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Chapter 1

Introduction

1.1 Problem Statement

The amount of data on the Web is constantly growing [83] and with it the em-
bedded knowledge that is publicly available. Utilizing the world’s largest public
knowledge base is not simple because of the distributed nature of the Web and the
subsequent heterogeneity of data such as languages and formats used to represent
content [84, p. 10]. However, since the invention of the Semantic Web, the embed-
ded knowledge is much easier to consume in an automated way: The idea behind
it is to provide data together with its underlying meaning in a standardized and
machine-readable format. The semantics are defined in so called ontologies. [78,
pp. 10-12] Structured semantic data exploded in recent years which can be seen,
for example, when looking at the exponential growth of the number of data sets
available in the Linked Open Data Cloud1.
Ontologies are the first step in allowing interoperability: If the same ontology is
used for different applications, those can work together. However, there is not one
all-encompassing ontology but multiple ontologies coexist to represent the same
kind of information. In order to ultimatively use all the available knowledge, one
has to mediate between different ontologies in order to allow for interoperability.
Therefore, concepts of different ontologies have to be matched which is also known
as ontology alignment [47, pp. 19-20]. Ideally, this is an automated process which
requires little human interaction.

Similar to the Web, the amount of data has also increased in businesses. Data
is the foundation of knowledge and the key to increase one’s knowledge base [107,
p. 58] [48, pp. 1-3]. Today, knowledge is regarded as most valuable resource in

1see https://lod-cloud.net/#about

1
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enterprises [135]. With data being named the new oil [168, 169, 160] or the new
gold [14], the topic of data management and data mining has long ago reached the
world of the traditional economy. Nonetheless, the transformation into a "data-
driven world" [68] is not easy for such companies as the data is split silo-like into
different operational and analytical systems. Each of those systems has its own
underlying semantics.
What prevents traditional companies from exploiting the full potential of their data
is its heterogeneity. The key to success is overcoming the semantic heterogeneity
problem. Mediating the semantics in this context is also known as data integration
which is a complicated, costly and lengthy process [148, pp. 321-322]. Within this
process, ontologies can be used to formally describe the semantics of each data
service that is to be integrated. Automatic ontology alignment can then negoti-
ate semantic heterogeneity and, hence, help businesses to integrate their data [49,
pp. 8-11].

1.2 Business Use Case: Semantic Integration in the Fin-
ancial Services Sector

The software landscape of enterprises often resembles a heterogeneous patchwork
of different systems by different vendors. Sometimes there are even multiple sys-
tems for the same task (e.g. after an acquisition). Reuters reports that Deutsche
Bank alone had 45 different IT systems in 2015 which was reduced to 32 as of
2018 [140]. All of those software components use their own data model with a
large amount of overlapping parts. For a holistic understanding of the company
and its risk profile, all data has to be federated and translated into one view. Espe-
cially in the financial sector, an understanding of the company’s financial standing
as well as its risk exposure is crucial for business decisions. Naturally, there is an
endogenous motivation to federate data.
Additionally, regulators emerge to be an exogenous driver for this process by ob-
ligating financial institutions to report risk KPIs in a timely manner and even by
regulating the IT infrastructure (like BCBS 2392 [10]). The costs caused by reg-
ulation in the banking sector are considerable. ING Bank, the largest bank of the
Netherlands by total assets, for instance, reports in its 2017 annual report EUR 901
million of expenses caused by regulation alone [7, p. 5]. This equals a little less
than 10% of the total expenses incurred. The bank describes the situation as fol-

2The Basel Committee on Banking Supervision (BCBS) is a supranational committe which de-
velops regulatory standards for banking institutions. BCBS can refer to the committee itself but is
also used to refer to its standards (like in BCBS 239) [11].
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lows: "Since the start of ECB supervision the increase in regulatory reporting has
been significant. Reporting timelines have become shorter and the granularity of
the data being requested has increased" [7, p. 17]. From the example of ING Bank,
one can see in an exemplary way that there is monetary interest in handling report-
ing efficiently and that the requirements concerning the IT system are increasing in
order to fulfill regulatory standards.
To handle the need of data federation and reporting, all individual data models
of different software components have to be reconciled into one holistic view of
the company.3 Therefore, links have to be created between the data models in
use. Klauck and Stegman’s compendium about Basel III [98] also covers IT chal-
lenges; "integration of source data" as well as "common views on operational and
analytical data" are explicitly named [142, pp. 305 - 306]. In another article about
semantic integration in the same compendium, ontology mapping is described as
the key for semantic integration in banks [116, p. 324].
The required mappings between the data schemas require an enormous amount of
manual work to be carried out by well-paid domain experts. Automatic or semi-
automatic support during this process can help businesses in tackling the outlined
challenges in an efficient way. It gets clear that the problem of ontology and schema
matching is not exclusively of academical interest but also relevant for business es-
pecially in the financial services domain.

SAP Financial Services Data Platform SAP SE is the world’s largest enter-
prise software company [151, p. 25] and Europe’s largest software vendor4 [55].
The company is also active in the financial services domain. In December 2017,
the company released the Financial Services Data Platform (FSDP) to support
financial institutions with the management of their data. The product includes a
conceptual data model and a physical data model together with an implementa-
tion on the SAP HANA database. Eventually, analytical (OLAP) and transactional
(OLTP) applications will run on the platform and help financial institutions to sim-
plify their IT landscape. As the product is very young, a lot of applications have
to be mapped to the data model of the platform, called Financial Services Data
Management (FSDM) Data Model. [149, p. 3]
The company also sees the need for the stated problem of ontology matching, is
interested in research in this area, and supported this thesis by providing valuable
insights, hardware for computations as well as data.

3BCBS 239 explicitly states that "there should be robust automated reconciliation procedures
where multiple [data] models are in use" [10, p. 14].

4Using sales, profits, assets, and market value as of 2017 in the Forbes 2000 Ranking as bench-
mark attributes [55].
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1.3 Pursued Approach

Ontology Matching "is a solution to the semantic heterogeneity problem" [158,
p. 1]. Since the problem is an "AI complete" [43, p. 1] task, the motivation of this
master thesis is to facilitate the process by generating high-quality links for general
purpose as well as specific data models. Unlike for other mappings, particularly
in the financial world simple data type and edit-distance measures are likely not
sufficient, domain knowledge is inevitable. In 2008, Shvaiko and Euzenat name
"Discovering Missing Background Knowledge" as one of "ten challenges for on-
tology matching" [156, pp. 1171-1172]. Up to date, the problem is still not solved.
The general idea of this thesis is to use publicly available knowledge on the Web
for ontology matching to fill the gap of background domain knowledge within the
automatic schema matching process. The concepts in focus are often tail-entities,
i.e., entities interesting only to very few people as opposed to head-entities which
are more well-known [91, p. 1]. Common knowledge bases of structured informa-
tion – like Wikipedia-based DBpedia5 [105] – alone are likely insufficient for this
task. Due to the sheer amount of tail-entities such a knowledge base would have to
be much larger (Jin et al. assume "an order of magnitude or more entities than in
Wikipedia" [91, p. 1]). Tail-entities do exist in large amounts on the Web, however.
On Wikipedia, for instance, there is only a general article about future contracts6

whereas on the Web, it is possible to find the contract specifications for aluminum
alloy futures traded at the London Metal Exchange7.
Following this logic, a larger and structured knowledge data set which is based on
the whole Web rather than a subset is used in this thesis as background knowledge
within the ontology matching process: The WebIsALOD data set [76].

Structure of this Thesis After a quick introduction into the general topic, the
following section will focus on the theoretical framework which is based on four
pillars: (1) Semantics and selected important concepts independent of an IT con-
text are presented in 2.1; (2) The Semantic Web is introduced together with the data
set which is used in this thesis in section 2.2; (3) The Ontology Matching Problem
and related concepts in this area are explained in detail in 2.3; and lastly, an over-
view on (4) Natural Language Processing and particularly the word2vec approach
is given in 2.4. After a sound overview of the fundamental concepts, Related Work
is presented in 2.5 with a focus on propositionalization and matching with external
resources.

5see https://wiki.dbpedia.org/
6see https://en.wikipedia.org/wiki/Futures_contract
7see https://www.lme.com/en-GB/Metals/Non-ferrous/Aluminium-

Alloy/Futures

https://wiki.dbpedia.org/
https://en.wikipedia.org/wiki/Futures_contract
https://www.lme.com/en-GB/Metals/Non-ferrous/Aluminium-Alloy/Futures
https://www.lme.com/en-GB/Metals/Non-ferrous/Aluminium-Alloy/Futures
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Subsequent to the theory chapter, the third chapter focuses on the implementation
of this thesis. The focus here is on the matcher architecture (3.1), the linking of
labels to ALOD concepts (3.2), developed features (3.3 and 3.4) as well as feature
weighting methods (3.5). The chapter closes with important calculational details
of the matcher (3.6) as well as remarks on the implementation itself (3.7).
Based on the implementation, Chapter 4 describes the experiements that have been
performed which are manifold: First, in section 4.2 the data sets used are descrip-
tively analyzed. Furthermore, it is evaluated in how far the WebIsALOD data sets
are capable of covering distinct concepts and how that compares to another large
linked data set, namely DBpedia, in section 4.3. In addition, experiments were per-
formed to evaluate to which degree the developed features carry semantic meaning
and how that compares to other approaches (4.4). Section 4.5 evaluates the feature
selection method based on a self-created gold standard and section 4.6 eventually
covers the performance of the implemented matchers on multiple commonly used
ontology alignment data sets. As the focus of this thesis is also the applicability in
the business world, the last section (4.7) spotlights a concrete use case at SAP.
Chapter 5 critically assesses the overall setting as well as the experiments that
were performed (5.1) and outlines the limits of the approach presented (5.2). After
discussing the challenges for Web-based matchers and particularly the matcher de-
veloped in this thesis (5.3), a conclusion (5.4) as well as an outlook (5.5) is given.
An overview of the structure of this thesis is presented in figure 1.1.
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Figure 1.1: Structure of the Thesis



Chapter 2

Theoretical Framework

2.1 Semantics

In this section, a general introduction into semantics is given and aspects relevant
for this thesis are explained: First, the difference between syntax and semantics
is pointed out. Afterwards, important relations between concepts in the semantic
space are introduced.

2.1.1 General Concepts

Syntax On a general level, syntax refers to a set of rules that define how to struc-
ture characters and strings [78, p. 13]. In linguistics, it refers to the analysis of
the arrangements of words, phrases, and clauses together with their grammatical
relations [21, p. 431].

Semantics Semantics is "the study of meaning" [141, p. 6].1 The meaning of a
word can also be referred to as concept [104, p. 21]. As the field of semantics is
too broad to be presented in the scope of this thesis, the focus in the following lies
on a subset, i.e., semantic relations among concepts.2

1The meaning of meaning, i.e., the question of what meaning actually is, is itself an interesting
research area which is – due to the focus of this thesis – not covered at this point. For details, one can
refer to Riemer who dedicates a full 40 pages long chapter of his textbook Introducing Semantics to
this topic [141, pp. 45-85].

2A concise introduction into semantics for non-linguists can be found in Busse’s book Semantik
[28].

7
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2.1.2 Semantic Relations

Every linguistic sign (i.e., word or lexeme3) itself is a relation between the signi-
fier (also sound-image, French: signifiant) and the signified (the concept, French:
signifié) [152, p. 77-79], as depicted in figure 2.1.

Figure 2.1: Two sides of a Linguistic Sign According to Saussure [152, p. 78]

Besides the relation between signifiant and signifié, there are also relations between
signs: syntagmatic relations and paradigmatic relations (also associative rela-
tions).

Syntagmatic Relations

Syntagmatic relations are those between signs in a chain of signs; in the English
language, for instance, it is grammatically correct to say "he sleeps at night" but
not "he sleep at night" because the verb and the subject have to agree in person.
[28, p. 102] [34, p. 160]

Paradigmatic Relations

Paradigmatic relations are associations of concepts that exist in the mind of humans
but are not necessarily existent in the chain of signs. When reading "to sleep", for
instance, there is an implicit association with "sleeping", "bed", "night", and so on.
[152, pp. 147-148; 152] [28, p. 102]
Busch and Stenschke count more than ten possible paradigmatic relations (see fig-
ure C.3 in the appendix for a complete overview) [27, p. 189]. In the following,
only the paradigmatic relations relevant for this thesis are further explained: Hy-
pernymy and Hyponymy, Monosemy and Polysemy, Synonymy and Antonymy,
Homonymy as well as Similarity and Relatedness.

3A lexeme is "a unit of lexical meaning, which exists regardless of any inflectional endings[...]"
[34, p. 118]. It is also known as lexical item [34, p. 464]. The "headwords in a dictionary are [...]
lexemes" [34, p. 118].
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Hypernymy and Hyponymy A hypernym (also hyperonym) is a concept which
is superordinate to other concepts, i.e., it defines a category to which other concepts
belong to. Those subordinate concepts are called hyponyms. [27, p. 191] [28,
p. 105] The concept of a financial contract, for instance, subsumes the concept of
a loan; therefore, the financial contract is a hypernym of loan whereas the latter
one is a hyponym of the first one.

Monosemy and Polysemy Polysemy describes the property of a lexeme to carry
more than one meaning [28, p. 104]. The concept of apple, for example, can
refer to (i) the fruit, (ii) the tree, or (iii) the Californian technology company; the
concept is, therefore, polysemous. A monosemous lexeme, in contrast, carries only
one meaning.

Synonymy and Antonymy Synonymy describes the property of two words to
be usable interchangeably. Within this definition, there are various forms which
mainly focus around whether synonyms have to share one sense, i.e., are inter-
changeable in one particular context or whether they have to share all senses, i.e.,
are interchangeable in (almost) all contexts. A strong-form definition of synonymy
requires the two words to be interchangeable in any situation. Strong-form syn-
onymous words are seldom. [28, p. 104] An example for weak-form synonymy
would be student and pupil regarding the sense of somebody being taught by a
teacher but not regarding the sense being the center of the eye [141, p. 152]. The
words doorknob and doorhandle, on the other hand, have only one and the same
meaning and could be used as an example for strong-form synonymy [133].4

Antonyms, on the other hand, are incompatible with each other like hot and cold
[27, p. 191]. If antonyms divide a domain in exactly two parts and are logically
incompatible at the same time, like dead and alive, they are considered to be a
contradiction [28, p. 106].

Homonymy Words with the same writing and pronounciation but different mean-
ing are called homonyms [130, p. 169]. An example for a homonym would be bear
which – depending on the context – can refer to the animal (Winnie-the-Pooh is a
bear.) or to the verb (I cannot bear it any longer.).

4Note that when having a very close look, there are still subtle differences; even though they
carry the same sense, doorhandle, for example, is more common in Great Britain whereas doorknob
is mostly used in the United States [133]. This goes even as far as some linguists believing "that
there is no such thing as true synonymy" [130, p. 171].
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Similarity and Relatedness Similarity describes in how far two concepts are
similar to each other "by virtue of their similarity" [25, p. 1]. Similarity and re-
latedness are often not clearly separated from each other (for instance in [53]).
Nevertheless, there are significant differences. Dissimilar entities can even be se-
mantically related by antonomy relationships [25, p. 1]. Hill et al. distinguish the
two relations by giving examples: While the concepts coffee and cup are certainly
related, they are not similar; however, a mug and a cup can – in language as in the
real world – almost be used interchangeably and are, therefore, similar [77, p. 665].
In this thesis, similarity is treated as the degree of synonymy.

2.2 The Semantic Web

In this section a general introduction into the Semantic Web is given. First, general
concepts of the Semantic Web are introduced. Then, linked data is explained and,
lastly, the data set used in this thesis is presented.

