidered, and a great number of different approaches to address uncertainty (e.g. fuzzy
logic (Gerla, 1994), subjective logic (Jøsang, 2001), probabilistic graphical models (Koller
and Friedman, 2009), probabilistic logic programming (Lukasiewicz, 1998; Ng and Sub-
rahmanian, 1992), or evidential reasoning (Ruspini et al., 1992)) have been developed.

Recent approaches in the direction of probabilistic logic programming include Indepen-
dent Choice Logic (Poole, 2008), PRISM (Sato and Kameya, 2008) and ProbLog (De
Raedt et al., 2007). These approaches have been shown to be useful in practice, how-
ever, they suffer from the same problem of being hard to maintain as similar rule-based
knowledge representations.

Probabilistic graphical models are another popular line of research, which has been
proven to be useful in practical applications (Koller and Friedman, 2009). Template
languages provide means to represent them in a compact way for complex domains, which
lessens effort to create and maintain the. Usually, the template languages employ some
first-order logic to represent probabilistic knowledge. By instantiating the first-order
predicates with constants, the logical model is translated to a probabilistic graphical
model. However, those approaches are not directly compatible with description logic and
DL reasoning, as the templates are restricted to a finite domain of constants. One of the
earliest approaches in this direction is P-CLASSIC (Koller et al., 1997) which extends the
Classic description logic with probabilistic information. More recently, approaches like
PR-OWL (da Costa and Laskey, 2006) and Markov logic networks (MLNs) (Richardson
and Domingos, 2006) were developed. We will especially discuss MLNs below.

9

Chapter 2. Preliminaries

Lukasiewicz recently proposed approaches that combine probabilistic reasoning with
description logic (Lukasiewicz, 2007) and probabilistic logic programs with ontological
knowledge (Lukasiewicz, 2008). However, these approaches also suffer from a high com-
plexity and a lack of tool support.

There is some work in the direction of combining light-weight description logic with
Bayesian networks. BEL is a combination of the description logic EL and Bayesian
networks (Ceylan and Peñaloza, 2017), however the formalism does not include uncer-
tainty for instance data, and it is intractable. D’Amato et al. (2008) combine Bayesian
networks with DL-Lite, and show that this approach offers satisfiability checking and
query answering in LogSpace. However, when probabilistic information changes, the
Bayesian network needs to be recalculated, which is a #P-hard problem.

In our work we investigate two different ways of combining light-weight description logics
with probabilistic reasoning: Niepert et al. (2011b) proposed a log-linear description logic
which combines EL with Markov logic networks. In their formalism, they employ re-
search on consequence-driven reasoning for description logics (Kazakov, 2009; Krötzsch,
2010; Simancik et al., 2011). This approach is able to compute the most probable, coher-
ent ontology from a given probabilistic knowledge base. The other approach, proposed
by Jung and Lutz (2012), uses query rewriting in OWL 2 QL combined with traditional
probabilistic reasoning. This promises scalable query answering for large probabilistic
knowledge bases.

In the following, we first explain uncertain knowledge graphs and ontologies; common
approaches to model knowledge bases. As formalisms for modeling them, we introduce
first-order logic, especially description logic as a decidable fragment thereof, and in
particular the two light-weight description logics EL++ and DL-LiteR. Then, we describe
probabilistic reasoning – in particular Markov logic networks and probabilistic databases
– and how to combine them with light-weight description logics to conduct probabilistic
logical reasoning.

The formalisms and approaches described in this chapter are the foundation for the
investigations which we will conduct in the following parts of this work. We first define
the tools required to model (uncertain) information: knowledge graphs and ontologies.
Then, we introduce first-order logic and light-weight fragments thereof, which are used
for inference and reasoning. Subsequently, we describe how light-weight description
logics are combined with probabilistic reasoning formalisms to conduct probabilistic
logical reasoning.

2.1. Knowledge Graphs

A knowledge graph is a directed graph whose nodes represent instances of objects in
the real world referenced by IRIs (Internationalized Resource Identifiers (Duerst and

10

2.1. Knowledge Graphs

Suignard, 2005)), which are connected via properties to other instances or literals. Pop-
ular examples of knowledge graphs are YAGO (Hoffart et al., 2013), Google Knowledge
Vault (Dong et al., 2014b), DBpedia (Lehmann et al., 2015) or Wikidata (Lehmann
et al., 2015).

Usually, the graph is defined by statements in the form of subject-predicate-object triples.
More formally:

Definition 2.1 (Knowledge Graph)
Let I, P, and L be disjoint sets with I containing IRIs identifying real-world objects, P
consisting of IRIs representing relations and properties, and L being literals. A knowledge
graph K is then the set {(s, p, o) : (s, p, o) ∈ I × P × I ∪ L}1. ⃝

For example a statement about Claudio Ranieri being coach of Chelsea F.C. looks as
following in the Wikidata knowledge graph2:

Example 2.1 (Knowledge Graph)

(wd: Q235068,wdt: P286,wd: Q9616)
(Q235068,wikibase: label,Claudio Ranieri)

(P286,wikibase: label, head coach)
(Q9616,wikibase: label,Chelsea F.C.)

Note how Wikidata also employs the common technique of assigning globally unique IDs
to instances and properties and defining human-readable labels as additional statements.
This avoids possible conflicts between entities having the same name, for example consider
Berlin, which is the capital of Germany, but also the name of over 20 cities in the United
States of America. △

2.1.1. Uncertain Knowledge Graphs

A knowledge graph can be turned into an uncertain knowledge graph by annotating the
triples with an element that expresses uncertainty. Those elements can be based on
any formalism for representing uncertainty, for example the well-known probability the-
ory (Mikosch and Kallenberg, 1998), fuzzy sets (Zadeh, 1965), possibility theory (Dubois
and Prade, 2001), or weighted models like log-linear models as used in Markov logic net-
works (cf. Section 2.4). Similar to knowledge graphs, we define uncertain knowledge
graphs as follows:

1RDF has the notion of blank nodes, i.e., nodes without a named, distinct identity. Those are not
considered in this work.

2For brevity and readability we use the namespace prefixes as defined by Wikidata here: https:
//www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Prefixes_used

11

https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Prefixes_used
https://www.mediawiki.org/wiki/Wikibase/Indexing/RDF_Dump_Format#Prefixes_used

Chapter 2. Preliminaries

Definition 2.2 (Uncertain Knowledge Graphs)
Let K be knowledge graph as defined above, and W be a set of elements expressing degrees
of uncertainty. A uncertain knowledge graph KW is then the set {(s, p, o, w) : (s, p, o) ∈
K, w ∈ W}. ⃝

2.2. Ontologies and First-order Logic

An ontology can be understood as a logical representation of a domain model. A knowl-
edge graph combined with logical rules is one concrete of many possible forms of an
ontology. The advantages of such domain models include enabling the sharing of knowl-
edge, the re-use of knowledge, and the better engineering of knowledge-based systems
with respect to acquisition, verification and maintenance (Jones et al., 1998).

There are several logical languages that can be used to define ontologies. One of the
most important formalisms is the family of description logics (DL) (Baader and Nutt,
2003), a fragment of first-order logic, which is based on a well-defined model-theoretic
semantics. The core reasoning problems for DL languages are (usually) decidable, and
efficient decision procedures have been designed.

A logical formalization that is built on top of a well-defined semantics has several ad-
vantages. One of these advantages is the possibility to exploit reasoning capabilities.
Reasoning can be used to detect inconsistencies in the model. This helps both the task
of acquisition and maintenance by automatically detecting potential mistakes. Further-
more, reasoning is used to make information explicit that is only stated implicitly in the
model. For example, when we know that every parent is a person, and Alice is a parent,
the implicit information is that Alice is also a person.

2.2.1. First-order Logic and Description Logic

First-order Logic

First-order logic (FOL) is used do describe and reason in a domain of discourse. Syn-
tactically, it consists of:

constants C = {c1, ..., c|C|},

variables V = {v1, ..., v|V|},

predicates R = {r1, ..., r|R|},

functions F = {f1, ..., f|F|},

and logical operators (∀,∃,∧,∨,→,↔,¬, (,),≡).

12

2.2. Ontologies and First-order Logic

A term t can either be a variable v, a constant c, or a function of terms f(ti, ..., tj). An
atomic formula (or simply atom) is a formula that contains no logical connective, i.e. it
consists of a single predicate. A general formula is created by connecting multiple atoms
via logical operators (using the usual semantics in predicate logic as given by Hilber
and Ackermann (1938)). If an atom contains no variables we call it a ground atom; if a
formula contains no free variables (i.e. only constants and variables bound by ∀ or ∃),
we call it a ground formula.

The semantics of a first-order logic is given by an interpretation. Intuitively, an inter-
pretation assigns real-world objects present in the domain to the syntactic constructs
described above. This way, every term is also assigned a truth value, e.g. an atomic
formula is true if a relation as identified by the predicate exists (or can exist) between
the specified constants and variables.

A small example FOL model is the following simple description of relations between
persons and their hobbies:

Example 2.2 (First-order Logic Model)

person(Alice) person(Bob) person(Eve)

friends(Alice,Bob)
hasHobby(Alice,Football)

friends(x, y) ∧ hasHobby(x, z) → hasHobby(y, z)

The model contains the constants Alice, Bob and Eve, variables x, y and z, the predicates
friends and hasHobby and the logical operators ∧ and →. It states that Alice and Bob
are both persons and friends, Eve is a person, Alice has Football as a hobby, and that
individuals who are friends have the same hobbies. From this model it can be inferred
that Bob also has the hobby Football. △

Description Logic

Description logic (DL) is a fragment of first-order logic. Its expressive power is usually
between simple propositional logic and full first-order logic. Description logics are mainly
created for knowledge representation, and the possible syntactically allowed constructs
are carefully chosen to enable efficient reasoning.

Description logics use a different terminology from FOL: constants are either concepts
or instances thereof, and predicates are denoted as roles. If a concept or a role is
constructed from other (atomic) concepts or roles, it is called a complex concept or role,
respectively. DLs also introduce two special concepts: ⊤ (top) with every individual
as its instance, and ⊥ with no individual as instance. A concepts assertion or a role

13

Chapter 2. Preliminaries

assertion is the instantiation of a concept with an individual or individuals, respectively.
Usually, the set of concepts and roles is denoted as TBox (terminological box, or simply
terminology), and the set of individuals and assertions as ABox (assertional box, or also
world description). We define TBox and ABox in more detail below.

A simple description logic, which is the basis for many more expressive DLs is ALC
(attributive language with complex concept negation) (Baader and Nutt, 2003):

Definition 2.3 (The Description Logic ALC)
Let A be an arbitrary atomic concept, C and D arbitrary complex concepts, a and b
arbitrary individuals, and R be some role. Then, the syntax to build constructs in ALC
is as follows:

C,D −→ A | ¬A | ¬C |
⊤ | ⊥ |
C ⊓D |
∀R.C |
∃R.⊤

The formal semantics of those concepts are given by an interpretation I over a non-
empty domain ∆I and an interpretation function ·I , which assigns every atomic concept
A to a set AI ⊆ ∆I , and every atomic role R to a set RI ⊆ ∆I × ∆I . For complex
concepts, the interpretation function is as follows:

⊤I = ∆I

⊥I = ∅
AI ⊆ ∆I

RI ⊆ ∆I ×∆I

(¬A)I = ∆I\AI

(C ⊓D)I = CI ∩DI

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}
(∃R.⊤)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI → b ∈ ∆I}

⃝

Terminologies Terminologies (or TBox in short) define relationships between concepts
and roles. Terminological axioms are of the form

C ⊑ D C ≡ D

R ⊑ S R ≡ S

where C and D are concepts, and R and S are roles. Axioms using the ⊑-operator
are called inclusions, whereas those using ≡ are called equalities. Again, the semantics

14

2.2. Ontologies and First-order Logic

of those axioms are defined by an interpretation I. I satisfies an inclusion C ⊑ D if
CI ⊂ DI , and an equality C ≡ D if CI = DI . The same is analogous for roles. An
interpretation I is called a model for a set of axioms if it satisfies all of them. If two
sets of axioms have the same models, they are equivalent.

World Description After defining a terminology, we want to describe our world or
domain of interest using this vocabulary. This world descriptions is called the ABox. In
the ABox, individuals are given properties by asserting them to concepts or roles. For
individuals a, b, and c, those are of the form

C(a) R(b, c)

C(a) is called a concept assertion, denoting that a is of type C, and R(a, b) is called role
assertion, relating a to b via the given role.

The semantics of the ABox are given by extending the interpretation I to also map to
each individual a an element aI ∈ ∆I . Throughout this work, we make the unique name
assumption (UNA), i.e. for two individuals a and b with distinct names, aI ̸= bI . I
satisfies a concept assertion C(a) if aI ∈ CI , and a role assertion R(a, b) if (aI , bI) ∈ RI .
Analogous to the TBox, I satisfies the ABox and is a model for it, if it satisfies every
assertion of the ABox.

With this simple description logic, we can formulate a knowledge base similar to the one
in Example 2.2:

Example 2.3 (Description Logic Model)

Man ⊑ Person
Woman ⊑ Person

Woman ⊓ Man ⊑ ⊥
Friend ≡ ∃hasFriend.⊤

Woman(alice) Man(bob) Woman(eve)
Hobby(football)

Friends(alice, bob) HasHobby(alice, football)

We extended the model with the concepts of Man, Woman and Friend, and formulas
stating that all men and women are persons, and that there are no instances which
are both man and woman. We also state that a Friend is somebody who has a friend.
However, we cannot model the rule friends(x, y) ∧ hasHobby(x, z) → hasHobby(y, z), as
rules are not part of standard description logics.

Note that concepts and roles in description logics are usually starting with an uppercase
and instances with a lowercase letter. △

15

Chapter 2. Preliminaries

Nominals It is also possible to use individual names directly in the TBox. They are
used to enumerate individuals which form a concept. For example the concept of the
three primary colors can be defined as follows:

PrimaryColors ≡ {red, yellow,blue}

Individual names inside the TBox are called nominals.

Ontologies The TBox containing concepts, roles, inclusions, and equalities, together
with the ABox consisting of concept and role assertions, form an ontology, often denoted
as K = {T ,A}3.

Inference in Description Logics

The main advantage of ontologies is the ability to ensure consistency of the modeled
knowledge, and to deduce new knowledge form existing information. Through logical
inference we can, for example, reason from Example 2.3 that Alice, Bob, and Eve are all
persons.

In description logics there exist four different kinds of reasoning tasks regarding the
TBox (Baader et al., 2003):

• Satisfiability: A concept C is satisfiable with respect to T if there exists a model
I of T such that CI is nonempty. In this case we say also that I is a model of C.

• Subsumption: A concept C is subsumed by a concept D with respect to T if
CI ⊆ DI for every model I of T . In this case we write C ⊑T D or T ⊨ C ⊑ D.

• Equivalence: Two concepts C and D are equivalent with respect to T if CI = DI

for every model I of T . In this case we write C ≡T D or T ⊨ C ≡ D.

• Disjointness: Two concepts C and D are disjoint with respect to T if CI∩DI = ∅
for every model I of T .

Those reasoning tasks also straightforwardly transfer to roles. If all concepts C ∈ T are
satisfiable, i.e. C ̸⊑T ⊥ or T ⊨ C ̸⊑ ⊥, we also say T is coherent, otherwise we call it
incoherent.

Example 2.4 (Incoherent TBox)
Consider the TBox in Example 2.3 extended with the following axioms:

Homunculus ⊑ Woman
Homunculus ⊑ Man

3Note that ontologies need not be modeled with description logics, although the use of description logics
is very common

16

2.2. Ontologies and First-order Logic

Those axioms define that every individual in the concept Homunculus would be both a
Man and a Woman. However, these concepts are defined to be disjoint. Thus, we can
infer the following:

Homunculus ⊑ Woman ⊓ Man ⊑ ⊥

Consequently, as Homunculus is unsatisfiable, the TBox is incoherent. △

Considering the ABox, there are two additional reasoning tasks (Baader et al., 2003):

• Consistency: An ABox A is consistent with respect to a TBox T , if there is an
interpretation that is a model of both A and T .

• Instance Checking: We say that an assertion α is entailed by A and write A ⊨ α,
if every model of A, also satisfies α.

We say that an ABox A is consistent with respect to T , if there is a model for both T
and A.

Example 2.5 (Inconsistent ABox and TBox)
Again consider the axioms given in Example 2.3. Now assume we add the following
ABox axioms:

Woman(robin) Man(robin)

From these assertions, we can infer that robin ∈ WomanI ∩ManI = ∅. This is obviously
a contradiction, making the ABox inconsistent regarding the TBox. △

Open World vs Closed World Assumption The TBox and ABox of an ontology can
roughly be related to the schema and the data in a relational database. Apart from (de-
scription) logic being more expressive than relational algebra, there is another important
difference: the semantics for absent information. An ontology has many different mod-
els, whereas a relation database has exactly the one given by the data. Consider for
example Example 2.3: In this knowledge base, we explicitly know of the three persons
Alice, Bob, and Eve. If this information interpreted as ontology and we want to check
whether the individual Dave is a person, the answer is unknown; there is no information
supporting or contradicting it. Now, suppose we have this knowledge in a relational
database and again want to know if Dave is a person. The answer would clearly be no.

These two different semantics for absent information are called open world assumption
and closed world assumption. Under the open world assumption, one cannot infer true or
false statements from missing data. Opposite to that, under the closed world assumption,
the known world is considered to be complete, thus missing data is interpreted as false.

Ontology languages and reasoning procedures usually adopt the open world assumption.
However, reasoning with an open world assumption becomes more complex. Because
of this, and as we are mainly concerned with query answering where unknown is a
very unsatisfying answer for a user, we generally restrict reasoning to the closed world
assumption throughout this work.

17

Chapter 2. Preliminaries

2.3. Light-weight Description Logics

In this section we describe light-weight description logics, which we will use throughout
this work. Light-weight description logics are carefully crafted families of logics to allow
for tractable reasoning, i.e. the reasoning tasks can be decided in at most polynomial
time (in contrast to, for example ALC as introduced earlier, which requires exponential
time in the worst case). The two light-weight description logics on which we focus in
this work are EL++ (Baader et al., 2005) and DL-LiteR Calvanese et al. (2005).

2.3.1. The Description Logic EL++

The description logic EL++ is designed for efficient reasoning with large TBoxes. It is
the basis for the OWL 2 EL profile4.

Definition 2.4 (The Description Logic EL++)
The syntax of EL++ is as follows:

C,D −→ A | {a} | ⊤ | ⊥ |
C ⊓D | ∃R.C

R, S −→ R | R1 ◦ . . . ◦Rn

C ⊑ D C ≡ D

R ⊑ S R ≡ S

where A is an atomic concept, C and D are complex concepts, a is an individual, and R
and S are roles.

The semantics are as given in Definition 2.3, with the following addition:

{a}I = {aI}
(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI → b ∈ CI}

(R1 ◦ . . . ◦Rn ⊑ R)I = RI
1 ◦ . . . ◦RI

n ⊑ RI

Given a TBox T , we denote BCT as the set of basic concept descriptions, i.e., the
smallest set of concept descriptions consisting of ⊤ and all concept names and nominals
appearing in T . An EL++ ontology is in normalized if all axioms have the following
form, where A,B ∈ BCT and C ∈ BCT ∪ {⊥}:

A ⊑ C A ⊓B ⊑ C

∃r.A ⊑ C A ⊑ ∃r.B
R1 ⊑ R2 R1 ◦R2 ⊑ R

4https://www.w3.org/TR/owl2-profiles/#OWL_2_EL

18

https://www.w3.org/TR/owl2-profiles/#OWL_2_EL

2.3. Light-weight Description Logics

By applying a finite set of rules and introducing new concept and role names, any
knowledge base K = {T ,A} can be turned into a normalized knowledge base of size
polynomial in K (Baader et al., 2005). For the remainder of this work we always assume
K to be normalized. ⃝

2.3.2. The Description Logic DL-LiteR

The description logic DL-LiteR is designed for large ABoxes and efficient query answer-
ing. The OWL 2 QL profile uses this logic as its foundation5.

Definition 2.5 (The Description Logic DL-LiteR (Calvanese et al., 2007))

B → A | ∃R | A ⊓A′ C → B | ¬B
R → P | P− | P ⊓ P ′ S → R | ¬R

B ⊑ C R ⊑ S

A(a) P (a, b)

where A denotes an atomic concept, P an atomic role, and P− the inverse of the atomic
role P . B denotes a basic concept, i.e. either an atomic concept or a concept of the
form ∃R, where R denotes a basic role, that is, either an atomic role or the inverse of an
atomic role. C denotes a complex concept, which can be a basic concept or its negation,
and S denotes a complex role, which can be a basic role or its negation.

The semantics of a DL is as an interpretation I = (∆I , ·I), consisting of a non-empty
interpretation domain ∆I and an interpretation function ·I that assigns to each concept
C a subset CI of ∆I , and to each role R a binary relation RI over ∆I :

AI ⊆ ∆I

P I ⊆ ∆I ×∆I

(P−)I = {(o2, o1)|(o1, o2) ∈ P I}
(∃R)I = {o | ∃o′.(o, o′) ∈ RI}
(¬A)I = ∆I \AI

(¬R)I = ∆I ×∆I \RI

aI = a ∈ ∆I

(C(a))I = a ∈ CI

(P (a, b))I = (a, b) ∈ P I

⃝
5https://www.w3.org/TR/owl2-profiles/#OWL_2_QL

19

https://www.w3.org/TR/owl2-profiles/#OWL_2_QL

Chapter 2. Preliminaries

2.4. Probabilistic Graphical Models

Probabilistic graphical models represent complex distributions over multiple random
variables as a graph-based structure (Koller and Friedman, 2009). The most well-known
probabilistic graphical model are Bayesian networks, which use a directed acyclic graph
as the foundation to described the dependencies of random variables and their distribu-
tion. Opposed to that, the models we consider for this work are based on undirected
graphs, which are better suited for cycles and symmetric relations, common in knowledge
bases.

Markov Logic Networks

Markov Logic Networks (MLN) generalize probabilistic graphical and first-order logic
models by allowing hard and soft first-order formulas (Richardson and Domingos, 2006).
Hard formulas are regular first-order formulas, which have to be fulfilled by every in-
terpretation. An interpretation is also referred to as a possible world. Soft formulas
have weights that support (in case of positive weights) or penalize (in case of negative
weights) worlds in which they are satisfied. The probability of a possible world, one
that satisfies all hard formulas, is proportional to the exponential sum of the weights
of the soft formulas that are satisfied in that world. This corresponds to the common
understanding of Markov Networks as log-linear probabilistic models (Richardson and
Domingos, 2006).

MLNs are a template for constructing Markov Networks. A formula is called a grounded
formula if all variables have been replaced by constants. Given a set of constants, a
Markov Network can be generated from the MLN by computing all possible groundings
of the given formulas. Due to the closed world assumption, the domain of interest
consists of only those entities that are defined by specifying the set of constants. An
atom is a formula that consists of a single predicate. A possible world corresponds to a
set of ground atoms, which is usually a small subset of all possible groundings.

Furthermore, in some implementations for inference predicates can be defined as being ei-
ther observed or hidden (unobserved) and get assigned some type. For an observed pred-
icate, only explicitly stated groundings are allowed and considered to be true, whereas
for hidden predicates, any grounding with the given constants can be generated. Typing
allows to restrict the possible constants for grounding a predicate to subset. Both tech-
niques are used to restrict the number of possible groundings and thus the effort needed
for inference.

Example 2.6
Revisiting the previous example about persons and hobbies, if all predicates were untyped

20

2.4. Probabilistic Graphical Models

and hidden the following is an excerpt of a possible world:

person(Alice) person(Bob)
person(Eve) person(Football)

friends(Alice,Alice) friends(Alice,Bob)
friends(Alice,Eve) friends(Alice,Football)

. . .

hasHobby(Alice,Football) hasHobby(Alice,Bob)
. . .

(2.1)

With no further restrictions, Alice, Bob, Eve and Football would all be persons, friends
and have each other as hobby. Some of those groundings, like hasFriend(Alice, Football),
do generally not make sense. By restricting person and friends to be observed and typed
to only persons, and hasHobby to be typed to person and the newly introduced predicate
hobby, the same possible world is reduced to this:

person(Alice) person(Bob)
person(Eve) hobby(Football)

friends(Alice,Bob) hasHobby(Alice,Football)
hasHobby(Bob,Football) hasHobby(Eve,Football)

(2.2)

Eve still has the hobby Football despite having no friends, but the overall number of
groundings is greatly reduced. By making the implication friends(x, y)∧hasHobby(x, z) →
hasHobby(y, z) a soft rule with positive weight and adding the rules friends(x, y) and
hasHobby(x, y) with a small negative weight we can also discourage worlds with additional
friends and hasHobby groundings, except if they are enforced by the implication (cf.
also Example 2.7 below for the complete formal definition of this example). △

Formally, an MLN L is a set of pairs ⟨Fi, wi⟩, where Fi is a first-order logic formula
and wi is a real numbered weight. The MLN L, combined with a finite set of constants
C = {c1, c2, . . . , c|C|}, defines a ground Markov Network ML,C as follows (Richardson and
Domingos, 2006, p. 113):

1. ML,C has one binary node for each possible grounding of each predicate
in L. The value of the node is 1 if the grounded atom is true and 0
otherwise.

2. ML,C contains one feature for each possible grounding of each formula
Fi in L. The value of this feature is 1 if the formula is true, and 0
otherwise. The weight of the feature is the wi associated with Fi in L.

Generally, a feature can be any real-valued function of the variables of the network. In
this work we use binary features, essentially making the value of the function equal to
the truth value of the grounded atom.

21

Chapter 2. Preliminaries

The description as a log-linear model leads to the following definition for the probability
distribution over possible worlds x for the Markov Network ML,C :

P (X = x) =
1

Z
exp

(∑
i

wini(x)

)
(2.3)

where Z is a normalization constant and ni(x) is the number of true groundings of Fi in
x.

When describing the MLN we use the format ⟨first-order formula,weight⟩. Hard formu-
las have infinite weights. If the weight is +∞ the formula must always be true, if the
weight is −∞ it must always be false. A soft formula with weight 0 has equal probabil-
ities for being satisfied or not. We can also specify a fully grounded formula, which is
considered as evidence or observations of the real world. To optimize the grounding step
and reduce the amount of possible worlds, we also allow to specify the set of predicates
together with the types that they use like this {predicate1(Type1), predicate1(Type2),
predicate3(Type1, Type2)}.

Example 2.7 (Markov Logic Network)
The formal definition of the predicates and the MLN for the example above then looks
as following:

{ person(Person), friends(Person,Person),
hobby(Hobby), hasHobby(Person,Hobby) }

⟨friends(x, y) ∧ hasHobby(x, z) → hasHobby(y, z), 2⟩
⟨friends(x, y),−0.1⟩ ⟨hasHobby(x, y),−0.1⟩

(2.4)

The evidence is formalized like this:

⟨person(Alice),+∞⟩ ⟨person(Bob),+∞⟩
⟨person(Eve),+∞⟩ ⟨hobby(Football),+∞⟩

⟨friends(Alice,Bob), 3.5⟩
⟨hasHobby(Alice,Football), 1.8⟩

(2.5)

△

2.5. Probabilistic Reasoning with Light-weight Description
Logics

Finally, in this section we describe in detail two different approaches and formalism
to combine probabilistic reasoning with description logics. In particular, we explain
log-linear description logic and tuple-independent OWL. We then evaluate these two
formalisms in different scenarios throughout this work.

22

2.5. Probabilistic Reasoning with Light-weight Description Logics

2.5.1. Log-linear Description Logics

Log-linear description logics were introduced by (Niepert et al., 2011b) as a combina-
tion of the light-weight description logic EL++ (Section 2.3.1) and Markov logic net-
works (Section 2.4). They call this combination EL++-LL.

Definition 2.6 (The Log-linear description logic EL++-LL (Niepert et al., 2011b))
The syntax of EL++-LL is equivalent to that of EL++, with the addition of the possibility
to assign weights to concept and role inclusions. More formally, a EL++-LL knowledge
base K is a pair (KD,KU) consisting of the deterministic EL++ KB KD = di with some
axioms di and an uncertain KB KU = (ui, wu,i) which is a set of pairs of EL++ axioms
ui and real-valued weights wu,i, with di ∩ ui ≡ ∅.

The semantics of a EL++-LL knowledge base are defined by a joint probability distribution
over the coherent KB. Given a EL++-LL knowledge base K = (KD,KU), the probability
of a knowledge base K′ over the same axioms is as follows:

P (K′) =

1
Z exp

(∑
(u,wu)∈KU :K′⊨u

wu

)
if K′ is coherent and K′ ⊨ KD

0 otherwise

(2.6)

where Z is the normalization constant of the log-linear probability distribution P . ⃝

From this definition we have that an EL++-LL axiom is either part of the deterministic
KB and definitely true, or part of the uncertain KB with a weight attached. Intuitively,
the greater the weight of an axiom the more likely it is true (respectively false, if the
weight is negative). Contrary to standard EL++, in EL++-LL we assume finite sets of
concept, role, and individual names.

Next, we need a translation of the EL++-LL knowledge base to Markov logic networks,
in order to compute the most probable, coherent ontology.

Definition 2.7 (Translating EL++-LL into Markov Logic Networks)
A probabilistic EL++-LL TBox is translated into the first-order logic formulas in a Markov
logic network by applying the following mappings (Niepert et al., 2011b):

A ⊑ C 7→ sub(A,C)
A ⊓B ⊑ C 7→ int(A,B,C)
A ⊑ ∃R.B 7→ rsup(A,R,B)
∃R.A ⊑ C 7→ rsub(A,R,C)
R1 ⊑ R2 7→ psub(R1, R2)
R1 ◦R2 ⊑ R 7→ pcom(R1, R2, R)

23

Chapter 2. Preliminaries

As the following equalities hold in EL++-LL

C(a) ⇔ {a} ⊑ C

R(a, b) ⇔ {a} ⊑ ∃R.b

⟨C(a), w1⟩ ⇔ ⟨{a} ⊑ C,w1⟩
⟨R(a, b), w2 ⇔ ⟨{a} ⊑ ∃R.b, w2⟩

we transform the ABox by formulating instances as nominals and employing the same
mappings as above ⃝

In order to conduct reasoning in EL++-LL we transform the inference rules for EL++ in
a similar way:

Definition 2.8 (Inference in EL++-LL)
Inference in EL++-LL is implemented by formulating the completion rules given by
Baader et al. (2005) into first-order logic formulas of a Markov logic network in the
following way (Niepert et al., 2011b):

(F1) ∀c : sub(c, c)
(F2) ∀c : sub(c,⊤)

(F3) ∀c, c′, d : sub(c, c′) ∧ sub(c′, d) ⇒ sub(c, d)

(F4) ∀c, c1, c2, d : sub(c, c1) ∧ sub(c, c2) ∧ int(c1, c2, d) ⇒ sub(c, d)

(F5) ∀c, c′, r, d : sub(c, c′) ∧ rsup(c′, r, d) ⇒ rsup(c, r, d)

(F6) ∀c, r, d, d′, e : rsup(c, r, d) ∧ sub(d, d′) ∧ rsub(d′, r, e) ⇒ sub(c, e)

(F7) ∀c, r, d, s : rsup(c, r, d) ∧ psub(r, s)∧ ⇒ rsup(c, s, d)

(F8) ∀c, r1, r2, r3, d, e : rsup(c, r1, d) ∧ rsup(d, r2, e) ∧ pcom(r1, r2, r3) ⇒ rsup(c, r3, e)

(F9) ∀c : ¬sub(c,⊥)

⃝

These definitions provide as with complete formalism to compute the most probable,
coherent, and fully classified ontology from a probabilistic EL++-LL knowledge base, by
calculating the MAP state of the corresponding Markov logic network.

2.5.2. Tuple-independent OWL

A TIP-OWL (tuple-independent OWL) knowledge base T KB = ⟨T ,A, P ⟩ consists of a
DL-LiteR TBox T , an ABox A, and a probability distribution P : A → [0, 1]. Abusing
terminology, we say that KB ⊆ T KB if they have the same TBox and the ABox of
KB is a subset of the ABox of T KB. We adopt the independent tuple semantics in the
spirit of the probabilistic semantics for logic programs proposed by De Raedt et al. (De

24

2.5. Probabilistic Reasoning with Light-weight Description Logics

Raedt et al., 2007) (which is in turn based on distribution semantics (Sato, 1995) and
answer set semantics (Poole, 1997)) and define the probabilistic semantics of a TIP-OWL
knowledge base in terms of a distribution over possible knowledge bases as follows:

Definition 2.9 (Tuple-independent OWL (TIP-OWL))
Let T KB = ⟨T ,A, P ⟩ be a TIP-OWL knowledge base. Then the probability of a DL-LiteR
Knowledge Base KB = ⟨T ,A′⟩ ⊆ T KB is given by:

P (KB|T KB) =
∏

a′∈A′

P (a′) ·
∏

a∈A\A′

(1− P (a))

⃝

Based on this semantics, we can now define the probability of existential queries over
TIP-OWL knowledge bases as follows. First, the probability of a query over a possible
knowledge base is one if the query follows from the knowledge base and zero otherwise:

P (Q|KB) =
{

1 KB ⊨ Q
0 otherwise

}

Taking the probability of possible knowledge bases into account, the probability of an
existential query over a possible knowledge base becomes the product of the probability
of that possible knowledge base and the probability of the query given that knowledge
base. By summing up these probabilities over all possible knowledge bases, we get the
following probability for existential queries over TIP-OWL knowledge bases:

P (Q|T BK) =
∑

KB⊆T KB
P (Q|KB) · P (KB|T KB)

This defines a complete probabilistic semantics for TIP-OWL knowledge bases and
queries.

25

Part II.

Research Contributions

27

3
Debugging Large-scale Uncertain Temporal

Knowledge Graphs

3.1. Introduction

The automated construction of knowledge graphs is an active area of research (Cafarella
et al., 2011). Especially, Open Information Extraction (OIE) is used for extracting
information from large amounts of web sites (Banko et al., 2007; Etzioni et al., 2008;
Pujara et al., 2013) and constructing knowledge graphs such as YAGO (Hoffart et al.,
2013), Google Knowledge Vault (Dong et al., 2014b), Freebase (Bollacker et al., 2008),
ProbBase (Wu et al., 2012), ProbKB (Chen and Wang, 2014), and ReVerb (Fader et al.,
2011). Additionally, there are also knowledge graphs curated mostly manually, like
DBpedia (Lehmann et al., 2015) or Wikidata (Lehmann et al., 2015). Some of these
knowledge graphs, like YAGO or Wikidata, also contain temporal facts – facts with
validity time. Moreover, most of them store probabilistic facts, i.e., facts together with
confidence scores witnessing how likely a facts is to hold.