2.2.1 General Concepts

Semantic Web While information is broadly available on the Web and consum-
able by humans, computers cannot consume this information due to data hetero-
geneity and lack of implicit knowledge. One solution would be to have an artificial
intelligence that actually can interpret all the information as it is. However, up to
now there is no such artificial entity that can reliably accomplish this task. The
idea of the Semantic Web, on the other hand, is to give information right away in
a format that can be interpreted by machines and to provide the required tool set
to do so.5 The Semantic Web provides standards to ensure interoperability and to
allow reasoning according to logic. [78, pp. 9-13] The Semantic Web technology
is sometimes also referred to as Web 3.0 [67, p. 111].6

Semantic Web Language Stack In figure 2.2, the Semantic Web language stack
is depicted. The technical foundations are Unicode and Uniform Resource Iden-
tifiers (URIs). Together, they allow to uniquely identify concepts on the Web in
the desired language. The eXtensible Markup Language (XML) is a language that
allows to exchange structured data in a machine- and human-readable way [170].

5Although information can be provided directly so that it is consumable by computers, it is also
possible that extractors derive structured information from websites. An example for such a process
would be the implementation of DBpedia [105] or DBkWik [79].

6Unfortunately, the term Web 3.0 is often used for marketing purposes due to the success of the
term Web 2.0. Therefore, there is no real definition for Web 3.0 and it is used to refer to different
things ranging from virtual worlds [122] to decentralized services such as cryptocurrencies [178].
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The Resource Description Framework (RDF) allows to express simple statements
on the Web [175]; it is further explained in the following paragraph.
RDF Schema (RDF-S) and the Web Ontology Language (OWL) are used to give
meaning to the vocabulary used in RDF statements. Rules can additionally be
used to express semantics on a deeper level. OWL and RDF-S are explained later
in this section in more detail. The SPARQL Protocol and RDF Query Language
(SPARQL) allows to query RDF data [172].
By combining RDF data and the corresponding semantics, logical inference is pos-
sible. This process is referred to as reasoning. [47, p. 42] Because "anybody can
say anything about anything" (AAA Principle) [2, pp. 7-8], there might be multiple
views on the truth. Thus, it is valuable to evaluate the credibility of sources and to
build trust.
In this thesis, the focus is on the middle layer of the stack, mainly RDF, SPARQL,
and OWL. Therefore, selected concepts are explained in more detail in the follow-
ing.7

Figure 2.2: Semantic Web Language Stack According to Tim Berners-Lee [16,
p. 11] (adapted)

7There is more to the Semantic Web than the content described in this section. A comprehensive
introduction is given in Hitzler et al.’s textbook Semantic Web [78].
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Resource Description Framework (RDF) To represent information about re-
sources in a structrued form, the W3C developed the Resource Description Frame-
work (RDF). The data model behind this standard is relatively simple; statements
are given in triples: <subject> <predicate> <object>. Resources are
uniquely identified by URIs. When regarding subjects and objects as nodes and
predicates as edges, multiple triples can form a connected graph; a very small sub-
graph of the ALOD data set is depicted in figure 2.4. This structure allows to
interlink knowledge on the Web. [78, pp. 36-39]
In some cases it is necessary to model more complex relations that would require
helper nodes. An example would be a network of friends where it shall be ex-
pressed when people met for the first time. In such cases, blank nodes are used.
They are addressed by using a node ID but cannot be addressed by an URI (which
would be semantically questionable). An example is given in figure 2.3. [78,
pp. 56-58]
For RDF serialization, different formats are available such as Turtle [176] or JSON-
LD [173]. There are also formats to serialize multiple graphs in one file such as
N-Quads [174].

Figure 2.3: RDF Blank Node Example

Ontologies Ontology, from Latin ontologia derived from Greek οντος (’being’)
and λογος (’study of’), is originally a part of philosophy that focuses on the ques-
tion of being, i.e. the nature of the world [26, pp. 4-6] [9, pp. 170-171].8 In
philosophy, the terms ontology and metaphyiscs are often used interchangeably
[26, p. 5].

8Bunge and Mahner [26] give an excellent (and understandable) introduction into the philosoph-
ical dimenion of ontology.
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In information technology, the term ontology is used to refer to a specific formal-
ization of concepts: Gruber defines a conceptualization as an "abstract, simplified
view of the world" and an ontology as "an explicit specification of a conceptualiz-
ation" [61, p.1]. In the context of the Semantic Web, an ontology models a domain
and defines a vocabulary to be used by an application [49, p. 25]. Two important
concepts of ontologies are classes and properties: Classes define the type of a re-
source whereas properties are the predicates of a statement. Classes and properties
can be hierarchically structured, i.e., it is also possible to define sub-classes as well
as sub-properties. [78, pp. 68-77]
An example for an ontology would be the Friend-of-a-Friend ontology (FOAF)9

which can be used to describe social networks, for instance [20]. Ontologies are
also already used directly in the business world, for example in the form of industry
specific ontologies such as the Financial Industry Business Ontology (FIBO)10 by
the EDM Council. Oberle et al. also describe the usage of concrete enterprise ap-
plications [124].
An ontology consisting of "meta, generic, abstract and philosophical" [165] con-
cepts is also referred to as upper ontology by the IEEE Upper Ontology Working
Group11; however, the term is likewise used to refer to ontologies with general
concepts (for instance in [114]). An example for an ontology according to a strict
definition would be DOLCE [56] whereas SUMO [123] or OpenCyc [108] are
illustrations for more general purpose upper ontologies containing also domain-
specific concepts [114, p. 621].12

Ontology Languages There are multiple languages and ways to represent on-
tologies.13 A lightweight format to do so is RDF Schema (RDFS, RDF-S). [78,
pp. 66-69] A more expressive and powerful format is the Ontology Web Language
(OWL) which is structured in three sub languages listed here in descending ex-
pressibility: OWL Full, OWL DL, and OWL Lite. OWL Lite is a subset of OWL
DL and OWL DL is a subset of OWL Full. [78, pp. 125-127] OWL is recom-
mended by the W3C [171] and also the language of choice to represent ontologies
within the scope of this thesis.

9see http://www.foaf-project.org/
10see https://www.edmcouncil.org/financialbusiness
11The Upper Ontology Working Group has resolved by now. Nevertheless, their definitions are still

available using web.archive.org, see http://web.archive.org/web/20140512225349/
http://suo.ieee.org/.

12DOLCE is an acronym for Descriptive Ontology for Linguistic and Cognitive Engineering;
SUMO is an acronym for Suggested Upper Merged Ontology and OpenCyc is derived from Open
Encyclopedia. All three ontologies are rather addressed using their abbreviated forms.

13Staab and Studer dedicate more than 100 pages to this topic in their Handbook on Ontologies
[164, pp. 19-132]

http://www.foaf-project.org/
https://www.edmcouncil.org/financialbusiness
http://web.archive.org/web/20140512225349/http://suo.ieee.org/
http://web.archive.org/web/20140512225349/http://suo.ieee.org/
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SPARQL Similar to SQL for data bases, the SPARQL Protocol and RDF Query
Language (SPARQL) allows to query RDF data. Queries are formulated as patterns
that are matched against a knowledge graph. In addition, more complex structures
such as filters, aggregations, or optional patterns are also available. [78, pp. 202-
232] An example for a simple query is given in listing 2.1. Originally designed as
pure query language, version 1.1 offers functions to update data [172].

1 PREFIX : <http://dbpedia.org/resource/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 SELECT ?population WHERE {
4 :Mannheim dbo:populationTotal ?population .
5 }

Listing 2.1: SPARQL Sample Query that will return the population of Mannheim.
The query can be run on the public DBpedia endpoint.15

2.2.2 Linked Data

Tim Berners-Lee defined four principles for linked data which are given word-by-
word in the following enumeration [15]:

1. Use URIs as names for things[.]

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the stand-
ards (RDF*, SPARQL)[.]

4. Include links to other URIs so that they can discover things.

He further defines Linked Open Data (LOD) in 2010 as "Linked Data which is
released under an open license, which does not impede its reuse for free" [15].

2.2.3 The WebIsALOD Data Set

When working with knowledge bases in order to exploit the contained knowledge
in applications, a frequent problem is the fact that less common entities are not
contained within the knowledge base [153, p. 1]. The WebIsA database is an at-
tempt to tackle this problem by providing a data set which is not based on a single
source of knowledge – like DBpedia – but instead on the whole Web: The data set

15see http://dbpedia.org/snorql/?query=SELECT+%3Fpopulation+WHERE+
%7B%0D%0A%09%3AMannheim+dbo%3ApopulationTotal+%3Fpopulation+.%0D%
0A%7D

http://dbpedia.org/snorql/?query=SELECT+%3Fpopulation+WHERE+%7B%0D%0A%09%3AMannheim+dbo%3ApopulationTotal+%3Fpopulation+.%0D%0A%7D
http://dbpedia.org/snorql/?query=SELECT+%3Fpopulation+WHERE+%7B%0D%0A%09%3AMannheim+dbo%3ApopulationTotal+%3Fpopulation+.%0D%0A%7D
http://dbpedia.org/snorql/?query=SELECT+%3Fpopulation+WHERE+%7B%0D%0A%09%3AMannheim+dbo%3ApopulationTotal+%3Fpopulation+.%0D%0A%7D
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consists of hypernymy relations extracted from the Common Crawl16, a download-
able copy of the Web [153]. For the extraction, lexico-syntactic patterns similar
to those presented by Hearst [66] were used [153, p. 3]. An example for such a
pattern would be NPh such as NPt where NPt denotes the hyponym and NPh

denotes the hypernym. From the sentence omnivores such as rats, rat would be
identified as hyponym and omnivore would be identified as the corresponding hy-
pernym (after lemmatization). In total, 58 such patterns were used. [153, p. 5]
WebIsA consists of more than 400 million isa relations and 107 million unique
hypernyms [153, p. 5]. Altogether, there are 212,155,729 unique concepts avail-
able on WebIsA [153, p. 5].17 To put this number into perspective: The Oxford
Dictionary counts 218,632 entries (out of which 47,156 are regarded as obsolete
words that are not in current use), roughly half of the entries refer to nouns [126];
the English Wikipedia has a little over 5.6 million articles18.
In 2017, a Linked Open Data endpoint was added, called WebIsALOD [76], which
allows to query the data set (including metadata) using SPARQL. Additionally,
machine learning was used to assign a confidence score to each relation and links
to DBpedia and YAGO were added. The data set of the original endpoint is filtered
to ensure a higher data quality [76, p. 113]. Given a specific relation r from the
set of all relations R with |r.pld| being the number of pay-level domains (PDL) on
which the relation appears and with |r.pid| being the number of pattern IDs that
match the relation, the filter is defined as follows [76, pp. 112-113]:

dataset(t) = {r ∈ R | |r.pld| > t ∧ |r.pid| > t} (2.1)

In WebIsALOD, the filter parameter is set to t = 1. Hence, all hypernyms in the
data set occur in at least two pay-level domains and match at least two patterns.
This leads to a significant reduction of the size of the data set (see table 4.2.1 in
section 4.2.1). For the reason of simplicity, the data set is also addressed by using
the abbreviated form ALOD further on.
In 2018, a larger endpoint was added without any filtering: In the following,
the smaller endpoint is referred to as ALOD Classic19 and the larger endpoint

16see http://commoncrawl.org
17This number is not explicitly stated in the paper but can easily be calculated with the numbers

given in Table 3 of [153, p. 5]: It is the number of unique concepts that appear in the role of a
hyponym (|{tT }|) plus the number of unique concepts that appear in the role of a hypernym (|{hT }|)
minus the intersection of those: |{tT }|+|{hT }|−|{tT }|∩|{tT }|. Plugging in numbers, one obtains:
120, 992, 255+107, 691, 822−16, 528, 348 = 212, 155, 729. In subsection 4.2.1, detailed statistics
about this data set are presented which confirm this number.

18see: https://en.wikipedia.org/wiki/Special:Statistics as of June 2018.
19Endpoint: http://webisa.webdatacommons.org/sparql

http://commoncrawl.org
https://en.wikipedia.org/wiki/Special:Statistics
http://webisa.webdatacommons.org/sparql
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is referred to as ALOD XL20. An exemplary hypernymy relation and queryable
metadata is depicted in figure 2.4.

Remark Throughout this thesis, Internationalized Resource Identifiers (IRIs)21

are given when concrete concepts are discussed. Note that while the ALOD Classic
instances can be looked at online through a Web interface, the ALOD XL instances
cannot be viewed online but have to be queried, e.g., by using the online SPARQL
endpoint. XL IRIs are, therefore, marked as such in the following.

Figure 2.4: WebIsALOD Hypernymy Relation Example [76, p. 114]
Each hypernymy relation is stored in its own named graph which is indicated by
the rectangular box.

2.3 The Ontology Matching Problem

This section covers the very core problem of this thesis: Ontology matching. First,
general concepts are introduced. Afterwards, different levels of ontology hetero-
geneity are analyzed. In order to bridge to the world of data integration, schema
matching and how it relates to ontology matching is explained subsequently. There-
after, different techniques to ontology matching are presented and it is shown where

20Endpoint: http://webisxl.webdatacommons.org/sparql
21The Internationalized Resource Identifier (IRI) extends the URI syntax with a richer character set

(Unicode rather than ASCII) [46, p. 3]. URIs can be mapped to IRIs and vice versa [46, pp. 10-17].

http://webisxl.webdatacommons.org/sparql
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the matcher of this thesis fits in. Lastly, areas of ontology evaluation and challenges
within the process are covered.

2.3.1 General Concepts

Ontology The concept of ontologies has been introduced in 2.2.1. In the follow-
ing, ontologies refer to their meaning in the context of the Semantic Web.

Correspondence A correspondence is a relation that holds between entities e1
and e2 which are from different ontologies. An entity can be a class or a property
of an ontology. [49, p. 39] In its minimal form, a correpondence is a triple of the
form (e1, e2, r) where r is the relation which holds between the entities. The rela-
tion is a set-theoretic one like equivalence (=), disjointness (⊥) or less general (≤).
Additionally, a matcher might assign an identifier (id) and a confidence value to a
triple. [49, p. 43] In this thesis, the focus is on correspondences with equivalence
relations.
Correspondences can be of different complexity: In its simplest form, a corres-
pondence consists of the triple notation explained above, for instance: (onto1:Author,
onto2:Writer, =). Such simple relations can be insufficient and not expressive
enough as there might be additional conditions such as restrictions or conversions.
An example for three complex correspondences is given in figure 2.5 together with
their translation in first-order logic in listing 2.2.

Figure 2.5: Complex Correspondences Example
This figure is taken from [49, p. 323] and adapted. First-order logic translations for
the numbered correspondences can be found in listing 2.2.
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1 ∀x, Pocket(X) ≡ Volume(x) ∧ size(x,y) ∧ y ≤ 14
2 ∀x, Science(x) ≡ Essay(x) ∧ (∀y, subject(x,y) ⇒

Science(y))
3 ∀x, Book(x) ∧ topic(x,politics) ≡ Politics(x)

Listing 2.2: Complex Correspondences in First Order Logic
The translations are given for the example in figure 2.5.

Those complex mappings require an elaborate format. Examples for such a format
would be the Semantic Web Rule Language (SWRL) [81] or the Expressive and
Declarative Ontology Alignment Language (EDOAL) which was originally known
as SEKT Mapping Language [37] and OMWG Ontology Mapping Language [50].
[49, pp. 321-323; 327-333] This thesis concentrates on non-complex correspond-
ences for which the alignment format of the Alignment API is used which is further
explained in subsection 3.1.2.

Alignment The set of correspondences between ontologies is called alignment.
An alignment is not restricted to a one-to-one (1:1) cardinality but can instead be of
different cardinalities: One-to-one (1:1), one-to-many (1:m), many-to-one (m:1),
or many-to-many (n:m) [158, p. 3]. Those are explained in more detail in the next
paragraph. The goal of ontology alignment is, ultimatively, to automatically obtain
correct alignments between any given ontologies [49, pp. 39, 41].

Matching Restrictions The matching process can be subject to restrictions. There
are multiple possible arity restrictions when ontologyA is matched to ontologyB:

1. One-to-One (1:1)
This restriction specifies that one element e1 ∈ A is matched to zero or
one element e2 ∈ B. Each element e2 ∈ B is matched to zero or one
element e1 ∈ A. When there are multiple options for correspondences and
each correspondence has a confidence score, this problem is equivalent to
the maximum weighted bipartite graph matching problem in mathematics.