Automated construction often produces noisy and inaccurate facts whose errors can then
propagate during inference and knowledge expansion. This poses some key challenges:
The first challenge is providing temporal information at all. Most existing approaches
focus on identifying static facts encoded as binary relations. However, the vast majority
of facts are fluents (dynamic relations whose truth is a function of time), only holding
at a point in or during an interval of time. Facts like Claudio Ranieri being coach of
Chelsea F.C. loose relevance without a temporal scope (2000–2004 in this case).

Second, knowledge graphs have to be cleaned from inaccurate facts to reduce mainte-
nance costs and improve the reliability of the contained information, and to allow for
sound logical reasoning. Unfortunately, existing methods (e.g. as proposed by Schlobach
et al. (2007)) are limited in their capability to handle facts that are both uncertain and
temporal. This can result in situations where statements about an instance appear as in-
consistent although they are valid if temporal information is considered and they related
to different points in time. For example assume we have two statements about Claudio
Ranieri being coach of F.C. Valencia from 1997 to 1999 and Claudio Ranieri being coach
of Chelsea from 2000 to 2004, and the constraint that a person can only be a coach for
one team at a time. If temporal information is ignored, one of those statements has to

29

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

be false for a knowledge base to be consistent. However, by considering the temporal
information about the years those statements are relating to, we can assert that both
statements are valid, as they are defined for different, not overlapping intervals in time.

Furthermore, little has been done in terms of techniques to debug uncertain knowledge
graphs, with the exception of preliminary results in (Chekol et al., 2016; Chen and Wang,
2014; Dylla et al., 2011; Huber et al., 2014). In addition, temporal inference rules and
constraints for consistency checking are not only useful for identifying conflicting facts,
but also for deriving implicit facts from existing ones.

In this thesis we focus on the second challenge: Employing a formalism to define a set of
temporal inference rules and constraints and identify the most probable and error-free
temporal knowledge graph from an existing uncertain temporal knowledge graph. In
particular, we developed a tool with an intuitive web interface for creating temporal
constraints and explore the resulting knowledge graph.

3.2. Preliminaries

In this section we first introduce uncertain temporal knowledge graphs, an extension of
regular uncertain knowledge graphs (cf. 2.1.1) with a temporal dimension. Furthermore,
we describe a numerical extension for Markov logic networks and probabilistic soft logic,
both used for temporal reasoning.

3.2.1. Temporal Knowledge Graphs

Temporal knowledge graphs are obtained by adding a temporal domain to regular knowl-
edge graphs. As shown by Gutierrez et al. (2005) and Motik (2012) RDF knowledge
graphs can be extended to temporal knowledge graphs by annotating the triples with
a temporal element. Temporal databases usually distinguish between valid time and
transaction time information (Tansel et al., 1993). Valid time describes at (or during)
which point(s) in time a statement is true in the real world. Transaction time indicates
when the information was known and stored in the database. In this work, we focus
only on valid time.

Thus, we define a temporal knowledge graph as a knowledge graph whose statements
are annotated with a closed interval for their valid time in the following way:
Definition 3.1 (Temporal Knowledge Graph)
Let K be knowledge graph as defined above, and T be a finite set of discrete points in time.
A temporal knowledge graph KT is then the set {(s, p, o, [t1, t2]) : (s, p, o) ∈ K, t1, t2 ∈
T , t1 ≤ t2}. ⃝

Note that a single point in time (e.g. a date of birth) is easily modeled with an interval
of length 0, i.e., t1 = t2.

30

3.2. Preliminaries

3.2.2. Uncertain Temporal Knowledge Graphs

Uncertain temporal knowledge graphs are the combination of knowledge graphs with
temporal and uncertain elements:

Definition 3.2 (Uncertain Temporal Knowledge Graphs)
Let K be knowledge graph as defined above, T be a finite set of discrete points in time
and W be a set of elements expressing degrees of uncertainty. A uncertain temporal
knowledge graph KT ,W is then the set {(s, p, o, [t1, t2], w) : (s, p, o) ∈ K, t1, t2 ∈ T , t1 ≤
t2, w ∈ W}. ⃝

Next, we briefly explain probabilistic soft logic which we use to calculate fast approxi-
mations of the exact results we otherwise compute with Markov logic networks.

3.2.3. Probabilistic Soft Logic

Probabilistic soft logic (PSL) combines graphical models with rules in a first-order syn-
tax. Unlike MLNs, which are based on regular Markov networks, PSL is based on
hinge-loss Markov networks (Bach et al., 2017). This allows for soft truth values in [0, 1]
as opposed to the coarse boolean values in MLNs. The logical rules in PSL are thus
interpreted using Lukasiewicz logic (Klir and Yuan, 1995) instead of classical boolean
logic. The truth value of a formula A is also called valuation and denoted by v(A). PSL
is only the notions of strong conjunction ∧ with v(A ∧ B) = max{0, v(A) + v(B) − 1}
and strong disjunction ∨ with v(A ∨ B) = min{1, v(A) + v(B)}. We show on a small
example how Lukasiewicz logic is evaluated:

v(friends(Alice,Bob)) = 0.9 v(hasHobby(Alice, Football) = 0.8

v(friends(Alice,Bob) ∧ hasHobby(Alice, Football))

= max{0, v(friends(Alice,Bob)) + v(hasHobby(Alice, Football))− 1}
= max{0, 0.9 + 0.8− 1}
= 0.7

(3.1)

The probability distribution over possible worlds in PSL is similarly defined to that for
MLNs in Equation (2.3):

P (X = x) =
1

Z
exp

(
−
∑
i

wid(xi)

)
(3.2)

where Z is again a normalization constant, wi the weight of the i’th formula in world x,
d(xi) the distance to satisfaction of formula i, and p ∈ {1, 2} a distance exponent. The
distance to satisfaction is defined as max{0, v(xi,body)− v(xi,head)}.

31

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

The PSL allows to configure the activation threshold, i.e. the minimum truth value an
atom needs to have in order to be considered during inference. The default value is 0.01.

Probabilistic soft logic has two main limitations:

1. Weights need to be positive.

2. Rules are limited to conjunctive bodies.

However, at least the first point can for simple formulas be circumvented by using nega-
tion. For example, ⟨friends(x, y),−0.1⟩ can be rewritten as ⟨¬friends(x, y), 0.1⟩.

Numerical Extension

Markov logic networks and probabilistic soft logic can both been extended with numerical
constraints (Chekol et al., 2017a, 2016)1. We denote the formalism of Markov logic
networks extended with numeric constraints as MLNNC . A formula FNC in an MLNNC

consists of a regular MLN formula F and a numerical constraint Φ. Φ is built from
arithmetic expressions (e.g. +,÷,

√
, . . .) over variables in F and numeric constants which

are connected via comparison operators (e.g. <,=, ̸=, >, . . .). Comparison expressions
can in turn be connected with boolean operators (e.g. ∨,∧, . . .). An MLNNC is thus a
set of pairs (FNC,i, wi) with FNC,i being an FOL formula which may contain a numeric
constraint, and wi the real-valued weight of the formula. The semantics of an MLNNC

stays identical to that of regular MLNs.

The following preliminary example shows how numerical constraints can be used to
define rules over temporal information.
Example 3.1 (MLN with Numerical Constraints)
We illustrate a numerical constraint over temporal information on the following formula:

⟨friends(x, y, [t1, t2]) ∧ born(x, [b1, b1]) ∧ born(y, [b2, b2]) → ϕ(t1, t2, b1, b2),

ϕ(t1, t2, b1, b2) = (t1 < t2) ∧ (b1 < t1) ∧ (b2 < t1),+∞⟩
(3.3)

The formula enforces that if two persons are friends, the interval during which they are
friends needs to be valid (i.e. of non-zero length and start before it ends) and start after
both of them are born.

Another example demonstrating arithmetic expressions within numerical constraints is
the following formula checking that if a person’s date of death and date of birth are
known, its age is the difference between the two:

⟨born(x, [t1, t1]) ∧ died(x, [t2, t2]) → age(x, c1) ∧ ϕ(t1, t2), (3.4)
ϕ(t1, t2) = (t1 < t2) ∧ c1 = t2 − t1,+∞⟩ △

We define the different types of numerical constraints more formally in Section 3.3.1.
1Numerical constraints should not be confused with arithmetic rules in PSL which fulfill a different

task

32

3.2. Preliminaries

3.2.4. Reasoning in Uncertain Temporal Knowledge Graphs

We will now formally define uncertain temporal knowledge graphs UTKG as extensions
of temporal knowledge graphs and probabilistic graphical models that are capable of
representing uncertainties and reasoning over temporal knowledge bases.

Definition 3.3 (Uncertain Temporal Knowledge Graph (UTKG))
Let D = {fi} be a set of deterministic temporal facts and U = {fj , wj} be a set of
temporal facts associated with a real-valued weight, with D ∩ U = ∅. Then G = (D,U)
is an uncertain temporal knowledge graph. ⃝

We extend the membership (∈) and subset relations (⊆) for the use with UTKGs as
follows:

Definition 3.4 (Membership and Subset Relation in UTKGs)
Let G and G′ be two UTKGs and f = (s, p, o, [t1, t2]). We say that f ∈ G if ∃(s, p, o, [t′1, t′2])
∈ G with t′1 ≤ t1 and t2 ≤ t′2. We also say that G ⊆ G′ iff ∀f ∈ G : f ∈ G′. ⃝

With those definitions we can now define the semantics of uncertain temporal knowledge
graphs. It is based on a joint probability distribution over the uncertain part U of the
graph. As in MLNs, the weights of the facts define a log-linear probability distribution:

Definition 3.5 (Semantics of UTKGs)
Given an UTKG G = (D,U) the probability P of G is defined as follows:

P (G) =

1
Z exp

(∑
(fi,wi)∈U :G⊨tfi

wi

)
if G ⊨t D

0 otherwise

(3.5)

where Z is a normalization constant and ⊨t is a temporal entailment relation. ⃝

Next, we define temporal inference rules, and introduce Herbrand models as a means
to translate uncertain temporal knowledge graphs to first-order logic, and ultimately
conduct reasoning in UTKGs.

Definition 3.6 (Temporal Inference Rules)
We denote F the following set of temporal inference rules r1 − r8 over an RDF/S

33

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

vocabulary:

(r1) q(a, isa, Class, T1) → q(a, sc, a, T1)

(r2) q(a, sc, b, T1) ∧ q(b, sc, c, T2) ∧ check(T1, T2) → q(a, sc, c, T3)

(r3) q(a, sc, b, T1) ∧ q(x, isa, a, T2) ∧ check(T1, T2) → q(x, isa, b, T3)

(r4) q(a, isa, Property, T1) → q(a, sp, a, T1)

(r5) q(a, sp, b, T1) ∧ q(b, sp, c, T2) ∧ check(T1, T2) → q(a, sp, c, T3)

(r6) q(a, sp, b, T1) ∧ q(x, a, y, T2) ∧ check(T1, T2) → q(x, b, y, T3)

(r7) q(a, dom, c, T1) ∧ q(x, a, y, T2) ∧ check(T1, T2) → q(x, isa, c, T3)

(r8) q(a, ran, d, T1) ∧ q(x, a, y, T2) ∧ check(T1, T2) → q(y, isa, d, T3)

T3 = [t1, t
′
1] ▷◁ [t2, t

′
2] =

[t1, t
′
1] if t1 = t2 ∧ t′1 = t′2

[t′1, t2] if t′1 = t2

[t2, t
′
1] if t1 < t2 ∧ t2 < t′1 ∧ t′1 < t′2

[t1, t
′
1] if t1 < t2 ∧ t′1 < t′2

[t1, t
′
1] if t1 = t2 ∧ t′1 < t′2

[t2, t
′
2] if t′1 < t1 ∧ t2 = t′2

∅ if t′1 < t2

check(T1, T2) =

{
false if T1 ▷◁ T2 = ∅
true otherwise

(3.6)

We abbreviate RDF/S vocabulary names as follows: isa for rdf:type, Class for
rdfs:Class, sc for rdfs:subClassOf, Property for rdf:Property, dom for rdfs:
domain, ran for rdfs:range, and sp for rdfs:subPropertyOf. The temporal interval
[ti, t

′
i] is denoted as Ti. q is an RDF quad. All of the formulas are universally quantified

over all the variables. ⃝

Herbrand Models Herbrand models are models for logical formulas which simply map
all terms to themselves and predicates to relations over the universe of terms (the Her-
brand universe). For the set of all constants C in an UTKG G, the Herbrand base
(additionally denoting relation symbols on top of the Herbrand universe) of F from Def-
inition 3.6 can be constructed by instantiating all the variables in F using the constants
in C. Given the finite sets of constants C and time points T , the function θ maps each
fact of some UTKG into a subset of the Herbrand base HB of F with respect to C and T .
Each subset of the Herbrand base is a Herbrand interpretation specifying which ground
atoms are true. A Herbrand interpretation H is a Herbrand model of F , denoted as
⊨H F , iff it satisfies all groundings of the formulas in F .

Definition 3.7 (Mapping UTKGs into FOL)
Given a UTKG G over a finite set of constants C, a time domain T , and HB the Herbrand

34

3.2. Preliminaries

base of F with respect to C and T , then θ : P(G) → P(HB) maps G into subsets of HB
as follows:

θ(G) =
∪
f∈G

θ(f), where θ ((s, p, o, T)) = quad(s, p, o, T)

⃝

At this point, we need to establish that the function θ is bijective, i.e., it induces a
one-to-one correspondence between the Herbrand models of F and expanded knowledge
graphs. Applying F repeatedly on an uncertain temporal knowledge graph may generate
a set of new facts. This results in an expanded knowledge graph.

Theorem 3.1
Let C be a set of constants, T be a set of time points, G be an UTKG over C, and HB be
the Herbrand base of F with respect to C. Then, for any G′ ⊆ G, G ⊨t G′ ⇒ θ(G′) ⊨H F
and for any H ⊆ HB, H ⊨H F ⇒ θ−1(H) ⊨ G′′ and G ⊨t G′′.

Figure 3.1 illustrates the different components of a Markov Logic Network, the grounding
step, and the model checking step assigning truth values. The predicates R instantiated
with constants C define all possible random variables x. In turn, all possible combinations
of truth values for this variables result in the possible worlds X. The formulas are
instantiated with the random variables, which then give as the grounded formulas G.
Each combination of a possible world and the grounded formulas is then model checked,
essentially determining their truth value and resulting in a cumulative weight for that
world.

Relying on the above theorem, we can introduce MAP inference in uncertain temporal
knowledge graphs.

MAP Inference

Maximum a posteriori (MAP) inference in uncertain temporal knowledge graphs corre-
sponds to obtaining the most probable, consistent knowledge graph. In simple words,
when computing the MAP state we look at all possible worlds; for those which are con-
sistent (i.e. no hard rules are violated) we calculate the sum of the weights of all soft
formulas and facts. That world which has the highest sum – and thus is the most likely
one – is called the MAP state.

More formally, given an UTKG G, a set of inference rules F , and a translation function
θ, we denote the MAP problem as map(θ(G),F). When computing map(θ(G),F), first,
G is translated by θ to an equivalent Markov logic formalization. Then, the inference
rules F are added to this translation.

The MAP state is computed with the help of a cutting planes algorithm (Chekol et al.,
2016) applied to this input data. To do so, the evidence clauses θ(G) and the grounding of

35

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

Figure 3.1.: The diagram describes the grounding of a Markov Network. The grounded
formulas G are generated by substituting each occurrence of every variable
in the MLN Formulas with constants of the domain C. The possible worlds
X are generated by giving all possible groundings of each predicate. Both
the possible worlds X and the grounded formulas G are checked and assigned
a value of 1 if they are true, and 0 otherwise. (Adapted from (Jain, 2011;
von Stülpnagel et al., 2014)).

36

3.2. Preliminaries

F with respect to θ(G) are given as input. Applying the inverse translation function θ−1

to the MAP state yields the most probable temporal knowledge graph. The MAP prob-
lem in MLN can be turned into an integer linear program (Noessner et al., 2013), which
allows to integrate external functions (e.g., to check the conditions in Definition 3.6).

Theorem 3.2
Given the following:

• An UTKG G = (D,U) over a finite set C of constants, and a finite set of time
points T

• The Herbrand base HB of the formulas F with respect to C and T

• The set of ground formulas G1 constructed from D

• The set of ground formulas G2 constructed from U

the most probable, expanded and consistent temporal knowledge graph is obtained with:

θ−1(H) = arg max
HB⊇H⊨G1∪F

 ∑
(f,wj)∈G2:H⊨Hfj

wj

From Theorem 3.2 and the results in Chekol et al. (2016) it follows that the problem of
computing the most probable temporal knowledge graph is NP-hard.

Example 3.2 (MAP State)
We recall the predicates and rules from Equation (2.4) and Equation (3.3):

{ person(Person), friends(Person,Person, [T , T]),

hobby(Hobby),hasHobby(Person,Hobby),born(Person, [T , T]) }
(3.7)

⟨friends(x, y, [t, t′]) ∧ hasHobby(x, z) → hasHobby(y, z), 2⟩ (3.8)
⟨friends(x, y, [t, t′]) ∧ born(x, [b1, b1]) ∧ born(y, [b2, b2]) → ϕ(t, t′, b1, b2),

ϕ(t, t′, b1, b2) = (t ≤ t′) ∧ (b1 ≤ t) ∧ (b2 ≤ t),+∞⟩
(3.9)

⟨friends(x, y),−0.1⟩
⟨hasHobby(x, y),−0.1⟩

(3.10)

and the evidence given in Equation (2.5) extended with temporal information and (un-
certain) birthdates for each person:

⟨person(Alice),+∞⟩ ⟨person(Bob),+∞⟩
⟨person(Eve),+∞⟩ ⟨hobby(Football),+∞⟩

(3.11)

⟨friends(Alice,Bob), [1988,Now], 3.5⟩ (3.12)
⟨hasHobby(Alice,Football), 1.8⟩ (3.13)
⟨born(Alice, [1990, 1990]), 1⟩ (3.14)
⟨born(Bob, [1984, 1984]), 1.7⟩ (3.15)

37

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

Two consistent possible worlds and with the overall highest sum of weights are shown
below:

friends(Alice,Bob), [1988,Now]

hasHobby(Alice,Football)
born(Bob, [1984, 1984])

 ∑
wi = 6.3 (3.16)

hasHobby(Alice,Football)
born(Alice, [1990, 1990])
born(Bob, [1984, 1984])

 ∑
wi = 4.5 (3.17)

The other consistent possible worlds are subsets of those two or contain additional ground-
ings for the predicates friends or hasHobby, which are discouraged by Equation (3.10).
Subsequently, they will always have a lower sum of weights and will not be considered as
MAP state.

The difference between the two shown worlds is that one contains Equation (3.12), and
the other Equation (3.14). These two equations conflict due to Equation (3.9). As Equa-
tion (3.12) has the higher weight, the other possible world containing Equation (3.14) is
discarded, and Equation (3.16) is determined as MAP state. △

Conditional Probability Inference

Given an uncertain temporal knowledge graph G, the conditional probability of a tempo-
ral fact f is the sum of the probabilities of all possible temporal knowledge graphs that
are a consistent subset of G containing f. In general, a conditional probability query is a
conjunction of a set of temporal facts given some uncertain temporal knowledge graph.
Given a query q and an UTKG G, the conditional probability of q is given by:

Pq(q | G) =
∑

G′:q⊆G′⊆G
P (G′) (3.18)

where G′ is a possible world over the same constants C ∪ T as G. The computation of
conditional probabilities is also called marginal inference.

In order to sum over all possible consistent G′ we need to compare time intervals in the
facts of q with those of G. If the valid time ranges of the temporal facts in q do not
appear in G, we try to rewrite the query q as follows: for each temporal fact f ∈ q if ∃f′
∈ G such that f ⊆+ f′, we replace f in q with f′. The relation ⊆+ is defined as follows:
Given two temporal facts f = (s, p, o, [t1, t

′
1]) and f′ = (s, p, o, [t2, t

′
2]), f ⊆+ f′ if t2 ≤ t1

and t′1 ≤ t′2. In other words, we look for a fact f′ such that f is valid during the interval
in which f′ is.

The rewriting can be done in polynomial time in the size of the uncertain temporal
knowledge graph, in the worst case. For instance, given the knowledge graph G in Ex-
ample 3.2, the conditional query q((friends(Alice,Bob), [2001, 2003]) | G) is rewritten

38

3.3. Conflict Detection in Uncertain Temporal Knowledge Graphs

as: Pq(q((friends(Alice,Bob), [1988,Now]) | G). Since no additional computation is
required, the complexity of conditional probability inference remains #P-hard for un-
certain temporal knowledge graphs.

As conditional inference is intractable, computing exact probabilities is hard. Thus,
sampling is commonly used to approximate probabilities. State-of-the-art marginal in-
ference algorithms, like MC-SAT, are based on Markov chain Monte Carlo (MCMC) and
Gibbs sampling (Poon and Vanderwende, 2010; Poon et al., 2008; Singh et al., 2012).
They sample from the consistent (or conflict-free) temporal knowledge graphs according
to the distribution Pq. This is very difficult for three reasons:

1. The complexity of reasoning in MLN

2. The size of uncertain knowledge graphs (e.g. NELL, ReVerb)

3. The presence of deterministic dependencies in uncertain temporal knowledge graphs

Because of these reasons, lifted inference techniques are proposed to be used for marginal
inference (Singla and Domingos, 2008; Venugopal and Gogate, 2012).

Having established the mechanisms for inference in uncertain temporal knowledge graph,
we can now define how we can detect (temporal) conflicts in uncertain knowledge graphs.

3.3. Conflict Detection in Uncertain Temporal Knowledge
Graphs

Uncertain knowledge graphs can contain a large number of numerical data like dates,
times, latitudes/longitudes, or other numerical values measured in different units. Those
facts can be conflicting, especially in automatically created knowledge graphs. One way
of resolving such errors is to use a set of (probabilistic) constraints and compute a MAP
state of a given knowledge graph, which effectively throws out facts that have inferior
weights or confidences. However, this approach is often too coarse and simple. Consider
for example the following knowledge graph about Alice’s height, implicitly stated in
meters:

⟨height(Alice, 1.76), 0.6 ⟩
⟨height(Alice, 5.8), 0.9 ⟩

Assume that these facts are translated into an MLN framework along with the con-
straint that the property height is functional, i.e., height(x, y) ∧ height(x, y′) → y = y′.
Performing MAP inference on this MLN results in a knowledge graph containing only
the fact height(Alice, 5.8), as it has the higher weight of the two conflicting facts. If we
expect only heights in meters, this is not the desired result, as humans are not taller

39

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

than 3m2. In order to rule out such conflicts, we will now show how to define additional
numerical constraints and use them for conflict detection.

3.3.1. Numerical Constraints for Conflict Detection

Constraints are extensively used in description logics and database systems to ensure
data validity. In the following, we introduce constraints to ensure validity of numerical
attributes in uncertain knowledge graphs. Moreover, the constraints will also serve to
extend the schema of the underlying knowledge graph.

In Datalog, a constraint is an expression of the form body → head, where the head is
an atom (i.e., an expression of the form p(x1, . . . , xn) in which each xi is either a con-
stant or a variable) and body is a set of atoms, such that each variable occurring in
the head also occurs in some atom in the body (Abiteboul and Vianu, 1991). Since our
definition of MLNs with numerical constraints allows to use external functions whose
truth values are computed outside the MLN setting, we can express Datalog constraints
(specifically, inclusion dependencies, equality generating dependencies and negative con-
straints (Abiteboul and Vianu, 1991)) with numerical constraints.

To debug uncertain knowledge graphs we introduce a number of those Datalog-inspired
constraints which are formulated as hard (deterministic) or soft (uncertain) formulas
in the MLN. For example, a rule which forbids persons to be taller than 3m looks as
follows:

person(x) ∧ height(x, y) → y < 3 (3.19)

We will now formally describe three different types of constraints based on Datalog
constraints.

Definition 3.8 (Inclusion Dependencies with Inequalities (IDIs))
An inclusion dependency with inequalities is a first-order logic formula of the form

∀x, y : Φ(x, y) ∧ NC(x′, y′) → Ψ(y) (3.20)

where Φ(x, y) is the body of the formula (a conjunction of atoms), NC(x′, y′) denotes a
numerical constraint as given in Section 3.3.1, and Ψ(y) is the head of the formula, with
x and y being sets of variables, and x′ ⊆ x and y′ ⊆ y. ⃝

Example 3.3 (Inclusion Dependencies with Inequality Constraints)
A constrained defining football players above the age of 40 as retired looks as following:

Footballer(x) ∧ age(x, y) ∧ NC(y)
→ RetiredFootballer(x),NC(y) = y > 40

(3.21)

△
2The tallest person in history was 2.72m: http://www.guinnessworldrecords.com/world-records/

tallest-man-ever

40

http://www.guinnessworldrecords.com/world-records/tallest-man-ever
http://www.guinnessworldrecords.com/world-records/tallest-man-ever

3.4. Datasets of Temporal Knowledge Graphs

Definition 3.9 ((In)equality Generating Dependencies (IGDs))
(In)equality generating dependencies are first-order formulas of the form

∀x : Φ(x) → NC(x′) (3.22)

where Φ(x) is a conjunction of atoms and x′ ⊆ x. ⃝

Example 3.4 ((In)equality Generating Dependency Constraints)
Temperature values in Celsius tC can be converted into an equivalent value in Fahrenheit
scale tF using the formula tF = 1.8tC + 32. Written as a constraint which enforces
that temperatures denote the same absolute value if given in Celsius and Fahrenheit, this
looks as follows:

tempC(x, tC) ∧ tempF (x, tF)

→ NC(tC , tF),NC(tC , tF) = tF = 1.8tC + 32
(3.23)

△

Definition 3.10 (Disjointness Constraints (DCs))
Disjointness constraints are first-order formulas of the form

∀x : Φ(x) ∧ NC(xi) → ⊥. (3.24)

⃝

Example 3.5 (Disjointness Constraints)
Using DCs we can for example formulate the constraint that the valid life span of a
person is greater than 0 and less than 150 years as follows:

born(x, b) ∧ died(x, d) ∧ NC(b, d) → ⊥,

NC(b, d) = 0 < (d− b) ∧ (d− b) < 150
(3.25)

△

Once an uncertain knowledge graph is translated into an equivalent Markov logic formal-
ism using the mapping function θ, and sets of IDIs, IGDs, and DCs over the knowledge
graph have been constructed, we can apply MAP inference in order to retrieve the most
probable and conflict-free graph using map(θ(G),F , C).

3.4. Datasets of Temporal Knowledge Graphs

Currently, uncertain knowledge graphs with rich temporal information are scarce, espe-
cially regarding valid times for a majority of the statements. As two exemplary sources

41

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

for knowledge graphs, we used The Football Database3, and we generated a large un-
certain temporal knowledge graph form Wikidata4, which already contains a lot of valid
time annotations for statements, but no confidence values. Furthermore, we experi-
mented with rule mining in AMIE (Galárraga et al., 2015) to extract rules from YAGO,
which contains some temporal information and uncertainty.

3.4.1. FootballDB

footballdb.com lists detailed data about National Football League (NFL) players,
mostly in tabular form. This table data often contains numeric and temporal informa-
tion. Recently, (Web) table data extraction has attracted considerable attention from
the data mining community (cf. for example Ritze (2017); Ritze et al. (2016)). Inspired
by this, we extracted temporal facts about NFL players, that contains two important
temporal relations: playsFor and birthdate. We extracted >13K temporal facts for the
playsFor relation and >6K facts for the birthdate relation.

3.4.2. Wikidata

Wikidata is an open source knowledge bases which contains structured data that is
used in many other Wikimedia projects, most prominently Wikipedia. Information is
mostly entered and edited manually, but APIs for automatic editing also exist. In 2017,
Wikidata contains about 46 million facts, of which we extracted over 6.3 million tem-
poral facts. We extracted temporal information (especially also valid times) for various
relations including playsFor (>4 million facts), memberOf (>23K), spouse (>20K), ed-
ucatedAt (>6K), occupation (>4.5K), …

3.4.3. Mining Rules from YAGO

The extraction of temporal rules and constraints is a well-known problem and there exist
sophisticated tools for automating this process, e.g. AMIE (Galárraga et al., 2015) as
one of the most well-known. Using AMIE, we mined rules from the YAGO dataset, for
example:

• A person’s birth date is before his death date:
⟨born(x, t1) ∧ died(x, t2) ⇒ before(t1, t2), 0.968⟩

• Birth and death date are functional:
⟨born(x, t1) ∧ born(x, t2) ⇒ t1 = t2, 0.734⟩
⟨died(x, t1) ∧ died(x, t2) ⇒ t1 = t2, 0.686⟩

3http://footballdb.com
4http://wikidata.org

42

footballdb.com
http://footballdb.com
http://wikidata.org

3.5. Tool Support

Those rules are rather simplistic, but still helpful to catch many common errors. However
these rules are not sufficient to capture many more complex conflicts (e.g., valid life span
of a person, or a footballer cannot play for two clubs at the same time). Thus, we hand-
crafted more complex constraints that are used to identify conflicts in uncertain temporal
knowledge graphs. We used several of these constraints in order to detect conflicts in
The Football Database and Wikidata datasets.

3.5. Tool Support

We developed an intuitive web interface which integrates with multiple solvers for prob-
abilistic graphical models. It executes the whole process of uploading RDF data, trans-
lating it to the appropriate formalism, adding constraints and inference rules (either
predefined or newly created in the user interface), running MAP inference, and parsing
and presenting the resulting consistent data and conflicts. We named this tool TeCoRe
– Temporal Conflict Resolution in knowledge graphs. TeCoRe is open source and avail-
able here: https://github.com/dwslab/TeCoRe.

3.5.1. System Overview

The system architecture of TeCoRe is shown in Figure 3.2, which depicts the main
components of the tool: a Web-based user interface, the translator which transform the
input data to the appropriate formalism and adds predefined and user-defined inference
rules and constraints, and the different solvers for probabilistic graphical models from
which the user can choose. The tool can either run locally in an embedded server (this

nRockIt PSL	Solver

Other	Probabilistic FOL	
(ProbFOL)	Solvers

MySQL Gurobi H2	Database

Markov Logic
Networks

Probabilistic Soft	
Logic

TeCoRe Translator

Web	UIData
ConstraintsRules

Figure 3.2.: TeCoRe system overview.

also requires solvers to be available locally), or be deployed on a dedicated server and
accessed and used by multiple users simultaneously. In the following, we provide a brief
description of the components.

43

https://github.com/dwslab/TeCoRe

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

Web-based User Interface

The web UI is the main point of interaction for users of TeCoRe. Working with it
involves four steps:

1. Choosing between nRockIt and PSL as solvers (or others)

2. Uploading a knowledge graph, inference rules and constraints

3. Adding additional temporal constraints based on Allen’s interval algebra (see be-
low)

4. Running inference to compute the most probable, conflict-free knowledge graph
and inspecting and browsing consistent and inconsistent triples

For demonstration purposes, the user can choose from predefined datasets, for exam-
ple the Football Database and Wikidata knowledge graphs described above including
matching constraints. If the user wants to use his own data with custom inference rules

Figure 3.3.: Interface to select the input data, inference rules, and temporal constraints.

and constraints, the user interface also allows to upload those (Figure 3.3).

After uploading the data, the user is presented with a simple interface to add additional
temporal constraints. This interface is intentionally limited to simple constraints for-
mulated in Allen’s interval algebra to be accessible to novice users not experienced with
first-order logic constraints. The form offers two fields to enter predicates, supporting

Figure 3.4.: Constraints editor (predicate auto-completion).

44

3.5. Tool Support

the user with an auto-complete function, and a dropdown to choose the appropriate
Allen relation (Figure 3.4.

Allen’s Interval Algebra defines relations and an accompanying logic for temporal
reasoning (Allen, 1983). The algebra defines 13 mutually exclusive relations which fully
cover all possible temporal relationships between two intervals of time. Figure 3.5 shows

Figure 3.5.: Illustration of Allen’s interval algebra (Jobczyk, 2016).

those relations (and two extension for points in time) and how two intervals A and B
relate according to them.

Allen’s interval algebra also describes logical rules to reason over multiple relations in
the form of a composition table.

Example 3.6 (Allen’s Interval Algebra)
To illustrate statements in Allen’s Interval Algebra and possible inferences, consider the
following two sentences:

After playing football, Alice has dinner.

During dinner, she watches the news.

Formalized in Allen’s Interval Algebra they look as follows ({…}) indicates the possible
relations):

⟨reading(Alice,Newspaper) {during, starts, finishes} eating(Alice,Dinner)⟩
⟨going(Alice,Bed) {after, meets} eating(Alice,Dinner)⟩

45

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

From those two statements one can then infer that ⟨going(Alice,Bed){after, meets}
reading(Alice,Newspaper)⟩ holds. △

TeCoRe Translator and Solver

The translator runs after uploading the data and optionally defining additional temporal
constraints. It parses data, inference rules, and temporal constraints, and transforms
those into the specific syntax of the chosen solver (i.e. nRockIt or PSL). Special care
is taken to verify that the input adheres to the expressivity of the solver. The explicit
translation step allows to extend TeCoRe with additional solvers in the future, e.g. for
Tractable MLN or Bayesian logic networks. The translator also automatically starts the
solver and runs inference.

Presentation of Results

The results page looks as depicted in Figure 3.6. The users is shown a summary statistics

Figure 3.6.: Display of result statistics and result data (with browsable consistent and
conflicting statements).

of the full number of parsed triples, the size of the conflict-free knowledge graph, and
the number of removed, conflicting statements, as well as the runtime of the solver.
Furthermore, the user can browse through a list of the consistent and the conflicting
triples. All the data – uploaded by the user, and the computed consistent and conflicting
statements – are offered for download for further investigation or processing.

46

3.6. Experiments

3.6. Experiments

We ran two sets of experiments to evaluate the viability and usefulness of our approach:

1. Measurements of the overall runtime performance of MAP inference.

2. Performance analysis for the detection of temporal conflicts in uncertain temporal
knowledge graphs, and how well the approach works with large amounts of noisy
data.