2. One-to-Many (1:m) / Many-to-One (m:1)
This restriction specifies that one element e1 ∈ A is matched to zero or more
elements ej ∈ B. Each element ej ∈ B can, therefore, be matched to zero
or more elements e1 ∈ A.

3. Many-to-Many (n:m)
This restriction specifies that each element ei ∈ A is matched to zero or
more elements ej ∈ B.
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Figure 2.6: Matching Process According to Euzenat and Shvaiko [49, p. 41].

From an implementation viewpoint, there is not one exclusive option but multiple
ways in implementing arity restrictions. [30, pp. 157-160]
Another alignment restriction is concerned about what can be matched: In a ho-
mogeneous alignment only resources of the same type are matched, for example
ontology classes can only be matched to other classes but not to data or object
properties. In heterogenous alignments, on the other hand, any resource type can
be matched to any other resource type. [57, pp. 235-237] In this thesis, the focus
is on homogeneous alignments.22

Ontology Matching The goal of the ontology matching process is to obtain an
alignment A for a pair of ontologies o1 and o2. This process is also known as
ontology alignment or ontology mediation [36, p. 95]. This is achieved through
a matcher which may use resources r (such as thesauri23 or common know-
ledge) and which can be configured by setting parameters p (such as weights or
thresholds). The matcher can be viewed as a function f(o1, o2, p, r) = A. This
matching process is also depicted in figure 2.6.24 [49, p. 41] [156, p. 1165]
It is also possible to apply a filter operation to the matcher output: Matchers can
assign a confidence value to each correspondence which is usually in the [0, 1]
range. A threshold t ∈ [0, 1] can then be defined to only add correspondences with
a confidence ≥ t to the final alignment. [1, pp. 3-4]

22This is due to the data sets used for evaluating the ontology matcher. The approach presen-
ted in this thesis is not restricted to homogeneous alignments and can also handle heterogeneous
alignments.

23A thesaurus groups lexemes by meaning. As opposed to a dictionary where the user tries to
find the meaning or use of a lexeme, a thesaurus is used to find lexemes for a certain meaning. [34,
p. 158] A well-known English thesaurus is WordNet [119]; an example for a German thesaurus would
be GermaNet [63, 69].

24Euzenat and Shvaiko include in their formal definition also an input alignment A′. As techniques
utilizing A′ are not discussed in this thesis, a slightly simplified version is presented here.
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Concerning the methodology of ontology matching, no distinct superior methodo-
logy has emerged over the years – not even in the older field of data model schema
matching [49, p. 55].

2.3.2 Ontology Heterogeneity

Differences in ontologies require a reconciliation process if interoperability is a
desired property. The differences can occur at several levels. One important dis-
tinction are differences in the structure (syntax) and differences in the semantics.
This observation is older than the Semantic Web itself and has already been made
in the area of multidatabase systems [155, 97].
Several classification approaches exist to bring these observations into the broader
context of ontologies, for example by Klein [99] or Hameed et al. [62]. Euzenat
and Shvaiko consolidate different views on heterogeneity into four main types fol-
lowing Bouquet et al. [18]25. Figure 2.7 displays a general overview of the different
types of heterogeneity.

Figure 2.7: Ontology Heterogeneity
The grouping according to syntax and semantics is taken from Klein [99, p. 58],
bold printed types are from Euzenat and Shvaiko [49, pp. 37 - 39]

Syntactic Heterogeneity Syntactic heterogeneity is used to refer to the differ-
ence in formalization of ontologies, i.e., when different ontology languages are
used. In such cases, a transformation is required if interoperability is desired. [49,
pp. 37-39]

Terminological Heterogeneity Terminological heterogeneity encompasses the
situation where two identical concepts are described in distinct ontologies with dif-
ferent terms. This may be due to synonyms (business partner and customer) or due

25Note that Euzenat is also co-author of this paper.
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to different languages (Finanzinstrument and Financial Instrument), for instance.
[49, pp. 37-39]

Conceptual Heterogeneity Conceptual heterogeneity in ontologies is due to dif-
ferences in modeling. Concrete reasons are:

1. Coverage, originally called partiality [13, pp. 9-10], i.e., two ontologies de-
scribe different domains with the same level of detail. There may be an
overlap between the two domains. [49, p. 38]

2. Granularity, originally called approximation [13, pp. 10-11], i.e., two on-
tologies describe the same domain but at different levels of granularity [49,
p. 38].

3. Perspective, i.e., two domains describe the same domain but take different
unique perspectives [49, p. 38] [13, pp. 11-13].

Semiotic Heterogeneity Semiotic heterogeneity characterizes the situation where
concepts are described identically but are interpreted differently by users. This is
due to the fact that interpretations may differ depending on the context in which
they are made. [49, pp. 37-39]

2.3.3 Schema Matching

Doan et al. refer to schema matching and schema mapping as synonymous [44,
p. 121]. A semantic mapping "relates a schema S with a schema T" [44, p. 122]
and "[a] semantic match relates a set of elements in schema S to a set of elments in
schema T" [44, p. 123].

2.3.4 Data Model Schema Matching and Ontology Matching

Even though there are differences in data modelling and ontology engineering
(Spyns et al. mainly mention higher expressiveness, higher abstraction, and higher
application independence of pure ontology models as opposed to database schemas
[163, pp. 3-4]), there are also commonalities: According to the definitions of an on-
tology provided above, a conceptual data model and even a database schema can
be regarded as an ontology. Techniques presented for ontology matching in this
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thesis (and very often also elsewhere26) can also be applied to schema matching of
data models or databases. Straightforward approaches exist which allow to convert
a database schema or entity-relationship diagram (ER diagram) into an ontology
using OWL by applying a set of rules for example as outlined by Fahad [51]. Such
a transformation is also performed within the scope of this thesis which is further
described in subsection 4.6.1.

2.3.5 Techniques to Ontology Matching

There is not one superior matching technique or approach in matching ontolo-
gies.27 Rather, there are different types and families of algorithms and approaches
used. In this subsection, a categorization of techniquess will be presented to better
outline differences and similarities of algorithms and also to classify the matcher
developed in this thesis. In 2005, Shvaiko and Euzenat presented two classifica-
tions for matching approaches [157] which were revised in 2013 [49].
The first classification approach, called Granulariy/Input Interpretation, differenti-
ates matchers according to the granularity, which can be either element-level (ana-
lyze entities/instances in isolation) or structure-level (analyze the ontology struc-
ture), and then according to whether syntactic or semantic techniques are used
(Input Interpretation). Syntactic techniques use a structured algorithm whereas se-
mantic techniques apply formal semantics (see section 2.1).
The second classification approach, called Origin/Kind of Input, first differenti-
ates according to whether context (i.e., external resources) or content (i.e., internal
resources like the structure or instances) is used (Origin) and then further distin-
guishes different characteristics of the origin (Kind of Input). [49, pp. 74-82] Both
classification approaches are depicted in figure 2.8.

26Euzenat and Shvaiko already write in the preface of their book Ontology Matching that "though
we use the word ontology, the work and the techniques considered in this book can equally be ap-
plied to database schema matching [...] and other related problems" [49, p. viii]. Similarly, in Hepp
et al.’s textbook Ontology Management, Euzenat, Mocan, and Scharffe write: "When we talk about
ontologies, we include database schemas and other extensional descriptions of data [...]" [70, p. 178].
There is also literature where ontology matching is viewed as a form of schema matching, for ex-
ample in Schema Matching and Mapping by Bellahse, Bonifati, and Rahm [12]. In the latter book,
schemas and ontologies are both viewed as metadata models between which mappings can exist [12,
p. v].

27This can easily be seen when looking at the different algorithms applied at campaigns by the
Ontology Alignment Evaluation Initiative.
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Figure 2.8: Ontology Matching Classification Approaches [49, p. 77]
Bold printed concepts are newly introduced compared to [136] and italic-bold prin-
ted concepts were added in the 2013 version [49]. Note that the original figure
[157, p. 155] did not have formal and informal resource-based techniques, those
were introduced in the newest version.

Formal Resource-Based Techniques Formal resource-based techniques make
use of external ontologies (which can also be domain specific). It is also possible
to use linked data. [49, p. 80]

Informal Resource-Based Techniques Informal resource-based techniques util-
ize informal resources such as pictures or encyclopedia pages. Ontology entities
can be related to such resources. [49, pp. 80-81]

String-Based Techniques A very old class of techniques are string-based tech-
niques which use annotations – such as names, labels, and descriptions – to calcu-
late similarities between resources. The underlying intuition is that similar words
are used to describe similar concepts. [49, p. 79]
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Language-Based Techniques28 String-based techniques presented above do not
require that the language is known in order to be applied. Language-based tech-
niques, on the other hand, consider text encoded in specified language. Linguistic
techniques, like lemmatization or tokenization, can be used here, for example.
Phonetic methods, such as Soundex [80] or Kölner Phonetik [132], also fall into
this category. It is, furthermore, possible to exploit external, language-based re-
sources, such as thesauri or lexicons. [49, p. 80]

Constraint-Based Techniques Constraint-based techniques check internal con-
straints which apply for entities such as cardinalty or data types [49, p. 80].

Taxonomy-Based Techniques Taxonomy-based techniques apply graph algorithms
on the inheritance structure of the resources. The underlying intuition is that con-
cepts that are connected by inheritance are similar. [49, p. 81]

Graph-Based Techniques Graph-based techniques also view the ontology as a
graph. Compared to taxonomy-based techniques, they consider all kind of inform-
ation within the graph. Pattern matching methods count as graph-based techniques,
for instance. [49, p. 81]

Instance-Based Techniques Depending on the use case, instances of the ontolo-
gies to be matched might be available. Comparing concrete instances can help to
calculate distances of resources in the ontologies. Such approaches are referred to
as instance-based techniques. [49, p. 82]

Model-Based Techniques Lastly, model-based techniques exploit reasoning and
propositional satisfiability in order to match two ontologies. [49, pp. 81-82]

This thesis explores approaches based on linked data (see 2.2.2) which is an element-
level approach utilizing semantics.
Rather than content features, context is used by applying semantics. The context
that is used is available in a formalized format: The knowledge is represented using
a vocabulary that has an underlying ontology as opposed to free text of an article
for instance.
According to the two classification approaches presented above, this approach falls
in the formal resource-based class of techniques (see 2.8).

28In an earlier version [157, p. 155], external linguistic resources were explicitly differentiated
from plain language-based techniques. The latest version [49, p. 77] counts everything concerned
with the actual language into this category and does not explicitly make this differentiation.
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2.3.6 Evaluation of Ontology Alignments

Measures Ontology alignments are commonly evaluated on the basis of refer-
ence alignments, i.e., an annotated gold standard of correspondences. Typical ma-
chine learning and information retrieval evaluation measures, like Precision, Re-
call, and F-Measure, are used to judge the quality of the alignment; formulas and
further details about those can be found in appendix C.1.
When evaluating multiple data sets D at once, there are two options for giving one
overall performance number: Macro average and micro average. Macro average
simply averages scores regardless of the individual data sets’ size. The formula is
given in an exemplary way for F1 in equation 2.2:

Σ
|D|
d=1

F1(d)

|D|
(2.2)

where F1(d) is the obtained F1 score on data set d ∈ D and |D| is the total number
of data sets.
In order to calculate the micro average, one contingency table is built for all data
sets by adding all true positives, true negatives, false positives, and false negatives
of each individual data set. Then, precision, recall, and F1 can be calculated by
using this table (see table C.1 in the appendix). [120, p. 185]

OAEI In order to compare various matchers in a fair setting, common reference
alignments are required. The Ontology Alignment Evaluation Initiative (OAEI)29

tackles this problem by providing several reference alignments and carrying out
campaigns every year since 2004. Participants can evaluate their matchers in sev-
eral tracks. [49, p. 288] One major goal of the OAEI is to create transparency
and "to allow anyone to draw conclusions about the best matching strategies" [156,
p. 1170].
For the alignment evaluation, the Semantic Evaluation At Large Scale (SEALS)30

platform is used. Starting in 2017, the OAEI is beginning to use the Holistic Bench-
marking of Big Linked Data (HOBBIT)31 platform where users eventually will be
able to upload and evaluate matching systems [138, pp. 5-10].

2.3.7 Challenges of Ontology and Schema Matching

Different people describe concepts differently and create different schemas [44,
pp. 124-125]. This leads to semantic heterogeneity on various levels as outlined

29see http://oaei.ontologymatching.org
30see http://seals-project.eu/
31see https://project-hobbit.eu/

http://oaei.ontologymatching.org
http://seals-project.eu/
https://project-hobbit.eu/
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in subsection 2.3.2. The resolution of the semantics itself is a challenge, as the
semantics within a schema might not be fully captured by names or definitions.
Additionally, schema matching is a subjective task where different people might
have different opinions concerning a particular correspondence. [44, pp. 125-126]
In 2005, Shvaiko and Euzenat formulated 10 challenges for ontology matching
[156], among which discovering missing background knowledge was nominated
[156, pp. 1171-1172]. Eight years later, the authors reaffirm eight of the ten chal-
lenges [158]32; discovering missing background knowledge is still an open issue
[158, pp. 170-171]. Among current challenges are also non-functional ones, like
the performance33 of ontology-matching techniques, or alignment infrastructure
and support [158, pp. 169, 174].
Handling syntactical heterogeneity is rather a minor problem compared to resolv-
ing semantics.

2.4 Natural Language Processing

In this section, aspects of natural language processing are introduced that are rel-
evant for the present paper.34 As the implementation of this thesis builds upon
a specific technology, namely word2vec, the latter approach is explained in more
detail in subsection 2.4.2.

2.4.1 General Concepts

Natural Language Processing Natural language processing (NLP) "is the at-
tempt to extract a [...] meaning representation from free text" [94, p. 1]. It is,
hence, about capturing semantic content from text.

The Distributional Hypothesis The dictum "you shall know a word by the com-
pany it keeps", which is attributed to linguist J. R. Firth, stresses the role of the

32In appendix C.2, all dropped and open challenges are listed.
33The currency of this topic can immediately be seen when reviewing the OAEI 2017 LargeBio

track where not even half of the matchers were capable of matching the ontologies within a timeframe
of less than four hours; see http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
2017/results/.

34Due to the scope of this thesis and the extent of the field of natural language processing, the
introduction is heavily reduced to the parts relevant for the course of this work. A good and com-
prehensive introduction can be found in Natural Language Processing and Text Mining by Kao and
Poteet (eds) [93].

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/results/
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/results/
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context of a word when analyzing its meaning [34, p. 160]. The distributional hy-
pothesis builds on that observation and states that a word is similar to those words
with which it frequently co-occurs [65, p. 156]. Distributional Semantic Models
(DSMs) make use of that finding by approximating words with co-occurrence pat-
terns [23, p. 2]. Despite the wide application of the distributional hypothesis, there
is also criticism. One point of critique is that concepts are actually more complex
than the simple co-occurrence of words.35 [22, p. 150]

Bag of Words A text or a document can be viewed as a collection of its contain-
ing words which is known as the bag of words model. Information about the posi-
tion of words is lost but information about the multiplicity of the words, i.e., their
counts, is retained. [113, p. 117] From the bag of word model a simple boolean
feature vector can be derived.

Stopwords A stopword is a word that appears usually in a high frequency in texts
and is, therefore, not valuable for many information retrieval tasks. An example
would be the article the which appears in almost all English texts; its occurrence in
a document says close to nothing about the content. In many systems those words
are not indexed at all. For a practical use, such words are often collated in so called
stoplists which are utilized in applications. Stoplists can be generic or specific to a
dedicated domain. [137, pp. 2794-2795] [113, pp. 26-27]

Distances in Vector Space When documents are transferred into vector space,
their similarity is usually calculated using cosine similarity. One advantage over
the Euclidean distance is that the length of the document does not influence the
outcome. Given two documents d1 and d2 and their vector representations

−→
V (d1)

and
−→
V (d2), the cosine similarity is given as follows [113, p. 121]:

sim(d1, d2) =

−→
V d1 ∗

−→
V d2

|
−→
V d1||

−→
V d2|

(2.3)

In this application the elements are never negative which implies sim(d1, d2) ∈
[0, 1] where a value of 1 indicates maximum similarity.