Both sets of experiments were conducted over the Football Database and varying sizes of
the Wikidata datasets, and with both solvers; nRockIt and PSL. We do not investigate
individual errors found in the data.

We used the default configuration parameters for nRockIt and PSL. The runtimes were
obtained on a virtual machine with 4 CPU cores and 16 GB of memory, and averaged
over 10 runs.

3.6.1. Performance of MAP Inference

In the first experiment we ran both nRockIt and PSL on the Football Database (FDB)
and Wikidata datasets described in Section 3.4. As the FDB dataset is small we simply
used the whole dataset. For Wikidata, we generated random samples of increasing size
to run the test on The results are listed in Table 3.1. From the runtimes on the different

Dataset FDB Wikidata
(size) 19k 10k 20k 50k 100k 200k 400k 500k
nRockIt 12.18 55.16 104.22 182.84 363.52 993.17 TO TO
PSL 6.13 15.46 27.32 46.21 86.42 231.43 523.25 675.12

Table 3.1.: Runtime Performance (in seconds, averaged over 10 runs) over the Football
Database (FBD) and various sizes of Wikidata for nRockIt and PSL. TO
denotes a timeout after 30 minutes.

uncertain knowledge graphs, we can make two observations:

1. PSL performs between 2x–4.3x faster than nRockIt;

2. Performance for nRockIt and PSL on the FDB dataset is 8.6x and 4.5x better,
respectively, than on a Wikidata graph of roughly equal size.

The first point shows that use of soft truth values – and thus simplifying the optimiza-
tion problem when computing the MAP state while in turn sacrificing some accuracy
(and expressiveness of constraints which, however, did not matter here) – does indeed
significantly improve performance. Overall, both nRockIt and PSL scale linearly in the

47

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

size of the Wikidata knowledge graph, as can also be seen in the graph of the runtimes
shown in Figure 3.7.

FDB
19k

WD
10k

WD
20k

WD
50k

WD
100k

WD
200k

WD
500k

10

100

1,000

Dataset (size)

R
un

tim
e

[se
c]

nRockIt
PSL

Figure 3.7.: Runtimes on datasets of various sizes

3.6.2. Performance of Conflict Detection

In the second set of experiments we focused on how well the approach works when the
data gets more noisy. We used the conflict-free Wikidata temporal knowledge graph
containing 50k statements, which we computed in the previous experiment, as a base-
line. From this dataset with 0% conflicting statements we generate additional uncertain
temporal knowledge graphs by inserting an additional 10%, 25%, 50%, 75%, and 100%
of erroneous data, respectively.

We ran MAP inference on these and computed precision, recall and F1 measure by
comparing the resulting graph to the baseline. Precision (P) denotes the amount of
correct statements retained from the baseline in relation to the overall size of the result.
Recall (R) is the amount of correct triples in the result in relation to the size of the
baseline. The F1 measure is defined as follows:

F1 =
2PR

P +R
(3.26)

The numbers are shown in Table 3.2. From those results we can make two observa-
tions: 1) For both, nRockIt and PSL, precision is heavily impacted by noisy data. 2)
Considering recall, nRockIt clearly outperforms PSL.

48

3.6. Experiments

Injection 0% 10% 25% 50% 75% 100%

nRockIt P 1.00 0.91 0.83 0.67 0.55 0.50
R 1.00 0.95 0.94 0.94 0.94 0.93

F1 1.00 0.93 0.88 0.78 0.69 0.65
Runtime 182.84 263.83 344.36 392.05 415.42 665.26

PSL P 1.00 0.93 0.85 0.70 0.63 0.53
R 1.00 0.94 0.86 0.81 0.72 0.70

F1 1.00 0.93 0.85 0.75 0.67 0.60
Runtime 46.21 52.63 55.82 69.02 82.24 93.62

Table 3.2.: Precision (P), recall (R), F1 measure, and runtime (in seconds, averaged over
10 runs) for running the MAP inference with increasing percentage of wrong
temporal facts injected. The Wikidata 50k dataset was used as baseline.

0% 10% 25% 50% 75% 100%

0.5

0.6

0.7

0.8

0.9

1

nRockIt Precision

nRockIt Recall

PSL Precision

PSL Recall

% wrong data

Pr
ec

isi
on

|R
ec

al
l

Figure 3.8.: Precision and recall for nRockIt and PSL on datasets inject with various
amounts of wrong data.

The graph in Figure 3.8 more clearly shows the decrease in precision and recall for the
two solvers.

We suppose that the reason nRockIt has the more extreme results for precision and re-
call – with PSL being somewhere in between – is caused by similar effects as mentioned

49

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

in Section 1.1 and observed in Watson by Kalyanpur et al. (2012): In IBM Watson possi-
ble information could not be included when in doubt due to the rigid truth requirements
of ontologies.

The same is true for MLNs, where only Boolean truth values are possible; however, in
our case we have the opposite goal: instead of identifying and adding new information,
we want to remove wrong information. Thus, when trying to remove wrong information,
this is only done when we have a high degree of certainty, resulting in high recall and low
precision, i.e. nRockIt tends to keep statements even if they are wrong instead of falsely
removing true statements. For the same reason, as PSL allows for more uncertainty,
its precision and recall values are somewhere in between nRockit’s numbers: it some-
times removes wrong statements that nRockIt kept, but sometimes also true information
retained by nRockIt.

However, if we look at the F1 measure (Figure 3.9), we see that the overall performance
of both solvers does not differ significantly, with only a slight advantage for nRockIt.
There is rather a different trade-off between precision and recall for the two.

0% 10% 25% 50% 75% 100%

0.6

0.7

0.8

0.9

1

% wrong data

F1
m

ea
su

re

nRockIt
PSL

Figure 3.9.: F1 measure for nRockIt and PSL on datasets inject with various amounts
of wrong data.

3.7. Related Work

Despite the general complexity of MLNs, it has been shown that it can be used to reason
about facts extracted at Web scale using a combination of hand-crafted Schoenmackers
et al. (2008) and extracted inference rules Schoenmackers et al. (2010). MLNs can be
used to deal with temporal relations in open information extraction Ling and Weld (2010)

50

3.8. Conclusion

or check the consistency of knowledge bases Chen and Wang (2014). The preliminary
results that highlight the use of Markov Logic Networks to debug temporal knowledge
graphs and on which this chapter is based are presented in Chekol et al. (2016); Huber
et al. (2014). The basic idea in theses works is to use hand-crafted constraints to identify
conflicts in knowledge bases containing date and time datatype values. However, this
study

1. does not provide a formal characterization in terms of syntax and semantics,

2. only considers a subset of RDF(S) inference rules, and

3. does not consider constraints for debugging numerical attributes.

Dylla et al. (2013) and Papaioannou and Bohlen (2016) extend probabilistic databases
with a temporal dimension. Furthermore, in earlier work Dylla et al. (2011) proposed an
approach for resolving temporal conflicts in RDF knowledge bases. They used first-order
logic Horn formulas with temporal predicates to express temporal and non-temporal con-
straints. However, these approaches are limited to a small set of temporal patterns and
only allow for uncertainty in facts. Moreover, extending knowledge graphs using open
domain information extraction will often also lead to uncertainty about the correctness
of schema information. A large variety of temporal inference rules and constraints, some
of which will be domain specific, can also be the subject of uncertainty. Chen and Wang
(2014) debug erroneous facts by using a set of functional constraints, although they do
not deal with numerical and temporal facts at the same time.

Knowledge base expansion and query-driven inference based on Markov Logic Networks
have been studied in (Zhou et al., 2016). Contrary to TeCoRe, the knowledge bases
considered are not temporal. Despite the general complexity of MLNs, it has been
shown that this tool can be used to reason about facts extracted at Web scale using a
combination of hand-crafted and extracted inference rules. MLNs can be used to deal
with temporal relations in open information extraction (Ling and Weld, 2007) or check
the consistency of knowledge bases (Chekol et al., 2017b).

We chose PSL over Tractable Markov Logic (TML) (Domingos and Webb, 2012) be-
cause it retains most of the rich expressiveness of MLN while being scalable. On the
other hand, TML imposes heavy restrictions on the structure of the knowledge graph
to achieve tractability. Due to this, most of the constraints and rules that we use for
experimentation are not applicable to TML and its variants.

3.8. Conclusion

We have presented an approach for reasoning over uncertain temporal knowledge graphs
based on probabilistic graphical models. We proposed a formal syntax and semantics for
uncertain temporal knowledge graphs and formalized the MAP and conditional proba-
bility inference problems. We used Datalog-inspired constraints to detect erroneous facts

51

Chapter 3. Debugging Large-scale Uncertain Temporal Knowledge Graphs

in uncertain temporal knowledge graphs. Then, we applied MAP inference to obtain a
most probable and conflict-free temporal knowledge graph from an uncertain, noisy one.

We evaluated the performance of the approach with two different solvers and over dif-
ferent datasets and showed that inference scales favorably, and that it handles noisy
data gracefully, especially in the case of nRockIt. nRockIt, using MLNs, allows to use
more expressive constraints than PSL (bodies not limited to conjunctive formulas; neg-
ative weights (cf. Section 3.2.3)). However, PSL scales better since it computes a soft
approximation of the discrete MAP state, and it also allows to have a trade-off between
precision and recall through the configurable activation threshold for atoms in the graph.

When focusing on precision and recall, we found that precision is impacted similar for
nRockIt and PSL in the face of noisy data. However, nRockIt’s recall is much less
impacted by erroneous facts. This shows that it is well suited for our initial goal:
increasing recall as compared to strict logical reasoning.

52

4
Scalable Probabilistic Query Answering and

Logical Reasoning

4.1. Introduction

The Semantic Web community has brought up many standards – published as recom-
mendations by the World Wide Web Consortium (W3C) – for knowledge representa-
tion and for querying knowledge bases using those. Especially the Resource Descrip-
tion Framework (RDF) (Schreiber and Raimond, 2014) and the Web Ontology Lan-
guage (OWL) (Parsia et al., 2012) are mature formalisms for modeling knowledge that
have gained a lot of traction, often in the form of knowledge graphs or Linked (Open)
Data (Bizer et al., 2009). The SPARQL recommendation (The W3C SPARQL Work-
ing Group, 2013) defines an expressive query language for retrieving information from
knowledge bases using those formalism.

Going further, the Semantic Web community has show a lot of interest in ontology-based
data access (OBDA) (Calvanese et al., 2015). Especially the increase in efficiency of rea-
soning and query answering achieved through recent results on light-weight description
logics provide new possibilities for using ontologies in data access. One approach for
ontology-based data access is query rewriting, i.e. reformulating a given query using
the background ontology in such a way that the resulting – more complex – query can
directly be executed on a relational database. This is possible for different light-weight
ontology languages, in particular the DL-Lite family (Artale et al., 2009).

At the same time, many applications in particular on the Semantic Web have to deal
with uncertainty in the data and, as already argued by Paulheim and Pan (2012), opti-
mizing the Semantic Web for precision alone is not sufficient. One can trivially design
a system that achieves very high precision, but subsequently it will suffer from low re-
call. For IBM, the impact of this on linked data and ontologies was so severe, that
they decided not to use structured knowledge bases for their famous Jeopardy-winning
Watson system, as it would only have been able to answer about two percent of the
posed questions (Kalyanpur et al., 2012). To improve recall and achieve a better overall
performance, they developed a system that allows for imprecise or uncertain knowledge
instead.

53

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Handling uncertain or incomplete information is getting more and more important, not
only in the domain of expert systems or query-answering systems like Watson, but also
in other real world applications like data integration and information extraction.

• Data integration is the mapping of two or more heterogeneous data sources, e.g.
ontologies without a common upper ontology or database with a different schema,
into one combined knowledge base. In many cases it is not possible to find perfect
matches between all concepts and properties of the different sources. However,
quite often there are concepts that almost correspond to each other or have similar
meanings. Mapping those with some specific confidence value yields an increased
benefit for the resulting integrated knowledge base.

• Information extraction is another field where uncertain information plays an impor-
tant role. Information extraction tries to generate meaningful, structured knowl-
edge from merely unstructured data in the form of natural text. Although natural
language processing provides good tools to derive information from unstructured
text, natural language has many ambiguities that require context or background
knowledge to discern the correct meaning of a term or statement (cf. (Theobald
et al., 2013)).

Approaches combining logics with uncertain reasoning have a long history. Lukasiewicz
and Straccia (2008) give an overview of the evolution of the field. More recent approaches
include Disponte/Bundle (Riguzzi et al., 2013, 2015) or Pronto (Klinov and Parsia,
2013), which combine description logics with probabilistic reasoning, and Log-linear
Description Logics (Niepert et al., 2011b). On the other hand, the logic programming
and statistical relational learning community has developed probabilistic versions of
Datalog-style languages (e.g. ProbLog (De Raedt et al., 2007)) that can be used to
partially model ontological background knowledge. While for many of these languages
efficient subsets have been identified (e.g. (Klinov and Parsia, 2013; Riguzzi et al., 2015))
and optimized reasoning algorithms have been proposed, none of the existing approaches
is designed to handle a large amount of data as we find on the Web.

Conversely, the core idea of the ODBA approach builds on the concept of translating
SPARQL queries to standard SQL queries which allows to handle large amount of data.
This requires also to expand queries against the background knowledge that might be
given in terms of a light-weight ontology. For its probabilistic extension the distinction
between safe and unsafe queries is highly crucial. Research in probabilistic databases
has shown that there is a strict dichotomy of safe (data complexity in PTime) and
unsafe (in #P-hard) queries (Suciu et al., 2011). Jung et al. have shown that query
rewriting for OBDA can directly be lifted to the probabilistic case (Jung and Lutz,
2012). Furthermore, they prove that the complexity results and the dichotomy of safe
and unsafe queries also carries over to probabilistic query answering in an OBDA setting.
We will very briefly present the basic approach and the distinction between safe and
unsafe queries with the help of an example from an information extraction scenario.

54

4.1. Introduction

Example 4.1 (Query Answering)
Datasets extracted from Web pages by the Never Ending Language Learning Project
(NELL (Carlson et al., 2010)) ReVerb (Fader et al., 2011) contain millions state-
ments with associated probabilities, amongst others the following assertions about Arnold
Schwarzenegger and his wife Maria Shriver.

1.00 PoliticianUS(Arnold_Schwarzenegger)
1.00 Actor(Arnold_Schwarzenegger)
0.50 hasOffice(Arnold_Schwarzenegger,President)
1.00 husbandOf(Arnold_Schwarzenegger,M_Shriver)
0.75 agentControls(NBC,M_Shriver)
1.00 acquired(NBC,Telemundo)

While some of the statements are considered to be definitely true, some of them, however,
are only believed to be true with a certain probability. Accessing the stored information
in a meaningful way requires to query the knowledge base. In this work, we consider
queries that allow us for example to ask for the probability that a politician has been
president and actor or for the probability that a politician has been married to someone
who is under control of a company. In terms of SPARQL, we can formalize these two
queries as follows.

ASK {
?x a :actor ;

a :politician ;
:hasOffice :president .

}

ASK {
?x a :actor ;

a :politician ;
:hasOffice :president .
:spouse ?y .

?y :agentControlledBy ?z .
?z a :company .

}

If we ask these queries directly to the given data, the resulting answers might not meet our
expectations, because Arnold Schwarzenegger is, for example, not explicitly marked as a
politician (but as a US politician). In particular, we can derive the following DL-LiteR
axioms from the metadata in the NELL knowledge base, stating that US politicians are
politicians, agentControlledBy is the inverse of agentControls and that the domain of the
acquired relation is company:

PoliticianUS ⊑ Politician
agentControlledBy ⊑ agentControls−

∃ acquired ⊑ Company

Using these axioms, we can compute the probability that Arnold Schwarzenegger is a
correct answer to the original SPARQL query by expanding it according to the given
axioms. △

55

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Within this chapter we recall the formalism that enables us to translate and expand a
given SPARQL query, based on the given set of DL-LiteR axioms such that we get a
set of resulting SQL queries which can be applied to a data set stored in a relational
database. If such an approach is applied and extended for a probabilistic setting, there
are two crucial questions:

• Are the queries that we typically ask in a real-world scenario safe?

• And if yes, can we actually offer an efficient method to answer such queries?

These are the two research questions that we will answer within our this chapter. Starting
with the first question, we note that the first query of our example is safe, while the
second is unsafe. In order to understand the distribution of queries in a real world setting,
we analyze the queries collected in the Linked SPARQL Queries Dataset (LSQ) (Saleem
et al., 2015). LSQ contains queries which where posed against the public SPARQL
endpoints of DBPedia1, Linked Geo Data (LGD)2, Semantic Web Dog Food (SWDF)3,
and the British Museum (BM)4. Although the queries in the dataset are not posed
against probabilistic data, we argue that the large number of queries gives a good picture
of the general information needs users have.

To answer the second question, we have developed a prototypical implementation that is
designed to answer safe probabilistic SPARQL queries over large probabilistic knowledge
bases up to several hundred millions of facts. This prototype is an implementation of
the rules for deciding query safeness that have been proposed by Suciu et al. (Suciu
et al., 2011). We report about its results applied to a synthetic benchmark dataset for
probabilistic OBDA on the basis of the LUBM benchmark that can be scaled to an
arbitrary number of probabilistic statements. We report also on its performance on a
real world knowledge base (NELL), that was also the basis for the example we presented
so far. We will also compare our results against another system that can be applied to
answer probabilistic queries.

4.2. Preliminaries

In this section we describe how TIP-OWL (Definition 2.9) can be implemented through
query rewriting on top of tuple-independent probabilistic databases. Then we explain
extensional probabilistic query processing – the key to efficient query processing in prob-
abilistic database – and give the definition for query safeness. This lays the foundation
for tractable ODBA on top of probabilistic data.

1http://dbpedia.org/
2http://linkedgeodata.org/
3http://data.semanticweb.org/
4http://bm.rkbexplorer.com

56

http://dbpedia.org/
http://linkedgeodata.org/
http://data.semanticweb.org/
http://bm.rkbexplorer.com

4.2. Preliminaries

4.2.1. Implementing Reasoning on Top of Probabilistic Databases

In this section, we first briefly recall the idea of first-order rewritability of queries
in DL-Lite and then show that the query rewriting approach proposed by Calvanese
et al. (Calvanese et al., 2007) can be used on top of tuple independent probabilistic
databases for answering queries in TIP-OWL without changing the semantics of an-
swers.

Query Rewriting

Query processing in DL-LiteR is based on the idea of first-order reducibility. This means
that for every conjunctive query q we can find a query q′ that produces the same answers
as q by just looking at the ABox. Calvanese et al. also define a rewriting algorithm that
computes a q′ for every q by applying transformations that depend on the TBox axioms.

Given a consistent TBox T the algorithm takes a conjunctive query q0 and expands it
into a union of conjunctive queries U starting with U = {q0}. The algorithm successively
extends U by applying the following rule:

U = U ∪ {q[l/r(l, I)]}

where q is a query in U , l is a literal in q, I is an inclusion axiom from T and r is a
replacement function that is defined as follows:

l I r(l, I)
A(x) A′ ⊑ A A′(x)
A(x) ∃P ⊑ A P (x,_)
A(x) ∃P− ⊑ A P (_, x)
P (x,_) A ⊑ ∃P A(x)
P (x,_) ∃P ′ ⊑ ∃P P ′(x,_)
P (x,_) ∃P ′− ⊑ ∃P P ′(_, x)

l I r(l, I)
P (_, x) A ⊑ ∃P− A(x)
P (_, x) ∃P ′ ⊑ P− P ′(x,_)
P (_, x) ∃P ′− ⊑ ∃P− P ′(_, x)
P (x, y) P ′ ⊑ P P ′(x, y)
P (x, y) P ′− ⊑ P− P ′(x, y)
P (x, y) P ′ ⊑ P− P ′(y, x)
P (x, y) P ′− ⊑ P P ′(y, x)

Here ’_’ denotes an unbound variable, i.e., a variable that does not occur in any other
literal of any of the queries.

Definition 4.1 (Derived Query)
Let Q = L1 ∧ · · · ∧ Lm be a conjunctive query over a DL-Lite terminology. We write
Q

r→ Q′ if Q′ = Q ∨ Q[Li/r(Li, I)] for some literal Li from Q. Let r→
∗ denote the

transitive closure of r→, then we call every Q′ with Q
r→
∗
Q′ a derived query of Q. Q′ is

called maximal if there is no Q′′ such that Q r→
∗
Q′′ and Q′ r→

∗
Q′′. ⃝

57

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Using the notion of a maximal derived query, we can establish the FOL-reducibility of
DL-Lite by rephrasing the corresponding theorem by Calvanese et al. (Calvanese et al.,
2007).

Theorem 4.1 (FOL-Reducibility of DL-Lite (Calvanese et al., 2007))
Query answering in DL-LiteR is FOL-reducible. In particular, for every query Q with
maximal derived query Q′ and every DL-LiteR TBox T and non-empty ABox A we have
T ∪ A ⊨ Q if and only if A ⊨ Q′.

Example We illustrate the rewriting using the queries and the three ontological ax-
ioms from the motivating example. For the first query, the subclass relation between
politicianus and politician triggers a rewriting leading to the new query Q′(X) ⇐
politicianus(X), actor(X), hasoffice(X, president) which has to be united with the
original query to form the new query Q ∨Q′. This query can be simplified to:

(politician(X) ∨ politicianus(X))

∧ actor(X) ∧ hasoffice(X, president)

For the second query, the rewriting is slightly more complicated, but still can be com-
puted in a single go through the query. Each of the axioms triggers a rewriting. Besides
the rewriting already performed for the first query, the literal agentcontrolledby(Y, Z)
can be rewritten to agentcontrols(Z, Y). Secondly, the literal company(Z) can be
rewritten to acquired(Z,_), after simplification leading to the following rewritten query:

(politician(X) ∨ politicianus(X))

∧ spouse(X,Y)

∧ (agentcontrolledby(Y, Z) ∨ agentcontrols(Z, Y))

∧ (company(Z) ∨ acquired(Z,_))

The resulting query can now directly be executed on the probabilistic database.

Correctness of Query Processing

Implementing TIP-OWL on top of probabilistic databases can now be done in the fol-
lowing way. The ABox is stored in the probabilistic database. It is easy to see that the
probabilistic semantics of TIP-OWL ABoxes and tuple independent databases coincide.
What remains to be done is to show that the idea of FOL-reducibility carries over to
our probabilistic model. In particular, we have to show that a rewritten query has the
same probability given a knowledge base with empty TBox as the original query given
a complete knowledge base. This result is established in the following corollary.

58

4.2. Preliminaries

Corollary 4.1
Let T KB = ⟨T ,A,P⟩ be a TIP-OWL knowledge base and T KB′ = ⟨∅,A,P⟩ the same
knowledge base, but with an empty TBox. Let further Q be a conjunctive query and Q′

a union of conjunctive queries obtained by rewriting Q on the basis of T , then

P (Q|T KB) = P (Q′|T KB′)

Proof. The result directly follows from Theorem 4.1 and the definition of the probability
of queries given above. From Theorem 4.1 we get that P (Q|KB) does not change as
T ,A ⊨ Q if and only if A ⊨ Q′. Further, as P (KB|T KB) only depends on A this part
also stays unchanged.

This result provides us now with a framework for query answering over probabilistic data
using a logical background theory. A question that remains to be answered is about the
efficiency of the approach. We know that query rewriting is in PTIME (Calvanese
et al., 2007); and that probabilistic query answering for safe queries is in PTIME (Dalvi
and Suciu, 2012). These results suggest that query answering in our model is also in
PTIME as long as we stick to certain types of queries. In particular, we know that
query answering is in PTIME if the rewritten query is safe. To ensure efficiency, we
characterize queries whose rewritten versions are safe in the next section.

4.2.2. Complexity of Query Processing in TIP-OWL

Over the past decade, the database community has developed efficient methods for
querying uncertain information in probabilistic databases. Important results are the
introduction of the independent tuple model for probabilistic data as well as a complete
characterization of queries that can be computed in polynomial time. In this section, we
briefly review these results as a basis for our extension towards ontological background
knowledge.

Extensional Query Processing

Answering arbitrary (unions of) conjunctive queries over probabilistic databases typi-
cally requires the construction of the complex event description that represents possible
answers as a basis for computing their probability (Suciu et al., 2011). This approach,
that is often called intensional query processing, is inherently intractable as it corre-
sponds to enumerating all possible worlds. It has been shown that the key to efficient
query processing in probabilistic databases is to avoid the computation of complex event
descriptions and to directly compute the probability of a complex query from the proba-
bilities of subqueries. This approach, that is referred to as extensional query processing,
has been shown to correctly compute the probability of queries for the class of tractable
queries.

59

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Extensional query processing for unions of conjunctive queries proceeds in a number of
steps that each reduces the problem of computing the probability of a query to computing
and aggregating the probability of smaller queries. If the steps succeed, the query can be
computed in polynomial time of the size of the database. Those steps are given by Suciu
et al. in the form of six rules (Suciu et al., 2011). To decide whether a rule is applicable
to a query or not we need two more definitions that specify certain characteristics of a
query.

Definition 4.2 (Syntactic Independence (Suciu et al., 2011))
Two queries Q1 and Q2 are syntactically independent if no two atoms from each query
unify. Atoms are unifiable if they become the same tuple when instantiated. ⃝

To be unifiable, two atoms must use the same relation symbol. An example are the
atoms hasOffice(x,President) and hasOffice(Trump,President) as they become the same
tuple when x is instantiated with Trump. Whereas the two atoms hasOffice(Obama, y)
and hasOffice(Trump, y) are not unifiable as they can never become the same tuple.
Furthermore, if two queries are syntactically independent, they are also independent
probabilistic events.

Definition 4.3 (Separator Variable (Suciu et al., 2011))
Let Q be a query of the form Q = ∃x.Q′. The variable x is called a separator variable
if for any two unifiable atoms in Q, x occurs in the same position. ⃝

If we have a query with separator variable x, its instantiations with two different con-
stants are syntactically independent. To obtain separator variables often the following
equivalence is applied: ∃x1Q1 ∨ ∃x2Q2 ≡ ∃x.(Q1[x/x1] ∨Q2[x/x2]).

Using those two concepts, we can now explain the six rules to determine query safeness.

Definition 4.4 (Six Rules for Query Safeness (Suciu et al., 2011))

Rule 1 (Independent Join): If the query can be written as Q = Q1 ∧ Q2 with Q1 and
Q2 being two syntactically independent subqueries then

P (Q1 ∧Q2) = P (Q1) · P (Q2)

Rule 2 (Independent Project): Making sure that instantiations are independent re-
quires to find a so-called separator variable, a variable that occurs at the same
position in every conjunct.

Finding separator variables might require to re-rank predicates to move variables in
the right position and to replace variables in different disjuncts using the equivalence
∃x1Q1 ∨ ∃x2Q2 ≡ ∃x.(Q1[x/x1] ∨Q2[x/x2]).

60

4.2. Preliminaries

If a query Q can be written as ∃x.Q where x is a separator variable then

P (∃x.Q) = 1−
∏

a∈ADom
(1− P (Q[a/x]))

The instantiated subqueries are either single literals – in this case their probability
can be read directly from the database – or they are queries in DNF. In this case
processing continues until the query has been completely broken down. This rule is
the critical one that determines whether extensional query processing is possible or
not. It requires instantiating the query with different values from the domain ADom
of the corresponding attribute. If we cannot make sure that different instantiations
are independent via a separator variable, processing stops here and probabilities
cannot be computed efficiently.

Rule 3 (Independent Union): If the query Q can be written as Q = Q1 ∨ Q2 with Q1

and Q2 being syntactically independent then

P (Q1 ∨Q2) = 1− (1− P (Q1)) · (1− P (Q2))

Rule 4 (Negation): If the query is if the form ¬Q then

P (¬Q) = 1− P (Q)

Rule 5 (Inclusion-Exclusion Formula) In the general case, the queries Q′
i are of the form

Qi1 ∧· · ·∧Qik and the different subqueries are not independent. The probability of
these queries can be computed using the dual of the well-known inclusion-exclusion
rule:

P (Q1 ∧ . . . ∧Qn) = −
∑

s⊆[n],s ̸=∅

(−1)|s|P

(∨
i∈s

Qi

)

While the direct application of this rule may generate intractable subqueries whose
probability is part of the formula, Dalvi and Suciu have shown that these intractable
subqueries do not have to be computed, because they cancel each other out in
the final summation. They also show that the Moebius function over lattices can
be used to only generate the relevant summands in the first place, thus avoiding
unnecessary computation or detection of hard queries (Dalvi and Suciu, 2012).

Rule 6 (Attribute Ranking): Ranking is used to partition the data according to a pred-
icate, to facilitate the search for separator variables. There are two types of rank-
ing: attribute-attribute-ranking where two attributes are compared, and attribute-
constant-ranking comparing an attribute with a constant (attributes are simply
characterized by position in the respective predicate).

Attribute-attribute-ranking is done as follows: For some predicate R with attributes
A and B, we partition the data by the use of three new predicates R1 = σA<B(R),

61

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

R2 = σA=B(R) and R3 = σA>B(R), and replace all occurrences of R with R1 ∨
R2 ∨R3. The resulting query is denoted Qr.

Attribute-constant-ranking is done as follows: For some predicate R with attribute
A, if there are two unifiable atoms where one has a variable at position A and the
other some constant c, the data is partitioned by the new predicates R1 = σA ̸=c(R)
and R2 = σA=c(R), and again substituting R with R1 ∨ R2 and denoting the new
query as Qr.

Thus, for any query Q,

P (Q) = P (Qr)

with Qr being the ranked query.

Note that by ranking predicates in this way, we create three syntactically inde-
pendent predicates (they use different predicate symbols and also do not share
assignments), which in turn ideally makes more subqueries syntactically indepen-
dent.

⃝

Queries that can be fully processed using the rules above – i.e. they are completely
broken down into single literals that can be looked up in the database – are called safe.
By applying those rules in a systematic way, we get an algorithm which can compute the
probability of any safe query. This algorithms main function, which recursively computes
P (Q), is shown in Algorithm 1.

62

4.2. Preliminaries

Algorithm 1 Extensionally compute P(Q) (from (Dalvi and Suciu, 2012))
Require: A ranked, conjunctive query Q in CNF; a tuple independent probabilistic

database
1: Q is a conjunctive query in CNF: Compute symbol components Q = Q1 ∧ · · · ∧Qm

2: if m ≥ 2 then
3: return

∏
i=1,··· ,m P (Qi)

4: end if
5:
6: Q = Q1 ∧ · · · ∧Qm is a symbol-connected query in CNF:
7: if m ≥ 2 then
8: return −

∑
s⊆[n],s ̸=∅(−1)|s|P

(∨
i∈sQi

)
9: end if

10:
11: Q is a disjunctive query: Compute symbol components Q = Q1 ∨ · · · ∨Qm

12: if m ≥ 2 then
13: return 1−

(∏
i=1,··· ,n 1− P (Qi)

)
14: end if
15:
16: if Q has a separator variable z then
17: return 1−

(∏
a∈ADom 1− P (Q[a/x])

)
18: else
19: return false
20: end if

The algorithm starts with a fully attribute-constant ranked query over some probabilistic
database. Then it tries to apply the rules in the following order (whenever required, the
query is rewritten from DNF to CNF, or vice versa, by applying the distributivity law):

1. Rule 1: Independent join (Line 1)

2. Rule 5: Inclusion-exclusion formula (Line 6)

3. Rule 3: Independent union (Line 11)

4. Rule 2: Independent project (Line 15)

5. Repeat from Step 1, if the query still contains variables and the algorithm recursed
in this iteration

When searching for a separator variable, we also repeatedly apply attribute-attribute
ranking (Rule 6) to some pairs of attributes, if no separator is found in the initial try.
Whenever we reach an atom that does not contain variables (i.e. only constants or
projected-out separator variables), we look up its probability in the database. Similar,
we apply Rule 4 (Negation) as suitable throughout the algorithm.

63

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Each recursion of the algorithm processes a simpler subexpression, until the probability
of an individual can be read directly. If the algorithm ever gets stuck and cannot simplify
the query further, it is technically because of not finding a separator variable.

We explain the application of the rules on the example of two queries; one safe and the
other unsafe.

Example 4.2 (Extensional Processing of a Safe Query)
Consider the following conjunctive boolean query:

Q ⇐ ∃x.∃y.∃z.(R(x, y) ∧R(z, y))

A concrete version of this query can example ask whether we know of a person that
was head of state in two different countries: Q ⇐ ∃x.∃y.∃z.(hasHeadOfState(x, y) ∧
hasHeadOfState(z, y)).

Deciding whether the query is safe and calculating its probability using the six rules
of Suciu et al. (2011) is done as follows:

P (Q) = P
(
∃x.∃y.∃z.(R(x, y) ∧R(z, y))

)
[equivalence]

= P
(
∃y.
(
∃x.R(x, y) ∧ ∃z.R(z, y)

))
[independent project]

= 1−
∏

a∈ADom

(
P
(
∃x.R(x, [a/y]) ∧ ∃z.R(z, [a/y])

))

Let ADom = {a1, . . . , an} and Q′(ai) = ∃x.R(x, ai) ∧ ∃z.R(z, ai).

P (Q′(ai)) = P
(
∃x.R(x, ai) ∧ ∃z.R(z, ai)

)
[inclusion-exclusion formula]

= P
(
∃x.R(x, ai)

)
+ P

(
∃z.R(z, ai)

)
− P

(
∃x.R(x, ai) ∨ ∃z.R(z, ai)

)
Let Q′′

1 = ∃x.R(x, ai), Q′′
2 = ∃z.R(z, ai), Q′′

3 = ∃x.R(x, ai) ∨ ∃z.R(z, ai).

P (Q′′
1(ai)) = P

(
∃x.R(x, ai)

)
[independent project]

= 1−
∏

b∈ADom

(
1− P (R([b/x], ai))

)
P (Q′′

2(ai)) = P
(
∃z.R(z, ai)

)
[independent project]

= 1−
∏

c∈ADom

(
1− P (R([c/x], ai))

)
P (Q′′

3(ai)) = P
(
∃x.R(x, ai) ∨ ∃z.R(z, ai)

)
[equivalence]

= P
(
∃x′.