35Stevan Harnad draws attention to the aspect that symbols need to get their meaning from some-
where which is not the symbol system itself because this would be like "trying to learn Chinese from
a Chinese/Chinese dictionary alone" [64, p. 335]. This problem is referred to as "Symbol Grounding
Problem" [64]. There are approaches that try to find a solution to this problem e.g. by learning
embeddings that combine vision and text such as [159].
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Embeddings Boolean feature vectors have severe disadvantages such as data
sparsity and high dimensionality. One solution is to derive a vector in a lower
dimensional space with the goal to keep as much information as possible. A very
straight-forward approach is to perform a matrix decomposition, e.g. by applying
Singular Value Decomposition (SVD). [113, pp. 403-408] Similarities between the
vectors can be calculated by using cosine similarity (see equation 2.3).

2.4.2 Neural Language Models: Word2Vec

One of the most well-known neural language models is the word2vec model [117,
118]. Two approaches are presented in order to calculate the embeddings: The
Continuous Bag-of-Words Model (CBOW) and the Continuous Skip-gram Model
(SG).

Continuous Bag-of-Words Model Given the context k of a word w, the con-
tinuous bag-of-words model is trained to predict w where k are preceding and
succeeding words k = w1, w2, w3, ...wc and where c is the size of the training
context. Here, c is also referred to as window. The overall architecture is depicted
in figure 2.9. The objective of CBOW is to maximize the average log probability
[117, p. 4] [143, p. 117]:

1

T
ΣT
t=1 log p(wt|wt−c...wt+c) (2.4)

where p is obtained by applying the softmax function:

p(wt|wt−c...wt+c) =
exp(v̄T v′wt)

ΣV
w=1exp(v̄

T v′w)
(2.5)

where v′w is the output vector of word w, V is the vocabulary of words, and v̄ is
the averaged input vector of all the context words:

v̄ =
1

2c
Σ−c≤j≤c,j 6=0vwt+j (2.6)

Skip-gram Model As opposed to CBOW, the skip-gram model predicts the con-
text k given the target word w. The overall architecture is depicted in figure 2.9.
The objective here is to maximize the average log probability [118, pp. 2-3]:

1

T
ΣT
t=1Σ−c≤j≤c,j 6=0 log p(wt+j |wt) (2.7)

where p is obtained by applying the softmax function:
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p(wt+c|wt) =
exp(v′TwovwI )

ΣW
w=1exp(v′Tw)vwI

(2.8)

where vw and v′w are the input and output vector representations of w and W is
the number of words in the vocabulary.

Figure 2.9: Word2Vec Architecture [117, p. 5]
On the left side the Continuous Bag-of-Word Model (CBOW) is depicted, on the
right side the Skip-gram Model (SG); the figure is adapted.

2.5 Related Work

In this section, related work is presented with a focus on two research areas: (1)
Propositionalization techniques and (2) ontology matching techniques that use ex-
ternal resources. node2Vec and RDF2Vec are explained in more detail in research
area (1) because a similar approach is applied in this thesis.

2.5.1 Propositionalization in the Context of Knowledge Graphs

Data mining algorithms usually require data to be translated to a propositional fea-
ture vector 〈f1, f2, ..., fn〉 where features are either binary (fi ∈ {true, false}),
nominal (fi ∈ S where S is a finite set of symbols) or numerical (fi ∈ R) [143,
p. 68]. An RDF graph like that of the WebIsA data set can, hence, not be used
right away in a data mining algorithm but instead, the information contained in the
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graph is to be translated into feature vectors. This process which translates data
into a feature-based format is known as propositionalization [101, p. 262].
Traditional propositionalization approaches for Linked Open Data are supervised
which means that automatic feature generation is not possible but SPARQL quer-
ies have to be formulated by the user [145, p. 7]. The Linked Data Data Miner
(LiDDM) application [121], for instance, offers a UI which facilitates the process
of using linked data in data mining tasks but still requires the user to build the quer-
ies herself. Similarly, the semweb plugin allows to load and process data in Rap-
idMiner36, a click-and-run data mining tool, after having formulated a SPARQL
query [95].
In terms of unsupervised approaches, a simple approach is to apply binary features
indicating whether a specific relation or value of a property is existing [145, pp. 7-
9].
Another, more advanced, option are kernel functions. They form a class of machine
learning algorithms which are able to quantify the similarity of graphs by typically
relying on the number of patterns the graphs have in common [60, pp. 467-468]. An
example for a graph kernel that can be applied to RDF data would be the Weisfeiler-
Lehman Graph Kernel [154]. The RapidMiner Linked Open Data Extension [144]
is capable of calculating features in an unsupervised fashion and is also capable of
applying kernel functions.
A different class of approaches are translation-based approaches. Those generally
assume a multi-relational data set consisting of a set of entitiesE and a set of edges
L as well as triples in the form (head, label, tail) which is usually stated as (h, l, t)
where h, t ∈ E and l ∈ L. The most well-known approach is TransE [17]. The
general idea is that "if (h, l, t) holds, then the embedding of the tail entitiy t should
be close to the embedding of the head entity h plus some vector that depends on
the relationship l" [17, p. 2788]. The embeddings for h, l and t are all in the same
dimension. The general objective for learning the embeddings is that h + l = t
given that (h, l, t) holds [17, p. 2790]. The model has been further developed and
inspired similar approaches. Wang et al. note that TransE does not handle re-
flexive, one-to-many, many-to-one and many-to-many properties well and propose
another approach named TransH [177]. Many more approaches based on TransE
have been developed such as TransA [86], TransF [42], or TransD [85].
Recently, propositionalization approaches have been presented that also exploit ad-
vances in natural language processing, namely word2vec. Notable members of this
group are node2vec [59] and RDF2Vec [146] which are explained in more detail in
the following two paragraphs.
It is important to note that the choice of the propositionalization strategy can have

36see https://rapidminer.com/

https://rapidminer.com/
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a major impact on the results [145, p. 14].

Node2Vec Grover and Leskovec present an approach that allows to derive em-
beddings for nodes in a graph using the skip-gram model. Given G = (V,E)
where V is a set of vertices and E is a set of edges, a sequence of nodes that are
connected by edges, i.e. a walk [24, p. 57], is interpreted as sentence that is used
as input for the skip-gram model. The approach presents a semi-supervised, biased
walk generation strategy that requires two parameters to be set in advance: (1) A
return parameter p is used to control the likelihood of a walk revisiting the previ-
ous node. This is particularly important for undirected graphs. (2) A parameter q is
used to control how fast the walk spreads. This is done by rewarding or punishing
walks that have a large shortest distance between the starting and the end node.
[59, pp. 858-859] The obtained sentences are used to train the embeddings. The
implementation is publicly available on GitHub.37

RDF2Vec Ristoski and Paulheim present an approach which also adapts neural
language models for RDF data to derive graph embeddings, called RDF2Vec [146].
Compared to node2vec, RDF2Vec is explicitly focused on RDF data and also con-
siders edges. Given an RDF graph G = (V,E) where V is a set of vertices and
E is a set of directed edges, a set of walks is generated for each vertex v ∈ V of
depth d, where d refers to the number of edges in the walk which is also known as
length [24, p. 57]. In RDF2Vec, two possible approaches are presented to generate
the graph walks: (1) A breadth-first algorithm used iteratively to generate random
walks or (2) an adaption of the Weisfeiler-Lehmann algorithm [38, 39]. In compar-
ison to node2vec, the edges are labelled and appear in the sentences. The obtained
sentences are then used to train word2vec embeddings. The implementation is pub-
licly available.38 In [147], the embeddings are also applied to document modeling
and recommender systems. An extended approach of RDF2Vec are Biased Graph
Walks for RDF Graph Embeddings [32]. The approach is generally the same as
that described in the original paper in the sense that it is using random walks – but
with the difference that edges receive weights with the goal of capturing the most
important information. Different strategies for weighting are evaluated relying on
frequencies (e.g. of predicates) and also on different adaptions of the PageRank al-
gorithm [127]. Despite the advanced weighting techniques used, the authors admit
that "[u]nexpectedly, the Uniform Weight strategy also yields competitive results"
[32, p. 8].

37see https://github.com/aditya-grover/node2vec
38see http://data.dws.informatik.uni-mannheim.de/rdf2vec/

https://github.com/aditya-grover/node2vec
http://data.dws.informatik.uni-mannheim.de/rdf2vec/
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2.5.2 Ontology Matching Utilizing External Resources

While some matching methods exclusively use information contained within the
ontologies such as names or the structure, others exploit externally available know-
ledge. A very common source of external knowledge are thesauri that contain se-
mantic relations such as WordNet [119]. WordNet is a database of English words
grouped in sets which represent one particular meaning, called synsets. The data-
base is publicly available39 and there is an online tool for querying the synsets40.
The thesaurus is heavily used for ontology matching.41 Current matching solutions,
like those participating in the OAEI 2017, are also using this particular resource,
for example LogMap [87] or KEPLER [92].
LogMap is noteworthy, as the matcher regularly participates in the OAEI cam-
paigns, often in different flavors like LogMapBio or LogMapLite [90, pp. 153-154].
The matching algorithm starts by performing a lexical indexation. During this step,
external resources such as WordNet are used. Then, the matcher performs a struc-
tural indexation and computes initial anchor mappings which are considered to be
high-confidence mappings. A repair process follows where reasoning is used to de-
tect and repair unsatisfiable classes. The matcher extends the contexts for matching
by applying a commonly used string distance metric named String Metric for Onto-
logy Alignment (SMOA) [166]. Due to the applied heuristics (starting with anchor
mappings and extending those), the matcher can also handle very large ontologies.
[87, pp. 275-276]
Despite the fact that WordNet is widely used, the biggest weakness of the thesaurus
is coverage [180, p. 34]: For entities which are not found in WordNet, a semantic
similarity score cannot be calculated.
Another source of external knowledge are upper ontologies. In 2010, Mascardi et
al. describe an approach to ontology alignment utilizing upper ontologies: Entities
are mapped to the upper ontology and similarity is calculated within the upper on-
tology; the upper ontology is used as "semantic bridge" [114, pp. 609, 612-613].
Only very few matchers make use of publicly available knowledge on the Web.
BLOOMS [84] was the first approach which exploited Wikipedia as upper onto-
logy. The approach utilizes the Wikipedia category hierarchy to build trees which
are then compared by using an overlap calculation. [84, pp. 404-406]
Also for multilingual ontology matching external resources from the Web can be

39see https://wordnet.princeton.edu/download
40see http://wordnetweb.princeton.edu/perl/webwn
41To get an impression, one can review pages 271-277 in the book Ontology Matching [49] where

87 matching approaches are compared in table 8.1. WordNet is explicitly cited as a resource for 26
matchers.

https://wordnet.princeton.edu/download
http://wordnetweb.princeton.edu/perl/webwn
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exploited. Lin and Krizhanovsky [111] parse Wiktionary42, a free online dictionary
by the Wikimedia Foundation, and provide a SPARQL endpoint for querying the
translations. They integrate the translation process into the the Context-base On-
tology Matching System (COMS) [110], a matcher that combines a string match-
ing strategy, a lexical matching strategy, and a structural matching strategy [110,
pp. 1102-1105]. As a consequence, the matcher can perform multi-lingual onto-
logy alignment.
Other common external Web sources for translations are Microsoft Bing which is
used by KEPLER [92] or Google Translator which is used by LogMap for multi-
lingual ontology matching for instance.
WeSeE-Match [128] uses actual and current Web data by querying the Microsoft
Bing Search API in order to build a describing document consisting of the re-
trieved website titles and excerpts for each element. An element-level comparison
is performed by computing TF-IDF similarity scores. It could be shown that the
approach is very sensitive to the underlying search API that is used: In the OAEI
2013 campaign, the approach dropped Bing for a non-commercial service resulting
in a drastic decline of performance [129].
WikiMatch [73] is a matcher utilizing Wikipedia as external source by querying the
Wikipedia search API for concepts and by calculating the overlap of the returned
articles. As inter-language links connect articles in different languages, the matcher
is also capable of matching ontologies in different languages. The approach was
evaluated in the OEAI 2012 [75], 2013 [58], and also recently in a third version in
2017 [72].
Zhang et al. [180] present a matcher which also uses Wikipedia but in a different
way: They train word embeddings with Wikipedia as corpus and calculate semantic
similarity on element level.43 The best closest correspondences are added to the
resulting alignment. The approach is evaluated on the OAEI 2013 Benchmark and
Conference data set but the authors did not participate in the actual campaign.44

They conclude that their approach is better than WordNet based methods and that
word embeddings are good in dealing with synonyms [180, p. 41].
Similar to the latter approach, Swoboda et al. use word2vec for the combination
of domain-specific taxonomies which is similar to ontology alignment. They con-
clude that their approach can "alternatively be used for [...] automated alignment
of ontologies and semantic integration" [167, p. 134].

42see https://www.wiktionary.org/
43Unfortunately, information about the training process used is not given. Instead, the authors

write that they do not intend "to describe the training [in] detail because it is complicated and not
closely related to [the] ontology matching task itself" [180, p. 37].

44Their approach is not listed on the OAEI Web page and does also not appear in the official
publications for 2013 [58] and 2014 [45].

https://www.wiktionary.org/
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Implementation

3.1 Matcher Architecture

3.1.1 Overview

In this section, the structural overview of the implemented matcher is discussed.
Figure 3.1 depicts the matching process developed in this thesis. The implementa-
tion accepts two ontologies (O1 and O2) which are first read. In a second step, tex-
tual descriptions (annotations) for each resource are extracted from the ontologies.
A resource can be one of the following: A class, a datatype property, or an object
property. To avoid heterogenous mappings (such as a class mapped to a property),
the implemented matcher treats each resource type separately. As one resource
may have multiple annotations, a strategy is required to compare resources. The
chosen approach creates a Carthesian product between two sets, applies a compar-
ison metric, and selects the best score. This approach is described in subsection
3.6.3 in more detail.
For reasons of performance, a filter will sort out direct String matches which will
not run through the subsequent steps but will rather be used later by the matching
strategy. The remaining annotations will be linked to concepts on ALOD. How the
linking process works is further explained in section 3.2. As one annotation may
contain more than one concept, a strategy is required here as well in order to com-
pare two annotations. The handling of this issue is addressed in subsection 3.6.2.
A feature generator will then calculate a similarity score for the cross combina-
tion of the annotations for each resource in O1 and O2 whereupon the best value
will be set as confidence. In the scope of this thesis, multiple features have been
developed and evaluated. They are presented in more detail in section 3.3. The cor-
respondence scores are eventually used by a matching strategy to determine which
correspondence makes it into the final alignment (A). The implemented matching

34
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strategies are explained in subsection 3.6.1. The APIs and frameworks used for the
implementation are briefly described in the following susbsection (3.1.2).

3.1.2 Used APIs and Frameworks

For the implementation of this thesis external APIs and frameworks are used. The
most important ones are presented in the subsequent paragraphs.

Alignment API The general structure of the matcher follows the Alignment API
[35]. The API is commonly used in the field of ontology matching and also recom-
mended by the OAEI. It is implemented in Java and (despite its name) also contains
sample implementations and logic parts. Following the API allows the matcher to
be data set independent and, furthermore, to use OAEI data sets without data trans-
lations. The API defines an AlignmentProcess interface for all matchers with
an align method. An Evaluator can evaluate an alignment process given a
reference alignment. AlignmentVisitors can render an alignment.
The API also defines an XML format for alignments: A Cell represents a cor-
respondence and contains at least entity1, entity2, and a relation. Op-
tionally, a confidence (measure) can be assigned to a cell. An example for one
correspondence can be found in listing 3.1.