(
R([x′/x], ai) ∨R([x′/z], ai)

))
[independent project]

= 1−
∏

d∈ADom

(
1− P

(
R([d/x′], ai) ∨R([d/x′], ai)

))

64

4.2. Preliminaries

Now, every variable in the original query is projected out, and the probability of every
atom can be read from the database. Putting all parts of the query together, the final
formula to compute the probability is as follows:

P (Q) = 1−
∏

a∈ADom

(
P (Q′(a))

)
= 1−

∏
a∈ADom

(
P (Q′′

1(a)) + P (Q′′
2(a))− P (Q′′

3(a))
)

= 1−
∏

a∈ADom

((
1−

∏
b∈ADom

(
1− P (R(b, a))

))
+
(
1−

∏
c∈ADom

(
1− P (R(c, a))

))
−
(
1−

∏
d∈ADom

(
1− P

(
R(d, a) ∨R(d, a)

))))
= 1−

∏
a∈ADom

(
1−

∏
b∈ADom

(
1− P (R(b, a))

)
−

∏
c∈ADom

(
1− P (R(c, a))

)
+

∏
d∈ADom

(
1− P

(
R(d, a) ∨R(d, a)

)))
= 1−

∏
a∈ADom

(
1−

∏
d∈ADom

(
1− P

(
R(d, a)

)))
△

It has been shown that safe queries exactly correspond to queries that can be computed
in PTime whereas queries that cannot be completely processed using these steps – in
particular queries for which we cannot find a separator variable – are #P-hard. This
means that we can use the notion of safeness and the processing rules above to analyze
the general complexity of certain classes of queries.

Definition 4.5 (Safeness)
A query Q is called safe if and only if it can be computed by iteratively applying the six
rules in Definition 4.4, resulting in a fully instantiated query. ⃝

Theorem 4.2 (Dichotomy Theorem (adapted from (Suciu et al., 2011)))
The probability of safe queries can be computed in PTIME. If a query is not safe com-
puting its probability is #P-hard.

Jung et al. proved that Theorem 4.2 also holds for probabilistic OBDA in OWL 2
QL (Jung and Lutz, 2012). This essentially means that the same dichotomy of safe and
unsafe queries still applies under the presence of reasoning through query rewriting.

65

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Table 4.1.: Overview of queries in the LSQ dataset
SELECT ASK DESCRIBE CONSTRUCT Total

SWDF 58 741 157 26 533 52 85 483
DBpedia 736 726 37 174 777 7 613 782 290
LGD 265 410 25 140 24 7 004 297 578
BM 29 073 0 0 0 29 073
Total 1 089 950 62 471 27 334 14 669 1 194 424

4.3. Analysis of the SPARQL Dataset and Query Safeness

After establishing the basis for logical and probabilistic query answering, we now analyze
a large corpus of real-world SPARQL queries for their complexity in query answering.
The goal is to determine the amount of safe and unsafe queries in real-world scenarios,
and thus show the general feasability of probabilistic logical query answering over large
data in practice. SPARQL specified as W3C recommendation and plays a comparable
role for the Semantic Web as SQL in relational databases. For our analysis we used
the queries collected in the Linked SPARQL Queries Dataset (LSQ) (Saleem et al.,
2015). LSQ contains queries which where posed against the public SPARQL endpoints of
DBPedia5, Linked Geo Data (LGD)6, Semantic Web Dog Food (SWDF)7, and the British
Museum (BM)8. Although the queries in the dataset are not posed against probabilistic
data, we argue that the large number of queries gives a good picture of the general
information needs users have. In the case of DBpedia, there is actually some amount
of uncertainty in its generation, as the data is automatically extracted from Wikipedia,
which itself can contain uncertain/wrong information.

Table 4.1 shows the different query types and their distribution in the different datasets.
Those numbers contain only queries that parse successfully; LSQ also lists queries with
parse errors. They clearly show that the main amount of queries are SELECT queries.
Interestingly, the dataset for the British Museum’s endpoint only consists of SELECT
queries; all being uniformly structured. This suggests that those are not actual user
queries but automatically created by some system. However, the queries from the British
Museum make up only a small part of the whole LSQ dataset.

Looking at the used SPARQL features, FILTER and DISTINCT are the most prominent,
with UNION coming in second. GROUP BY and EXISTS play only a minor role.
However, note that DISTINCT is technically a GROUP BY over all variables in the
SELECT clause.

5http://dbpedia.org/
6http://linkedgeodata.org/
7http://data.semanticweb.org/
8http://bm.rkbexplorer.com

66

http://dbpedia.org/
http://linkedgeodata.org/
http://data.semanticweb.org/
http://bm.rkbexplorer.com

4.3. Analysis of the SPARQL Dataset and Query Safeness

Table 4.2.: Used SPARQL features
UNION FILTER DISTINCT GROUP BY EXISTS

BM 0 0 29073 0 0
DBpedia 36127 183882 144245 3 3
LGD 28827 92558 66206 11 0
SWDF 27982 818 39000 445 123
Total 92936 277258 278524 459 126

The focus of our analysis is on SELECT and ASK queries. For DESCRIBE queries
there is no formal definition of how a result is produced, thus making it impossible to
determine if the process is safe; whereas CONSTRUCT queries do not directly translate
to query answering as they generate a new graph and not a result set. Furthermore,
our current implementation cannot analyze queries containing features, like GROUP
BY, DISTINCT, EXISTS, OPTIONAL, and endpoint specific functions not part of the
SPARQL recommendation (e.g. Oracle’s version of COUNT). After removing those we
are left with 507 241 queries for which we can determine query safeness.

We used parts of Ontop (Calvanese et al., 2017), a system for deterministic OBDA, to
translate the SPARQL queries to (union of) conjunctive queries. Those queries were then
processed by Algorithm 1 to determine their safeness. The implementation is written in
Java and the experiments were run on an Intel Core i5@2.9 GHz with 4GB of RAM for
the Java VM.

The distribution of safe and unsafe queries is shown in Table 4.3. With 99.68%, almost
all of the analyzed queries are safe. Regarding the total number of 1 194 424 queries,
42.33% are definitly safe. Note that this does not imply that 57.67% of the queries
are unsafe. Those queries need a more thorough analysis because of their usage of
DISTINCT/GROUP BY, FILTER, HAVING, EXISTS, or OPTIONAL.

Looking at the numbers for the different data sources, the percent of unsafe queries sent
to the Semantic Web Dog Food endpoint is significantly higher than for the other two.
Analyzing those queries we found the major number being of the form

SELECT ?targetType
WHERE { ?obj a <someURI>.

?obj <someOtherURI> ?targetObj.
?targetObj a ?targetType.

}

This suggest that those queries are generated by some tool and not by a user. Overall,
this shows that the users’ general information needs can also be satisfied over probabilis-
tic data in a tractable way.

67

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Table 4.3.: Analysis results for queries in the LSQ dataset
DBpedia LGD SWDF Total

% # % # % # %
Safe 287 487 99,72 199 636 99,79 18 240 97,93 505 563 99,68
Unsafe 809 0,28 414 0,21 386 2,07 1 609 0,32
Total 288 296 200 050 18 626 507 172

Our implementation of the algorithm is still quite simple and we are not able to logically
simplify all queries. Thus determining their safeness becomes sometimes unfeasible. This
results in a timeout for 69 queries after 10 minutes. Still, the average processing time
for a query is 86ms.

4.4. Benchmarks on Probabilistic Data

In Section 4.3 we have shown that a significant amount of real-world queries are safe and
can in theory be answered efficiently. This section complements those results by bench-
marking the performance of probabilistic logical reasoning on two different datasets.
We first describe the two used datasets and then show the results of the experimental
evaluation in the following section.

4.4.1. Benchmark Data for Probabilistic OBDA

We use two different datasets for our experimental evaluation. The first dataset is the
ontology and knowledge base created by NELL, which presents a large real-world dataset
consisting of uncertain data. Second, to assess the scalability of the approach, we created
a modified version of the Lehigh University Benchmark (LUBM), a synthetic benchmark
for OWL reasoners that generates datasets of various sizes. We did not use one of the
datasets from which LSQ collected the queries, as it would have been hard to scale them
to different sizes and still ensure meaningful query results.

NELL

NELL is an Open Information extraction system that extracts facts from text found in
a large corpus of web pages. As a result, NELL generates triples like wifeof(katie_
holmes, tom_cruise), called candidate beliefs, that are annotated with different levels
of confidence in terms of a number in the range (0, 1].

Within the context of our approach these candidate beliefs form the ABox of our TIP-
OWL knowledge base, while the confidences are interpreted as probabilities. NELL
organizes extracted facts in a terminology consisting of concepts (called categories in

68

4.4. Benchmarks on Probabilistic Data

Dataset Assertions
NELL full 2 259 750
NELL filtered 467 943

Dataset Assertions % distinct
LUBM 1 717 250 54.77
LUBM 10 7 232 663 55.69
LUBM 100 71 698 666 55.66
LUBM 200 143 311 100 55.67
LUBM 500 361 432 844 55.12
LUBM 1000 719 097 512 55.32

Table 4.4.: Size of the different NELL and LUBM datasets.

NELL context) and roles (relations) and specifies domain and range restrictions, prop-
erty symmetry, and disjointness of concepts and properties. The DL-LiteR fragment of
this terminology is used as TBox of our TIP-OWL knowledge base. We use the high
confidence knowledge base of NELL (iteration 860) which contains only facts with a
score of at least 0.75. It contains 2.3 million extracted facts about 1.8 million objects as
compared to the full dataset with roughly 50 million. The TBox, which is the same for
all datasets, consists of 558 concepts, 1 255 properties, and 5 132 axioms (domain and
range restrictions, property symmetry, concept and property disjointness).

To show the benefits and the scalability of our approach, we defined the following queries
that are posed against the TIP-OWL version of NELL.

QA(X) ⇐person(X)

QB(X) ⇐person(X), bornin(X, paris)

QC(X) ⇐book(X),movie(X)

QD(Z) ⇐hasParent(X,Y), hasparent(Y, Z)

QE(X) ⇐actor(X), directordirectedmovie(X,Y), writerwrotebook(X,Z)

QF (X) ⇐politician(X), actor(X), hasoffice(X, president)

We use this dataset mainly to investigate the benefits of using background knowledge
and reasoning on top of probabilistic data in terms of increased recall.

Probabilistic LUBM

The Lehigh University Benchmark (LUBM) (Guo et al., 2005) is a well known and widely
used benchmark for OWL-based reasoning systems. Lutz et al. published a DL-LiteR
version of LUBM (Lutz et al., 2013). Additionally to restricting the expressivity of the
ontology, they modified it to make it more suitable in an OBDA setting: First, they
added multiple concept inclusions with existential restriction on the right hand side,
and second they extended the class hierarchy to be closer to real-world ontologies in its
size.

69

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

We chose to extend LUBM over other synthetic benchmarks like SP2Bench (Schmidt
et al., 2009), BSBM (Bizer and Schultz, 2001), or FishMark (Bail et al., 2012). SP2Bench
and BSBM only provide a very simple or no ontology, but rather focus on complex
queries. FishMark contains an expressive ontology more suitable for our evaluation.
However, it does not provide a generator for datasets of various sizes. Lutz et al.’s version
of the LUBM ontology is of sufficient complexity to evaluate the scalability of reasoning
in an OBDA setting, and it offers the possibility to generate datasets of different sizes.

The benchmark dataset for probabilistic OBDA is generated in two steps:

1. We extended the generator to create probabilistic ABoxes.

2. To increase the complexity of the probabilistic reasoning, we created redundancies
in the dataset.

In the first step we extended the implementation of the data generator to attach prob-
abilities to every ABox axiom. Those probabilities are randomly distributed in (0,1].
We did not include a fixed percentage of certain axioms. The generator thus creates
datasets of various size with probabilistic axioms. However, each axiom is contained
exactly once, thereby trivializing the calculation of the final probabilities in a result set.
To alleviate this, we used the option to change the seed that LUBM uses to determine
the number of instances of departments, professors, students, etc.

For every dataset size, we generated five ABoxes each with a different seed (0, 1, 42,
776, 141984). Combined, these five ABoxes serve as one probabilistic benchmark dataset.
Note that our probabilistic version of LUBM is roughly five times larger than the normal
LUBM of the same size, i.e. LUBM 1 contains only one university, whereas probabilistic
LUBM 1 contains five different versions of that university, with different numbers of
departments, professors, students, etc.
In the evaluation we used those queries of the original LUBM benchmark for which
probabilities can be computed efficiently, i.e. queries 1, 3–6, and 10–14:

Q1(X) ⇐ takesCourse(X,univ0_dept0), type(X, graduateStudent)

Q3(X,Y1, Y2, Y3) ⇐ publicationAuthor(X,univ0_asstProf0), type(X, publication)

Q4(X) ⇐ worksFor(X,univ0_dept0), name(X,Y1), emailAddress(X,Y2),

telephone(X,Y3), type(X, professor)

Q5(X) ⇐ memberOf(X,univ0_dept0), type(X, person)

Q6(Z) ⇐ type(X, student)

Q10(X) ⇐ takesCourse(X,univ0_graduateCourse0), type(X, student)

Q11(X) ⇐ subOrgOf(X,univ0), type(X, researchGroup)

Q12(X,Y) ⇐ worksFor(X,Y), type(X, chair), subOrgOf(Y, univ0),

type(Y, department)

Q13(X) ⇐ hasAlumnus(univ0, X), type(X, person)

Q14(X) ⇐ type(X,undergraduateStudent)

Q11 and Q12 require the reasoner to handle the transitive object property subOrgOf.
However, transitive object properties are not allowed in DL-LiteR. To circumvent this

70

4.4. Benchmarks on Probabilistic Data

and still be able to use this query in the evaluation, we manually extended those queries
to handle transitivity up to the maximum depth occurring in the data (in this case 2).

4.4.2. Experimental Evaluation

We evaluate our implementation of query processing for TIP-OWL on the two datasets
presented in the previous section. Our main goal is to show that our implementation
scales to very large ABoxes and outperforms existing methods on safe queries.

Setting

Within our experiments we focus on answering the following two questions:

1. What are the benefits of exploiting the TBox by using it in the query rewriting
process for a dataset like NELL?

2. How well does our algorithm scale with respect to different types of queries and
subsets of NELL and a probabilistic LUBM, and compared to another system?

For answering the first question, we compare query results with and without query
rewriting. We expect that rewriting the queries yields larger result sets. In particular,
we expect that many interesting results are missed out when we ask the query directly
without any expansion.

For answering the second question, we compare our implementation against the ProbLog
system (De Raedt et al., 2007), which also uses the independent tuple semantics. While
ProbLog does not support the complete expressivity of DL-Lite9, it is sufficient to for-
mulate and answer all safe conjunctive query of the dataset. For the comparison with
ProbLog, we used a subset of the data consisting of about half a million facts. As
ProbLog does not support SPARQL, the queries where modeled as concepts of the knowl-
edge base, and results for that concept were computed with ProbLog. For example, the
SPARQL query

SELECT ?x {
?x a :actor ;
a :politician;
:hasOffice :president . }

is modeled as the concept politicianActor for which instances and probabilities can be
computed:

politicianActor(X) ⇐ politician(X), actor(X), hasOffice(X, president)

9In particular, axioms of the form A ⊑ ∃R cannot be represented in ProbLog.

71

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

Plain Rewritten
res. # pred. # res. # pred.

QA 5 405 1 319 986 148
QB 1 2 4 152
QC 352 2 414 12
QD 0 2 80 40
QE 0 3 1 11
QF 2 4 14 29

Table 4.5.: Number of results with and without reasoning, and increase in query size
(predicates)

Additionally, to assess the general scalability of the approach, we run our implementation
on different sizes of probabilistic LUBM, i.e. 1, 10, 100, 200, 500, and 1000 universities.

Experiments were run on a virtual machine with 4 cores (2.4GHz) and 16GB RAM
running Ubuntu 14.10 Server. We used PostgreSQL 9.4 64bit and ProbLog 2. We used
the default settings of the database and did no special tuning apart from increasing
the available RAM. The NELL dataset was loaded into a single table. The LUBM
datasets use different tables for class, object, and data property assertions, one of each
for different sizes of the benchmark. Query rewriting was done manually at this point,
but we do not expect a significant impact on this step on the overall performance. As
ProbLog always has to load all the data and does not provide persistent storage like a
database system, we measured the time ProbLog takes to parse the file without a query
and subtracted that amount from the query time.

An existing probabilistic database like MayBMS was not used as those were not able to
parse and process the complex structure of JOINs, UNIONs, and sub-queries produced
by the query rewriting, resulting in various error messages.

NELL Dataset

Table 4.5 shows the results of comparing query answering with and without rewriting.
The number of results generally increases – sometimes dramatically (cf. QA) – and we
can even find answers to QD which produced no results without rewriting. The large
increase in results for QA is due to person being a very general concept of the NELL
hierarchy and most instances are described using more specific concepts. QD has no
answers without rewriting because the relation personhasparent is never used, but only
its inverse parentofperson.

Exploiting the TBox often changes the probabilities for an individual answer to a query
as new evidence is added to the computation. For example the probability for con-
cept:person:sandy being a person in QA or QB increase from 0.96875 to 1.0. The knowl-
edge base only states that Sandy is a person with probability 0.96875. Through the

72

4.4. Benchmarks on Probabilistic Data

full filtered
ProbLog 24.393 sec 5.383 sec
SQL Loading 193.040 sec 12.163 sec
SQL Indexing 1 007.291 sec 47.427 sec

Table 4.6.: Dataset loading times (sec)

QA QB QC QD QE QF

ProbLog (filtered) - 97.667 1.812 - 2.673 9.589
ProbLog (full) - - - - - -
Prob. SQL (filtered) 10.423 3.524 0.107 0.024 1.421 0.628
Prob. SQL (full) 8.846 5.488 0.097 0.011 0.888 0.617
SQL (full) 5.002 3.196 0.017 0.009 0.637 0.340

Table 4.7.: Query performance in seconds, averaged over 10 runs

rewriting step, the statement that Sandy graduated from State University with probabil-
ity 1.0 is also included, resulting in her definitely being a person because of graduatedfrom
having person as domain.

Tables 4.6 and 4.7 show the results of comparing TIP-OWL with ProbLog.

Table 4.7 shows the time needed for answering queries over the full dataset and the
reduced one. To accommodate for the fact that ProbLog always has to load the data
anew, loading times as shown in Table 4.7 have been subtracted from the query times
for ProbLog.

As expected our approach takes significantly more time loading the data as index struc-
tures have to be created on disk and ProbLog only seems to do minimal preprocessing
and keeps all the data in memory. The results in Table 4.7 show, however, that this
effort is more than compensated by more efficient query answering.

The query response times clearly show that our database-driven approach is more effi-
cient for handling large datasets. ProbLog is not able to answer any of the questions
using the full dataset within a 30 minute timeout. Also for the filtered dataset, ProbLog
fails for QA and QD with an out of memory error. For the queries where both return
answers, our approach is between 15 and 30 times faster. We can observe that query
processing even becomes more efficient for the larger dataset. After analyzing the gen-
erated query plans, we found that the query planner chooses a suboptimal query plan
for the smaller dataset. We suppose this is due to weaker statistics. The overhead of
the probabilistic SQL compared to the plain rewritten SQL seems to be proportional to
the number of computed answers. QA, QC and QD, and QF , with a larger number of
results, are twice to five times as slow as the plain queries; QB and QE with very few
results show almost no difference in query time.

73

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

LUBM Q1 Q3 Q4 Q5 Q6 Q10 Q11 Q12 Q13 Q14
1 < 0.1 < 0.1 1.5 2.7 0.7 0.3 0.2 0.8 0.3 0.3
10 < 0.1 1.0 3.4 27.3 7.4 2.4 0.2 0.9 2.9 2.4
100 < 0.1 32.2 50.5 350.9 74.2 33.2 0.3 2.0 76.2 33.2
200 < 0.1 100.0 134.6 2 622.2 172.1 63.9 0.5 3.2 172.5 63.9
500 < 0.1 201.8 440.2 - 508.0 192.0 1.1 6.9 612.1 1 941.9
1000 < 0.1 643.8 904.7 - 874.7 365.1 1.6 232.3 1 430.3 -

Table 4.8.: Query response times (seconds) of our implementation on various sizes of
the probabilistic LUBM dataset. A timeout (response time > 60 minutes) is
denoted as “-”.

1 10 100 200 500 1000

0.1

1

10

100

1,000

LUBM dataset size

R
un

tim
e

[se
c]

Q1
Q3
Q4
Q5
Q6
Q10
Q11
Q13
Q14

Figure 4.1.: Runtimes on datasets of various sizes

LUBM Dataset

Table 4.8 and Figure 4.1 show the results using the probabilistic LUBM datasets. We
only compared the performance of our implementation on different size of the data. We
ran the queries with a timeout of 60 minutes. ProbLog is not able to handle even the
smallest of those datasets.

The query response times show, that in general, the probabilistic reasoning does not
have a negative impact on scalability. Overall, the times increase linearly in the size of
the data. Query 1, which has a constant result that does not change with the size of
the dataset, also has a constant response time. When processing Query 5, the database
erroneously scans the complete table of data property assertions, which takes most of
the time for computing results. This could be alleviated by tuning the query planner,
resulting in a better query execution plan. Query 13 and especially Query 14 produce

74

4.4. Benchmarks on Probabilistic Data

Dataset LUBM 1 LUBM 10 LUBM 100 LUBM 200
QMpH 418.6 66.4 5.4 0.2
Optimum 514.3 75.0 5.8 1.0
% 81.4% 88.5% 93.1% 20%

Table 4.9.: Query mixes per hour (QMpH) for different dataset sizes. The number indi-
cates how often the set of benchmark queries could be executed within one
hour. The queries are executed in random order.

1 10 100 200
0.1

1

10

100

1,000

LUBM dataset size

R
un

tim
e

[se
c]

QMpH
Optimum

Figure 4.2.: Runtimes on datasets of various sizes

a large number of results, thus they become I/O-bound for larger datasets, i.e. their
performance is limited by disk speed, resulting in a large jump in the query time for
larger datasets. The storage for our test virtual machine are attached via network,
resulting in this large drop in performance.

To evaluate the scalability under a more realistic workload we tested how often the set
of all ten queries can be executed within one hour (inspired by the BSBM benchmark).
The queries are executed in random order to counter caching effects. Table 4.9 shows
the number of query mixes processed in an hour for different sizes of the LUBM dataset.
Up to 70 million facts, the performance scales well and is close to the expected optimum
based on the query times under ideal settings. For the smaller datasets, the response
time are slightly farther away from the optimum due to a relatively higher overhead of
establishing a database connection etc. Beyond 70 million facts, there is a huge drop
in performance due to I/O-bound queries and the poor I/O performance of the virtual
machine.

75

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

4.5. Related Work

We discuss three areas of related work:

1. Work which also investigates the use of SPARQL by real-world users.

2. Research that is focused on probabilistic query answering in general.

3. Work on probabilistic querying specifically in an OBDA setting.

4.5.1. Analysis of Real-World SPARQL Queries

Analysis of the characteristics of SPARQL queries in existing work is focused on deter-
ministic queries. To the best of our knowledge, there is no analysis of the safeness of
real-world SPARQL queries for probabilistic data.

Picalausa et al. analyzed 3 million queries from DBpedia query logs (Picalausa and
Vansummeren, 2011). They come to the conclusion that the majority of the queries
therein are tractable for the deterministic case.

Arias et al. (Gallego, Mario Arias Fernández, Javier D. Martínez-Prieto and de la
Fuente, 2011) observe that most real-world SPARQL queries of the USEWOD2011
dataset (Berendt et al., 2011) containing queries from DBPedia and Semantic Web Dog
Food) are star-shaped and do not contain property chains. As Jung et al. (Jung and
Lutz, 2012) have shown that tractable queries are generally star-shaped, their findings
also coincide with our results.

Han et al. (Han et al., 2016) also analyzed queries in LSQ. Similarly to Picalausa et
al. they come to the conclusion that most queries are in PTime. They also show that
most queries have a simple structure consisting of three or less triple patterns, making it
less probable for them having a structure that is unsafe. An unsafe query must at least
consist of either two triple patterns with a self-join (the same predicate), or three triple
patterns (cf. unsafe queries given by Suciu et al. (Suciu et al., 2011)).

4.5.2. Probabilistic Querying

The two main areas of research in probabilistic querying are probabilistic programming
and probabilistic databases (Theobald et al., 2013). Both have developed rather inde-
pendently during the last decade but they share a common goal in making probabilistic
inference scalable.

Probabilistic programming mainly focuses on learning statistical models from existing
data. Its main concern is determining whether there exists a solution to a query rather
than finding all solutions as probabilistic databases do. There are several formalisms, e.g.
Markov logic networks (Richardson and Domingos, 2006), Bayesian networks (Jensen,

76

4.6. Conclusion

1996), or languages and tools like ProbLog (De Raedt et al., 2007), to describe probabilis-
tic models. These formalisms and the tools using them, for example MarkoViews (Jha
and Suciu, 2012) and BayesStore (Wang et al., 2008), can handle a large amount of
uncertain data, however, none of them incorporates Semantic Web reasoning.

Similarly, probabilistic databases like Trio (Widom, 2004) or MayBMS (Huang et al.,
2009) are designed for querying large probabilistic knowledge bases, but they are only
handling relational data without rich semantic information. Probabilistic databases
usually employ a possible world semantics: all possible values for uncertain values are
represented at once. To enable efficient inferencing, they exploit independence assump-
tions, most commonly tuple-independence (all database tuples or rows are independent
from each other) or block-independent (groups of tuples are independent from each
other). The research on probabilistic databases draws from many years of experience
with relational databases. From those, they adopt relational algebra – and thus SQL –
or Datalog.

Theobald et al. (Theobald et al., 2013) give a more thorough overview of these two
research areas, their methodologies, differences, and commonalities.

4.5.3. Probabilistic Ontology-Based Data Access

Apart from ProbLog, two other systems for probabilistic reasoning with a similar se-
mantic are Pronto (Klinov and Parsia, 2013) and Bundle (Riguzzi et al., 2013). They
can handle probabilistic knowledge bases formulated in SROIQ and SHOIN (D), re-
spectively. However, their main focus is not pOBDA, but probabilistic TBox reasoning
(classification, satisfiability, …), thus their performance in query answering is very lim-
ited. Both can only run simple instance checking for single individuals and classes.
Probabilistic deductive databases (Lakshmanan and Sadri, 1994) provide a similar solu-
tion, but to the best of our knowledge there is no system available and thus it is hard
to estimate their scalability to large-scale knowledge bases.

Regarding the benchmark dataset, Klinov et al. (Klinov and Parsia, 2008) proposed a
systematic approach to evaluate reasoning in probabilistic description logics which is,
however, more geared towards complex TBoxes and not large-scale query answering.
Lanti et al. (Lanti et al., 2015) very recently published a dataset, based on real world
data, specially tailored for benchmarking OBDA systems. They also provide a generator
to scale the dataset in size. It will be interesting to analyze their dataset and also extend
it for benchmarking probabilistic OBDA systems.

4.6. Conclusion

In this chapter, first, we analyzed half a million queries from the LSQ dataset; those
which can directly be translate to (union of) conjunctive queries. Checking for proba-

77

Chapter 4. Scalable Probabilistic Query Answering and Logical Reasoning

bilistic query safeness we found nearly all queries to be safe and thus tractable when
processed over probabilistic data. Relating to the whole set of queries, about half of
them are safe; for the other half there is no information in our analysis. This shows
that the general information needs a user of the public SPARQL endpoints serving as
sources for the LSQ dataset has are also feasible to be fulfilled on uncertain data. Note
that there is no uncertain version of those datasets. However, we argue that the users’
information needs would not change over uncertain data, and that it is possible to create
such a version of DBpedia, e.g. by incorporating information about trustworthiness in
general or knowledge about how commonly a certain property is accurately extracted.
To the best of our knowledge this is the first work that analyzes real-world SPARQL
queries in the light of probabilistic data.

Second, we described a preliminary implementation of a probabilistic OBDA system for
large-scale knowledge bases. It combines tractability for a certain class of queries with the
benefits of ontology-based query rewriting. While making many simplifying assumptions
the approach is well suited for large-scale knowledge bases with facts generated using
machine learning techniques and provides a pragmatic alternative for theoretically more
interesting but less feasible models as the ones proposed in Bundle (Riguzzi et al., 2013)
and Pronto (Klinov and Parsia, 2013).

We used NELL and an adapted version of the LUBM benchmark to evaluate the system.
NELL as a real world dataset gives valuable insight on the usefulness of probabilistic
OBDA. It is, however, rather hard to scale to different sizes without generating datasets
that contain no reasonable amount of answers. LUBM on the other hand is very easy
to scale to various due to its synthetic data generator, but because of that it also lacks
on complexity in the TBox. Jung et al. improved the TBox by extending the class
hierarchy and adding existential restrictions but the ontology is still rather artificial and
the queries are limited in their diversity.

The work presented in this chapter provides a thorough view on handling large-scale, un-
certain data with Semantic Web technologies The results show that continuing research
in that direction is both worthwhile and feasible in practice: Users can benefit from ad-
ditional results from handling uncertainty and including reasoning, and the application
in practice is feasible.

78

5
IT Risk Management in Large-scale IT

Infrastructures

5.1. Introduction

IT risk management tries to find, analyze and reduce unacceptable risks in the IT in-
frastructure. Most commonly risk is defined as a set of triplets, each triplet consisting
of a scenario, its probability and its potential impact (Kaplan and Garrick, 1981). In
the IT environment these scenarios are typically called threats.

If a new threat surfaces, the IT risk management needs to asses its probability and
evaluate its potential impact. Today’s IT infrastructure has complex dependencies and
a threat to a single component can threaten a whole network. Furthermore, single
threats often have a very low probability but the combination of many threats can be a
major risk to an IT infrastructure. Therefore, it is not enough to look at infrastructure
components individually to determine the possible impact of a threat. While each year a
huge number of new threats surfaces, old threats do not vanish (European Union Agency
for Network and Information Security, 2013).

A fast response to a new threat is important to minimize the chance of exploitation.
However, a manual threat analysis takes time. The complexity of today’s IT infrastruc-
ture provides many indirect ways a single threat can affect different IT services and each
must be analyzed. At the same time, the number of new threats is increasing, which
leaves even less time to evaluate each new threat (IBM X-Force, 2013).

A semi-automated approach allows an easier handling of this complexity, but to our
knowledge there exists none that incorporates dependencies and combinations of multiple
threats. Even the tools to monitor and report risk are still in a premature state and
there is a demand for tool supported risk assessment (Ernst & Young, 2013). While the
measurement of IT infrastructure availability is already part of IT service management
(Cabinet Office, 2011), it is only moderately used in IT risk management (Ernst &
Young, 2013).

Root cause analysis (RCA) plays an important part in processes for problem solving
in many different settings. Its purpose is to find the underlying source of the observed
symptoms of a problem. IT plays an important role in processes in a wide area of

79

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

business, thus a high availability and short response times to failures (e.g., failing e-mail
deliveries, inaccessible websites, or unresponsive accounting systems) are crucial (IBM
X-Force, 2013). Today’s IT infrastructures are getting increasingly complex with diverse
direct and transitive dependencies. This makes root cause analysis a time intensive task
as the cause for a problem might be unclear or the most probable cause might not be the
most obvious one. Therefore, automating the process of root cause analysis and helping
an IT administrator to identify the source of a failure or outage as fast as possible is
important to achieve a high service level (Ernst & Young, 2013).

In this chapter we present our approach to root cause analysis that uses Markov Logic
Networks (MLN) and abductive reasoning to enable an engineer to drill down fast on the
source of a problem. Markov Logic Networks provide a formalism that combines logical
formulas (to describe dependencies) and probabilities (to express various possible risks)
in a single representation. We focus on abductive reasoning in MLNs and show how
it can be used for the purpose of root cause analysis. To our knowledge, the proposed
approach is a novel method to root cause analysis that combines probabilistic and logical
aspects in a well-founded framework.

Throughout this chapter, we illustrate our approach on a small case study. The IT
infrastructure in our settings is comprised of a multifunction office printer that offers
– amongst others – printing and scanning services via a network. These services use
a mail and indirectly an LDAP service. Everything is dependent on the network and
the power supply. This small case study already has dependencies that cross several
different levels of infrastructure (services, server hardware, network hardware, power
supply). We will expand this setting with possible causes for failure and probabilities
for their occurrence. Theses risks are described in the IT-Grundschutz Catalogues by
the German “Bundesamt für Sicherheit in der Informationstechnik” (Federal Office for
Information Security) which is based on the ISO 27001 certification1. Furthermore, we
evaluate the scalability of the approach on infrastructures generated randomly based on
the structure observed in real-world environments.

Within our framework, the IT infrastructure is represented as a logical dependency net-
work that includes various threats to its components. When a problem occurs, available
observations are entered into the system which then generates the Markov Logic Net-
work from the available observations, the given dependency network, and the general
background knowledge related to the components of the infrastructure. Some of these
observations might be specified manually, while other observations can be entered into
the system automatically, e.g. via constantly running monitoring software. These ob-
servations are typically incomplete in the sense that not all relevant components are
monitored, or not all problems are recognized. Thus, taking the given observations
into account, there might still be a set of several explanations for the problem that
occurred. Under the assumption that the modeled dependency network captures all

1https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html

80

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html

5.2. Preliminaries

relations present in the infrastructure and all threats are adequately taken into account,
the correct explanation will always be contained in that set.

We calculate, via abduction, the most probable cause for the current problem, which
is then presented to the user, e.g., the administrator of the IT infrastructure. The
user can then investigate if it is indeed the source of the problem. This might require
to manually check the availability of some component or to analyze a log file. If the
proposed explanation is correct, counter-measures can be introduced immediately. If
the additional observations revealed that the calculated explanation is wrong, those new
observations are entered into the system as additional evidence and a better explanation
is computed. This iterative, dialog-based process is a practicable approach to quickly
narrow down on a root cause. Ruling out certain causes automatically is desirable,
however, it is obvious that most non-trivial problems still need to be checked manually
by a user.

In our approach, we represent the given infrastructure and the possible risks as ontol-
ogy. This allows us to automatically infer that certain threats are relevant for certain
infrastructure components, or add logical constraints ensuring consistency. Relevant
background knowledge can easily be maintained and used to generate the Markov Logic
Network. Moreover, our approach can take into account known probabilities of risks
and failures. These probabilities are derived from expert judgment or statistical data.
Instead of computing multiple candidate explanations, which is possible in purely logic
based approaches, we are able to generate the most probable explanation with our ap-
proach, while still leveraging the full power of an expressive, declarative framework.

This chapter is structured as follows. First, we present the theoretical underpinnings of
our approach. In Section 5.2, we give a brief description to Markov Logic, introduce the
general notion of abduction, and explain how abduction can be realized in the context
of Markov Logic Networks. Furthermore, we give a short introduction to ontologies and
their benefit in modeling IT infrastructures. In Section 5.3, we first present a typical
scenario for root cause analysis. Then, we show how to model this scenario in our
framework and describe how to apply abductive reasoning to find the most probable root
cause. We present a workflow that illustrates how our approach is used in the context
of a dialog-based process in Section 5.4. Furthermore, we conduct the evaluation of the
scalability of the approach in Section 5.5. A tool we implemented to support the user in
modeling the infrastructure and running a root cause analysis is presented in Section 5.6.
In Section 5.8, we show how our approach is related to other works. Finally, we discuss
the drawbacks and benefits of our approach in Section 5.9.

5.2. Preliminaries

This chapter also uses first-order logic and Markov logic networks as defined in Section 3.2
as foundation. In this section we introduce how abductive reasoning can be conducted

81

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

in those formalism, and we detail how ontologies are used as basis for modeling an IT
infrastructure.

The idea to use ontologies for modeling IT infrastructures has been proposed for several
reasons. Vom Brocke at el. (vom Brocke et al., 2014) propose the use of ontologies
to model the relationship between IT resources and business processes for the purpose
of measuring the business value of IT. Ekelhart et al. (Ekelhart et al., 2006) provide a
security ontology to support small and medium sized businesses IT-security risk analysis.
Within our work we are distinguishing between acquisition, verification and maintenance
on top of an ontological representation, and the probabilistic reasoning using Markov
Logic Networks. This means that our work is compatible with the previously mentioned
proposals, while we are able to conduct probabilistic reasoning required for root cause
analysis. Thus, we can leverage the task-specific benefits of both formalisms.

5.2.1. Abduction in Markov Logic Networks

Abductive reasoning – or simply abduction – is inference to the best explanation. It is
applicable to a wide array of fields in which explanations need to be found for given
observations, for example plan or intent recognition, medical diagnosis, criminology,
or, as in our approach, root cause analysis. According to (Kate and Mooney, 2009),
abduction is usually defined as follows (Pople, 1973):

Given: Background knowledge B and a set of observations O, both formulated in first-
order logic with O being restricted to ground formulae.

Find: A hypothesis H, also a set of logical formulae, such that B ∪H is consistent and
B ∪H ⊢ O.

In other words, find a set of assumptions (a hypothesis) that is consistent with the
background knowledge and, combined with it, explains the observation. It is the opposite
of deductive reasoning which infers effects from cause.

The relation between root cause analysis and abductive reasoning is rather straight-
forward. In our approach, the background knowledge is the dependency network, re-
spectively the Markov Logic Network to which we transform it. The dependency graph
and Markov Logic Networks both are based on first-order logic as a formalism and thus
conveniently are already in the desired logical representation. The observations, i.e.,
information about components being available or unavailable, are not part of the model
but rather are directly provided as evidence to the MLN. We then try to prove through
abduction that a specific threat – the most plausible cause – has occurred.

The inference mechanism in Markov Logic Networks is by default deductive, not abduc-
tive. Deductive reasoning draws new, logically sound conclusions from given statements.
Kate et al. and Singla et al. (Kate and Mooney, 2009; Singla and Mooney, 2011)
proposed methods – Pairwise Constraint (PC) and Hidden Cause (HC) model – that

82

5.3. Root Cause Analysis with Markov Logic Networks

adapt Markov Logic Networks to automatically perform probabilistic abductive reason-
ing through its standard deductive reasoning mechanism. Their method augments the
clauses of the MLN to support abductive reasoning as defined above. In general, the
methods first introduce a reverse implication for every logical implication already present
in the network. For example, if there are formulas p1 → q, . . ., pn → q in the MLN, the
formula q → p1 ∨ . . . ∨ pn is added to the MLN.

In a second step the model is extended with mutual exclusivity constraints that bias
the inference against choosing multiple explanations. The reverse implications and the
mutual exclusivity clauses are modeled as soft rules and may occasionally be violated,
for example, if multiple explanations provide a better proof for the hypothetical root
cause than a single explanation. We follow this basic idea, however, we argue that the
mutual exclusivity constraints are not required in the application that we are interested
in.

Revisiting the example above, we have to add the following reverse implication to conduct
abductive reasoning:

hasHobby(y, z) → friends(x, y) ∧ hasHobby(x, z) (5.1)

This implications ensures that any additional grounding from hasHobby(y, z) has some
corresponding atoms friends(x, y) and hasHobby(x, z) or is forbidden otherwise.

5.3. Root Cause Analysis with Markov Logic Networks

Root cause analysis is the task of finding the underlying cause of an event. It is often
applied to analyze system failures. System failures are commonly caused by a cascade
of events. The goal of a root cause analysis is finding the original reason for the failure,
so that a sustainable solution can be provided (Rooney and Heuvel, 2004). Root cause
analysis typically comprises two phases: the detection of an event and the diagnosis of
the event. In our work, we are concerned with the second phase and assume that a
failure has already been detected.

In this section, we first illustrate the infrastructure of our case study. Then we show how
to model dependencies and risks as a set of first-order formulas. While this model is the
core component for computing the MAP state, which corresponds to the root cause, we
also leverage an ontological model to describe and maintain the infrastructure, which is
then used to automatically construct some of the relevant dependency and risk assertions
as first-order formulas. Then, we explain how we implemented abduction in our Markov
Logic Network and show special properties of our settings which simplify the general
approach of abductive reasoning. Finally, we explain how the method is integrated in
an iterative process.

83

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

5.3.1. Scenario Setting

In the subsequent sections, we discuss our approach with the help of an infrastructure
shown partially in Figure 5.1. This small sample revolving around an office multifunction
printer consists of the following components:

• The basic dependency for all components is the Power Supply. The only risk that
can affect it is a general outage.

• The Network Switch connects the other components. It only depends on the power
supply; it has multiple risks, e.g. congestion, overheating, or denial-of-service
attack, not explicitly depicted Figure 5.1.

• The two servers mail.uni-ma and cas.uni-ma each offer one service, i.e. the Mail
Service and an LDAP authentication service. The Mail Service uses the LDAP
service to authenticate users. Both servers are subject to various threats, e.g.
malicious software, DOS attacks, overloading, or compromise of the system.

• The Office Printer offers three services: Copying, Printing, and Scanning. It also
has various problem sources, e.g. lack of resources or a technical malfunction.

Copying

Printing

Scanning

Office Printer mail.uni-ma

LDAP

cas.uni-ma

Mail
Service

Network SwitchPower Supply
Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Device FailureDevice FailureDevice Failure

Legend

Service

Component

Device FailureDevice FailureThreats

Figure 5.1.: Case Study: Office multifunction printer with multiple risks/threats at-
tached (for brevity risks are grouped as Device Failure). In this small ex-
ample we do not consider redundant components, i.e. all edges represent
specificallyDependsOn relations.

The threats we are using in our example are defined in the IT-Grundschutz Cata-
logues (Bundesamt für Sicherheit in der Informationstechnik, 2016, p. 417ff.):

• Disruption of power supply: Short disruption of the power supply, more than 10
ms, or voltage spikes can damage IT devices or produce failures in its operation.

84

5.3. Root Cause Analysis with Markov Logic Networks

• Failure of Devices or Systems: No equipment runs infinitely and a hardware failure
in an IT device will happen if it runs long enough. Beyond the damage of the
device, the downtime has an effect on the processes that depend on the device or
can even damage other devices, e.g. in the case of a cooling system.

• Systematic trying-out of passwords: An attacker can gain access to a system by
discovering the password of the system through systematic trial-and-error.

• Lack of Resources: If the given resources (for example bandwidth, disk space or
personnel) in an area of the operation are smaller than the current demand, a
bottleneck occurs. This results in congestion and failure of operation.

• Malicious software: Malicious software tries to execute a process that is unwanted
or damaging for the owner of the device that runs the software. This includes
viruses, worms and Trojan horses.

• Misuse of spanning tree: An attacker can use Bridge Protocol Data Units (BPDUs)
to initialize the recalculation of the switch topology. This can be used to disrupt
the availability of the network.

The IT-Grundschutz Catalogues are a comprehensive collection of threats and safeguards
for various parts of an IT infrastructure2. They are created and maintained by the
German Federal Office for Information Security3, and compatible to the ISO 27001
certification4.

5.3.2. Modeling Dependencies and Risks

The foundation of our root cause analysis is the dependency model. It uses first-order
logic to describe various aspects of the IT infrastructure. Our basic model uses five
predicates:

• specificallyDependsOn(x,y) specifies that component x is specifically depen-
dent on component y, e.g. the mail service that runs on the mail server. This
predicate does not allow for any redundancy of y.

• genericallyDependsOn(x,y) specifies that component x depends on y. y may
be replaced by some other redundant component. An example is a server running
on the normal power supply vs. some uninterruptible power source (UPS).

• redundancy(x,y) states that x and y are redundant, i.e. they offer the same
services and can replace each other in the case of failure.

• affectedByRisk(x,y) assigns the risk y to component x, i.e. y is a threat that
endangers the functionality of a component and it can affect x.

2https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
3Bundesamt für Sicherheit in der Informationstechnik (BSI)
4http://www.iso.org/iso/home/standards/management-standards/iso27001.htm

85

https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
http://www.iso.org/iso/home/standards/management-standards/iso27001.htm

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

• unavailable(x) designates a component x as unavailable, e.g. offline or not func-
tioning properly.

The distinction between dependencies that allow for redundancy and those that do not
helps to improve reasoning performance. For specific dependencies, no further checks
for redundancies not to be performed in case of a failure and all dependent components
are directly set to be unavailable.

The shown predicates are only one way of modeling the infrastructure; other predicates
are possible. For example, a simple modification are additional types of dependencies
that distinguish between, e.g., power and network connections, or technical and human
errors. This allows for additional constraints to ensure the consistency of the model,
for example by requiring that each component has at least one power and one network
connection. This change can directly be made and later checked in the ontology that
specifies the dependency graph. The subsequent translation to MLN does not need to be
adapted. Another, more complex example is to model relationships as individual nodes,
which enables the user to specify more details about it, e.g., the probability of a broken
network cable. This also requires changes in the rules of the MLN to account for the
additional relationship nodes. However this only needs to be done once, when deciding
to model the infrastructure in this way. It is possible to mix both modeling approaches,
for example to include detailed information about relationships where available, and ease
modeling for the user where it is not. We chose the predicates as presented for reasons
of brevity and easier understanding.

Formulae 5.2a to 5.2f depict the basic MLN program built from those predicates:

⟨∀x, y (unavailable(y) ∧ specificallyDependsOn(x, y)
⇒ unavailable(x)),∞⟩

(5.2a)

⟨∀x, y (unavailable(y) ∧ genericallyDependsOn(x, y)
∧ ¬∃z (redundancy(y, z) ∧ ¬unavailable(z))

⇒ unavailable(x)),∞⟩
(5.2b)

⟨∀x, y (redundancy(x, y) ⇒ redundancy(x, y)),∞⟩ (5.2c)
⟨∀x, y (redundancy(x, y) ∧ redundancy(y, z)

⇒ redundancy(x, z)),∞⟩
(5.2d)

⟨∀x, y (affectedByRisk(x, y) ⇒ unavailable(x)),∞⟩ (5.2e)
⟨∀x, y ¬(specificallyDependsOn(x, y)

∧ genericallyDependsOn(x, y)),∞⟩
(5.2f)

Formula 5.2a forbids any world where infrastructure component y is unavailable and
infrastructure component x is available, if there is a specific dependency from x to y.
Formula 5.2b is similar to Formula 5.2a, but phrased for generic dependencies with re-
dundancies. Provided x is generically dependent on y and y is unavailable, then x is

86

5.3. Root Cause Analysis with Markov Logic Networks

unavailable only if there is no other component z that is redundant to y and available.
Thus, a component is only available if every specific dependency is available or if at least
one redundant component is available for each generic dependency, respectively. The
symmetry and transitivity of redundancy is modeled by Formulae 5.2c and 5.2d. By
adding these two formulas, we ensure that it is not required to specify redundancy for
all pairs in both directions. If we extend an infrastructure with an additional redundant
component, we only need to add a single statement instead of specifying the informa-
tion for all pairs in the group of redundant components. Formula 5.2e enforces that a
component x that is affected by the effects of a risk y becomes unavailable. The predi-
cates specificallyDependsOn(x, y) and genericallyDependsOn(x, y) are mutually exclusive
(Formula 5.2f).

The known dependencies, risks, and unavailabilities are modeled as evidence as shown
below. Note that these formulas are only three examples for all formulas required to
describe the infrastructure depicted in Figure 5.1.

⟨specificallyDependsOn(MailService,mail.uni-ma),∞⟩ (5.3a)

⟨affectedByRisk(mail.uni-ma,MaliciousSoftware),−1.2⟩ (5.3b)

⟨affectedByRisk(mail.uni-ma,DDOS),−3.2⟩ (5.3c)

Formula 5.3a is a hard fact, which states that the MailService depends on the server
mail.uni-ma. The soft Formula 5.3b encodes that mail.uni-ma can be affected by Mali-
ciousSoftware. This formula has a negative weight, i.e. it translates to a low probability.
mail.uni-ma also has DDOS as a second risk (Formula 5.3c). Generally, there is no
upper limit to the number of risks that can be attached to a component

As described before, the dependency relation must hold in every possible world. The
soft formula, however, is not fulfilled in most of the worlds due to the negative weight.
In fact, if only this evidence is given, the most probable world does not include it, as it
lowers the sum of the weights of all formulas.

Achieving high availability, defined as up to 5 minutes unavailability per year, is a long-
standing goal in the IT industry (Gray and Siewiorek, 1991). Continuous monitoring of
availability is part of IT service management best practices like the Information Tech-
nology Infrastructure Library (ITIL) (Cabinet Office, 2011). We define availability as
the probability that a system is reachable and working properly. The availability of a
system can be determined as follows:

Availability =
Uptime

Uptime+Downtime
(5.4)

Unavailability is the inverse of availability:

Unavailability = 1−Availability (5.5)

87

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

The weights for new threats need to be estimated. We propose involving a domain expert
in the estimation of how much the availability of the directly affected infrastructure
component should be reduced. This allows us to learn a weight for the new threat and
to determine how the new threat indirectly affects the availability of other components.

Determining the correct weight for the evidence is not trivial (Jain et al., 2007). However,
there exist efficient learning algorithms for MLNs (Richardson and Domingos, 2006).
Those algorithms can either work on collected data, for example from monitoring systems
that provide uptime and downtime statistics, or based on estimations from domain
experts or vendor specifications. Additionally, approximating the correct weights is
sufficient in our use case, as we are not interested in the absolute probability of a specific
root cause occurring, but just which root cause is most likely given some evidence.

5.3.3. Infrastructure Components and Background Knowledge

Our basic dependency model contains relatively simple first-order rules. The dependen-
cies within this basic model are ignorant with respect to the types of the entities that
are linked. However, we know that an IT infrastructure is typically a network built
from different types of entities. In particular, the dependencies between these entities
are restricted with respect to their types. We know, for example, that each server must
depend on a power supply, while it makes no sense to have an explicit dependency be-
tween a service and a power supply. This dependency is indirectly modeled by the fact
that a service must run on a server that depends on a power supply. In our approach,
we propose the use of a Description Logics (DL) ontology to model the types of and the
relationships between the components of the IT infrastructure. The formulas of a DL
ontology are divided into TBox axioms and ABox assertions (see also (Baader et al.,
2003)). The examples given above will be encoded as axioms of the TBox. A TBox con-
tains terminological axioms that describe the relations and types that are used (later)
in the ABox to make concrete assertions.

With respect to the ABox, we have developed a graphical user interface to specify and
visualize the concrete infrastructure. It is used to add components to the model of
the infrastructure that are typed in terms of the TBox vocabulary. The user interface,
presented in more details in 5.6, is also used to specify the observations and to compute
a root cause whenever a root cause analysis is required. In order to define the TBox,
we have used the ontology editor Protégé to model the TBox axioms (Musen, 2015).
Protégé helps to abstract from the concrete encoding of the axioms and supports views
that are also common to users that have only a limited experience in logical modeling.

We use the TBox to distinguish between the different types of infrastructure components,
e.g., Service, Server, Switch, or PowerSupply. For these types we add axioms to
specify both required and impossible dependencies. For example, we enforce that each
service depends (specifically or generically) on a server, while we do not allow a direct
dependency between service and power supply. These constraints can be used to check

88

5.3. Root Cause Analysis with Markov Logic Networks

the consistency of an ABox that uses these axioms. Our user interface can use these
reasoning services on the fly to check after each modification whether the resulting
ontology is still consistent. This helps to detect both errors and missing dependencies
during the knowledge engineering process.

Furthermore, we can use the TBox to specify concrete subtypes for each of the main
types. An example might be the distinction between FlashMemory, OpticalDisc, Magnet-
icDisk, and MagneticTape as sub types of StorageComponent. FlashMemory can again
be divided into FlashDrive, MemoryCard and SolidStateDrive, for example. Note that
such a fine-grained distinction is not required by our approach. The basic dependency
model and our tool for defining the infrastructure works already with very basic types.
In the simplest case we specify only one type called Component. However, a fine-grained
typology has several advantages. We mentioned already the reasoning capabilities in the
paragraph above. Another advantage is the specification of type specific risks and their
generic probabilities. For example, we can add information about the failure rate (in the
form of a weight) of a specific hard drive model as background knowledge as follows:

⟨(SCSIHardDrive(x) ⊑ ∃affectedByRisk.HeadCrash), 0.0015⟩ (5.6)

The hard drive model SCSIHardDrive is described as hard drive that has a certain risk
of a head crash. The probability attached to this formula might have been derived
from available failure rates. Note that we can specify directly a probability that will be
translated to the corresponding weight in Markov Logic. If required, we can also use
the ontology to add further types related to, e.g., the manufacturer of the drive, since
it might be known that drives produced by a certain company have a lower failure rate.
By defining a concrete drive as instance of this type, it inherits all the properties of
this type, i.e. the weighted risk of a head crash. This helps the knowledge engineer to
define the components of an infrastructure without explicitly specifying each risk and
its probability explicitly.

The ontological representation is automatically translated to the first-order Markov
Logic formalization on the fly whenever a root cause analysis is computed. Niepert
et al. (Niepert et al., 2011b) have shown that such translation is possible in general.
For our purpose we have chosen a similar approach, however, type assertions and TBox
axioms are not directly translated but are taken into account when associating risks
with their weights to concrete components of the infrastructure. Thus, we leverage the
ontological representation both for automatically detecting inconsistencies when mod-
eling the infrastructure and for assigning weighted risks to types, which results in the
assignment of generic risk weights if no specific information, e.g., from the history of the
component stored in log-files, is available.

5.3.4. Computing Explanations

We now detail our approach and describe how the Markov Logic Network is constructed
and extended, and how we use abductive reasoning for root cause analysis. The con-

89

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

struction from background knowledge and extension for abduction of the Markov Logic
Network is only done once and does not have to be changed during the root cause anal-
ysis. According to the method proposed in (Kate and Mooney, 2009) we have to add
one reverse implication for the Formulae 5.2a, 5.2b, and 5.2e:

∀x (unavailable(x)
⇒ (∃y (specificallyDependsOn(x, y) ∧ unavailable(y))) ∨

(∃y (genericallyDependsOn(x, y) ∧ unavailable(y)
∧ ¬∃z (redundancy(y, z) ∧ ¬unavailable(z)))) ∨

(∃y (affectedByRisk(x, y)))

(5.7)

Additionally, Kate et al.s’ method requires clauses for mutual exclusivity to be added.
The purpose of these clauses is to “explain away” multiple causes for an observation and
prefer a single one (Pearl, 1988).

∀x (unavailable(x) ⇒ [¬∃y(specificallyDependsOn(x, y) ∧ unavailable(y))] ∨
[¬∃y, z (genericallyDependsOn(x, y) ∧ redundancy(y, z)∧
unavailable(y) ∧ unavailable(z))])

(5.8a)

∀x (unavailable(x) ⇒ [¬∃y(specificallyDependsOn(x, y) ∧ unavailable(y))] ∨
[¬∃y affectedByRisk(x, y)])

(5.8b)

∀x (unavailable(x) ⇒ [¬∃y, z genericallyDependsOn(x, y) ∧ redundancy(y, z)∧
unavailable(y) ∧ unavailable(z)]∨
[¬∃y affectedByRisk(x, y)])

(5.8c)

The reverse implications (5.7) as well as the mutual exclusivity clauses (5.8) are usually
modeled as soft clauses. In general, for each set of reverse implications Pi with the same
left-hand side, (|Pi|2+|Pi|

2) ∈ O(n2) mutual exclusivity clauses are added.

However, different from networks in that general method, our approach exhibits a prop-
erty that simplifies the additional rules needed for abduction: All the weights in the
evidence are negative – based on the reasonable assumption that threats and risks only
occur rarely, i.e. components are available more than 50% of the time. This property
allows us to reduce the size of the Markov Logic Network by leaving out the mutual
exclusivity clauses completely: Due to the reverse implication, the MLN solver has to
chose one cause to make the clause true. However, as all causes have negative weights
and thus every cause set to true is lowering the sum of the weights of a possible world,
the solver is already biased against choosing multiple explanations. This saves us from
generating the quadratic number of mutual exclusivity clauses.

After constructing and extending the Markov Logic Network, we can conduct the root
cause analysis. The overall process flow of our approach is depicted in Figure 5.2. The
analysis is a dialog-based and iterative process, with interaction between our system

90

5.3. Root Cause Analysis with Markov Logic Networks

and an administrative user. A fully automatic workflow is desirable, however, not every
information can be retrieved directly and sometimes manual investigation of log files or
on the status of components is necessary.

Figure 5.2.: Process flow for our approach on root cause analysis. Rectangles denote au-
tomatic action. Trapezoids require manual interaction by an administrative
user. Clouds represents observations made and entered by a user.

In its normal state, without any hard evidence about availabilities or unavailabilities,
all components are assumed to be available. Thus, when calculating the MAP state, it
contains all components as available. When a problem occurs the user is required to
provide observations as evidence for the MLN (Fig. 5.2: Step 1). These observations
include any certain information about available and unavailable components. At least
one unavailability must be specified to run the root cause analysis, however, providing
more information is possible and will increase the accuracy of the analysis. For exam-
ple, the user can enter that printing (over the network) is not possible, although the
network is functional as browsing the internet still works. This results in hard evidence
for the printing service being unavailable and network services and hardware required
for internet access being available. The presented model only supports hard evidence
about available and unavailable components. It is possible to extend this to also allow
soft evidence – e.g. when availabilities are checked automatically and there is some
probability for error – handled similarly to information about threats. However, this
will also have some impact on the performance of the approach, as unavailabilities are
not just promoted through the dependency graph, but also influence the weights when
calculating the MAP state.

Our approach extends the Markov Logic Network with the new evidence (Fig. 5.2: Step
2) and uses an MLN solver to run MAP inference on it (Fig. 5.2: Step 3). The calculated
MAP state contains the evidence provided by the user (this must be always fulfilled),
components being unavailable due to a direct or indirect dependency on components
observed as not available, and (at least) one root cause that explains the unavailabilities.
Components which are not affected by specified observations or the calculated root cause
are listed as available.

The root cause fulfills the following properties:

91

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

• It explains all unavailabilities in the evidence. This is the case due to the additional
reverse implications.

• It is not affecting any component stated as available in the evidence. Otherwise a
hard rule would be violated.

• It is the most probable cause for all the observations given as evidence and the
risk probabilities specified as weights.

We make the assumption that all causes are unlikely (they appear less than 50% of the
time). Thus, their weights are negative. As the objective of the MAP state is maxi-
mizing the sum of all weights, only the most likely cause that explains all observations
is included. A less likely cause has a higher negative weight, causing the sum of the
weights to be lower than optimal, and thus getting rejected.

Note that due to the soft formulas used for abduction, our approach only encourages to
calculate a single root cause, but does not enforce it. It only presents multiple possible
root causes, if the sum of their weights is less than the weight of a single possible cause.
If there are two possible root causes with the same weight, only one is presented at
random.

The user then has to investigate the presented root cause (Fig. 5.2: Step 4). If it
is the source of the observed problem, the analysis is finished and the cause can be
fixed. Otherwise the process starts over from the start where the user enters additional
observations (Fig. 5.2: Step 5). Those new observations can either be gathered while
investigating the proposed root cause, or, for example, the user can verify the state of
components that should also be affected by this cause.

5.3.5. Limitations

Limiting factors for our approach is the expert knowledge required to build the back-
ground knowledge, and the worst-case performance of inference. Modeling the back-
ground knowledge requires good domain knowledge and experience in modeling ontolo-
gies. Furthermore, the model needs to be sufficiently complete to gain valuable results
from the root cause analysis, as the approach is very fragile in the case of modeling er-
rors. For example, if some critical, yet subtle, dependency is missed, the analysis might
never provide any meaningful results. Many modeling errors can be checked with logical
rules (e.g. every hardware component must be connected to a power source), but paying
attention to capturing the infrastructure correctly and completely is of high importance.
This factor is less relevant in companies that already use semantic technologies for IT
infrastructure management, for example as presented in (Chen et al., 2013; Hess et al.,
2010). This data can directly be used, mostly likely with only minor adjustments.

Another limitation is the worst-case complexity of MAP inference, which is NP-complete.
However, there are efficient approximation algorithms for MAP inference (cf. (Kimmig

92

5.4. Exemplary Scenarios

et al., 2014) for a survey on different approaches), and as shown in Section 5.5 this is
rarely an issue in realistic infrastructures.

5.4. Exemplary Scenarios

The following section describes the application of our approach to two different scenarios.
Those scenarios represent two incidents that occurred in our infrastructure, which we
then analyzed in hindsight with the presented approach.

5.4.1. Scenario Analysis

The following two scenarios illustrate failures that occurred in our IT infrastructure
during the last months. Together with our system administrators, we modeled our
infrastructure, analyzed these scenarios in hindsight, and tested the usefulness of our
approach in retrospective. We used RockIt (Noessner et al., 2013), a highly optimized
and scalable MLN solver, to compute the MAP state.

The first scenario is the one depicted in Figure 5.1, revolving around the malfunction
of our office multifunction printer. The printer offers three services: copying, printing
via the network, and scanning to PDF which is then sent to an email address. A
user reported the printer being broken, as scanning to PDF no longer worked. To
check the proper functioning of the device, the administrator sent a print job and did a
photocopy. Both tests worked successfully. Sending a test mail from his own account,
the administrator also found the mail service working correctly. Further investigation
finally revealed that the root cause of the scanning problem was a suspension of the
account the printer used for the LDAP authentication. However, this cause was only
considered after several discussions with two expert administrators involved.

We applied our approach to this scenario. The MLN was constructed automatically
from the background knowledge that we maintained as a set of first-order formulas. We
enter the observations available(Printing), available(Copying), and ¬available(Scanning)
and computed the most probable root cause. The MAP state that was generated as
solution contained the root cause affectedByRisk(cas.uni-ma, Systematic trying-out of
passwords). While we could not definitely decide, in retrospective, if this risk was the
underlying reason for the failure of the server cas.uni-ma, an authentication problem
related to cas.uni-ma was definitely the cause for the problem.

The second scenario is an outage of our internal Subversion server. It involves more
components than the previous scenario and benefits from the iterative approach. The
Subversion server is hosted on a virtual machine that is running on a blade server.
Subversion was responding slowly and took long time for many operations. Neither
Subversion nor other processes on the virtual machine showed considerable resource
utilization. Investigating resource usage on the blade server first did not reveal any

93

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

abnormality. Later, a user discovered that our external website behaved similarly in
performance as the SVN. This observation was first attributed to a slow internet con-
nection in general, but we then discovered that the web server, which was hosted in a
different VM but on the same blade server, produced very high network traffic, starving
all other services. A member of our group had released a data set of several gigabytes
in size, that was downloaded a few hundred times concurrently. That lead to congestion
on the network interface of the server. Moving the download to another physical server
resolved the problem and the behavior of the Subversion server and our website went
back to normal.

Analyzing this scenario with our approach, first, we only entered the observation of the
unavailability of the SVN service: ¬available(Service_SVN). The computed MAP state
proposed affectedByRisk(VM_Subversion, Overload) as root cause. Making the obser-
vations available(VM_Subversion) and ¬available(Service_WebHosting), however, rules
out this cause. The next iteration offered affectedByRisk(NetworkInterface_BladeServer,
Congestion) as root cause. This risk has a high probability for that server which is run-
ning various other virtual machines, all hosting services sensitive to a high network load.
The lack of other resources, e.g. CPU or RAM, is modeled as less probable, because all
those services are usually not very computational complex or requiring lots of memory.
For this scenario, our approach proposed reasonable root causes which we retrospectively
could verify as the reason for the outage. The manual handling of the incident involved
more guesswork by the system administrators and was long winded.

5.5. Evaluation of Scalability

We evaluated the scalability of the approach by automatically generating infrastructures
of different sizes. The data generator was carefully modeled to inherit properties observed
in real-world scenarios. We then simulated different numbers of root causes and observed
offline components. We applied our approach to compute the root causes and measured
the runtime.

5.5.1. Data Generation

As manually modeling infrastructures of various sizes to evaluate the scalability of the
presented approach is not feasible – due to data not being publicly available and the
effort required in modeling – we implemented a data generator that can create random
infrastructures of any size. To create models which are close to real-world scenarios, we
also discussed general properties of IT infrastructures with the experts when recording
the scenarios described above, and include this knowledge in the design of the generator.
We made the following observations which are reflected in the implementation:

94

5.5. Evaluation of Scalability

• The dependency graph of an IT infrastructure has usually a limited depth: the
basic layers of an infrastructure are power sources, network components, servers,
and services.
Power sources are located at the bottom layer without any dependencies to other
components.

• Network components could technically be layered very deep, however instead of
cascading several small switches and routers to connect many devices, generally a
bigger switch is used, e.g. resulting in 16 million possible devices with a cascade
of 64-port switches of depth 4.

• In our model servers rely on power sources and switches. Each server can offer
services that then can depend on each other.

• Dependencies between services are naturally the most complex of the whole infras-
tructure. They can be layered over multiple services, e.g. starting from a low-level
SAN service (storage area network) providing storage, over a virtualization using
the SAN, a virtual server offering for example an LDAP service to the mail server
using that for authentication. The dependency chain can become slightly longer
by having another service providing email notifications and probably one or to
more services offering even higher level operations, but in reality there is a limit
to that depth. This complex example has a depth of 13; to provide some room for
even more complex scenarios we imposed a limit of 16 to the maximum depth for
the infrastructure the generator can create.

• Another observation that already becomes obvious in this small example, is that
there are some services that are very central, like the storage (SAN) or authen-
tication via LDAP which are used by almost all other services, and services that
are used by few others, e.g. printing, which might only be used by persons (which
are not part of the model). We factored this into the generation by drawing the
possible dependencies from a normal distribution. For example, following from the
three-sigma rule of thumb that nearly all values are within three standard devia-
tions of the mean (Pr(µ − 3σ ≤ x ≤ µ + 3σ) ≈ 0.9973), we draw from a normal
distribution with µ = 500 and σ = 500

3 for an infrastructure of size 1000, or more
general: for an infrastructure of size n we have µ = n

2 and σ = n
6 ≡ µ

3 .

Additionally, the following constraints must hold:

1. Every network component and server is connected to exactly one power source.

2. Every network component and server is connected to one other network component
or the root network component (e.g. representing some central switch or external
internet connection).

3. Every service is running on exactly one server.

4. Every server is running some service (a server without offering a service is of no
use).

95

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

5. A switch has ≈ 32–64 connections.

6. A server offers ≈ 1–3 service.

7. A service directly depends on ≈ 1–3 other services.

8. Every component has ≈ 1–6 risks attached to it.

9. Risks have a probability 0 < p < 0.5, following a normal distribution with µ = 0.1
and σ = 0.05.

Offline components are then defined by first choosing one or two root causes and deter-
mining all of their dependent components. Then for different datasets we picked one to
five of those and marked them as offline in the model. This way calculating the root
cause is more similar to real-world scenarios, where the component observed as offline
is often not the real cause of the problem.

5.5.2. Scalability Results

We ran the approach 10 times for each size of the dataset and different amounts of errors.
The average runtime and its standard deviation are shown in Table 5.1. Having different
numbers of root causes and observed offline components had no significant impact in the
runtime, thus we omitted those datapoints and only report the numbers aggregated by
size.

Dataset Size Avg (sec) StDev (sec)
1000 1.13 0.10

10 000 8.89 1.40
100 000 112.58 15.43

Table 5.1.: Average runtimes on infrastructures of various sizes

The results for different sizes of infrastructures are not calculated in real-time. However,
two minutes for the largest dataset is still a reasonable amount of time to wait for results.

More importantly, the scalability of the approach is linear in the number of components
which is a very favorable result, given the complexity of the calculation, as is apparent
in Figure 5.3. This is mainly explained by the relatively simple structure of dependency
graphs for IT infrastructures which are mostly tree-like, e.g. without circular dependen-
cies, and do not exhibit the complex patterns for which MAP inference is NP-complete.

96

5.6. Tool Support

1000 10 000 100 000
1

10

100

Size [components]

Ru
nt

im
e

[se
c]

Figure 5.3.: Runtimes on infrastructures of various sizes

5.6. Tool Support

We implemented our approach in an open-source tool called RoCA. A screenshot of the
user interface showing the clipping of a small dependency graph and the observations
provided by the user is presented in Figure 5.4. It shows a CMS service that is running
on two redundant Apache web servers, the Mail service running on some New server,
and a Printer. All of those depend on some not shown network connection and power
source. A user provided evidence about the CMS not working (depicted in red), but the
printer being functional (green) – for the other components the status is unknown. The
graphical user interface vastly increases the usability of our method, as a user does not
need knowledge about logical first-order formulas, Markov Logic Networks, or ontologies
for entering evidence or running a root cause analysis. The tool and its source code are
freely available for download: https://github.com/dwslab/RoCA.

5.6.1. Required Data

The required data to run a root cause analysis is the background knowledge and the
dependency graph with evidence about available and unavailable components.