1 <map>
2 <Cell>
3 <entity1 rdf:resource="http://example1.com/

article"/>
4 <entity2 rdf:resource="http://example2.com/

publication"/>
5 <measure rdf:datatype="xsd:float">0.5</measure>
6 <relation>=</relation>
7 </Cell>
8 </map>

Listing 3.1: Alignment Format Example as Defined by the Alignment API1

Apache Jena Originally developed by HP Labs, Jena [29] is a commonly used
Java framework for the Semantic Web. In 2010, the project was handed over to

1The given example is only an excerpt of a possible alignment, the full alignment file also contains
information about the type of the alignment and the ontologies. A good overview of the format can
be found on the official page (see http://alignapi.gforge.inria.fr/format.html).

http://alignapi.gforge.inria.fr/format.html
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the Apache Software Foundation [4]. It is available for free under a public li-
cense.2 The framework allows (among other functions) to query RDF data3 and
also provides a triple store, called TDB4. All SPARQL data operations concern-
ing RDF data within the implementation of this thesis are achieved with the Jena
framework.

Gensim Gensim [139] is a free Python library which allows to calculate em-
beddings efficiently.5 Among the supported algorithms, there is also a word2vec
implementation.6 The framework is available for free under a public domain li-
cense.7 Gensim is used in this thesis to implement a modification of the RDF2Vec
algorithm (see section 3.4).

SQLite SQLite8 is a lightweight transactional relational database management
system (RDBMS) that does not require a server but accesses the required file dir-
ectly on the client; the software is platform-independent and freely available under
a public domain license [102] [3, pp. 1-9]. In the scope of this thesis, the frame-
work is used to store vectors efficiently.

MapDB Similar to SQLite, MapDB9 allows to persist and retrieve data on disk.
Unlike SQLite, the framework does not provide full RDBMS functionalities but
rather fast access of disk-persisted data structures, such as HashMaps. The soft-
ware is under a public domain license and open-source [100, p. 1]. For the present
implementation, the framework is used to store vectors efficiently.10

3.2 Linking to LOD Resources

Unlike Wikipedia, the ALOD data set does not have a search feature which can be
exploited. In contrast to WikiMatch or BLOOMS, which both use an externally
provided search functionality [84, p. 406] [74, p. 3], a sophisticated linking mech-
anism for the ALOD data set has to be implemented for this particular use case.

2see https://jena.apache.org/
3see https://jena.apache.org/documentation/query/index.html
4see https://jena.apache.org/documentation/tdb/index.html
5see https://radimrehurek.com/gensim/index.html
6see https://radimrehurek.com/gensim/models/word2vec.html
7see https://radimrehurek.com/gensim/about.html
8see http://sqlite.org/index.html
9see http://www.mapdb.org/

10The framework was additionally introduced due to a library incompatibility of SQLite with the
SEALS evaluation platform.

https://jena.apache.org/
https://jena.apache.org/documentation/query/index.html
https://jena.apache.org/documentation/tdb/index.html
https://radimrehurek.com/gensim/index.html
https://radimrehurek.com/gensim/models/word2vec.html
https://radimrehurek.com/gensim/about.html
http://sqlite.org/index.html
http://www.mapdb.org/
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An ontology consists of classes or properties which (usually) have assigned labels.
Given a label of a concept, an algorithm is required that is capable of linking the
concept to a Web resource. This section focuses around the task of linking labels of
local ontology resources to concepts on the Web.11 Although presented for a par-
ticular data set in this section, the algorithm can also be employed to create links
to resources in other data sets with few modifications.12

A naïve approach would be to use the label as it is to look up either labels or the
Web resource directly. This leads to very few matches because of data set specific
idiosyncrasies. In the ALOD Classic data set, for instance, all labels are in lower
cases and resource fragments start and end with an underscore like _piano_ 13;
when looking at composite resources, however, there is no leading underscore such
as in piano_player_14. On DBpedia, on the other hand, labels and also re-
source fragments do contain upper case letters; there are no leading or trailing
underscores as well.
In addition, ontology and data model labels often contain composite concepts.
The OAEI Anatomy data set15, for example, contains the label Hepatic Flexure
of the Colon. This label cannot be found in the ALOD data set in its full form.
Yet, the data set does contain Hepatic Flexure16 and Colon17. A sophisticated
algorithm is required here that recognizes partial concepts contained within a la-
bel. In the implementation developed in this thesis, this task is realized by a class
implementing the LabelToConceptLinker interface. Because of data set spe-
cific idiosyncrasies, every label has to be cleaned of illegitimate characters; this is
implemented as a data set specific cleaner which has to implement the interface
StringCleaner.

Modification Sequences The LabelToConceptLinker gets a list of oper-
ations (List<StringModifier>) to try one after each other if the previous
operation failed. One such modifier operation could be to remove all numbers, to
remove stopwords, or to replace certain characters (like "-") with others (like "_").
When a concept was found, it is returned and the remaining operations are not ex-

11For simplicity, the term label is used here to refer to a human-readable textual identifier of a re-
source that does not have to be represented through rdfs:label. In fact, the implementation uses
all textual representations available and picks the most appropriate one. This process is described in
detail later in subsection 3.6.3.

12A concrete example can be found in section 4.3 where the algorithm is used to create links not
only to ALOD but also to DBpedia.

13see http://webisa.webdatacommons.org/concept/_piano_
14see http://webisa.webdatacommons.org/concept/piano_player_
15see http://oaei.ontologymatching.org/2017/anatomy/index.html
16see http://webisa.webdatacommons.org/concept/hepatic_flexure_
17see http://webisa.webdatacommons.org/concept/_colon_

http://webisa.webdatacommons.org/concept/_piano_
http://webisa.webdatacommons.org/concept/piano_player_
http://oaei.ontologymatching.org/2017/anatomy/index.html
http://webisa.webdatacommons.org/concept/hepatic_flexure_
http://webisa.webdatacommons.org/concept/_colon_
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ecuted anymore. The modification sequences for the ALOD data set can be found
in appendix A.1.

Left-to-Right Tokenization If the label as a whole cannot be found on the data
set but does contain multiple concepts, the label has to be split. Depending on the
nature of the ontology, tokens are obtained differently. The simple term car dealer,
for instance, might be encoded as car dealer, car_dealer, or carDealer.
The implementation can automatically detect and handle underscores, camel case,
and space separation. This is sufficient for most ontologies.18

The underlying assumption of the linking mechanism is that longer labels are more
precise and carry more value. Hence, when a string operation on the whole label
succeeds, no tokenization is performed. When the whole label cannot be found
after execution of the modification sequence, however, it is assumed that multiple
resources (sub-concepts) are contained within the label. Given the example of
the label United Nations Peacekeeping Mission in Mali, a mechanism is required
that finds the longest possible substrings (i.e., united nations19, peacekeeping mis-
sion20, mali21) rather than searching for each token individually (i.e., united, na-
tions, peacekeeping etc.).
As Western languages are read from left to right, the tokenizer will start chopping
tokens from the right to get the longest possible token from the left. After each
chopping, all string modifications are reapplied. If a lookup for a token was suc-
cessful, the found tokens are removed and the process starts from the beginning
until there are no tokens to chop anymore. An exemplary lookup process is depic-
ted in table 3.2. Note that the sub-concept detection process is only triggered after
the full term could not be linked.
As this process can be very expensive on labels with many tokens (a label consist-
ing of 20 tokens can be cut up to

(
20
2

)
= 20!

2!(20−2)! = 190 times), the maximal size
of a lookup token can be set (e.g. if the maximal number is 2, this leads to only(
10+1−2

2

)
= 9!

2!(9−2)! = 36 potential cuts on the same label). Additionally, the label
can be cut after a certain amount of characters.

18Tested were 9 different OAEI ontologies (see also section 4.3).
19see http://webisa.webdatacommons.org/concept/united_nations_
20see http://webisa.webdatacommons.org/concept/peacekeeping_

mission_
21see http://webisa.webdatacommons.org/concept/_mali_

http://webisa.webdatacommons.org/concept/united_nations_
http://webisa.webdatacommons.org/concept/peacekeeping_mission_
http://webisa.webdatacommons.org/concept/peacekeeping_mission_
http://webisa.webdatacommons.org/concept/_mali_
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Action Current Lookup String Status
String Modifier: LC united nations peacekeeping mission in mali false
String Modifier: LCSR
(stopword detected)

united nations peacekeeping mission mali false

Tokenizer: Cut Last Word
String Modifier: LC

united nations peacekeeping mission in false

String Modifier: LCSR
(stopword detected)

united nations peacekeeping mission false

Tokenizer: Cut Last Word
String Modifier: LC

united nations peacekeeping mission false

Tokenizer: Cut Last Word
String Modifier: LC

united nations peacekeeping false

Tokenizer: Cut Last Word
String Modifier: LC

united nations true

String Modifier: LC peacekeeping mission in mali false
String Modifier: LCSR
(stopword detected)

peacekeeping mission mali false

Tokenizer: Cut Last Word
String Modifier: LC

peacekeeping mission in false

String Modifier: LCSR
(stopword detected)

peacekeeping mission true

String Modifier: LC in mali false
String Modifier: LCSR
(stopword detected)

mali true

Table 3.1: Label Tokenization
Depicted is the sequence of strings that are looked up when using two modifiers
and left-to-right tokenization on the term United Nations Peacekeeping Mission in
Mali. Modifier LC stands for lowercasing and LCSR for lowercasing and stopword
removal. Note that this is a simplified example with just two string modifiers; in
the actual implementation, more string operations are applied before the last word
is cut. The implemented linker will also never run a query twice for the same
substring. Bold printed terms are found and returned.

Penalties for Incomplete Linking There are cases in which parts of a label can-
not be found for example in tubule macula and in macula lutea both times only
macula can be found using the ALOD Classic data set. If only the found concepts
would be used to calculate the similarity between the concepts, a perfect score
would be obtained because sim(macula,macula) = 1.0. However, this is not
precise as this approach does not allow to discriminate between perfect matches
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due to incomplete linking and real perfect matches. Therefore, a penalty factor
p ∈ [0, 1] is introduced that is to be multiplied with the final similarity score and
which lowers the score for incomplete links; p = 0 indicates the maximal penalty,
p = 1 indicates no penalty. The calculation of p is depicted in equation 3.1:

p = 0.5 ∗ |Found Concepts L1|
|Possible Concepts L1|

+ 0.5 ∗ |Found Concepts L2|
|Possible Concepts L2|

(3.1)

where L1 is the label of the first concept and L2 is the label of the second one;
|Found Concepts Li| is the number of tokens for which a concept could be found
(minus stopwords) and |Possible Concepts Li| is the number of tokens of the
label without stopwords.
The penalty factor introduced is a relative measure: If only one part of a two-token
label cannot be found, the penalty component for this label is 1

2 = 0.5 whereas
if only one part of a four-token label cannot be found, the penalty component for
that label is 1

4 = 0.25. Given the example L1 = tubule macula and L2 = macula
lutea where only macula can be found both times, the similarity score with penalty
factor (simp) is:

simp(L1, L2) = (0.5 ∗ 1

2
+ 0.5 ∗ 1

2
) ∗ sim(macula,macula)

= (0.25 + 0.25) ∗ 1

= 0.5

Note that if there would be L3 = macula and L4 = macula, the penalty score
would equal 1 and, consequently, the similarity would be:

simp(L3, L4) = (0.5 ∗ 1

1
+ 0.5 ∗ 1

1
) ∗ sim(macula,macula)

= (0.5 + 0.5) ∗ 1

= 1.0

As it can be seen from the examples above, by using the penalty factor, per-
fect matches due to incomplete linking can be discriminated against real perfect
matches.

3.3 Basic Features

3.3.1 ALOD Features based on SPARQL

Based on the ALOD data set, features have been derived which can be used in the
matching process. Feature generators have been implemented which can calculate
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a numerical feature given two URIs. The features presented in the following are
based on SPARQL queries and basic mathematical operations implemented in Java.

Number of Broader Concepts This feature generator counts the number of dir-
ect broader concepts of two URIs which shall be compared and calculates a similar-
ity measure based on the absolute difference between the two values. The underly-
ing assumption is that similar concepts have a similar amount of broader concepts
in the data set. The similarity calculation is depicted in equation 3.2.

sim(c1, c2) =
1

1−
∣∣∣|broaderc1 | − |broaderc2 |∣∣∣ (3.2)

where c1 and c2 refer to the concepts used and |broaderci | refers to the number of
broader concepts of concept i.

Number of Narrower Concepts This feature generator counts the number of
direct narrower concepts of two URIs which shall be compared and calculates a
similarity measure based on the absolute difference between the two values. The
underlying assumption is that similar concepts have a similar amount of narrower
concepts in the data set. The similarity calculation is depicted in equation 3.3.

sim(c1, c2) =
1

1−
∣∣∣|narrowerc1 | − |narrowerc2 |∣∣∣ (3.3)

where c1 and c2 refer to the concepts used and |narrowerci | refers to the number
of narrower concepts of concept i.

A Has Broader Concept B This feature generator returns true if B is a broader
concept, i.e. a hypernym, of A and false elsewise. Starting from concept A, broader
concepts are retrieved and it is checked whether B is among them. If this is the case,
the algorithm terminates; otherwise, broader concepts of broader concepts are re-
trieved and checked again until there are no broader concepts anymore. Pseudo-
code is given in algorithm 1. For reasons of performance, it makes sense to limit the
number of broader concepts of broader concepts which shall be retrieved. There-
fore, the implementation also allows to set a limit of how many steps upwards in
the tree are allowed (this is referred to as level here). As it is expensive to load
broader concepts and to loop over them, the actual implementation has been op-
timized to generate a SPARQL ASK query for each level which will return with a
boolean. When switching the two input parameters, this feature can be converted
into two features: A Has Broader Concept B and B Has Broader Concept A. For
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equivalence relations, the direction of comparison does not matter as the function
is symmetric, i.e., sim(A,B) = sim(B,A). Therefore, the two features can be
combined into one, named OneHasOtherAsBroaderConcept henceforth:

OneHasOtherAsBroaderConcept(A,B) =

AHasBroaderConceptB(A,B) ∨BHasBroaderConceptA(A,B)
(3.4)

Algorithm 1 A Has Broader Concept B
broaderConcepts← getBroaderConcepts(A)
for c ∈ broaderConcepts do

if c == B then
return true

end if
end for
newBroaderConcepts← broaderConcepts
while newBroaderConcepts 6= ∅ do

newNewBroaderConcepts← ∅
for c ∈ newBroaderConcepts do

newNewBroaderConcepts.add(getBroaderConcepts(c))
end for
newBroaderConcepts← newNewBroaderConcepts
for c ∈ newBroaderConcepts do

if c == B then
return true

end if
end for

end while
return false

Broader Vector Space The feature generator takes the resources which shall be
compared and follows the broader links within the graph. From the gained concepts
a vector is built. Then, the Euclidean Distance between the two concept vectors is
calculated and used as feature. The generator can be configured by setting the
following parameters:

• LEVEL
Defines how many hops are allowed, i.e., up to which depth the graph is
followed starting from the resource for which the vector shall be calculated.



CHAPTER 3. IMPLEMENTATION 44

• LIMIT
Defines how many broader concepts per level and node are retrieved. By
default, all concepts are sorted by confidence and the top LIMIT concepts
are selected and added to the vector (given that they fulfill all other require-
ments).

• ELEMENT BASE VALUE
Defines which value is used for an element in the vector space. Available
options are FIXED (use 1.0) or CONFIDENCE (use not 1.0, but the
confidence provided by the ALOD data set to build the vector).

• DECAY FACTOR
When walking up the tree, the concepts get broader, more abstract and more
erroneous. Direct broader concepts are the most important ones. Therefore,
a DECAY FACTOR is defined. The weight contribution to the vector shrinks
exponentially as defined by the factor. The weight is calculated as:

w′i = wi ∗DECAY FACTORCURRENT LEV EL−1 (3.5)

where theCURRENT LEV EL is defined as the number of hops the concept
is away from the starting resource.

In appendix C.4, an extensive example with a concrete calculation is given for
illustratory purposes.
It is noteworthy to mention that this feature is very expensive to calculate due to
the exponential number of broader concepts to retrieve with an increasing level.

Broader Overlap For this feature, all broader concepts of the concepts to be
compared are obtained. The set similarity measures Jaccard (see equation 3.6 and
more explanations in 3.3.2) and Dice Coefficient (see equation C.11 and appendix
C.11 for more details) are implemented to calculate the similarity of overlapping
concepts. It is also possible to limit the set of retrieved concepts by setting a min-
imal confidence threshold or by limiting the number of concepts that shall be ob-
tained. For the latter option, the top k concepts sorted according to confidence are
used. Furthermore, it is possible to include broader concepts of broader concepts
in the calculation process by setting a level parameter. In figure 3.2, the top three
broader concepts for J. K. Rowling22 and J. R. R. Tolkien23 are given for a level
of 1. Their similarity using the Jaccard coefficient would be 1

3+3−1 = 0.2 in this
example.

22see http://webisa.webdatacommons.org/concept/j.k_rowling_
23see http://webisa.webdatacommons.org/concept/j.r.r_tolkien_

http://webisa.webdatacommons.org/concept/j.k_rowling_
http://webisa.webdatacommons.org/concept/j.r.r_tolkien_
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Figure 3.2: Overlapping Concepts Example
Depicted are the top three broader concepts of J. K. Rowling and J. R. R. Tolkien
in ALOD Classic.

Narrower Overlap The narrower overlap feature is implemented analogously
to broader overlap: Given a certain level and a minimum confidence, all narrower
concepts of both URIs are retrieved. The set similarity measures, Jaccard and Dice
Coefficient, are implemented to calculate the similarity of overlapping concepts.

3.3.2 Further Features

In addition to the features based on the ALOD data set introduced above, further
features are implemented which are presented in the following.

Levenshtein on Label Based on the label of two matched concepts, traditional
edit-distance measures can be applied. For this thesis, the Levenshtein algorithm
[109] is used and available as feature. The algorithm counts the minimal number of
character insertions, deletions, and substitutions required to transform one String
into the other [30, p. 103]. This number can be length-normalized and transformed
into a similarity measure in the range [0,1] according to equation C.9 given in the
appendix (more information on Levenshtein is also given there).

Jaccard on Label The Jaccard coefficient is a common set similarity measure
that can also be used as n-gram-based string comparison measure: The strings of
the concepts to be compared are transformed into n-grams. Here, n is to be defined
by the user; |c1| and |c2| are the number of n-grams of string 1 (s1) and of string
2 (s2) respectively. The similarity is based on the number of common n-grams
(ccommon) and is calculated as stated in equation 3.6. [30, pp. 106-107]

simjaccard(s1,s2) =
ccommon

|c1|+ |c2| − ccommon
(3.6)
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3.4 ALOD2Vec Feature

The features presented so far allow for propositionalization based on SPARQL
queries as well as basic mathematical operations. Besides those, a new approach
which is based on the RDF2Vec method presented in subsection 2.5.1 has been
implemented and evaluated: ALOD2Vec.

3.4.1 Random Walk Generation

Ristoski et al. present two different approaches to walk generation: (1) Random
Walks and (2) Weisfeiler-Lehman Graph Kernels. The authors note that the latter
approach "[does] not scale well to large-scale knowledge graphs, such as DBpedia
or Wikidata" [147, p. 22]. This is due to the exponential growth of walks with
increasing depth [39, p. 30]. Given the fact that the data set under consideration
in this thesis is much larger than regular data sets, the random walk approach is
pursued. In a follow-up paper [32], biased walks were presented for the first time.
Here, the idea is to prefer meaningful walks by considering edge weights. In the
scope of this thesis, a biased walk approach is also implemented.
The original RDF2Vec implementation is not optimal for the ALOD data set be-
cause of idiosyncratic properties:

1. The ALOD data set is organized in separate SPARQL graphs; the original
implementation cannot handle those.

2. The ALOD data set can easily have a couple thousand object properties for
one concept. In the original implementation, random walks are generated by
calculating the Cartesian product for multiple hops. While that might work
for other knowledge graphs, this approach leads to a memory explosion for
the ALOD data set and is neither time efficient nor easily feasible.24

3. Compared to other knowledge graphs, the WebIsA data set only has one
semantically meaningful object property: skos:broader. The inclusion
of the property to the walks is not adding additional value.

In order to overcome the obstacles mentioned above, the approach was reimple-
mented and adapted. Two different options are available:

Jena-Based Walk Generation The first step of walk generation is to load the
data.25 As the n-quads files are not clean (some IRIs contain spaces and cannot

24Experiments were performed on a machine with 125 gigabytes of RAM.
25The data is available here: http://webisa.webdatacommons.org/

http://webisa.webdatacommons.org/
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be loaded into Jena out-of-the-box), a preprocessing of the files to be loaded is
required. This is implemented as a Java program using regular expressions. The
preprocessed file can afterwards be loaded into Jena TDB and be queried. The
advantage of this approach is a relatively low memory requirement. The disad-
vantage is its low processing performance and large front-up investment in order
to preprocess the graph and load it into TDB.

Memory-Based Walk Generation The Jena-based approach is very slow due to
the disk access of TDB and SPARQL-induced overhead. Therefore, a memory-
based approach has also been implemented. The n-quads file is first stripped from
any non-relevant information (such as meta data concerning the patterns or pay-
level domains) and rewritten to disk. Afterwards, the relations are loaded into
performance-optimized data structures and are held in memory. Here, no SPARQL
is used. This approach is more than a magnitude faster compared to the approach
presented above but has hefty memory requirements: In order to hold the ALOD
XL relations in memory, at at least 80 GB of RAM are required.

Given a graph G = (V,E), the original walk pattern for each vertex v ∈ V in
the second iteration is vr → e1i → v1i where vr is the root node and e1i ∈
E(vr). The algorithm then continues until the number of specified iterations d
is reached. [147, p. 4] As the edges are always equal to skos:broader, this
information is discarded and the pattern for two iterations in ALOD2Vec is as
follows: vr → v1 → v2 where (vr skos:broader v1) ∧ (v1 skos:broader v2)
holds. The pattern can be continued for as many iterations as desired. An ex-
ample for a random graph of depth 2 on the ALOD Classic data set would be
president→ political leader → public figure. The walks themselves resemble
those generated in node2Vec even though the walk generation is different.
For the Jena-based approach, the query process itself has also been rewritten com-
pared to the original implementation: In a first step, all concepts are collected for
which walks shall be created. Then – rather than creating Cartesian products – for
each segment of the walk a concept is drawn. The drawing can be configured to be
biased in the sense that hypernyms which received a higher confidence are more
likely to be drawn which can be seen in the Java query generation method of listing
3.2: The confidence is combined with a random element so that high-confidence
concepts are drawn more often but not always. Compared to the original walk cre-
ation method, this approach scales with linear time complexity with respect to the
number of desired walks per concept and the desired depth. The memory-based
generator works in a similar fashion, as depicted in listing 3.3, and is also capable
of generating biased walks. In both cases, the walk generation is multi-threaded so
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that the runtime improves on machines with many processing units. The number
of threads can be set dynamically according to the capabilities of the hardware.

1 /**
2 * Generate the query to obtain a random

broader concept.
3 * Note: The probability is greater for

high-confidence hypernyms.
4 * @param concept: The concept IRI for which a

broader concept shall be retrieved.
5 * @return Query in String representation.
6 */
7 public String

generateQueryForRandomBroaderConcept(String
concept){

8 return PREFIX_SKOS + PREFIX_ISAO +
9 "SELECT ?e WHERE\n" +

10 "{ GRAPH ?g {<" + concept + ">
skos:broader ?e .}\n" +

11 "?g isao:hasConfidence ?c .\n" +
12 "BIND(RAND()*?c AS ?rank)} ORDER

BY ?rank LIMIT 1";
13 }

Listing 3.2: Random Broader Concept Generator Method: SPARQL-Based

1 /**
2 * Returns a random broader concept of the

given concept with a higher probability of
high-confidence concepts

3 * to be drawn.
4 * @param concept: The concept for which the

hypernym shall be retrieved.
5 * @return The random broader concept in

String representation.
6 */
7 public String drawRandomConcept(String

concept){
8 String result = "";
9 float greatestConfidence = 0f;

10 float currentConfidence = 0f;
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11 Random rand = new Random();
12 ArrayList<StringFloat> broader =

broaderConcepts.get(concept);
13 if(broader == null){
14 return null;
15 }
16 for(StringFloat s : broader){
17 currentConfidence = rand.nextFloat() *

s.floatValue;
18 if(currentConfidence >=

greatestConfidence){
19 result = s.stringValue;
20 greatestConfidence =

currentConfidence;
21 }
22 }
23 return result;
24 }

Listing 3.3: Random Broader Concept Generator Method Memory-Based

Reverse Walks The random/biased walk generation algorithm presented so far
has one disadvantage: While all nodes with outgoing edges appear in the set of
walks with certainty, nodes with only ingoing edges are only present when they
appear in some other random walk.
Furthermore, nodes with only ingoing edges likely appear in much fewer walks
and the derived embeddings are likely less meaningful. In the data set at hand,
however, there are many such nodes [153, p. 5]. Therefore, walks for hypernyms
that do not appear as hyponmys were generated in reverse order: The concept
european organization26, for instance, has only narrower concepts. A resulting
reverse walk of depth 2 might look like this: european organization← european
union. After the reverse walk generation, the walks are transformed so that they
follow the format of the other sentences. Given the example above, the resulting
walk looks like this: european union→ european organization.
This notion is neither present in node2Vec nor in RDF2Vec.

26see http://webisa.webdatacommons.org/concept/european_
organization_

http://webisa.webdatacommons.org/concept/european_organization_
http://webisa.webdatacommons.org/concept/european_organization_
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3.4.2 Training of Embeddings

The walks are persisted in compressed files. Those are read by a Python program
for the training step. An example of the ten closest concepts obtained using the
SG-500 ALOD embeddings can be found in table 3.4.2.
The walk generation was successfully run for ALOD Classic and ALOD XL. How-
ever, embeddings could not be trained for the full ALOD XL data set because
of very high memory requirements: The gensim library keeps the embeddings in
memory. In order to do so, the memory requirement can be estimated as:

Memory = |concepts| ∗ dimension ∗ 8 bytes (3.7)

where |concepts| refers to the number of concepts and dimension refers to the
desired dimension for the vectors.
The 8 bytes resemble the memory requirements for a double.27 For 200,000,000
concepts and a dimension of 200, this means that at least 200, 000, 000 ∗ 200 ∗
8 bytes = 320 GB would be required. In accordance with the available hard-
ware, the process was started for the ALOD XL data set with a dimension size of
50. After several days, the embeddings were trained but a memory error occurred
while writing those to a file. The approach was not pursued afterwards. Here, it can
be seen that node2Vec and RDF2Vec have very high requirements when it comes
to graphs with many nodes. The bottleneck is not the generation of paths but rather
the training of the embeddings.

Embeddings Configuration In order to train the embeddings, the gensim library
is used. For the training, the parameters of the original RDF2Vec publication have
been chosen [147, p. 7]: window size = 5; number of iterations = 5; negative
sampling for optimization; negative samples = 25; average input vector for
CBOW.
The ALOD Classic embeddings were calculated with 100 walks per entity, depth
8 and enabled reverse-walk mechanism.
In order to evaluate whether a larger data set improves the results, a subset of the
ALDO XL data set has been created in a different fashion compared to the original
WebIsALOD paper: Given a specific concept c from the set of all concepts C, the
subset criterion is:

dataset(n) = {c ∈ C |(|cin|+ |cout|) > n} (3.8)

27The memory requirement is actually even greater because there is additional overhead: This
calculation does not cover the vocabulary or the references of the vectors to the corresponding terms.
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where |cin| represents the number of in-going edges and |cout| represents the num-
ber of out-going edges. The idea behind this selection criterion is that meaningful
embeddings can only be trained, when the concept is involved in more than n rela-
tions.
For further experiments n = 10 has been set, meaning that each concept in that
data set is involved in at least 10 relations, i.e., each node has at least a degree of
10. The resulting reduced XL data set, referred to in the following as ALOD XLR,
holds a little more than 5 million concepts and is more than three times as large as
ALOD Classic. However, the data set is still small enough to train embeddings. In
order to save disk-space, only 200-dimensional embeddings have been trained for
this particular subset.
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3.4.3 Hardware

For the walk generation and the learning of embeddings a server with 40 cores à
2.60Ghz and 128GB of RAM runnig SUSE Enterprise Linux was used.28

3.5 Feature Selection and Weighting

3.5.1 Selection and Weighting Process

When combining different features, a strategy is required in order to still being able
to make decisions. One way is a similarity aggregation strategy. An aggregated
similarity value (simaggregate) can be calculated as follows [1, p. 4]:

simaggregate(c1, c2) = Σh
i=1wi ∗ simi(c1, c2)

subject to Σh
i=1wi = 1

(3.9)

where c1 and c2 are the concepts for which the similarity shall be calculated, h is
the number of features, simi is the value of the ith feature, and wi is the weight for
the ith feature.
By applying equation 3.9, a single confidence value can be assigned to a corres-
pondence even though multiple features are used. In order to learn good weights,
machine learning techniques, like simple regressions, can be used. Some tech-
niques can set weights wi to zero and, thereby, select only relevant features.

3.5.2 Monosemous Synonymy Gold Standard (MSGS-1234)

A prerequisite for every supervised learner, however, is a gold standard of labeled
instances. In the context of this thesis, there are requirements for a good gold stan-
dard: Matching using the ALOD data set is label-based; therefore, a good property
between two labels for learning is required. In this case, synonymy (see 2.1.2)
was chosen as a desirable property. When exploiting pure labels, certain prob-
lems arise, namely words carrying multiple meanings (polysemy, see 2.1.2) which
can lead to situations where two labels are equal but the encoded sense is differ-
ent (homonymy, see 2.1.2). The gold standard needs to be free of such grey-scale
cases and at the same time allow for good corner cases which are in this case, for
instance, related but not synonymous words.

Due to the lack of existence, the author of this thesis created a gold stand-
ard which contains 1234 noun-noun-pairs together with a binary indicator stating

28The server has been provided by SAP SE.
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whether the nouns can be used synonymously in a strong-from interpretation, i.e.,
whether they are usable interchangeably in any context (see subsection 2.1.2). The
gold standard does contain polysemous words for negative annotations but all pos-
itive examples are monosemous. As a starting point, all 541 nouns of the McRae
et al. feature norms [115], which are publicly available29, were used. The data set
was chosen because all words are visually perceivable, the degree of abstraction
is low, and the words are likely to be monosemous. All nouns in the gold stand-
ard can be found on WordNet [134]. A positive match between two words was
annotated when the terms in question are members of the same synset(s) and are
exposed to the synset(s) in question exclusively according to WordNet. The words
doorknob and doorhandle, for instance, are both used in one synset (which is their
only one) with the explanatory text stating "a knob used to release the catch when
opening a door" [133]. Therefore, the two concepts are added to the gold standard
as a positive example.
Negative matches were chosen by selecting related nouns according to the word2vec
methodology [117] utilizing Google’s publicly available30 pre-trained entity vec-
tors. The criterion for a negative annotation was that the related word does not
occur in any synset of the other word. The Python code used to obtain the most
related words is given in the appendix (listing A.2). All annotations were checked
by a second reviewer and only added when consent existed concerning the word
pair and its label. In total, there are 360 positive and 874 negative annotations.
The chosen structure of the gold standard makes it possible that MSGS-1234 can
also be viewed as a regular synonymy gold standard with very strong synonymy
ties and can also be used in other contexts. The gold standard was made publicly
available on GitHub31 and can also be found on the CD enclosed to this thesis in
digital form.32 Results in the context of ontology matching are reported in section
4.5.

3.6 Matcher Details

3.6.1 Implemented Matching Restrictions

As outlined in 2.3.1, multiple matching restrictions are possible. In the scope of
this thesis, multiple strategies have been implemented and evaluated which are
presented in the following.