RoCA uses the ontological representation that we described above as background knowl-
edge. Usually, the ontology is defined once and represents the vocabulary used to de-
scribe the IT infrastructure. Modeling it is a one-time effort and it requires only in-
frequent changes, e.g. when new types of components, like solid-state drives in recent
years, emerge . In its TBox, the ontology defines the available types of components and
possible relations between those. It also defines the association between types and icons

97

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

Figure 5.4.: Screenshot of the visual representation of the dependency network and pro-
vided evidence (green and red) about the availability of components.

shown in the user interface of RoCA. Whenever a user adds a new component, he has
to select one of the types defined in the ontology. Thus, RoCA is highly customizable
and not tied to a predetermined vocabulary. This eases the integration with modeling
styles that are already in use within the organization, e.g., the terminology of the config-
uration management databases. As described earlier, relations can be constraint to be
only allowed between certain types of components, to enforce a consistent model. A very
popular tool for designing and modeling ontologies is Protégé (Musen, 2015). It provides
customizable user interface to design and model ontologies. It also offers connections to
reasoner for checking the consistency of the built ontology.

The dependency graph can be stored in the ABox of the ontology. If no dependency
graph is specified, the user is presented with an empty model and can create a new graph
there. Extending a graph loaded from the ABox is also possible.

5.6.2. User Interaction

User interaction with RoCA occurs in two different scenarios: when modeling the in-
frastructure as dependency graph, and when conducting a root cause analysis after an
incident occurred.

98

5.7. Estimating Availabilities in IT Infrastructures

When modeling the user can choose from components and relations specified in the
background knowledge. Components and relations between them can be arrange by
drag&drop or an automatic layout algorithm. The user can freely assign names for each
component and the a priori weight in a details dialog. A first-order logic reasoner, e.g.
Pellet (Sirin et al., 2007) or HermiT (Glimm et al., 2014) can check the finished model
for consistency. The model can be saved and also exported as graph.

When an incident occurs, the user can load the previously created model and enter
observations about available (marked as green) and unavailable (red) components. There
can be entered any number of observations. In our example screenshot (Fig. 5.4) we
have marked the components CMS as active (green) and Printer as inactive (red), while
we have not specified any information related to the component Mailserver. If there
is no information about some component, it is simply left as unknown. Once these
observations have been specified, the user can run the root cause analysis directly from
the interface and the most probable root cause is presented. By inspecting the most
probable root cause and all assumptions that are entailed, the user might agree on the
proposed root cause or might specify additional observations as shown in the workflow
shown of Figure 5.2.

5.7. Estimating Availabilities in IT Infrastructures

Our approach has two major features. First, it employs a reusable top-level model of
the infrastructure dependencies. Second, the measured availabilities are added to each
infrastructure component. The use of measured availabilities frees us from the need to
model each measured threat manually. If a new threat surfaces, it can be added to the
model and expected changes to the availabilities can be calculated. In this chapter, we
focus on impacts that make infrastructure components unavailable.

We start our approach by creating a dependency graph of the central components and
services. To predict availabilities of IT components and services we need a way to
represent (1) the logic of dependency of IT infrastructure, (2) probabilistic values for
availabilities and (3) new threats. The dependencies in IT infrastructure can easily be
modeled with first-order logic, but, first-order logic alone has no way to calculate how a
threat influences the probability that an infrastructure component is available.

Markov logic networks (MLN)(Richardson and Domingos, 2006) offer a single represen-
tation of probability and first-order logic by adding weights to formulas. Together with
a set of constants, the MLN specifies a probability distribution over possible worlds.
Marginal inference computes the probability for specific values of variables in these pos-
sible worlds.

Thereby, we can create a reusable IT infrastructure model that includes infrastructure
dependencies and measured availability. The model can be used to calculate a prediction
how new threats affect the availability of IT components in an IT infrastructure. This

99

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

provides a fast and quantitative solution to determine if a new threat is acceptable or
needs to be mitigated.

We demonstrate and evaluate our solution in a case study where we implement the MLN
for a small part of an IT infrastructure. We show how the change of availabilities through
a new threat can be predicted and how to analyze a risk mitigation approach for this
threat.

5.7.1. Availability

Achieving high availability, defined as up to 5 minutes unavailability per year, is a long-
standing goal in the IT industry (Gray and Siewiorek, 1991). Continuous monitoring of
availability is part of IT service management best practices like the Information Tech-
nology Infrastructure Library (ITIL) (Cabinet Office, 2011). We define availability as
the probability that a system is working properly and reachable. The availability of a
system can be determined as follows:

Availability =
Uptime

Uptime+Downtime
(5.9)

Unavailability is the inverse of availability:

Unavailability = 1−Availability (5.10)

We distinguish between measured availability and predicted availability. The measured
availability of important infrastructure components and services is typically measured
over a one-year time-frame. The predicted availability is an estimation how the avail-
ability will be, under the assumption of specific changes in the threat-landscape or the
infrastructure. We use marginal inference in Markov logic networks to calculate the
predicted availabilities in our approach.

5.7.2. Summary of the Approach

We start by creating a dependency network of all major infrastructure components and
services. We transform this network into evidence for our MLN program. We collect
unavailability information for each node and use a learning algorithm to add the corre-
sponding weights to the evidence. By adding threats, the resulting evidence can be used
to determine the effect of a local threat to the whole network.

100

5.7. Estimating Availabilities in IT Infrastructures

Email Service

Server 1Server 2

Router 1Router 2

WiFi AP 1

WiFi Service

Figure 5.5.: The dependency network of the small IT infrastructure of our case study.
Solid arrows indicate specific dependencies, dashed arrows symbolize generic
dependencies and the dotted line represents a redundancy.

5.7.3. Case Study

A small case study demonstrates the usability of our solution. There exist several open-
source inference engines for Markov logic networks, e.g. Alchemy5, Tuffy6, and RockIt7.
We use RockIt for the calculations in our study.

The base configuration of the dependency network (see Figure 5.5) has seven nodes: An
Email Service is realized by two redundant servers Server 1 and Server 2. Each of
the servers depends on its own router (Router 1 and Router 2, respectively). One of
the two routers is used by a WiFi Access Point (AP), which offers a WiFi Service.
The corresponding evidence is listed in Table 5.6. The infrastructure components and
services have the measured unavailabilities given in column Scenario 1 in Table 5.2 and
the corresponding, learned weights are shown in Table 5.3.

We can now add a new threat: Router 1 threatens to overheat because construc-
tion work cut off the normal airflow to the room. The predicate expressing this is
endangered(“Overheating”, “Router 1”, 3). By using marginal inference, we get
the offline probabilities, which give us the predicted unavailabilities shown in column
Scenario 2 in Table 5.2.

5http://alchemy.cs.washington.edu
6http://hazy.cs.wisc.edu/hazy/tuffy
7https://code.google.com/p/rockit

101

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

Figure 5.6.: The predicates for the dependency network of the base configuration.
genericDependency("Email Service","Server 1")
genericDependency("Email Service","Server 2")
redundancy("Server 1","Server 2")
specificDependency("Server 1","Router 1")
specificDependency("Server 2","Router 2")
specificDependency("WiFi AP 1","Router 1")
specificDependency("WiFi Service","WiFi AP 1")

Table 5.2.: The measured and predicted unavailabilities for the different scenarios of
the case study. Scenario 1 is the base configuration, Scenario 2 is the base
configuration with the overheating threat, Scenario 3 is the configuration
with a second WiFi AP, and Scenario 4 is the configuration with a second
WiFi AP and the overheating threat.

Component Scenario 1 Scenario 2 Scenario 3 Scenario 4
(measured) (predicted) (measured) (predicted)

Email Service 0.0010 0.0010 0.0010 0.0010
Router 1 0.0005 0.0100 0.0005 0.0099
Router 2 0.0010 0.0009 0.0010 0.0009
Server 1 0.0015 0.0110 0.0015 0.0109
Server 2 0.0020 0.0019 0.0020 0.0019
WiFi Service 0.0015 0.0110 0.0015 0.0015
WiFi AP 1 0.0010 0.0105 0.0010 0.0104
WiFi AP 2 - - 0.0010 0.0010

The threat increased the unavailability of Router 1 by 0.0095. This has the effect that
the unavailability of WiFi AP 1, Server 1 and WiFi Service also increases by 0.0095.
On the other hand, the unavailability of Email Service remains unaffected, because it
can use Server 2, which depends on Router 2. The changes can be seen in Figure 5.7.

The cooling problem can only be solved through expensive additional construction work;
therefore, other risk mitigation approaches should be investigated.

A cheap risk mitigation approach is to provide a second, redundant WiFi AP 2, which
uses Router 2. We update the infrastructure model (Table 5.4) and set the unavailability
for the new WiFi AP 2 equal to that of WiFi AP 1 (see Scenario 3 in Table 5.2). Again
we use the MLN program as described above and learn the corresponding weights (Table
5.3).

Now we can add again the threat endangered(“Overheating”, “Router 1”, 3) and
calculate the unavailabilities (see Scenario 4 in Table 5.2) with the help of marginal
inference. The unavailability of Router 1 increases by 0.0094. The unavailability of

102

5.7. Estimating Availabilities in IT Infrastructures

Figure 5.7.: The change of the unavailabilities in the different scenarios of our case study.

Email
Service

Router
1

Router
2

Server
1

Server
2

WiFi
Service

WiFi
AP 1

WiFi
AP 2

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

U
na

va
ila

bi
lit

y

Scenario 1: the base configuration
Scenario 2: the base configuration with the overheating threat

Scenario 3: the configuration with a second WiFi AP
Scenario 4: the configuration with a second WiFi AP and the overheating threat

Server 1 and WiFi AP 1 also increases again but this time the unavailability of the
WiFi Service remains unaffected. The changes are also shown in Figure 5.7.

We can see that a second WiFi Access Point would successfully mitigate the risk for the
WiFi Service.

The slightly different increase of the unavailability in the two scenarios has two reasons.
First, the learning algorithm provides only an approximation of the correct weights for
the unavailabilities. Second, the number of evidence (and thereby the number of possible
worlds) changed between the two scenarios, but the weight of the threat remained the
same. As can be seen in Figure 5.7, these effects are small enough to not influence the
overall result.

103

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

Table 5.3.: The learned weights for the measured unavailabilities in the base configura-
tion.

measuredUnavailability("Email Service",-6.907250)
measuredUnavailability("Router 1",6.933551)
measuredUnavailability("Router 2",0.001400)
measuredUnavailability("Server 1",-6.908549)
measuredUnavailability("Server 2",-6.905200)
measuredUnavailability("WiFi AP 1",-0.023739)
measuredUnavailability("WiFi Service",-7.590026)

Table 5.4.: The predicates for the dependency network with a second WiFi AP.
genericDependency("Email Service","Server 1")
genericDependency("Email Service","Server 2")
genericDependency("WiFi Service","WiFi AP 1")
genericDependency("WiFi Service","WiFi AP 2")
redundancy("Server 1","Server 2")
redundancy("WiFi AP 1","WiFi AP 2")
specificDependency("Server 1","Router 1")
specificDependency("Server 2","Router 2")
specificDependency("WiFi AP 1","Router 1")
specificDependency("WiFi AP 2","Router 2")

The case study also demonstrates that the results of MLN marginal inference are not
exactly the results one would expect from regular probability calculation. However,
as we demonstrate, the MLN calculation is well suited for the calculation of threat
propagation.

5.8. Related Work

Related work can roughly be divided into two parts: Approaches also conducting root
cause analysis, but using a different method; and approaches using probabilistic frame-
works for abductive reasoning, yet not in the context of root cause analysis.

5.8.1. Root Cause Analysis

In previous work, failure diagnosis is conducted using correlation measures. A specific
correlation measure for failure diagnosis is presented in (Marwede et al., 2009). The

104

5.8. Related Work

Table 5.5.: The new learned weights for the configuration with a second WiFi AP.
measuredUnavailability("Email Service",-6.906300)
measuredUnavailability("Router 1",6.909860)
measuredUnavailability("Router 2",10.333070)
measuredUnavailability("Server 1",-6.905100)
measuredUnavailability("Server 2",-6.888114)
measuredUnavailability("WiFi AP 1",-7.600700)
measuredUnavailability("WiFi AP 2",-10.364995)
measuredUnavailability("WiFi Service",-6.500500)

approach uses anomalies in the timing of program calls to trace the real root cause of an
event. The anomalies are aggregated to give an anomaly score for each component. The
scores are correlated within their architectural level to determine an anomaly ranking,
which expresses the likelihood that a component is the root cause of a failure. A method
for failure diagnosis using decision trees is proposed in (Chen et al., 2004). The decision
tree classifies the successful as well as failed requests. A correlation of paths in the
decision tree with occurred failures indicates the node that represents the likely root
cause.

In (Zawawy et al., 2012) an approach for requirements-driven root cause analysis for fail-
ures in software systems is proposed, wherein a Markov Logic Network is used as knowl-
edge repository for diagnostic knowledge. The approach uses log data as observation
information, the Markov Logic Network is used to deal with uncertainty stemming from
incomplete log data. Their approach differs from ours in several points: they first model
the background knowledge as goal trees and only convert it to first-order logic later;
the evidence is solely generated from log data; and most importantly they use marginal
inference, different to our approach which uses MAP inference. In (von Stülpnagel et al.,
2014) marginal inference was also used for the purpose of estimating unavailabilities in
an IT infrastructure, where the authors referred to problems when marginal inference
is applied to very low probabilities usually attached to the occurrence of risks in an IT
setting. These problems are based on the use of sampling algorithms for performing
marginal inference, as exact inference is infeasible Our approach is based on solving an
optimization problem, which is not affected negatively by very small probabilities.

The Shrink tool (Kandula et al., 2005) uses a Bayesian Network to model the diagnosis
problem. It extends previous work on fault diagnosis with Bayesian Networks (Steinder
and Sethi, 2002), by proposing a greedy inference algorithm with polynomial running
time. Furthermore, Shrink is able to handle noise and small inaccuracies in the obser-
vations.

We made efforts to apply the approaches referred to in the previous section to model
and analyze the scenarios mentioned in Section 5.4. However, we had to retract from
this task for several reasons:

105

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

• In most of the cases the cited literature described an approach with a focus on its
theoretical foundations without offering a tool that implements the approach.

• In other cases it is crucial to understand that we would have to compare apples
and oranges because the proposed techniques cannot be applied to solve the task
that we try to solve with our tool.

In the following we will describe these issues in detail.

As mentioned above, Heiden et al. (2017) propose an approach that is very close to ours
in the sense that it is also based on the idea of abductive reasoning. As we already
mentioned, the approach does not support probabilities for threats nor does it support
probabilities for any another aspect. This means that in each situation where there
are several possible root causes, the approach proposed by Heiden et al. will not find
the most probable cause, but only one of the possible causes (or all of them). The
probabilistic knowledge used in our approach cannot be expressed within the approach
of Heiden et al. While the approach also supports the dependencies we expressed in
Formulas 5.2a to 5.2f, risk probabilities that we express in formulas as 5.3b and 5.3c,
which can be derived from the statistical data gathered by monitoring systems (see
the end of Section 5.3.2) or from background knowledge as described in Section 5.3.3),
cannot be expressed and will thus not influence the computation of the root cause.
However, such information is obviously crucial and will help to distinguish between
several possible reasons for a failure. While the approach of Liu and Chiou (1997) is
based on a completely different formalism, it suffers from the same problems, namely its
incapability to model probabilistic knowledge.

This is different when we look at the systems that are based on Bayesian Networks
and their extensions. This comprises the works of Weidl et al. (2005) as well as the
approach implemented in the Shrink tool Kandula et al. (2005). The main differences
between our approach and theirs are based in the models used which correspond to a
relational representation for our approach, in contrast to a propositional representation
in Weidl’s et al. In a relational representation, we can easily write down formulas like
5.2a to 5.2f, or 5.6.These formulas are general formulas that use variable. This makes it
rather convenient to express general dependencies. Even though the general formulas are
finally grounded in order to compute a most probable root cause, on the representation
level we describe an infrastructure and its dependencies with the help of relations and
general formulas. This is much more complicated in an approach that is based on a
propositional representation. Here we cannot write down a simple formula as Formula
5.2. Instead we have to add an explicit edge in the Bayesian Network, for each possible
instantiation of the variables in the formula.

Another major difference is based in the directedness of Bayesian Networks. When trying
to model an IT infrastructure and its potential root causes, the modeling approach in a
directed graphical model will always be guided by potential errors that cause a problem
somewhere in the infrastructure. That means that the development of the network
will be guided by the attempt to model causal relationships. This is not the case in

106

5.8. Related Work

an undirected model that is based on the observations of correlations without making
assumptions about causal dependencies. In such a model it is much easier to integrate
probabilities that are gathered by statistical observations.

5.8.2. Applications of Abductive Reasoning

In (Singla and Mooney, 2011), Singla et al. extend the approach presented in (Kate and
Mooney, 2009) and use it in the context of plan and intent recognition. Instead of adding
reverse implication, they introduce a hidden cause for all implications with the same
left-hand side. In general, this reduces the size of the MLN and subsequently increases
performance. However, as detailed above, for our approach the mutual exclusivity clauses
are not needed anyway. Nonetheless, if more probable events have to be included in the
evidence, their optimization can also be included in our approach.

Most other approaches to abductive reasoning either use first-order logic to calculate a
minimal set of assumptions sufficient to explain the hypothesis (Kakas et al., 1992; Ng
and Mooney, 1991; Poole et al., 1987; Stickel, 1991), or Bayesian Networks to compute
the posterior probability of alternative explanations given the observations (Pearl, 1988).
The former approaches are not able to estimate the likelihood of alternative explanations,
as they do not support uncertainty in the background knowledge or evidence. Bayesian
Networks, on the other hand, are designed to handle uncertainty. However, as they are
propositional in nature, they cannot handle structured knowledge involving relations
amongst multiple entities directly (Kate and Mooney, 2009).

Bayesian Abductive Logic Programs (BALP) (Raghavan and Mooney, 2010) are an-
other approach that combines first-order logic and probabilistic graphical models. The
main difference to MLNs is that BALPs are based on Bayesian Networks, which are
directed. Undirected relations, like the symmetry of redundancy, are thus more complex
to model. Inoue and Inui (2011) describe a system that uses integer linear programming
(ILP) for weighted abduction. They outperform a state-of-the-art abductive engine
(Mini-Tacitus (Ovchinnikova et al., 2014)). The MLN solver we use also transforms
the problem internally to an ILP, which is one of the reasons for its good runtime
performance.

5.8.3. Estimating Availability

There exist alternative approaches that combine logic and probability (see (Braz et al.,
2008) for an overview). Here we limit the discussion of related work to Bayesian logic
programs (BLP) (Kersting and De Raedt, 2001). Because of the usage of Bayesian
networks in combination with risk analysis (Weber et al., 2012), BLPs seem to be the
most prevalent alternative to MLNs.

107

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

Bayesian logic programs aim at resolving some limitations of Bayesian networks, among
others the essentially propositional nature of their representations. Therefore, Bayesian
logic programs unify Bayesian networks with logic programming. Each Bayesian logic
program represents a Bayesian network by mapping the atoms in the least Herbrand
model, which constitutes the semantics of the logic program, to nodes of the Bayesian
network.

A BLP computes the probability for one query from the known probabilities in the
resolution to the query statement. In contrast, MLNs infer all probabilities from a given
complete set of weights.

Furthermore, there exist efficient solvers for MLNs and they have been applied to a wide
range of problems, for instance in requirements-driven root cause analysis (Zawawy et al.,
2012) and data integration (Niepert et al., 2011a).

Another advantages of MLNs over other probabilistic logic approaches is that the Markov
networks, constructed through the MLN, are undirected graphs. This has the effect
that changing the weights at one node will influence the whole graph and thereby the
results. Hence, it is more likely to find new relationships between elements that where
not explicitly modeled. On the other side, this has the disadvantage that it is harder
to isolate a single variable. Unlike BLPs (Kersting and De Raedt, 2001), MLNs have
very simple semantics while theoretically keeping the expressive power of first-order logic
(Richardson and Domingos, 2006).

While risk management in general makes increasing use of Bayesian networks (Weber
et al., 2012), we are not aware of any automatic or semi-automatic approach for IT risk
management. There exist numerous IT risk management frameworks and standards.
The European Union Agency for Network and Information Security (ENISA) lists 17
different ones in their Inventory of Risk Management8. One example on a national level
is the German IT-Grundschutz Methodology (Bundesamt für Sicherheit in der Informa-
tionstechnik, 2008). It is a qualitative method and assumes that threats to the secure
operation of information processing are similar for all types of organizations. It provides
the IT-Grundschutz Catalogue (Bundesamt für Sicherheit in der Informationstechnik,
2016), which describes threats for typical areas of application and IT components, based
on generic risk analysis performed by the German Federal Office for Information Security
(Bundesamt für Sicherheit in der Informationstechnik). The IT-Grundschutz Catalogue
also provides standard security measures for the typical objects that are affected by these
threats. A detailed risk analysis, where the probability of a threat is determined, is not
part of the IT-Grundschutz Methodology but it is described how it can be incorporated.

There are other approaches that use dependency networks to determine the global impact
of a threat. The approach of Zambon et al. (2009) focuses on downtime and temporal
aspects but unlike our approach it is qualitative and considers only one threat at a time.
The approach of Breu et al. (2008) uses the number of attacks as the key quantitative

8http://rm-inv.enisa.europa.eu/methods/rm_ra_methods.html

108

http://rm-inv.enisa.europa.eu/methods/rm_ra_methods.html

5.9. Discussion and Conclusion

concept and models each threat separately but does not take redundant components into
account.

5.9. Discussion and Conclusion

We presented our approach of applying abductive reasoning using Markov Logic Net-
works to compute the most probable root cause for a failure in an IT infrastructure.
Our approach models the infrastructure with the help of ontologies. In particular, we
formulated the dependencies of the network as hard formulas. Moreover, we added
weighted soft formulas to model the probability of risks that might result in the fail-
ure of components and services. We defined these risks in accordance to the taxonomy
of the IT-Grundschutz Catalogues. Furthermore, we argued how the expressiveness of
ontologies can be used to model general, reusable knowledge concerning risks and IT
components. Our approach uses the same formalism for both knowledge presentation
and abductive reasoning. Thus, all relevant information is readily available to compute
the most probable root cause once an incident occurs. To the best of our knowledge,
there exists no other approach that combines uncertainty and logical abductive reasoning
to solve the problem of root cause analysis. We implemented our approach in RoCA, a
tool providing a graphical user interface for modeling the infrastructure and conducting
the root cause analysis.

We conducted an evaluation of our approach by analyzing two failures that happened in
the infrastructure of our research group. In both cases we were able to determine a root
cause (respectively, a sequence of probable root causes) that turned out to be helpful
for a system administrator to resolve the problem. Our approach is especially useful
when the reasons for the failure are not obvious to the administrator that is in charge of
resolving the problem. Thus, our approach will be more beneficial in IT infrastructures,
where competences are scattered over the members of different organizational units.

Furthermore, we analyzed the scalability of the approach for various sizes of randomly
generated infrastructures, modeled after properties observed in real-world scenarios. The
approach proofed to scale linearly in the size of the infrastructure up to hundreds of
thousands of individual components.

Finally, we want to stress that the presented approach is not only suited for technical
hardware scenarios, but can almost effortlessly be transferred to other settings. One
example would be the search for an index case (patient zero) during the outbreak of
a disease Mohammadi (2015). Relation between person are modeled similarly, however
those will also have weights, representing the uncertainty that people actually know each
other or where in contact during a time period. By noting when somebody showed the
first symptoms and verifying that the person with the earliest symptoms can have had
contact (directly or indirectly through others) with the other patients, the index case
can be identified.

109

Chapter 5. IT Risk Management in Large-scale IT Infrastructures

To our knowledge this work presents the first application of Markov logic networks to
risk management. We have shown that MLNs generally allow an automatic calculation
of risks, exemplified by the probability of availability, in an IT infrastructure.

As described in the case study, our solution allows us to efficiently calculate how a threat
affects an infrastructure network. We have demonstrated how the analysis can be used
to compare changes in the infrastructure and thereby support the risk mitigation. Our
approach has two major features. First, it employs a top-level model for the dependency
network, which can be easily maintained and reused. Second, it uses the measured
availabilities of the infrastructure components and thereby creates a quantitative infras-
tructure model without modeling every threat separately. This also has the advantage
that the manual work for risk analysis is greatly reduced.

In most cases, risk assessments are performed regularly, e.g. every six month. At the
same time, the link between availability and risk management is seldom used and tech-
nological support for IT risk management was identified as one area where improvement
is needed (Ernst & Young, 2013).

Our approach enhances risk assessment by providing an automation and allowing reuse
of earlier work. By using the availability measurements of the IT service management as
quantitative input and provide results in the same way, we allow an easy communication
of IT risk.

However, there are some limitations, caveats and lessons learned from using Markov
logic networks, and in particular marginal inference in MLNs.

It is not possible to simply add or remove infrastructure components or services to or
from an existing model. This is so because the weight of the new component or service
influences the total weight of the model, which in turn affects the probabilities of all
statements. In the current state of our solution, adding or removing a new infrastructure
component requires relearning all weights.

Even though MLNs use a quite simple representation, modeling with them is not as
straightforward as it may seem (Jain, 2011). Each variable – every literal that involves
a hidden predicate – must have a weight. For instance in our case study this means
that each node in the dependency network needs a measuredUnavailability(infra,
float). This requires an accurate specification of the MLN evidence. However, since the
measurement of the availability is a best practice (Cabinet Office, 2011), the necessary
data should be available.

Without an understanding of the normalization of weights and the log-linear model,
the relationship between the weights and the resulting probabilities of the marginal
inference can be counterintuitive. Changing the weight of a single formula shifts the
relative weights of the possible worlds according to where the formula is true. This
results in sometimes unexpected changes in probabilities of statements. Therefore, we
usually learn the weights for the measured unavailabilities. While modeling with MLNs
it is also important to have in mind that the weight of a soft formula does not directly

110

5.9. Discussion and Conclusion

correspond to a specific universal probability for this formula. The probability depends
on the whole MLN and the modeled domain, including the number of individuals in this
domain.

A limitation of existing implementations for marginal inference is their use of sampling
algorithms to calculate the probabilities. To determine the effect of threats with very
low probabilities, which are quite common in risk management, sampling requires a
high number of iterations. Threats with very small probabilities can provide the prob-
lem that their frequency is so low that they do not influence the availability measure-
ment of a component. These threats can still be added manually through the predicate
endangered(threat,infra, float). To our knowledge, there is no alternative to sam-
pling as the exact computation is too complex to be done for larger networks. However,
it has the advantage that it allows us to choose how much time to invest into the accu-
racy of the probabilities. We reduce the problem of sampling with low probability by
using the measured unavailability, as combination of many small threats and thereby
are able to aggregate them to larger numbers.

While there are different MLN solvers, to our knowledge none of them supports full
first-order logic. Because of the undecidability of first-order logic, this will most likely
not change.

So far, we have not taken all risks of the Grundschutz Catalogues into account. Instead,
we have focused on a subset relevant for the infrastructure we modeled. To apply our
approach to an arbitrary IT infrastructure, we have to create a complete translation of
the catalogues to our logical representation.

111

Part III.

Conclusion and Future Work

113

6
Conclusion

As stated in the introduction, there is a lot of work on crisp logical knowledge rep-
resentation – e.g. description logic and ontologies – and statistical representation of
uncertainty. In recent years, there were efforts to bridge the gap between those two
areas and harness the vast information contained in uncertain knowledge.

In this dissertation we investigated how uncertainty in large-scale knowledge graphs
can be handled efficiently, and how bridging the gap between uncertainty in knowledge
graphs and logical reasoning can improve the overall usefulness of the information. In the
following sections we briefly recapitulate the results of each chapter and draw conclusions,
especially regarding the objectives set in Section 1.2:

1. debugging uncertain (temporal) knowledge bases in order to generate consistent
knowledge graphs to make them accessible for logical reasoning,

2. combining probabilistic query answering and logical reasoning which in turn uses
those consistent knowledge graphs to answer user queries, and

3. employing the aforementioned techniques to the problem of risk management in
IT infrastructures, as a concrete real-world application.

6.1. Extracting Consistent Knowledge Graphs from Uncertain
Information

In Chapter 3 we used probabilistic graphical models – namely Markov logic networks
(MLN) and probabilistic soft logic (PSL), together with a numerical extension – to define
rules and constraints over uncertain (temporal) knowledge graphs. Our approach uses
probabilistic graphical models for reasoning and inference over those uncertain knowledge
graphs. We have shown that this can be used to

• infer new knowledge from existing facts,

• detect erroneous facts,

• compute the most probable consistent knowledge graph, regarding those rules.

115

Chapter 6. Conclusion

All those tasks naturally account for the uncertainty inherent to the given facts. Al-
though these problems are NP-hard and #P-hard, respectively, our experiments show
that our approach produces results in an acceptable amount of time, even on large-scale
knowledge graphs such as Wikidata. The experiments also demonstrated that the usage
of probabilistic graphical models to do reasoning over uncertain (temporal) knowledge
graphs produces viable results, even in very noisy settings.

6.2. Assessing the Real-World Usability of the Combination of
Probabilistic and Logical Reasoning through Query
Rewriting

The work presented in Chapter 4 provides a thorough view on handling large-scale,
uncertain data with Semantic Web technologies. We first analyzed queries from the
LSQ dataset and found that from those queries that can directly be translated to union
of conjunctive queries, almost all are safe. From this we conclude that the information
needs users have – expressed through their queries – are in general feasible to be fulfilled
in tractable time over probabilistic data.

Next, we described our preliminary implementation towards a probabilistic OBDA sys-
tem for large-scale knowledge bases. It combines tractability for the class of safe queries
with the benefits of ontology-based query rewriting. To demonstrate the good scalability
of the approach, we compared its performance to ProbLog, a state-of-the-art inference
system. As benchmark datasets we used NELL, representing a real-world dataset, and
additionally created a probabilistic extension of the LUBM benchmark that allows us
to create datasets of any size to measure scalability. We have shown that it scales well
compared to the other system and is able to compute query answers in a reasonable
amount of time for knowledge bases containing several million facts.

To the best of our knowledge this is the first work that analyzes real-world SPARQL
queries in the light of probabilistic data, and evaluates the real-world performance of
query rewriting in probabilistic databases.

6.3. IT Risk Management in Large-scale IT Infrastructures
using Probabilistic Models

In Chapter 5 we applied Markov logic networks in the setting of IT infrastructure and
risk management. Our approach uses abductive reasoning for the MAP state to compute
the most probable root cause for a failure in an IT infrastructure. We modeled the
background knowledge and formulated dependencies between components and threats
affecting those as logical formulas. This allows for a general reusable model of the
IT infrastructure, which can easily adjusted to other infrastructures and bootstrap the

116

6.4. Closing Remarks

modeling there. Reasoning in MLNs is by default deductive. However, we developed
specialized rules which allow us to conduct abductive reasoning in the setting of risk
management. As our approach uses first-order logic for both modeling and reasoning,
all relevant information is readily available to compute the most probable root cause
once an incident occurs.

To evaluate the usefulness of the approach, we analyzed two failure scenarios that oc-
curred in the infrastructure of our research group and the computing center of the
university. Both cases showed that the determined root causes (or sequences thereof for
diagnosis) were helpful for a system administrator to quickly determine the source of the
failure and resolve the problem. In cases where the reasons for the failure are not obvious
or the administrator is not familiar with the exact part of the infrastructure where the
outage arises, our approach proved to be especially valuable. To evaluate the scalability
of the approach, we implemented a generator to automatically create infrastructures of
various sizes, which are modeled after real-world observations. The approach proofs to
scale linearly in the size of the infrastructure up to hundreds of thousands of individ-
ual components. Additionally, we did some experiments using marginal inference to
estimate the availability of components (measured in % uptime).

We also implemented a ready-to-use tool for our approach, providing a graphical user
interface for modeling and conducting the root cause analysis. To the best of our knowl-
edge, there exists no other approach that combines uncertainty and logical abductive
reasoning to solve the problem of root cause analysis.

Finally, we want to stress that the presented approach is not only suited for technical
hardware scenarios, but can almost effortlessly be transferred to other settings. One
example would be the search for an index case (also known as patient zero) during
the outbreak of a disease Mohammadi (2015). Relations between persons are modeled
similarly, however those will also have weights, representing the uncertainty that people
actually know each other or were in contact during a time period. By noting the time
when somebody showed the first symptoms and verifying that the person with the earliest
symptoms potentially had contact (directly or indirectly through others) with the other
patients, the index case can be identified. To our knowledge this work presents the
first application of Markov logic networks to risk management. We have shown that
MLNs generally allow an automatic calculation of risks, exemplified by the probability
of availability, in an IT infrastructure.

6.4. Closing Remarks

Overall, we have shown that uncertainty can be handled efficiently in multiple scenarios
where current approaches do ignore or do not fully incorporated it.

The main result, which we could show in all three settings is the following: Despite
the theoretical intractability of most of the used formalisms – reasoning in Markov

117

Chapter 6. Conclusion

logic networks is NP-hard; inference in probabilistic database is #P-hard except for the
special case of safe queries – in real-world settings, like debugging existing uncertain
knowledge graphs, answering user queries, or analyzing threats to an infrastructure,
those approaches scale well, as the full expressiveness of those technologies is rarely
used.

The results show that continuing research in that direction is both worthwhile and fea-
sible in practice: Embracing uncertainty increases the usefulness of results and provides
users with more worthwhile information.

118

7
Future Work

Each of the three investigated areas leaves options for further research. In this chapter
we describe potential directions and benefits of future work.

Debugging Large-scale Uncertain Temporal Knowledge Graphs

In Chapter 3 we only considered valid time. A straightforward extension is to either
look only at transaction time, or extend the approach to be bi-temporal, i.e., include
valid time and transaction time. For example, this allows for rules between valid and
transaction time, like the valid time of a birthdate has to be before its transaction time
(in simpler words, one can not specify a concrete birthdate in the future).

Similarly, instead of having two temporal dimensions, the approach can also be applied
to spatial dimensions, opening up the ability to reason about locations, e.g. a capital
has to be within the border of a country. Ultimately, all dimension can be combined to
support and conduct spatio-temporal reasoning. Taking into account preferences Fionda
and Pirrò (2013) is another line of future work.

In Section 3.4 we already introduced preliminary experiments with rule mining to auto-
matically create consistency constraints. One line of work is to extend those experiments.
Interesting questions are how those automatically mined rules work overall, or how easily
those rules can be transfered to different or integrated knowledge graphs.

We also did not test the approach in a data integration scenario where multiple knowledge
graphs are merged. Data integration is an active research area, where the expressive rules
can help in both, finding inconsistencies between knowledge graphs, and providing one
coherent view on the data (e.g. translating from one relation to another, possibly by
combining statements, like for first name and last name being equal to name).