29see https://sites.google.com/site/kenmcraelab/norms-data
30see https://code.google.com/archive/p/word2vec/
31see https://github.com/janothan/MSGS-1234
32Due to the sheer size the gold standard is not available in the appendix.

https://sites.google.com/site/kenmcraelab/norms-data
https://code.google.com/archive/p/word2vec/
https://github.com/janothan/MSGS-1234
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Plain Strategy (N:M) This is the most basic strategy. Here, all correspondences
above a certain threshold are added to the resulting alignment.

Best Match (1:N) Given two ontologies O1 and O2 to be matched, the plain
strategy described above might match multiple resources of O1 to multiple re-
sources of O2. The Best Match strategy takes the set of correspondences S1i for
each resource R1i ∈ O1 and only adds the correspondence with the highest con-
fidence to the resulting alignment. If there are multiple highest ranked correspon-
dences in Si, a referee function is used. In this case, the correspondence with the
best Levenshtein edit similarity is chosen. If there still is a draw, i.e. the edit
similarity is also identical, a random draw is performed. The pseudocode can be
found in algorithm 2. Note that the algorithm uses the generic term resource which
leaves open whether classes, data properties, and object properties are referred to
as separate sets or as combined sets.

Algorithm 2 Best Match Strategey (1:N)
alignment← newSet()
resource1← ∅
resource2← ∅
for resource1 ∈ Ontology1.resources do

maxConfidence = 0
bestResource2← ∅
for resource2 ∈ Ontology2.resources do

similarityResult = similarity(resource1, resource2)
if similarityResult > maxSim then

maxConfidence = similarityResult
bestResource2 = resource2

else if similarityResult == maxSim then
bestResource2 = referee(resource2, bestResource2)

end if
end for
alignment.add(resource1, bestResource2,maxConfidence)

end for
return alignment

Best One-to-One (1:1) Note that when applying best match it is still possible
that multiple r1i refer to the same r2i ∈ O2. The approach presented here selects
the best match by asserting at the same time that each element in O1 refers to an



CHAPTER 3. IMPLEMENTATION 56

element in O2 that is not used in another correspondence. While it is not trivial to
find the optimal solution, a simple greedy heuristic can be applied [30, pp. 158-159]
which is formulated as pseudocode in algorithm 3: Here, all similarity values are
sorted in descending order and added to the final alignment in a top-down fashion,
given that the two resources to be mapped were not mapped before.

Algorithm 3 Best One-to-One Heuristic (1:1)
alignment← newSet()
mappingsBefore← newList()
alreadyMapped← newSet()
resource1← ∅
resource2← ∅
for resource1 ∈ Ontology1.resources do

for resource2 ∈ Ontology2.resources do
confidence = similarity(resource1, resource2)
mappingsBefore.add(resource1, resource2, confidence)

end for
end for
sortDescending(mappingsBefore)
for mapping ∈ mappingsBefore do

if (mapping.resource1 /∈ alreadyMapped)∧
(mapping.resource2 /∈ alreadyMapped) then

alignment.add(mapping)
alreadyMapped.add(mapping.resource1)
alreadyMapped.add(mapping.resource2)

end if
end for
return alignment

3.6.2 Handling of Sub-Concepts

As stated earlier, the similarity between two concepts can be calculated straightfor-
wardly. However, if a concept consists of many sub-concepts, for example when
the concept Council of the European Union is mapped to the concepts Council as
well as European Union and shall be compared with the concept European Union,
a processing rule has to be implemented. Two options are implemented: (1) Aver-
age and (2) Best Average. Both are described in the following.
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Average The simplest option is to calculate the cross product of the sub-concepts
and average their similarity:

simaverage =
Σ
|c1|
i∈c1Σ

|c2|
j∈c2sim(c1i , c2j )

|c1| ∗ |c2|
(3.10)

where c1 and c2 represent two individual concepts and c1i respectively c2j represent
the ith and jth sub-concept of c1 and c2; |c1| and |c2| are the number of subconcepts
of c1 and c2.

Best Average The approach above can lead to the situation that perfect matches
do not receive a score of 1.0 because, using the example stated above, matching
Council of the European Union with itself would lead to Council not only being
matched with itself but also with European Union which is most likely not a perfect
match. Therefore, the Average approach is extended:

simaverage =
Σ
|c1|
i∈c1Max

|c2|
j∈c2sim(c1i , c2j )

|c1|
(3.11)

where c1 is the concept with more tokens.
This is a hard requirement in order to avoid full scores given to longer concepts that
contain the other, shorter concept, i.e., c2 ⊂ c1. An example for such a situation
would be muscle and smooth muscle tissue cell. If muscle were the first concept,
it would only be matched with the muscle part of the other concept and, hence,
receive a score of 1.0 according to equation 3.11.
In this thesis, multiple sub-concepts occur frequently and Best Average is used to
handle them. This ensures that perfect matches receive a score of 1.0.

3.6.3 Handling of Multiple Textual Parts

Some ontologies assign multiple labels to classes (e.g. the NCI Thesaurus On-
tology), others do not have labels at all (e.g. the EDAS Conference Onto-
logy). Furthermore, in some cases there might be additional comments or defin-
itions. In order to handle all such cases, a mechanism is required to calculate
the similarity among multiple labels. For the matcher in this thesis, a score
matrix is used (similar to the one in WeSeE-Match [128, p. 215]): In a first
step, all values of owl:AnnotationProperty and its sub classes are re-
trieved. This includes owl:versionInfo, rdfs:label, rdfs:comment,
rdfs:seeAlso, rdfs:isDefinedBy. Additionally, the IRI fragment is ad-
ded. Each retrieved String from one ontology is compared to each retrieved String



CHAPTER 3. IMPLEMENTATION 58

from the other ontology and the maximum similarity is returned. This is also de-
picted in equation 3.12:

sim(e1, e2) = maxi,j∈(annotations∪fragment)sim′(stri(e1), strj(e2)) (3.12)

where e1 is an element from one ontology and e2 is an element from another on-
tology, sim′ is a similarity function which calculates the similarity accepting two
string representations and str(e) is one string element from the union of annotation
properties and fragments of element e. A concrete calculation example is given in
table 3.3.

e1
MA0000270 eyelid tarsus

e2
NCI_C33736 0.022 0.0
Tarsal_Plate 0.001 0.037

Table 3.3: Score Matrix Example
This is a real-world example from the OAEI Anatomy data set using the nar-
rower overlap on the ALOD XL endpoint. The bold printed labels are the an-
notations found for e1 and e2, respectively. The assigned score for sim(e1, e2) is
max(0.022, 0.0, 0.001, 0.037) = 0.037.

3.6.4 Performance-Based Enhancements

Compared to non-Web-based approaches, one disadvantage of the ALOD-based
matcher is runtime performance. Similar to WikiMatch [74, p. 44], the bottleneck
for SPARQL-based features is the time it takes to send out requests and to retrieve
data. However, all approaches presented in this thesis scale linearly in terms of
search requests as opposed to other approaches such as the Google Distance [31]33

where the search requests scale quadratically. Hence, the similarity computation is
scalable even though it is slow. Furthermore, as the comparison of two concepts is
an independent task, there is much potential for parallelization.
The ALOD2Vec approach does not have network induced runtime problems but
rather suffers from the size of the vector corpus.
In order to improve runtime performance the following methods are applied:

33The basic idea behind the Google Distance is that two semantically similar concepts appear on
the Web more often together and consequently lead to more results retrieved by the Google search
engine. However, this approach requires (among others) a search request for each two concepts that
shall be compared. [31, p. 5]



CHAPTER 3. IMPLEMENTATION 59

• A string filter is implemented which filters out trivial matches (see architec-
ture overview in figure 3.1). This allows to filter out direct string matches
without querying external resources for those concepts for linking and sim-
ilarity calculation. In its basic form, this does not change the results in any
way as the approach presented in this thesis relies solely on textual repres-
entations. However, if the ALOD approach shall be combined with other
string-based approaches, the filter can be extended, e.g. by adding a Porter-
stemmer [131] or a lemmatizer.

• The string filter is multi-threaded. This is possible because comparisons are
independent of each other. At the beginning of the process, the elements of
one ontology are divided into subgroups that are distributed to threads which
compare the subsets against all elements of the other ontology. This signi-
ficantly improves the runtime on very large ontologies without sacrificing
the quality of the result. The number of threads can be set dynamically ac-
cording to the capabilities of the hardware. In order to not cause overhead,
multi-threading is automatically disabled when matching smaller ontologies.

• The linking process itself is expensive for very long texts as multiple con-
cepts are derived from the textual representation (see 3.2). Therefore, text
can be cut after x characters. For the experiments in the following chapter,
x = 100 has been chosen.

• Fragments do not always encode valuable information. In the OAEI Ana-
tomy data set, for instance, fragments receive an ID such as NCI_C12220
or MA_0000003. These kind of strings slow down the comparison process
without adding any value. Therefore, fragments which contain more number
characters than half of the total characters of the String are ignored.

• As the bottleneck for SPARQL-based features are queries, a buffer has been
implemented so that no query will be sent out twice to the Web service.
Rather than associating a full query with its result, a SparqlService
class exposes certain query services and uses different buffers for the re-
quired data structures. At no point ResultSet objects are buffered, but
instead lightweight HashMaps with the minimal information required for
the application are cached.

• The same buffering concept is also implemented for the label to concept
linkers in order to avoid performing the linking process twice. This is also
used for non-SPARQL approaches.
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• All buffers can optionally be persisted so that different configurations can be
tried out in a row.

The ALOD2Vec approach does not rely on Web-queries and performs much better
in terms of runtime. As vector comparisons and performing the linking process
are still more expensive than string comparisons and loads from a HashMap, the
string filter as well as the buffers were kept for this approach where applicable.
Another challenge arises from the embeddings: The size of the files holding the
embeddings is considerable – 2GB for the 200-dimensional embeddings and 5GB
for the 500-dimensional embeddings on ALOD Classic.34 Problems on smaller
PCs arise when there is only limited memory available. Furthermore, loading a
5GB large HashMap requires a considerable start-up time. Therefore, besides the
memory approach, another option has been implemented: Using a helper program,
the embeddings can be loaded into a SQLite database. The usage of the embedded
RDBMS reduces the startup-time, requires far less memory, and yields good per-
formance. As disk-access is slower than memory-access, queries are buffered to
increase the overall performance. Due to a library incompatibility with the SEALS
framework, the same approach is also implemented using the MapDB library.35

3.7 Implementation Details

This section quickly covers the accompanying materials of this thesis which are
stored on the enclosed CD and discusses actions taken to ensure code understand-
ability and quality.

3.7.1 Projects

The accompanying CD contains all coding artifacts developed in this thesis. It is
divided into five projects which are separated in different folders:

• main_project
This directory contains the main project. It is implemented in Java 8 using
maven36 as dependency manager. Different applications (see next section)
are grouped in packages.

• oaei_2018_project
This directory contains a fork of the main project. More specifically, it con-
tains the the final matcher along with the required dependencies.

34When loading such a file into memory, the required memory here is even greater.
35It turned out that the MapDB library is faster than SQLite. However, its capabilities are not as

rich and the library might not be sufficient for future enhancements.
36see https://maven.apache.org/

https://maven.apache.org/
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• oaei_2018_seals
This directory contains the SEALS package that will be submitted for the
OAEI 2018 campaign.

• alod2vec_learning
This directory contains the Python code used to derive the embeddings. Note
that the walk generation is implemented in the main project.

• powerdesigner_extension
This directory contains the implemented extension which allows to derive an
ontology from a given PowerDesigner data model and also to export map-
pings in the Alignment API XML format. The code is written in VBS and
packaged as PowerDesigner Extension (.xem file).

In addition, the following folders contain non-code artifacts:

• msgs
This directory contains the MSGS-1234 synonymy gold standard that was
described in subsection 3.5.2.

• thesis_written
This directory contains the digital PDF version of this thesis.

• thesis_presentation
This directory contains the slides used to present the contents of this thesis.

3.7.2 Code Quality and Documentation

The majority of the implementation is written in Java. In order to ensure a high
quality of code, more than 100 unit tests were implemented using the JUnit Test
Framework37.
In addition, to allow for readability as well as reusability, the coding is documented
using JavaDoc. For code parts written in Python and VBS, regular comments are
used to ensure clarity. Furthermore, packages and directories contain markdown
files (named README.md) that explain the content and purpose of the current dir-
ectory.38 If the package contains an application, the documentary markdown file
also explains how to run it.
For any details about the individual artifacts, refer to the corresponding README.md
files as they cannot be fully explained here.

37see https://junit.org/junit5/
38This format was also chosen because GitHub automatically displays the README.md when

navigating into a directory containing such a file. Thereby, understandability is improved when
viewing the project on this platform.

https://junit.org/junit5/
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3.7.3 Applications

The main project contains an application directory which again contains all
classes that can be run. Subfolders structure the applications by their overall topic.
Runnable programs can be recognized by the suffix Application.
All programs are written to be run from within an IDE which means that parameters
have to be set within the code rather than when calling in the command line.39 This
is done in order to better explain the parameters within the code. Applications are
implemented in a way so that there are only (documented) parameters to be set
but there barely is application logic (except for orchestration calls) to ensure a
maximum of clarity. This way, applications only act as a wrapper to the underlying
logic which is stored in folders named controller.

39Note that with very few clicks every application can be transformed to a command line program.
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Experiments

4.1 Overview of the Experiments

Experiments have been conducted to further understand the data and to evaluate
the overall approach. The subsequent section (4.2) focuses on the ALOD data set
and presents helpful statistics. In section 4.3, the concept coverage of the ALOD
data set is benchmarked against DBpedia on nine different data models. Section
4.4 covers experiments performed to test the capability of the ALOD data set to
capture semantic knowledge. Therefore, three publicly available gold standards
are used and the ALOD features are benchmarked against other approaches. In
section 4.5, the results of regressions on MSGS-1234 are presented. Eventually, the
performance for ontology matching is benchmarked using publicly available data
sets as well as an SAP-specific data set. The last section (4.7) covers a concrete
use case in a business environment.

4.2 Descriptive Analysis of the ALOD Data Set

4.2.1 Data Set Size

As discussed earlier, the ALOD Classic data set is significantly smaller than the
original data set due to filtering according to the number of pay-level domains and
patterns. As a result, the classic data set’s size equals only a tenth of the original
data sets size when it comes to file size. Measured by the number of contained rela-
tions, the original data set is 36 times larger; measured by the number of concepts,
it is 141 times larger. When comparing the average relations per concept (7.76 in
ALOD Classic, 1.89 in ALOD XL), one can see that the ALOD Classic data set
filters out concepts with few relations. Table 4.2.1 contains a detailed comparison
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of the two data sets.

ALOD Classic ALOD XL
GB zipped 10 GB 75 GB
GB unzipped 84 GB 851 GB
# of Concepts 1,510,980 212,155,729
# of Hypernymy Relations 11,721,537 400,533,808
Lines in N-Quads File 603,246,828 5,637,335,455

Table 4.1: Comparison of ALOD Classic and ALOD XL
The number of concepts, relations, and lines was obtained by running small Java
programs on the gzipped data sets available online.