So far, we also only investigated possible applications of MAP inference. By using
marginal inference, we can retain uncertain information in the computed results and ask
for the probability of specific statements being valid.

Besides applying and transferring the approach to other scenarios, further improving
scalability is also an objective. There is preliminary work in parallelizing MLN solvers

119

Chapter 7. Future Work

and using highly optimized relational database systems to improve the overall perfor-
mance.

An aspect we also did not cover here are the types of errors that were found in the actual
knowledge graphs.

Scalable Probabilistic Query Answering and Logical Reasoning

For future work on the research presented in Chapter 4, we propose several different di-
rections. First, to further study queries using constructs like DISTINCT/GROUP BY,
OPTIONAL, or FILTER and how they influence query safeness. Second, considering
unsafe queries, to analyze their structure and investigate ways of handling those effec-
tively, e.g. through approximation or simplification similarly to approaches presented
for probabilistic databases. Furthermore, an interesting direction is to also address the
problem of uncertain TBox elements.

To improve the evaluation of performance, a more thorough benchmark based on recent
proposals for benchmarks specifically aimed at OBDA (e.g. (Lanti et al., 2015)) should
be considered.

Finally, the tool to determine query safeness should be integrated in a probabilistic
OBDA application that supports the complete workflow from mapping an ontology to
one or more databases, over processing SPARQL queries, to a probabilistic result set.
This would greatly facilitate the use of probabilistic query answering by non-expert users
and in more real-world scenarios.

IT Risk Management in Large-scale IT Infrastructures

From the modeling perspective, the work in Chapter 5 can be extended by including
a more detailed description of risks and threats, as we up to now only considered a
very simple model for those, and also only a small subset of the ones, e.g. listed in the
IT-Grundschutz Catalogues.

Furthermore, as already outlined in previous chapter, the methodology for root cause
analysis can also be employed and tested in different settings, like epidemiology to de-
termine the index case of an outbreak.

120

Bibliography

Abiteboul, Serge and Vianu, Victor. Datalog extensions for database queries and up-
dates. Journal of Computer and System Sciences, 43(1):62–124, 1991. ISSN 10902724.
doi: 10.1016/0022-0000(91)90032-Z.

Allen, James F. Maintaining knowledge about temporal intervals. Communications of
the ACM, 26(11):832–843, 1983.

Artale, Alessandro, Calvanese, Diego, Kontchakov, Roman, and Zakharyaschev, Michael.
The DL-Lite Family and Relations. Journal of Artificial Intelligence Research, 36:1–
69, 2009. ISSN 10769757. doi: 10.1613/jair.2820.

Baader, Franz and Nutt, Werner. Basic Description Logics. In The Description Logic
Handbook: Theory, Implementation, and Applications, pages 43–95. Cambridge Uni-
versity Press, 2003.

Baader, Franz, Calvanese, Diego, McGuinness, Deborah L., Nardi, Daniele, and Patel-
Schneider, Peter F. The Description Logic Handbook: Theory, Implementation, and
Applications, volume 32. Cambridge University Press, 2003. ISBN 0521781760. doi:
10.2277/0521781760. URL http://portal.acm.org/citation.cfm?id=1215128.

Baader, Franz, Brandt, Sebastian, and Lutz, Carsten. Pushing the EL Envelope.
In Proceedings of the 19th International Joint Conference on Artificial Intelli-
gence (IJCAI), volume 5, pages 364–369, 2005. doi: 10.1097/01.NUMA.0000440635.
64013.58. URL http://www.ncbi.nlm.nih.gov/pubmed/24426756http://ijcai.
org/papers/0372.pdfhttp://lat.inf.tu-dresden.de/research/reports.html.

Bach, Stephen H, Broecheler, Matthias, Huang, Bert, and Getoor, Lise. Hinge-Loss
Markov Random Fields and Probabilistic Soft Logic. Journal of Machine Learning
Research, 18(109):1–67, 2017. URL http://jmlr.org/papers/v18/15-631.html.

Bail, Samantha, Alkiviadous, Sandra, Parsia, Bijan, Workman, David, Van Harmelen,
Mark, Goncalves, Rafael S., and Garilao, Cristina. FishMark: A Linked Data Appli-
cation Benchmark. CEUR Workshop Proceedings, 943:1–15, 2012. ISSN 16130073.

Banko, Michele, Cafarella, Michael J., Soderland, Stephen, Broadhead, Matt, and Et-
zioni, Oren. Open Information Extraction from the Web. Proceedings of IJCAI-07,
the International Joint Conference on Artificial Intelligence, pages 2670–2676, 2007.
ISSN 00010782. doi: 10.1145/1409360.1409378.

Berendt, B, Hollink, L, Hollink, V, Luczak-Rösch, M, Möller, K, and Val-
let, D. USEWOD2011 - 1st International Workshop on Usage Analysis and
the Web of Data. Proceedings of the 20th International Conference Com-
panion on World Wide Web (WWW), pages 305–306, 2011. doi: 10.1145/

121

http://portal.acm.org/citation.cfm?id=1215128
http://www.ncbi.nlm.nih.gov/pubmed/24426756 http://ijcai.org/papers/0372.pdf http://lat.inf.tu-dresden.de/research/reports.html
http://www.ncbi.nlm.nih.gov/pubmed/24426756 http://ijcai.org/papers/0372.pdf http://lat.inf.tu-dresden.de/research/reports.html
http://jmlr.org/papers/v18/15-631.html

Bibliography

1963192.1963324. URL http://www.scopus.com/inward/record.url?eid=2-s2.
0-79955127036&partnerID=40&md5=6ec8c19cff2e223d891c92e7c6e236e7.

Bizer, Christian and Schultz, Andreas. The Berlin SPARQL Benchmark. International
Journal on Semantic Web and Information Systems, 5(2):1–24, 2001. ISSN 1552-6283.
doi: 10.4018/jswis.2009040101.

Bizer, Christian, Heath, T, and Berners-Lee, T. Linked data-the story so far. In-
ternational Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.
ISSN 15526283. doi: 10.4018/jswis.2009081901. URL http://eprints.soton.ac.
uk/271285/.

Bollacker, Kurt, Evans, Colin, Paritosh, Praveen, Sturge, Tim, and Taylor, Jamie. Free-
base: a collaboratively created graph database for structuring human knowledge. SIG-
MOD 08 Proceedings of the 2008 ACM SIGMOD international conference on Manage-
ment of data, pages 1247–1250, 2008. ISSN 07308078. doi: 10.1145/1376616.1376746.
URL http://doi.acm.org/10.1145/1376616.1376746.

Braz, Rodrigo de Salvo, Amir, Eyal, and Roth, Dan. A Survey of First-Order Probabilis-
tic Models. In Holmes, D E and Jain, L C, editors, Innovations in Bayesian Networks,
volume 156 of Studies in Computational Intelligence, pages 289–317. Springer Berlin
Heidelberg, 2008. ISBN 978-3-540-85065-6. doi: 10.1007/978-3-540-85066-3_12. URL
http://dx.doi.org/10.1007/978-3-540-85066-3_12.

Breu, Ruth, Innerhofer-Oberperfler, Frank, and Yautsiukhin, Artsiom. Quantitative
assessment of enterprise security system. In Availability, Reliability and Security,
2008. ARES 08. Third International Conference on, pages 921–928. IEEE, 2008.

Bundesamt für Sicherheit in der Informationstechnik. IT-Grundschutz Methodology.
Technical report, Bundesamt für Sicherheit in der Informationstechnik, 2008.

Bundesamt für Sicherheit in der Informationstechnik. Threat Catalogues. IT Grund-
schutz Catalogues, 15. EL:443 – 1338, 2016. URL https://www.bsi.bund.de/EN/
Topics/ITGrundschutz/Download/download_node.html.

Cabinet Office. ITIL Service Design. TSO (The Stationery Office), 2011.

Cafarella, Michael J, Halevy, Alon, and Madhavan, Jayant. Structured data on the Web.
Communications of the ACM, 54(2):72–79, 2011.

Calvanese, Diego, De Giacomo, Giuseppe, and Lembo, Domenico. DL-Lite: Tractable
description logics for ontologies. AAAI, 5:602–607, 2005. URL http://www.aaai.
org/Papers/AAAI/2005/AAAI05-094.pdf.

Calvanese, Diego, Giacomo, Giuseppe, Lembo, Domenico, Lenzerini, Maurizio, and
Rosati, Riccardo. Tractable Reasoning and Efficient Query Answering in Descrip-
tion Logics: The DL-Lite Family. Journal of Automated Reasoning, 39(3):385–
429, jul 2007. ISSN 0168-7433. doi: 10.1007/s10817-007-9078-x. URL http:
//link.springer.com/10.1007/s10817-007-9078-x.

122

http://www.scopus.com/inward/record.url?eid=2-s2.0-79955127036&partnerID=40&md5=6ec8c19cff2e223d891c92e7c6e236e7
http://www.scopus.com/inward/record.url?eid=2-s2.0-79955127036&partnerID=40&md5=6ec8c19cff2e223d891c92e7c6e236e7
http://eprints.soton.ac.uk/271285/
http://eprints.soton.ac.uk/271285/
http://doi.acm.org/10.1145/1376616.1376746
http://dx.doi.org/10.1007/978-3-540-85066-3_12
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/Download/download_node.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/Download/download_node.html
http://www.aaai.org/Papers/AAAI/2005/AAAI05-094.pdf
http://www.aaai.org/Papers/AAAI/2005/AAAI05-094.pdf
http://link.springer.com/10.1007/s10817-007-9078-x
http://link.springer.com/10.1007/s10817-007-9078-x

Bibliography

Calvanese, Diego, Cogrel, Benjamin, Kalayci, Elem Guzel, Komla-Ebri, Sarah,
Kontchakov, Roman, Lanti, Davide, Rezk, Martin, Rodriguez-Muro, Mariano, and
Xiao, Guohui. OBDA with the Ontop Framework. 23rd Italian Symposium on Ad-
vanced Database Systems, SEBD 2015, Gaeta, Italy, June 14-17, 2015., pages 296–303,
2015.

Calvanese, Diego, Cogrel, Benjamin, Komla-Ebri, Sarah, Kontchakov, Roman, Lanti,
Davide, Rezk, Martin, Rodriguez-Muro, Mariano, and Xiao, Guohui. Ontop : An-
swering SPARQL Queries over Relational Databases. Semantic Web, 8(3):471–487,
2017. ISSN 22104968. doi: 10.3233/SW-160217.

Carlson, Andrew, Betteridge, Justin, and Kisiel, Bryan. Toward an Architecture for
Never-Ending Language Learning. In Proceedings of the Conference on Artificial Intel-
ligence (AAAI), pages 1306–1313, 2010. ISBN 9781577354666. doi: 10.1002/ajp.20927.
URL http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1879/
2201.

Ceylan, İsmail İlkan and Peñaloza, Rafael. The Bayesian Ontology Language BEL.
Journal of Automated Reasoning, 58(1):67–95, 2017. ISSN 15730670. doi: 10.1007/
s10817-016-9386-0.

Chekol, Melisachew W., Pirrò, Giuseppe, Schoenfisch, Joerg, and Stuckenschmidt,
Heiner. TeCoRe: Temporal Conflict Resolution in Knowledge Graphs. In Proceed-
ings of the VLDB Endowment, volume 10, pages 1929–1932. VLDB Endowment,
2017a. doi: 10.14778/3137765.3137811. URL http://dl.acm.org/citation.cfm?
doid=3137765.3137811.

Chekol, Melisachew Wudage, Huber, Jakob, Meilicke, Christian, and Stuckenschmidt,
Heiner. Markov logic networks with numerical constraints. In Frontiers in Artificial In-
telligence and Applications, volume 285, pages 1017–1025, 2016. ISBN 9781614996712.
doi: 10.3233/978-1-61499-672-9-1017.

Chekol, M.W., Pirrò, G., Schoenfisch, J., and Stuckenschmidt, H. Marrying uncertainty
and time in knowledge graphs. In 31st AAAI Conference on Artificial Intelligence,
AAAI 2017, 2017b.

Chen, M., Zheng, A.X. X, Lloyd, J., Jordan, M.I. I, and Brewer, E. Failure diagnosis
using decision trees. In International Conference on Autonomic Computing, 2004.
Proceedings., pages 36–43. IEEE, 2004. ISBN 0-7695-2114-2. doi: 10.1109/ICAC.
2004.1301345. URL http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?
arnumber=1301345.

Chen, Willy, Hess, Claudia, Langermeier, Melanie, von Stuelpnagel, Janno, and Diefen-
thaler, Philipp. Semantic Enterprise Architecture Management. In 15th International
Conference on Enterprise Information Systems (ICEIS), page 8, 2013.

123

http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1879/2201
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/download/1879/2201
http://dl.acm.org/citation.cfm?doid=3137765.3137811
http://dl.acm.org/citation.cfm?doid=3137765.3137811
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301345
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1301345

Bibliography

Chen, Yang and Wang, Daisy Zhe. Knowledge expansion over proba-
bilistic knowledge bases. Proceedings of the 2014 ACM SIGMOD in-
ternational conference on Management of data - SIGMOD ’14, pages
649–660, 2014. ISSN 07308078. doi: 10.1145/2588555.2610516. URL
http://delivery.acm.org/10.1145/2620000/2610516/p649-chen.pdf?ip=
132.234.102.220&id=2610516&acc=ACTIVESERVICE&key=65D80644F295BC0D.
B53287412424DA9D.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=996856472&
CFTOKEN=84796420&__acm__=1508474407_865aa23a3ad06e886b76b.

da Costa, PCG and Laskey, KB. PR-OWL: A framework for probabilis-
tic ontologies. Frontiers in Artificial Intelligence and …, 2006. URL
http://books.google.com/books?hl=en&lr=&id=qqGx2ulX6hEC&oi=fnd&
pg=PA237&dq=PR-OWL+:+A+Framework+for+Probabilistic+Ontologies&ots=
Qz2DhfQMtu&sig=TU3Z5SY0iCG81rSJ2hmm2CFaWHQ.

Dalvi, Nilesh and Suciu, Dan. The Dichotomy of Probabilistic Inference for Unions of
Conjunctive Queries. Journal of the ACM, 59(6):1–87, 2012. ISSN 00045411. doi:
10.1145/2395116.2395119. URL http://dl.acm.org/citation.cfm?doid=2395116.
2395119.

D’Amato, Claudia, Fanizzi, Nicola, and Lukasiewicz, Thomas. Tractable reasoning with
bayesian description logics. Lecture Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 5291
LNAI(iii):146–159, 2008. ISSN 03029743. doi: 10.1007/978-3-540-87993-0_13.

De Raedt, Luc, Kimmig, Angelika, and Toivonen, Hannu. ProbLog: A Probabilistic
Prolog and Its Application in Link Discovery. In Sangal, Rajeev, Mehta, Harish,
and Bagga, R K, editors, IJCAI 2007, Proceedings of the 20th International Joint
Conference on Artificial Intelligence, Hyderabad, India, January 6-12, 2007, volume 7,
pages 2462–2467, San Francisco, CA, USA, 2007. Morgan Kaufmann Publishers Inc.
URL http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-397.pdf.

Domingos, Pedro M and Webb, William Austin. A Tractable First-Order Probabilistic
Logic. In AAAI, 2012.

Dong, Xin, Gabrilovich, Evgeniy, Heitz, Geremy, Horn, Wilko, Lao, Ni, Murphy, Kevin,
Strohmann, Thomas, Sun, Shaohua, and Zhang, Wei. Knowledge vault: a web-scale
approach to probabilistic knowledge fusion. Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining - KDD ’14, pages
601–610, 2014a. ISSN 0893-6080. doi: 10.1145/2623330.2623623. URL http://dl.
acm.org/citation.cfm?doid=2623330.2623623.

Dong, Xin Luna, Gabrilovich, Evgeniy, Heitz, Geremy, Horn, Wilko, Lao, Ni, Murphy,
Kevin, Strohmann, Thomas, Sun, Shaohua, and Zhang, Wei. Knowledge Vault: A
Web-Scale Approach to Probabilistic Knowledge Fusion. Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages
601–610, 2014b. doi: 10.1145/2623330.2623623.

124

http://delivery.acm.org/10.1145/2620000/2610516/p649-chen.pdf?ip=132.234.102.220&id=2610516&acc=ACTIVE SERVICE&key=65D80644F295BC0D.B53287412424DA9D.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=996856472&CFTOKEN=84796420&__acm__=1508474407_865aa23a3ad06e886b76b
http://delivery.acm.org/10.1145/2620000/2610516/p649-chen.pdf?ip=132.234.102.220&id=2610516&acc=ACTIVE SERVICE&key=65D80644F295BC0D.B53287412424DA9D.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=996856472&CFTOKEN=84796420&__acm__=1508474407_865aa23a3ad06e886b76b
http://delivery.acm.org/10.1145/2620000/2610516/p649-chen.pdf?ip=132.234.102.220&id=2610516&acc=ACTIVE SERVICE&key=65D80644F295BC0D.B53287412424DA9D.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=996856472&CFTOKEN=84796420&__acm__=1508474407_865aa23a3ad06e886b76b
http://delivery.acm.org/10.1145/2620000/2610516/p649-chen.pdf?ip=132.234.102.220&id=2610516&acc=ACTIVE SERVICE&key=65D80644F295BC0D.B53287412424DA9D.4D4702B0C3E38B35.4D4702B0C3E38B35&CFID=996856472&CFTOKEN=84796420&__acm__=1508474407_865aa23a3ad06e886b76b
http://books.google.com/books?hl=en&lr=&id=qqGx2ulX6hEC&oi=fnd&pg=PA237&dq=PR-OWL+:+A+Framework+for+Probabilistic+Ontologies&ots=Qz2DhfQMtu&sig=TU3Z5SY0iCG81rSJ2hmm2CFaWHQ
http://books.google.com/books?hl=en&lr=&id=qqGx2ulX6hEC&oi=fnd&pg=PA237&dq=PR-OWL+:+A+Framework+for+Probabilistic+Ontologies&ots=Qz2DhfQMtu&sig=TU3Z5SY0iCG81rSJ2hmm2CFaWHQ
http://books.google.com/books?hl=en&lr=&id=qqGx2ulX6hEC&oi=fnd&pg=PA237&dq=PR-OWL+:+A+Framework+for+Probabilistic+Ontologies&ots=Qz2DhfQMtu&sig=TU3Z5SY0iCG81rSJ2hmm2CFaWHQ
http://dl.acm.org/citation.cfm?doid=2395116.2395119
http://dl.acm.org/citation.cfm?doid=2395116.2395119
http://www.aaai.org/Papers/IJCAI/2007/IJCAI07-397.pdf
http://dl.acm.org/citation.cfm?doid=2623330.2623623
http://dl.acm.org/citation.cfm?doid=2623330.2623623

Bibliography

Dubois, Didier and Prade, Henri. Possibility theory, probability theory and multiple-
valued logics: A clarification. Annals of Mathematics and Artificial Intelligence, 32
(1-4):35–66, 2001. ISSN 10122443. doi: 10.1023/A:1016740830286.

Duerst, Martin and Suignard, Michel. Internationalized Resource Identifiers (IRIs). RFC
3987 (Proposed Standard), 2005. ISSN 2070-1721. URL https://www.rfc-editor.
org/rfc/rfc3987.txt.

Dylla, Maximilian, Sozio, Mauro, and Theobald, Martin. Resolving Temporal Conflicts
in Inconsistent RDF Knowledge Bases. In 14. GI-Fachtagung Datenbanksysteme für
Business, Technologie und Web (BTW), pages 474–493, 2011.

Dylla, Maximilian, Miliaraki, Iris, and Theobald, Martin. A temporal-probabilistic
database model for information extraction. Proceedings of the VLDB Endowment,
6(14):1810–1821, 2013. URL http://dl.acm.org/citation.cfm?id=2556564.

Ekelhart, Andreas, Fenz, Stefan, Klemen, Markus D., and Weippl, Edgar R. Security
Ontology : Simulating Threats to Corporate Assets. Proceedings of the 2nd Intl.
Conf. on Information Systems Security (ICISS), pages 249–259, 2006. doi: http:
//dx.doi.org/10.1007/11961635_17.

Ernst & Young. Ad-hoc information security solutions no longer an option, as companies
struggle to keep pace with today’s threats, 2012. URL http://www.ey.com/ru/en/
newsroom/news-releases/press-release---2012-10-29-2.

Ernst & Young. Managing IT risk in a fast-changing environment. Technical report,
Ernst & Young, 2013.

Etzioni, Oren, Banko, Michele, Soderland, Stephen, and Weld, Daniel S. Open informa-
tion extraction from the web. Communications of the ACM, 51(12):68–74, 2008.

European Union Agency for Network and Information Security. ENISA Threat
Landscape mid year 2013. Technical report, European Union Agency
for Network and Information Security, 2013. URL http://www.enisa.
europa.eu/activities/risk-management/evolving-threat-environment/
enisa-threat-landscape-mid-year-2013.

Fader, Anthony, Soderland, Stephen, and Etzioni, Oren. Identifying Relations for
Open Information Extraction. Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing, pages 1535–1545, 2011. ISSN 1937284115. doi:
10.1234/12345678. URL http://dl.acm.org/citation.cfm?id=2145432.2145596%
5Cnhttp://dl.acm.org/citation.cfm?id=2145596.

Fionda, Valeria and Pirrò, Giuseppe. Querying graphs with preferences. In Proceedings
of the 22nd ACM international conference on Information & Knowledge Management,
pages 929–938. ACM, 2013.

Fleischhacker, Daniel. Repairing learned ontologies. In CEUR Workshop Proceedings,
volume 1162, pages 15–26, 2014.

125

https://www.rfc-editor.org/rfc/rfc3987.txt
https://www.rfc-editor.org/rfc/rfc3987.txt
http://dl.acm.org/citation.cfm?id=2556564
http://www.ey.com/ru/en/newsroom/news-releases/press-release---2012-10-29-2
http://www.ey.com/ru/en/newsroom/news-releases/press-release---2012-10-29-2
http://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-threat-landscape-mid-year-2013
http://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-threat-landscape-mid-year-2013
http://www.enisa.europa.eu/activities/risk-management/evolving-threat-environment/enisa-threat-landscape-mid-year-2013
http://dl.acm.org/citation.cfm?id=2145432.2145596%5Cnhttp://dl.acm.org/citation.cfm?id=2145596
http://dl.acm.org/citation.cfm?id=2145432.2145596%5Cnhttp://dl.acm.org/citation.cfm?id=2145596

Bibliography

Galárraga, Luis, Teflioudi, Christina, Hose, Katja, and Suchanek, Fabian M. Fast rule
mining in ontological knowledge bases with AMIE+. VLDB Journal, 24(6):707–730,
2015. ISSN 0949877X. doi: 10.1007/s00778-015-0394-1.

Gallego, Mario Arias Fernández, Javier D. Martínez-Prieto, Miguel A. and de la Fuente,
Pablo. An Empirical Study of Real-World SPARQL Queries. In 1st International
Workshop on Usage Analysis and the Web of Data (USEWOD2011) at the 20th In-
ternational World Wide Web Conference (WWW 2011), pages 10–13, 2011. doi:
10.1016/j.postharvbio.2004.03.006. URL http://arxiv.org/abs/1103.5043.

Gerla, Giangiacomo. Inferences in probability logic. Artificial Intelligence, 70(1-2):33–52,
1994. ISSN 00043702. doi: 10.1016/0004-3702(94)90102-3.

Glimm, Birte, Horrocks, Ian, Motik, Boris, Stoilos, Giorgos, and Wang, Zhe. HermiT:
An OWL 2 Reasoner. Journal of Automated Reasoning, 53(3):245–269, 2014. ISSN
15730670. doi: 10.1007/s10817-014-9305-1.

Gray, J and Siewiorek, D P. High-availability computer systems. Computer, 24(9):39–48,
1991. ISSN 0018-9162. doi: 10.1109/2.84898.

Guarino, Nicola and Welty, Christopher A. An Overview of OntoClean. Handbook on
Ontologies, pages 1–20, 2009. URL http://link.springer.com/chapter/10.1007/
978-3-540-92673-3_9.

Guha, Ramanathan V, Brickley, Dan, and Macbeth, Steve. Schema. org: Evolution of
structured data on the web. Communications of the ACM, 59(2):44–51, 2016.

Guo, Yuanbo, Pan, Zhengxiang, and Heflin, Jeff. LUBM: A Benchmark for OWL Knowl-
edge Base Systems. In Web Semantics, volume 3, pages 158–182, 2005. ISBN 1570-
8268. doi: 10.1016/j.websem.2005.06.005.

Gutierrez, Claudio, Hurtado, Carlos, and Vaisman, Alejandro. Temporal RDF. The
Semantic Web: Research and Applications, pages 93–107, 2005. ISSN 1539-4794.
doi: 10.1007/11431053_7. URL http://link.springer.com/chapter/10.1007/
11431053_7.

Han, Xingwang, Feng, Zhiyong, Zhang, Xiaowang, Wang, Xin, Rao, Guozheng, and
Jiang, Shuo. On the Statistical Analysis of Practical SPARQL Queries. arXiv preprint
arXiv:1603.06729, page 6, 2016. URL http://arxiv.org/abs/1603.06729.

Heiden, Eric, Bader, Sebastian, and Kirste, Thomas. Concept and Realization of a Diag-
nostic System for Smart Environments. In van den Herik, H Jaap, Rocha, Ana Paula,
and Filipe, Joaquim, editors, Proceedings of the 9th International Conference on
Agents and Artificial Intelligence, ICAART 2017, Volume 2, Porto, Portugal, Febru-
ary 24-26, 2017., pages 318–329. SciTePress, 2017. ISBN 978-989-758-220-2. doi:
10.5220/0006257903180329. URL https://doi.org/10.5220/0006257903180329.

126

http://arxiv.org/abs/1103.5043
http://link.springer.com/chapter/10.1007/978-3-540-92673-3_9
http://link.springer.com/chapter/10.1007/978-3-540-92673-3_9
http://link.springer.com/chapter/10.1007/11431053_7
http://link.springer.com/chapter/10.1007/11431053_7
http://arxiv.org/abs/1603.06729
https://doi.org/10.5220/0006257903180329

Bibliography

Hess, Claudia, Chen, Willy, and Syldatke, Thomas. Business-oriented CAx in-
tegration with semantic technologies revisited. In INFORMATIK 2010 - Ser-
vice Science - Neue Perspektiven fur die Informatik, Beitrage der 40. Jahresta-
gung der Gesellschaft fur Informatik e.V. (GI), volume 2, pages 115–120, 2010.
ISBN 9783885792703. URL http://www.scopus.com/inward/record.url?eid=
2-s2.0-84874273263&partnerID=40&md5=7ac60c0bb767d63a7ff33c827abb4f1c.

Hilber, David and Ackermann, Wilhelm. Grundzüge der theoretischen Logik. Num-
ber 27. Springer, Berlin, zweite auf edition, 1938. ISBN 9783662417805. doi:
10.1007/978-3-662-41928-1.

Hoffart, Johannes, Suchanek, Fabian M, Berberich, Klaus, and Weikum, Gerhard.
YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Arti-
ficial Intelligence, 194:28–61, 2013.

Huang, Jiewen, Antova, Lyublena, Koch, Christoph, and Olteanu, Dan. MayBMS:
A Probabilistic Database Management System. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of data, pages 1071–
1074. ACM Press, 2009. ISBN 9781605585512. doi: 10.1145/1559845.
1559984. URL http://dl.acm.org/citation.cfm?id=1559984http://portal.
acm.org/citation.cfm?doid=1559845.1559984.

Huber, Jakob, Meilicke, Christian, and Stuckenschmidt, Heiner. Applying Markov Logic
for Debugging Probabilistic Temporal Knowledge Bases. In Proceedings of the 4th
Workshop on Automated Knowledge Base Construction (AKBC), 2014.

IBM X-Force. Mid-Year Trend and Risk Report 2013. Technical report, IBM X-Force,
2013. URL http://www-03.ibm.com/security/xforce/downloads.html.

Inoue, Naoya and Inui, Kentaro. ILP-Based Reasoning for Weighted Abduction. Plan,
Activity, and Intent Recognition, pages 25–32, 2011. URL http://www.aaai.org/
ocs/index.php/WS/AAAIW11/paper/download/3999/4313.

Jain, Dominik. Knowledge Engineering with Markov Logic Networks: A Re-
view. In Beierle, C and Kern-Isberner, G, editors, Evolving Knowledge in The-
ory and Applications. 3rd Workshop on Dynamics of Knowledge and Belief (DKB-
2011) at the 34th Annual German Conference on Artificial Intelligence, KI-2011,
Berlin, Germany, October 4, 2011. Proceedings, volume 361 of Informatik-Bericht,
pages 16–30. Fakultät für Mathematik und Informatik, FernUniversität in Ha-
gen, 2011. URL http://www.fernuniversitthagen.de/wbs/research/papers/
res/BeierleKernIsberner2011InfBericht361.pdf#page=24.

Jain, Dominik, Kirchlechner, Bernhard, and Beetz, Michael. Extending Markov
Logic to Model Probability Distributions in Relational Domains. In Hertzberg,
Joachim, Beetz, Michael, and Englert, Roman, editors, KI 2007: Advances in Ar-
tificial Intelligence, volume 4667 of Lecture Notes in Computer Science, pages 129–
143. Springer Berlin Heidelberg, 2007. ISBN 978-3-540-74564-8. doi: 10.1007/

127

http://www.scopus.com/inward/record.url?eid=2-s2.0-84874273263&partnerID=40&md5=7ac60c0bb767d63a7ff33c827abb4f1c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84874273263&partnerID=40&md5=7ac60c0bb767d63a7ff33c827abb4f1c
http://dl.acm.org/citation.cfm?id=1559984 http://portal.acm.org/citation.cfm?doid=1559845.1559984
http://dl.acm.org/citation.cfm?id=1559984 http://portal.acm.org/citation.cfm?doid=1559845.1559984
http://www-03.ibm.com/security/xforce/downloads.html
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/download/3999/4313
http://www.aaai.org/ocs/index.php/WS/AAAIW11/paper/download/3999/4313
http://www.fernuniversitthagen.de/wbs/research/papers/res/BeierleKernIsberner2011InfBericht361.pdf#page=24
http://www.fernuniversitthagen.de/wbs/research/papers/res/BeierleKernIsberner2011InfBericht361.pdf#page=24

Bibliography

978-3-540-74565-5_12. URL http://dx.doi.org/10.1007/978-3-540-74565-5_
12http://link.springer.com/chapter/10.1007/978-3-540-74565-5_12.

Jensen, Finn V. An Introduction to Bayesian Networks, volume 210. UCL press London,
1996.

Jha, Abhay and Suciu, Dan. Probabilistic Databases with MarkoViews. Proceedings of
the VLDB Endowment, 5(11):1160–1171, 2012. URL http://dl.acm.org/citation.
cfm?id=2350236.

Jobczyk, Krystian. Towards a project of fuzzy logic of real analysis. 2016.

Jones, Dean, Bench-Capon, Trevor, and Visser, Pepin. Methodologies for ontol-
ogy development. In Proceedings of the 15th IFIP World Computer Congress,
pages 20–35, 1998. ISBN 3-85403-122-X. doi: 10.1.1.52.2437. URL http:
//www.springerlink.com/index/u3u53033q2508524.pdf%5Cnhttp://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.52.2437&rep=rep1&type=pdf.

Jøsang, Audun. A Logic for Uncertain Probabilities. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems, 09(03):279–311, 2001. ISSN 0218-
4885. doi: 10.1142/S0218488501000831. URL http://www.worldscientific.com/
doi/abs/10.1142/S0218488501000831.

Jung, Jean Christoph and Lutz, Carsten. Ontology-Based Access to Probabilistic Data
with OWL QL. In The Semantic Web - ISWC 2012, pages 182–197. Springer, 2012.

Kakas, Antonis C., Kowalski, Robert A., and Toni, Francesca. Abductive logic program-
ming. J. Log. Comput., 1(6):719–770, 1992. URL http://logcom.oxfordjournals.
org/content/2/6/719.short.

Kalyanpur, Aditya, Boguraev, Branimir K., Patwardhan, Siddharth, Murdock,
J. William, Lally, Adam, Welty, Christopher A., Prager, John M., Coppola, Bonaven-
tura, Fokoue-Nkoutche, Achille, Zhang, Lei, Pan, Yue, and Qui, Zhao Ming. Struc-
tured Data and Inference in DeepQA. IBM Journal of Research and Develop-
ment, 56(3):351–364, 2012. URL http://ieeexplore.ieee.org/xpls/abs_all.
jsp?arnumber=6177725.

Kandula, Srikanth, Katabi, Dina, and Vasseur, JP P. Shrink: A tool for failure diagnosis
in IP networks. Proceedings of the 2005 ACM SIGCOMM workshop on Mining network
data, pages 173–178, 2005. URL http://dl.acm.org/citation.cfm?id=1080178.

Kaplan, Stanley and Garrick, B John. On The Quantitative Definition of Risk. Risk
Analysis, 1(1):11–27, 1981. ISSN 1539-6924. doi: 10.1111/j.1539-6924.1981.tb01350.x.
URL http://dx.doi.org/10.1111/j.1539-6924.1981.tb01350.x.

Kate, Rohit J and Mooney, Raymond J. Probabilistic Abduction using Markov Logic
Networks. IJCAI-09 Workshop on Plan, Activity, and Intent Recognition, 2009. URL
http://userweb.cs.utexas.edu/users/ml/papers/kate-pair09.pdf.

128

http://dx.doi.org/10.1007/978-3-540-74565-5_12 http://link.springer.com/chapter/10.1007/978-3-540-74565-5_12
http://dx.doi.org/10.1007/978-3-540-74565-5_12 http://link.springer.com/chapter/10.1007/978-3-540-74565-5_12
http://dl.acm.org/citation.cfm?id=2350236
http://dl.acm.org/citation.cfm?id=2350236
http://www.springerlink.com/index/u3u53033q2508524.pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.2437&rep=rep1&type=pdf
http://www.springerlink.com/index/u3u53033q2508524.pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.2437&rep=rep1&type=pdf
http://www.springerlink.com/index/u3u53033q2508524.pdf%5Cnhttp://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.52.2437&rep=rep1&type=pdf
http://www.worldscientific.com/doi/abs/10.1142/S0218488501000831
http://www.worldscientific.com/doi/abs/10.1142/S0218488501000831
http://logcom.oxfordjournals.org/content/2/6/719.short
http://logcom.oxfordjournals.org/content/2/6/719.short
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6177725
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6177725
http://dl.acm.org/citation.cfm?id=1080178
http://dx.doi.org/10.1111/j.1539-6924.1981.tb01350.x
http://userweb.cs.utexas.edu/users/ml/papers/kate-pair09.pdf

Bibliography

Kazakov, Yevgeny. Consequence-Driven Reasoning for Horn SHIQ Ontologies. In Pro-
ceedings of the 21st International Joint Conference on Artificial Intelligence, IJCAI
2009, pages 2040–2045, Pasadena, California, USA, 2009.

Kersting, Kristian and De Raedt, Luc. Bayesian Logic Programs. CoRR, cs.AI/0111,
2001.

Kimmig, Angelika, Mihalkova, Lilyana, and Getoor, Lise. Lifted graphical models:
a survey. Machine Learning, 99(1):1–45, 2014. ISSN 1573-0565. doi: 10.1007/
s10994-014-5443-2. URL http://dx.doi.org/10.1007/s10994-014-5443-2.

Klinov, Pavel and Parsia, Bijan. Optimization and Evaluation of Reasoning in Proba-
bilistic Description Logic: Towards a Systematic Approach. In International Semantic
Web Conference, pages 213–228, 2008.

Klinov, Pavel and Parsia, Bijan. Pronto: A Practical Probabilistic Description Logic
Reasoner. Lecture Notes in Computer Science, 7123:59–79, 2013. ISSN 03029743. doi:
10.1007/978-3-642-35975-0-4.

Klir, George J and Yuan, Bo. Fuzzy Sets and Fuzzy Logic: Theory and Applications.
1995. ISBN 0131011715. doi: 10.1109/9780470544341.ch11.

Koller, Daphne and Friedman, Nir. Probabilistic Graphical Models: Principles and Tech-
niques, volume 2009. 2009. ISBN 0262013193. doi: 10.1016/j.ccl.2010.07.006. URL
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886.

Koller, Daphne, Levy, Alon, and Pfeffer, Avi. P-CLASSIC: A tractable probablistic
description logic. Proceedings of the Fourteenth National Conference on Artificial
Intelligence, (August):390–397, 1997.

Krötzsch, Markus. Efficient Inferencing for OWL EL. In Logics in Artificial Intelli-
gence - 12th European Conference, JELIA 2010, Helsinki, Finland, September 13-15,
2010. Proceedings, volume 6341 of Lecture Notes in Computer Science, pages 234–246.
Springer, 2010.

Lakshmanan, Laks V. S. and Sadri, Fereidoon. Probabilistic Deductive Databases. SLP,
pages 254–268, jun 1994. ISSN 1097-6809. doi: 10.1016/j.jvs.2014.03.253.

Lanti, Davide, Rezk, Martin, Xiao, Guohui, and Calvanese, Diego. The NPD Benchmark:
Reality Check for OBDA Systems. Proc. of the 18th Int. Conf. on Extending Database
Technology (EDBT), 2015.

Lehmann, Jens, Isele, Robert, Jakob, Max, Jentzsch, Anja, Kontokostas, Dimitris,
Mendes, Pablo N., Hellmann, Sebastian, Morsey, Mohamed, Van Kleef, Patrick, Auer,
Sören, and Bizer, Christian. DBpedia - A large-scale, multilingual knowledge base ex-
tracted from Wikipedia. Semantic Web, 6(2):167–195, 2015. ISSN 22104968. doi:
10.3233/SW-140134.

129

http://dx.doi.org/10.1007/s10994-014-5443-2
http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=11886

Bibliography

Ling, Xiao and Weld, Daniel S. Temporal Information Extraction. Artificial Intelligence,
pages 1385–1390, 2007. URL http://www.cs.washington.edu/homes/weld/papers/
ling-aaai10.pdf.

Ling, Xiao and Weld, Daniel S. Temporal Information Extraction. In AAAI, 2010.

Liu, T.S. and Chiou, S.B. The application of Petri nets to failure analysis. Reliabil-
ity Engineering and System Safety, 57(2):129–142, 1997. ISSN 09518320. doi: 10.
1016/S0951-8320(97)00030-6. URL http://linkinghub.elsevier.com/retrieve/
pii/S0951832097000306.

Lukasiewicz, Thomas. Probabilistic Logic Programming. 13th European Conference on
Artificial Intelligence (ECAI-98), (July):388–392, 1998.

Lukasiewicz, Thomas. Probabilistic description logic programs. International Jour-
nal of Approximate Reasoning, 45(2):288–307, jul 2007. ISSN 0888613X. doi:
10.1016/j.ijar.2006.06.012. URL http://linkinghub.elsevier.com/retrieve/pii/
S0888613X06000648.

Lukasiewicz, Thomas. Expressive probabilistic description logics. Artificial Intelligence,
172(6-7):852–883, apr 2008. ISSN 00043702. doi: 10.1016/j.artint.2007.10.017. URL
http://linkinghub.elsevier.com/retrieve/pii/S0004370207001877.

Lukasiewicz, Thomas and Straccia, Umberto. Managing Uncertainty and Vagueness in
Description Logics for the Semantic Web. Web Semantics, 6(4):291–308, 2008. ISSN
15708268. doi: 10.1016/j.websem.2008.04.001.

Lutz, Carsten, Seylan, Inanç, Toman, David, and Wolter, Frank. The Combined Ap-
proach to OBDA: Taming Role Hierarchies Using Filters. Lecture Notes in Computer
Science, 8218 LNCS:314–330, 2013. ISSN 03029743. doi: 10.1007/978-3-642-41335-3_
20.

Marwede, Nina, Rohr, Matthias, and Hasselbring, Wilhelm. Automatic Failure Diagno-
sis Support in Distributed Large-Scale Software Systems based on Timing Behavior
Anomaly Correlation. In Winter, A., Ferenc, R., and Kodel, J., editors, Proceeding of
the 13th European Conference on Software Maintenance and Reengineering (CSMR
2009), pages 47–57, 2009.

Mikosch, Thomas and Kallenberg, Olav. Foundations of Modern Probability. Journal
of the American Statistical Association, 93(443):1243, 1998. ISSN 01621459. doi: 10.
2307/2669881. URL http://www.jstor.org/stable/2669881?origin=crossref.

Mohammadi, Dara. Finding patient zero. Pharmaceutical Journal, 294(7845):47–49,
2015. ISSN 00316873.

Motik, Boris. Representing and querying validity time in RDF and OWL: A logic-based
approach. Web Semantics: Science, Services and Agents on the World Wide Web, 12:
3–21, 2012.

130

http://www.cs.washington.edu/homes/weld/papers/ling-aaai10.pdf
http://www.cs.washington.edu/homes/weld/papers/ling-aaai10.pdf
http://linkinghub.elsevier.com/retrieve/pii/S0951832097000306
http://linkinghub.elsevier.com/retrieve/pii/S0951832097000306
http://linkinghub.elsevier.com/retrieve/pii/S0888613X06000648
http://linkinghub.elsevier.com/retrieve/pii/S0888613X06000648
http://linkinghub.elsevier.com/retrieve/pii/S0004370207001877
http://www.jstor.org/stable/2669881?origin=crossref

Bibliography

Musen, Mark A. The Protégé Project: A Look Back and a Look Forward. AI Matters,
1(4):4–12, 2015. doi: 10.1145/2757001.2757003.

Ng, Hwee Tou and Mooney, Raymond J. An Efficient First-Order Abduction System
Based on the ATMS. In Proceedings of the Ninth National Conference on Artificial
Intelligence (AAAI-91), pages 494–499, Anaheim, CA, 1991. University of Texas at
Austin.

Ng, Raymond and Subrahmanian, V.S. Probabilistic logic programming. In-
formation and Computation, 101(2):150–201, 1992. ISSN 08905401. doi:
10.1016/0890-5401(92)90061-J. URL http://linkinghub.elsevier.com/
retrieve/pii/089054019290061J%5Cnhttp://www.sciencedirect.com/science/
article/pii/089054019290061J.

Niepert, Mathias, Noessner, Jan, Meilicke, Christian, and Stuckenschmidt, Heiner.
Probabilistic-Logical Web Data Integration. In Polleres, Axel, D�Amato, Claudia,
Arenas, Marcelo, Handschuh, Siegfried, Kroner, Paula, Ossowski, Sascha, and Patel-
Schneider, Peter, editors, Reasoning Web. Semantic Technologies for the Web of Data,
volume 6848 of Lecture Notes in Computer Science, pages 504–533. Springer Berlin
Heidelberg, 2011a. ISBN 978-3-642-23031-8. doi: 10.1007/978-3-642-23032-5_11.
URL http://dx.doi.org/10.1007/978-3-642-23032-5_11.

Niepert, Mathias, Noessner, Jan, and Stuckenschmidt, Heiner. Log-Linear Description
Logics. In IJCAI International Joint Conference on Artificial Intelligence, pages 2153–
2158, 2011b. ISBN 9781577355120. doi: 10.5591/978-1-57735-516-8/IJCAI11-359.

Nilsson, Nils J. Probabilistic logic. Artificial Intelligence, 28(1):71–87, 1986. ISSN
00043702. doi: 10.1016/0004-3702(86)90031-7.

Noessner, Jan, Niepert, Mathias, and Stuckenschmidt, Heiner. RockIt: Exploit-
ing Parallelism and Symmetry for MAP Inference in Statistical Relational Mod-
els. In Proceedings of the Twenty-Seventh AAAI Conference on Artificial In-
telligence, pages 739–745, Bellevue, Washington, USA, 2013. AAAI Press. URL
http://link.springer.com/chapter/10.1007/BFb0027523.

Ovchinnikova, Ekaterina, Montazeri, Niloofar, Alexandrov, Theodore, R., Hobbs Jerry,
Mccord, Michael C., and Mulkar-Mehta, Rutu. Abductive Reasoning with a Large
Knowledge Base for Discourse Processing. In Bunt, Harry, Bos, Johan, and Pulman,
Stephen, editors, Computing Meaning: Volume 4, pages 107–127. Springer Nether-
lands, Dordrecht, 2014. ISBN 978-94-007-7284-7. doi: 10.1007/978-94-007-7284-7_7.
URL http://dx.doi.org/10.1007/978-94-007-7284-7_7.

Papaioannou, Katerina and Bohlen, Michael. TemProRA: Top-k temporal-probabilistic
results analysis. In 2016 IEEE 32nd International Conference on Data Engineering,
ICDE 2016, pages 1382–1385, 2016. ISBN 9781509020195. doi: 10.1109/ICDE.2016.
7498350.

131

http://linkinghub.elsevier.com/retrieve/pii/089054019290061J%5Cnhttp://www.sciencedirect.com/science/article/pii/089054019290061J
http://linkinghub.elsevier.com/retrieve/pii/089054019290061J%5Cnhttp://www.sciencedirect.com/science/article/pii/089054019290061J
http://linkinghub.elsevier.com/retrieve/pii/089054019290061J%5Cnhttp://www.sciencedirect.com/science/article/pii/089054019290061J
http://dx.doi.org/10.1007/978-3-642-23032-5_11
http://link.springer.com/chapter/10.1007/BFb0027523
http://dx.doi.org/10.1007/978-94-007-7284-7_7

Bibliography

Parsia, Bijan, Patel-Schneider, Peter, Hitzler, Pascal, Rudolph, Sebastian, and Krötzsch,
Markus. OWL 2 Web Ontology Language Primer (Second Edition). Technical report,
W3C, 2012. URL https://www.w3.org/TR/owl2-primer/.

Paulheim, Heiko and Pan, Jeff Z. Why the Semantic Web Should Become More Im-
precise. In In Proceedings of What Will the Semantic Web Look Like 10 Years From
Now?, pages 1–5, 2012. URL http://www.heikopaulheim.com/docs/sw2020.pdf.

Pearl, Judea. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann Pub-
lishers Inc., 1988.

Picalausa, Francois and Vansummeren, Stijn. What are Real SPARQL Queries Like?
In Proceedings of the International Workshop on Semantic Web Information Manage-
ment, pages 1–6, 2011. ISBN 9781450306515. doi: 10.1145/1999299.1999306. URL
http://portal.acm.org/citation.cfm?doid=1999299.1999306.

Poole, David. The independent choice logic for modelling multiple agents under un-
certainty. Artificial Intelligence, 94(1-2):7–56, 1997. ISSN 00043702. doi: 10.1016/
S0004-3702(97)00027-1. URL http://www.sciencedirect.com/science/article/
pii/S0004370297000271.

Poole, David. The independent choice logic and beyond. Lecture Notes in Com-
puter Science (including subseries Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 4911 LNAI:222–243, 2008. ISSN 03029743. doi:
10.1007/978-3-540-78652-8_8.

Poole, David L., Goebel, Randy G., and Aleliunas, Romas. Theorist: A logical reasoning
system for defaults and diagnosis. In Cercone, Nick J. and McCalla, Gordon, editors,
The Knowledge Frontier: Essays in the Representation of Knowledge, pages 331–352.
Springer, 1987.

Poon, Hoifung and Vanderwende, Lucy. Joint inference for knowledge ex-
traction from biomedical literature. Proceedings of the 48th Annual Meet-
ing of the Association for Computational Linguistics (ACL), (June):813–821,
2010. URL http://portal.acm.org/citation.cfm?id=1858122%5Cnhttp://dl.
acm.org/citation.cfm?id=1858122.

Poon, Hoifung, Domingos, Pedro, and Sumner, Marc. A General Method for Reducing
the Complexity of Relational Inference And its Application to MCMC. Proceedings of
the 23rd National Conference on Artificial Intelligence (AAAI), 2:1075—-1080, 2008.
ISSN 00219258. doi: 10.1074/jbc.M201091200.

Pople, Harry E. On the Mechanization of Abductive Logic. IJCAI, pages 147–152, 1973.
URL http://pdf.aminer.org/000/366/748/two_sided_hypotheses_generation_
for_abductive_analogical_reasoning.pdf.

132

https://www.w3.org/TR/owl2-primer/
http://www.heikopaulheim.com/docs/sw2020.pdf
http://portal.acm.org/citation.cfm?doid=1999299.1999306
http://www.sciencedirect.com/science/article/pii/S0004370297000271
http://www.sciencedirect.com/science/article/pii/S0004370297000271
http://portal.acm.org/citation.cfm?id=1858122%5Cnhttp://dl.acm.org/citation.cfm?id=1858122
http://portal.acm.org/citation.cfm?id=1858122%5Cnhttp://dl.acm.org/citation.cfm?id=1858122
http://pdf.aminer.org/000/366/748/two_sided_hypotheses_generation_for_abductive_analogical_reasoning.pdf
http://pdf.aminer.org/000/366/748/two_sided_hypotheses_generation_for_abductive_analogical_reasoning.pdf

Bibliography

Pujara, Jay, Miao, Hui, Getoor, Lise, and Cohen, William. Knowledge graph identifi-
cation. In Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics), volume 8218 LNCS, pages
542–557, 2013. ISBN 9783642413346. doi: 10.1007/978-3-642-41335-3_34.

Raghavan, Sindhu and Mooney, Raymond J. Bayesian Abductive Logic Programs. Stat.
Relational Artif. Intell., pages 82–87, 2010. URL http://www.aaai.org/ocs/index.
php/WS/AAAIW10/paper/viewPDFInterstitial/1974/2487.

Richardson, Matthew and Domingos, Pedro. Markov Logic Networks. Machine Learning,
62(1-2):107–136, jan 2006. ISSN 0885-6125. doi: 10.1007/s10994-006-5833-1. URL
http://dx.doi.org/10.1007/s10994-006-5833-1.

Riguzzi, Fabrizio, Bellodi, Elena, Lamma, Evelina, and Zese, Riccardo. BUNDLE: A
Reasoner for Probabilistic Ontologies. In Reasoning and Rule Systems - 7th Inter-
national Conference, RR 2013, Lecture Notes in Computer Science, pages 183–197,
Mannheim, Germany„ 2013. Springer. URL http://link.springer.com/chapter/
10.1007/978-3-642-39666-3_14.

Riguzzi, Fabrizio, Bellodi, Elena, Lamma, Evelina, and Zese, Riccardo. Probabilistic
Description Logics under the Distribution Semantics. The Semantic Web, 6(5):477–
501, 2015. doi: 10.3233/SW-140154. URL http://www.semantic-web-journal.
net/system/files/swj651.pdf.

Ritze, Dominique. Web-Scale Web Table to Knowledge Base Matching. PhD thesis, 2017.

Ritze, Dominique, Lehmberg, Oliver, Oulabi, Yaser, and Bizer, Christian. Profiling the
Potential of Web Tables for Augmenting Cross-domain Knowledge Bases Categories
and Subject Descriptors. Www, pages 251–261, 2016. doi: 10.1145/2872427.2883017.
URL http://www2016.net/proceedings/proceedings/p251.pdf.

Rooney, J.J. and Heuvel, L.N.V. Root cause analysis for beginners. Quality Progress,
37(7):45–53, 2004. URL https://servicelink.pinnacol.com/pinnacol_docs/lp/
cdrom_web/safety/management/accident_investigation/Root_Cause.pdf.

Ruspini, Enrique H., Lowrance, John D., and Strat, Thomas M. Understanding eviden-
tial reasoning. International Journal of Approximate Reasoning, 6(3):401–424, 1992.
ISSN 0888613X. doi: 10.1016/0888-613X(92)90033-V.

Russell, Stuart J., Norvig, Peter, and By, Uploaded. Artificial Intelligence: A Modern
Approach. 2010. ISBN 0137903952. doi: 10.1017/S0269888900007724. URL http:
//amazon.de/o/ASIN/0130803022/.

Saleem, Muhammad, Ali, Muhammad Intizar, Hogan, Aidan, Mehmood, Qaiser, and
Ngonga Ngomo, Axel Cyrille. LSQ: The Linked SPARQL Queries Dataset. Lecture
Notes in Computer Science, 9367:261–269, 2015. ISSN 16113349. doi: 10.1007/
978-3-319-25010-6_15.

133

http://www.aaai.org/ocs/index.php/WS/AAAIW10/paper/viewPDFInterstitial/1974/2487
http://www.aaai.org/ocs/index.php/WS/AAAIW10/paper/viewPDFInterstitial/1974/2487
http://dx.doi.org/10.1007/s10994-006-5833-1
http://link.springer.com/chapter/10.1007/978-3-642-39666-3_14
http://link.springer.com/chapter/10.1007/978-3-642-39666-3_14
http://www.semantic-web-journal.net/system/files/swj651.pdf
http://www.semantic-web-journal.net/system/files/swj651.pdf
http://www2016.net/proceedings/proceedings/p251.pdf
https://servicelink.pinnacol.com/pinnacol_docs/lp/cdrom_web/safety/management/accident_investigation/Root_Cause.pdf
https://servicelink.pinnacol.com/pinnacol_docs/lp/cdrom_web/safety/management/accident_investigation/Root_Cause.pdf
http://amazon.de/o/ASIN/0130803022/
http://amazon.de/o/ASIN/0130803022/

Bibliography

Sato, Taisuke. A statistical learning method for logic programs with distribution seman-
tics. In Proceedings of the Twelth International conference on logic programming, pages
715–729, 1995. URL http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.17.4408.

Sato, Taisuke and Kameya, Yoshitaka. New advances in logic-based probabilistic model-
ing by PRISM. Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics), 4911 LNAI:118–155,
2008. ISSN 03029743. doi: 10.1007/978-3-540-78652-8_5.

Schlobach, Stefan, Huang, Zhisheng, Cornet, Ronald, and van Harmelen, Frank. De-
bugging Incoherent Terminologies. Journal of Automated Reasoning, 39(3):317–349,
2007. doi: 10.1007/s10817-007-9076-z.

Schmidt, Michael, Hornung, Thomas, Lausen, Georg, and Pinkel, Christoph. SP2Bench:
A SPARQL Performance Benchmark. Data Engineering, 25:222–23, 2009. ISSN 1084-
4627. doi: 10.1109/ICDE.2009.28. URL http://ieeexplore.ieee.org/xpls/abs_
all.jsp?arnumber=4812405.

Schoenfisch, J. Querying probabilistic ontologies with SPARQL. In Lecture Notes in
Informatics (LNI), Proceedings - Series of the Gesellschaft fur Informatik (GI), volume
P-232, 2014. ISBN 9783885796268.

Schoenfisch, Joerg and Stuckenschmidt, Heiner. Towards Large-Scale Probabilistic
OBDA. In Beierle, Christoph and Dekhtyar, Alex, editors, Scalable Uncertainty
Management: 9th International Conference, SUM 2015, Québec City, QC, Canada,
September 16-18, 2015. Proceedings, pages 106–120. Springer International Publish-
ing, Cham, 2015. ISBN 978-3-319-23540-0. doi: 10.1007/978-3-319-23540-0_8.

Schoenfisch, Joerg and Stuckenschmidt, Heiner. Analyzing Real-World SPARQL Queries
in the Light of Probabilistic Data. Proceedings of the 12th International Workshop on
Uncertainty Reasoning for the Semantic Web (URSW 2016), 1665:13–23, 2016. URL
http://ceur-ws.org/Vol-1665/paper2.pdf.

Schoenfisch, Joerg and Stuckenschmidt, Heiner. Analyzing Real-World SPARQL Queries
and Ontology-Based Data Access in the Context of Probabilistic Data. International
Journal of Approximate Reasoning J. Schoenfisch, H. Stuckenschmidt Int. J. Approx.
Reason, 90:374–388, 2017. ISSN 0888613X. doi: 10.1016/j.ijar.2017.08.005. URL
http://dx.doi.org/10.1016/j.ijar.2017.08.005.

Schoenfisch, Joerg, von Stülpnagel, Janno, Ortmann, Jens, Meilicke, Christian, and
Stuckenschmidt, Heiner. Root Cause Analysis through Abduction in Markov Logic
Networks. In Proceedings of the 20th International Enterprise Distributed Object
Computing Conference (EDOC), pages 1–13, 2016.

Schoenfisch, Joerg, Meilicke, Christian, von Stülpnagel, Janno, Ortmann, Jens, and
Stuckenschmidt, Heiner. Root Cause Analysis in IT Infrastructures Using Ontologies

134

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.4408
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.4408
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812405
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4812405
http://ceur-ws.org/Vol-1665/paper2.pdf
http://dx.doi.org/10.1016/j.ijar.2017.08.005

Bibliography

and Abduction in Markov Logic Networks. Information Systems, 73, 2017. doi:
10.1016/j.is.2017.11.003.

Schoenmackers, Stefan, Etzioni, Oren, and Weld, Daniel S. Scaling textual infer-
ence to the web. Proceedings of the Conference on Empirical Methods in Natural
Language Processing, 59(October):79, 2008. doi: 10.3115/1613715.1613727. URL
http://portal.acm.org/citation.cfm?doid=1613715.1613727.

Schoenmackers, Stefan (University of Washington/Turing Center), Etzioni, Oren (Uni-
versity of Washington/Turing Center), Weld, Daniel S. (University of Washing-
ton/Turing Center), and Davis, Jesse (Katholieke Universiteit Leuven). Learning
first-order horn clauses from web text, 2010. URL http://dl.acm.org/citation.
cfm?id=1870764.

Schreiber, Guus and Raimond, Yves. RDF 1.1 Primer. W3C note, W3C, 2014. URL
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/.

Simancik, Frantisek, Kazakov, Yevgeny, and Horrocks, Ian. Consequence-Based Rea-
soning beyond Horn Ontologies. In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22,
2011, pages 1093–1098. IJCAI/AAAI, 2011.

Singh, Sameer, Wick, Michael, and McCallum, A. Monte Carlo MCMC: efficient infer-
ence by approximate sampling. Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learn-
ing (EMNLP-CoNLL), pages 1104—-1113, 2012. doi: 10.1007/978-3-642-31164-2.
URL http://dl.acm.org/citation.cfm?id=2391072.

Singla, Parag and Domingos, Pedro. Lifted First-Order Belief Propagation. In Proceed-
ings of AAAI, pages 1094–1099, 2008.

Singla, Parag and Mooney, Raymond J. Abductive Markov Logic for Plan Recognition.
AAAI, pages 1069–1075, 2011. URL http://www.aaai.org/ocs/index.php/AAAI/
AAAI11/paper/viewPDFInterstitial/3615/3992.

Sirin, Evren, Parsia, Bijan, Grau, Bernardo Cuenca, Kalyanpur, Aditya, and Katz,
Yarden. Pellet: A practical OWL-DL reasoner. Web Semantics, 5(2):51–53, 2007.
ISSN 15708268. doi: 10.1016/j.websem.2007.03.004.

Steinder, M. and Sethi, A.S. S. Increasing robustness of fault localization through
analysis of lost, spurious, and positive symptoms. Proceedings of the Twenty-First
Annual Joint Conference of the IEEE Computer and Communications Societies
(INFOCOM 2002), 1:322–331, 2002. doi: 10.1109/INFCOM.2002.1019274. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1019274.

Stickel, Mark E. A Prolog-like inference system for computing minimum-cost abductive
explanations in natural-language interpretation. Annals of Mathematics and Artificial

135

http://portal.acm.org/citation.cfm?doid=1613715.1613727
http://dl.acm.org/citation.cfm?id=1870764
http://dl.acm.org/citation.cfm?id=1870764
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://dl.acm.org/citation.cfm?id=2391072
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewPDFInterstitial/3615/3992
http://www.aaai.org/ocs/index.php/AAAI/AAAI11/paper/viewPDFInterstitial/3615/3992
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1019274

Bibliography

Intelligence, 4(1-2):89–105, 1991. URL http://link.springer.com/article/10.
1007/BF01531174.

Suciu, Dan, Olteanu, Dan, Ré, Christopher, and Koch, Christoph. Probabilistic
Databases. Morgan & Claypool Publishers, 2011. ISBN 9781608456802.

Tansel, Abdullah Uz, Clifford, James, Gadia, Shashi, Jajodia, Sushil, Segev, Arie, and
Snodgrass, Richard, editors. Temporal Databases: Theory, Design, and Implemen-
tation. Benjamin-Cummings Publishing Co., Inc., Redwood City, CA, USA, 1993.
ISBN 0-8053-2413-5.

The W3C SPARQL Working Group. SPARQL 1.1 Overview. W3C recommendation,
W3C, 2013. URL https://www.w3.org/TR/sparql11-overview/.

Theobald, Martin, De Raedt, Luc, Dylla, Maximilian, Kimmig, Angelika, and Miliaraki,
Iris. 10 Years of Probabilistic Querying - What Next? Advances in Databases and In-
formation Systems, pages 1–13, 2013. URL https://lirias.kuleuven.be/handle/
123456789/403578.

Venugopal, Deepak and Gogate, Vibhav. On Lifting the Gibbs Sampling Algorithm. In
Proceedings of NIPS, pages 1664–1672. 2012.

vom Brocke, Jan, Braccini, Alessio Maria, Sonnenberg, Christian, and Spagnoletti,
Paolo. Living IT infrastructures - An ontology-based approach to aligning IT infras-
tructure capacity and business needs. International Journal of Accounting Information
Systems, 15(3):246–274, 2014. ISSN 14670895. doi: 10.1016/j.accinf.2013.10.004.

von Stülpnagel, Janno, Ortmann, Jens, and Schoenfisch, Joerg. IT Risk Man-
agement with Markov Logic Networks. Advanced Information Systems Engineer-
ing, pages 301—-315, 2014. URL http://link.springer.com/chapter/10.1007/
978-3-319-07881-6_21.

Wang, Daisy Zhe, Michelakis, Eirinaios, Garofalakisy, Minos, and Hellerstein,
Joseph M. BayesStore: Managing Large, Uncertain Data Repositories with
Probabilistic Graphical Models. In Proceedings of the VLDB Endowment,
volume 1, pages 340–351, 2008. ISBN 0000000000000. doi: 10.1145/
1453856.1453896. URL http://www.scopus.com/inward/record.url?eid=2-s2.
0-84859207862&partnerID=40&md5=8c49b689d426d4f9a27f064594eba37c.

Weber, P, Medina-Oliva, G, Simon, C, and Iung, B. Overview on Bayesian net-
works applications for dependability, risk analysis and maintenance areas. En-
gineering Applications of Artificial Intelligence, 25(4):671–682, 2012. ISSN 0952-
1976. doi: http://dx.doi.org/10.1016/j.engappai.2010.06.002. URL http://www.
sciencedirect.com/science/article/pii/S095219761000117X.

136

http://link.springer.com/article/10.1007/BF01531174
http://link.springer.com/article/10.1007/BF01531174
https://www.w3.org/TR/sparql11-overview/
https://lirias.kuleuven.be/handle/123456789/403578
https://lirias.kuleuven.be/handle/123456789/403578
http://link.springer.com/chapter/10.1007/978-3-319-07881-6_21
http://link.springer.com/chapter/10.1007/978-3-319-07881-6_21
http://www.scopus.com/inward/record.url?eid=2-s2.0-84859207862&partnerID=40&md5=8c49b689d426d4f9a27f064594eba37c
http://www.scopus.com/inward/record.url?eid=2-s2.0-84859207862&partnerID=40&md5=8c49b689d426d4f9a27f064594eba37c
http://www.sciencedirect.com/science/article/pii/S095219761000117X
http://www.sciencedirect.com/science/article/pii/S095219761000117X

Bibliography

Weidl, G., Madsen, A. L., and Israelson, S. Applications of object-oriented Bayesian
networks for condition monitoring, root cause analysis and decision support on oper-
ation of complex continuous processes. Computers and Chemical Engineering, 29(9):
1996–2009, 2005. ISSN 00981354. doi: 10.1016/j.compchemeng.2005.05.005.

Widom, Jennifer. Trio: A System for Integrated Management of Data, Accuracy, and
Lineage. Technical Report, pages 1–22, 2004. URL http://ilpubs.stanford.edu:
8090/658.

Wu, Wentao, Li, Hongsong, Wang, Haixun, and Zhu, Kenny Q. Probase: A probabilistic
taxonomy for text understanding. Proceedings of the 2012 ACM SIGMOD, pages 481–
492, 2012. ISSN 00043702. doi: 10.1016/j.artint.2011.01.003. URL http://dl.acm.
org/citation.cfm?id=2213891.

Zadeh, Lotfi A. Fuzzy sets. Information and Control, 8(3):338–353, 1965. ISSN 0019-
9958. doi: 10.1016/S0019-9958(65)90241-X.

Zambon, Emmanuele, Etalle, Sandro, Wieringa, Roel J., and Hartel, Pieter.
Architecture-based Qualitative Risk Analysis for Availability of IT Infrastructures.
Technical report, Centre for Telematics and Information Technology, University of
Twente, 2009.

Zawawy, Hamzeh, Kontogiannis, Kostas, Mylopoulos, John, and Mankovskii, Serge.
Requirements-driven root cause analysis using markov logic networks. In Ralyte,
Jolita, Franch, Xavier, Brinkkemper, Sjaak, and Wrycza, Stanislaw, editors, Ad-
vanced Information Systems Engineering, volume 7328 of Lecture Notes in Com-
puter Science, pages 350–365. Springer Berlin Heidelberg, 2012. ISBN 978-3-642-
31094-2. doi: 10.1007/978-3-642-31095-9_23. URL http://dx.doi.org/10.1007/
978-3-642-31095-9_23.

Zhou, Xiaofeng, Chen, Yang, and Wang, Daisy Zhe. ArchimedesOne : Query Processing
over Probabilistic Knowledge Bases. Vldb, pages 5–8, 2016. ISSN 2150-8097. doi:
10.14778/3007263.3007284.

137

http://ilpubs.stanford.edu:8090/658
http://ilpubs.stanford.edu:8090/658
http://dl.acm.org/citation.cfm?id=2213891
http://dl.acm.org/citation.cfm?id=2213891
http://dx.doi.org/10.1007/978-3-642-31095-9_23
http://dx.doi.org/10.1007/978-3-642-31095-9_23

	Introduction
	Introduction
	Motivation
	Research Objectives and Outline

	Preliminaries
	Knowledge Graphs
	Uncertain Knowledge Graphs

	Ontologies and First-order Logic
	First-order Logic and Description Logic

	Light-weight Description Logics
	The Description Logic EL++
	The Description Logic DL-LiteR

	Probabilistic Graphical Models
	Probabilistic Reasoning with Light-weight Description Logics
	Log-linear Description Logics
	Tuple-independent OWL

	Research Contributions
	Debugging Large-scale Uncertain Temporal Knowledge Graphs
	Introduction
	Preliminaries
	Temporal Knowledge Graphs
	Uncertain Temporal Knowledge Graphs
	Probabilistic Soft Logic
	Reasoning in Uncertain Temporal Knowledge Graphs

	Conflict Detection in Uncertain Temporal Knowledge Graphs
	Numerical Constraints for Conflict Detection

	Datasets of Temporal Knowledge Graphs
	FootballDB
	Wikidata
	Mining Rules from YAGO

	Tool Support
	System Overview

	Experiments
	Performance of MAP Inference
	Performance of Conflict Detection

	Related Work
	Conclusion

	Scalable Probabilistic Query Answering and Logical Reasoning
	Introduction
	Preliminaries
	Implementing Reasoning on Top of Probabilistic Databases
	Complexity of Query Processing in TIP-OWL

	Analysis of the SPARQL Dataset and Query Safeness
	Benchmarks on Probabilistic Data
	Benchmark Data for Probabilistic OBDA
	Experimental Evaluation

	Related Work
	Analysis of Real-World SPARQL Queries
	Probabilistic Querying
	Probabilistic Ontology-Based Data Access

	Conclusion

	IT Risk Management in Large-scale IT Infrastructures
	Introduction
	Preliminaries
	Abduction in Markov Logic Networks

	Root Cause Analysis with Markov Logic Networks
	Scenario Setting
	Modeling Dependencies and Risks
	Infrastructure Components and Background Knowledge
	Computing Explanations
	Limitations

	Exemplary Scenarios
	Scenario Analysis

	Evaluation of Scalability
	Data Generation
	Scalability Results

	Tool Support
	Required Data
	User Interaction

	Estimating Availabilities in IT Infrastructures
	Availability
	Summary of the Approach
	Case Study

	Related Work
	Root Cause Analysis
	Applications of Abductive Reasoning
	Estimating Availability

	Discussion and Conclusion

	Conclusion and Future Work
	Conclusion
	Extracting Consistent Knowledge Graphs from Uncertain Information
	Assessing the Real-World Usability of the Combination of Probabilistic and Logical Reasoning through Query Rewriting
	IT Risk Management in Large-scale IT Infrastructures using Probabilistic Models
	Closing Remarks

	Future Work
	Bibliography