4.2.2 Distribution of Relations

In order to better understand the knowledge graph, the distribution of relations was
analyzed. Therefore, the number of relations |r| per concept were calculated. Con-
sidering that the data set can also be viewed as a graph, |r| represents the degree
d = |ein| + |eout| where |ein| are the number of ingoing and |eout| are the num-
ber of outgoing edges. In this case, the number of relations equals the sum of the
number of hypernymy and hyponymy relations in which a particular concept is in-
volved. Hence, each relation is counted twice: Once for the hyponym and once for
the hypernym. By calculating the frequency, i.e. the sum of instances per |r|, one
can obtain the distribution of relations.
When having a look at the distribution, one can see that it follows a power law.
This is a common property of large networks that also accounts to the World Wide
Web [106, pp. 120-121]; Barabási and Albert explain this phenomenon with the
preferential attachment process: Vertices tend to link to well-connected vertices
[8, p. 509].
Figures 4.1 and 4.3 depict the power-law like distributions for the two data sets:
The frequencies are decreasing with the number of relations, the absolute max-
imum for both distributions is at |r| = 1. In order to better judge the distribution,
figures 4.2 and 4.4 depict the distribution in the range |r| ∈ [1, 30].
In ALOD Classic, concepts with 1 to 5 relations make up 85% of the whole data
set.1 The 1 to 10 range accounts for 91% of the set. On the other extreme, there
are 578 concepts with more than 5,000 relations; the ultimate leader with 91,102

1When browsing the data set in the web-based view, this cannot be easily concluded, as most
common-wold entities one usually looks for have many hypernymy relations. The analysis presented
in this section shows that the first subjective impression can be misleading.
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relations is thing2.
The situation is similar for ALOD XL. Here, however, the distribution is even more
extreme: Concepts with 1 to 5 relations make up 95% of the data set. The 1 to 10
range accounts for 97% of the whole data set. The concept involved in most rela-
tions (1,113,297) is again thing3. When comparing the distributions, one can see
that the ALOD Classic data set favors concepts with more relations.
All numbers were obtained by self-written programs that operate on the gzipped
n-quads files rather than the SPARQL endpoints due to performance and memory
requirements.

Figure 4.1: Distribution of Relations on ALOD Classic
The x-axis displays the number of relations in which a concept is involved, the y-
axis displays the frequency per class. The scatter-plot is scaled on a log-log scale
with base 10 in order to illustrate the power-law distribution.

2see http://webisa.webdatacommons.org/concept/_thing_
3XL IRI: http://webisa.webdatacommons.org/concept/thing

http://webisa.webdatacommons.org/concept/_thing_
http://webisa.webdatacommons.org/concept/thing
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Figure 4.2: Distribution of Relations of ALOD Classic in the Interval [1− 30]
The upper, lighter gray line represents the cumulative relative share (scale is on
the right y-axis). The frequency for |r| = 30 is 1581. The concepts in the given
interval represent a 96% share of the data set.

Figure 4.3: Distribution of Relations of ALOD XL
The x-axis displays the number of relations in which a concept is involved, the y-
axis displays the frequency per class. The scatter-plot is scaled on a log-log scale
with base 10 in order to illustrate the power-law distribution.
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Figure 4.4: Distribution and Relative Share of Relations of ALOD XL in the Inter-
val [1-30]
The upper, lighter gray line represents the cumulative relative share (scale is on the
right y-axis). The frequency for |r| = 30 is 52,407. The concepts in the given
interval represent a 99% share of the data set.

4.3 Coverage Calculations

To evaluate whether the WebIsA data set is suited for the task of ontology match-
ing, nine data models have been chosen and the percentage of terms that can be
matched to a WebIsA concept has been evaluated. The linker presented in 3.2
has been used to link data model entities and attributes (in case of relational data
models) as well as classes and properties (in case of ontologies) to Web resources.
For all data sets, English labels have been extracted. In total, 8 OAEI 2017 data
sets have been used: Anatomy4, Conference5, Biomed6, Disease and Phenotype7,
University Admission8, Birth Registration9, Synthetic10, and Doremus11. In addi-
tion, SAP’s conceptual financial service domain data model has been evaluated as
well, using all names of entities, attributes, relations, and inheritances of the entity
relationship diagram. In order to have comparative figures, the same process was
used to link to three different endpoints: (1) DBpedia, (2) ALOD Classic, and (3)

4see http://oaei.ontologymatching.org/2017/anatomy/index.html
5see http://oaei.ontologymatching.org/2017/conference/index.html
6see http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
7see http://sws.ifi.uio.no/oaei/phenotype/
8see http://web.informatik.uni-mannheim.de/oaei/pm17/
9see http://web.informatik.uni-mannheim.de/oaei/pm17/

10see http://islab.di.unimi.it/content/im_oaei/2017/
11see http://islab.di.unimi.it/content/im_oaei/2017/

http://oaei.ontologymatching.org/2017/anatomy/index.html
http://oaei.ontologymatching.org/2017/conference/index.html
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/
http://sws.ifi.uio.no/oaei/phenotype/
http://web.informatik.uni-mannheim.de/oaei/pm17/
http://web.informatik.uni-mannheim.de/oaei/pm17/
http://islab.di.unimi.it/content/im_oaei/2017/
http://islab.di.unimi.it/content/im_oaei/2017/
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ALOD XL.
The evaluation is performed using two measures: (1) whole-term coverage and (2)
token coverage. For the whole-term coverage, the texts are tokenized. A match
is only counted if at least 80% of the tokens (minus stopwords12) can be mapped
to the corresponding data set.13 The implemented calculator can handle concepts
which consist of multiple tokens correctly; for example, the label European Union
(two tokens) would be mapped to only one concept in ALOD, i.e. European
Union14, but the algorithm recognizes that the concept consists of two tokens and
counts this as a full match.

Results When comparing the ALOD Classic coverage with the DBpedia cover-
age, there is no clear superior approach (see table B.1 in the appendix): For some
data sets, like Doremus, FSDM, or Conference, ALOD Classic performs better
whereas for others, like BioMed or Disease and Phenotype, DBpedia has a bet-
ter coverage. One general observation, though, is that while DBpedia and ALOD
Classic do not perform well considering whole terms, the results are generally good
when tokenizing the labels.
For the ALOD XL data set, however, the situation is different: The XL data set
outperforms the classic data set in every single category (see table 4.3); in table
4.3 it can, furthermore, be seen that the coverage of the ALOD XL endpoint out-
performs DBpedia on every single data set except for the OAEI Synthetic data set
on whole terms.15 The outperformance is significant: When looking at the whole-
term coverage, the coverage on ALOD XL often scores more than twice as good
as DBpedia.
The performance on the OAEI Disease and Phenotype data set is bad on all end-
points and represents a visible outlier. When examining the labels that could not be
linked, one can see that this is due to extreme tail entities, like molecules represen-
ted by their structural formula in textual form such as N-[N-[N-(N{2}-L-Arginyl-L-
lysyl)-L-alpha-aspartyl]-L-valyl]-L-tyrosine.
It can be concluded that the ALOD data set not only contains more resources but

12In order to remove stopwords, the publicly available corpus by the Information Re-
trieval Research Group of Glasgow University was used, see http://ir.dcs.gla.ac.uk/
resources/linguistic_utils/stop_words.

13Note that this is a very strict criterion, meaning that a term consisting of 3 tokens (e.g. Super
Galactic Empire) is counted as not found when only two terms could be linked to a concept in the
data set. In fact, terms consisting of up to 5 tokens have to be retrieved completely in order to count
as a positive match. A threshold of 50% would probably lead to a significantly higher token coverage
as most terms consist of few tokens.

14see http://webisa.webdatacommons.org/concept/european_union_
15Note that the OAEI Synthetic data set seems to be created of Wikipedia resources, so this is very

likely a biased comparison.

http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
http://ir.dcs.gla.ac.uk/resources/linguistic_utils/stop_words
http://webisa.webdatacommons.org/concept/european_union_
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Dataset DBpedia WebIsALOD

Name # of Terms
(English) Whole Term Tokens Whole Term Tokens

Anatomy 11,928 0.17010 0.85680 0.48625 0.91708
Conference 488 0.18647 0.85450 0.40779 0.96721
BioMed 408,483 0.10749 0.77326 0.19914 0.87149
Disease and
Phenotype 315,186 0.09125 0.37975 0.16220 0.52120

University
Admission 173 0.10982 0.83236 0.27167 0.97109

Birth
Registration 232 0.36206 0.89655 0.48707 0.99137

Synthetic 803 0.80946 0.94396 0.30511 0.97883
Doremus 1782 0.31481 0.58641 0.35746 0.71212
FSDM 2015 0.07806 0.90645 0.31548 0.98710

Table 4.2: Coverage Statistics DBpedia vs. ALOD XL
The best results on the whole term and on individual tokens are underlined.

can also achieve a higher coverage on those when using well known benchmark
ontologies and a real data model from the financial domain.

4.4 Semantic Experiments

In order to evaluate the quality of the semantic knowledge contained in the ALOD
data set and to find good configurations for features in the matching process, se-
mantic experiments have been conducted using three different gold standards.
The data sets for the experiments presented here are publicly available and are de-
scribed in detail in subsection 4.4.1. The structure and context of the creation of
these evaluation data sets for concept semantics is generally the same: Annotators
are presented with two terms and have to annotate the similarity/relatedness. They
do this for multiple word-pairs. An example of instructions for annotators is given
in figure C.6 in the appendix. Eventually, the annotated scores are averaged. [53,
p. 123] [77, pp. 675-676] [22, pp. 139-140] In the end, the gold standards consist
of word pairs which have an associated score.
The features developed in this thesis are evaluated by the degree of correlation they
have with the gold standards. The results are reported in subsection 4.4.2.
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Dataset Improvement of ALOD XL over ALOD Classic
Name ∆ Whole Term ∆ Tokens
Anatomy + 0.28471 + 0.29376
Conference + 0.14140 + 0.08812
BioMed + 0.11940 + 0.25863
Disease and Phenotype + 0.13505 + 0.46905
University Admission + 0.15607 + 0.09826
Birth Registration + 0.21552 + 0.06034
Synthetic + 0.16937 + 0.26402
Doremus + 0.25870 + 0.42986
FSDM + 0.14774 + 0.03291

Table 4.3: Absolute Coverage Improvements of ALOD XL over ALOD Classic
Relative Coverages

4.4.1 Gold Standards Used

WordSimilarity-353 (WS-353) WS-353 [53] belongs to the "most commonly-
used evaluation gold standard[s] for semantic models" [77, p. 671]. The data set
consists of 365 noun-noun pairs which are annotated with a similarity score. It
is publicly available on the Web.16 Despite its popularity, WS-353 is criticized
for not clearly distinguishing between similarity and association [77, p. 671]. The
inter-annotator agreement is ρ = 0.61 according to Hill et al. [77, p. 676].

MEN MEN is a gold standard by Elia Bruni et al. [22] consisting of 4,000 word
pairs (of which 2,005 are noun-noun pairs) with a semantic relatedness rating. The
data set is publicly available.17 Hill et al. report an inter-annotator agreement of
ρ = 0.68 but also note that the actual agreement "may be somewhat lower" [77,
p. 676] due to the small sample size used.

SimLex-999 SimLex-999 [77] is a gold standard which "explicitly quantifies
similarity rather than association or relatedness" [77, p. 1]. The gold standard
was created by asking 500 English speakers to rate similarity of the given word
pairs (rather than association). The gold standard consists of 666 noun pairs, 111
adverb pairs and 222 verb pairs with different levels of concreteness [77, p. 666].
According to the authors, the inter-annotator agreement is ρ = 0.67 [77, p. 11].

16see http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
17see http://clic.cimec.unitn.it/~elia.bruni/MEN

http://www.cs.technion.ac.il/~gabr/resources/data/wordsim353/
http://clic.cimec.unitn.it/~elia.bruni/MEN
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SimLex-999 is publicly available18 and commonly used to evaluate distributional
semantic models.

4.4.2 Results

To evaluate how well a model can detect similarity and relatedness, Spearman’s
rank correlation coefficient (Spearman’s rho) is used [77, p. 15] [22, p. 139] which
is based on the rank of two variables rather than their discrete value [6, p. 35]. The
formula is given in equation C.10 in the appendix.
Correlations for the features BroaderOverlap and NarrowerOverlap have been cal-
culated for different limits l (i.e., the narrower/broader overlap of the top l con-
cepts). Limits l ∈ {50, 100, 500, 1, 000} have been evaluated for the ALOD XL as
well as the ALOD Classic endpoint. Jaccard is used to obtain a numeric overlap
measure.19 Tables B.2, B.3, and B.4 in the appendix contain the obtained correla-
tion values with the WS-353, MEN, and SimLex-999 gold standards.
Initially, the Distance in Broader Vector Space has also been evaluated using differ-
ent configurations. Experiments here, however, have quickly revealed an optimum
at a very low decay factor and a fixed element base value leading to the same res-
ults as the overlap features but with much more calculation effort.20 The feature
was, therefore, excluded from further investigations.
ALOD2Vec has been evaluated using 100 walks per entity in ALOD Classic, in-
cluding reverse walks. Four different flavors were trained: 200-dimensional SG
and CBOW models as well as 500 dimensional SG and CBOW models. The fea-
ture has also been evaluated on the ALOD XLR subset for 200-dimensional em-
beddings. Tables B.5 B.6, and B.7 in the appendix contain the obtained correlation
values with the WS-353, MEN, and SimLex-999 gold standards.
All remaining features did not lead to any meaningful result when evaluated indi-
vidually and are not further discussed in the following.
Table 4.4 gives an overview of the best performing correlation values for each fea-
ture group per data set.

18see https://www.cl.cam.ac.uk/~fh295/simlex.html
19Early experiments showed no significant difference between the Jaccard coefficient and the Dice

coefficient. In order to keep the configuration space small, Jaccard has been chosen for all further
experiments.

20A low decay factor gives more weight to the overlap one hop away from the original concept.
Good results were achieved with a factor around 0.075 which means that concepts more than one
hop away contribute not even 10% to the final result. For details of this feature and its calculation
refer to subsection 3.3.1 and the example in appendix C.4.

https://www.cl.cam.ac.uk/~fh295/simlex.html
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Dataset Best Overlap Best ALOD2Vec
WS-353 0.5376 0.6599
MEN 0.6826 0.7202
SimLex-999 0.3890 0.3354

Table 4.4: Best Spearman’s ρ Values for Overlap and ALOD2Vec
The best value is underlined. Note that the best values might have been obtained
by different configurations. For all correlation values see appendices B.2 and B.3.

The results clearly indicate that there is semantic knowledge contained in the ALOD
data set. Concerning the overlap-based features, for all three data sets the XL end-
point performed best. Overall, the best configuration here is the top 500 narrower
overlap.
ALOD2Vec performs similarly well. The optimum was always achieved using
a 200-dimensional vector. Overall, the best configuration here is is CBOW for
ALOD Classic and SG for ALOD XLR. Nonetheless, it is notable that the dif-
ferences between the various flavors are not very large. The XLR embeddings
outperform the classic embeddings on all data sets except for SimLex. Generally,
ALOD2Vec performs better than the overlap features on all similarity data sets
when using Pearson’s ρ as benchmark rather than Spearman’s ρ.
As the gold standards are publicly available, the data can be compared to other ap-
proaches. The benchmark numbers presented in the following are taken from Hill
et al.’s publication [77]. The authors provide figures for five different language
models: (1) Collobert’s and Weston’s model [33], (2) Huang et al.’s model [82],
(3) the Vector Space Model (VSM) [96] by Kiela et al., (4) Latent Semantic Ana-
lysis (LSA) [103], and (5) word2vec by Mikolov et al. [117, 118]. Models (1) and
(2) were trained on a 150 million worlds corpus; models (3) and (4) were trained
on a ∼1,000 million words corpus. Word2Vec was trained on both. [77, p. 680]

WordSim For the WordSim data set, the best overlap configuration beats the
other benchmark models LSA, VSM, and Mikolov et al. on the 150 million token
corpus and also Collobert and Weston. Word2Vec trained on a 1,000 million token
corpus as well as Huang et al.’s approach, on the other hand, outperform the over-
lap feature on the WordSim gold standard.
The best ALOD2Vec configuration (XLR SG 200) outperforms all other approaches
in the benchmark group with ρSpearman = 0.6599 close to the runner-up which is
the word2vec model traind on a 1,000 million corpus with ρSpearman = 0.655.
Figure 4.5 shows the relative performance of the best ALOD feature on the gold
standard. Detailed numbers are given in the appendix in tables B.2 and B.5.
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Figure 4.5: Performance on WordSim

MEN On the MEN gold standard, the top 500 narrower overlap scores second
place compared to the other approaches with ρSpearman = 0.6826. Word2Vec
trained on the larger corpus slightly outperforms the approach with ρSpearman =
0.699.
The best ALOD2Vec configuration (XLR SG 200) beats again all other approaches
in the benchmark with ρSpearman = 0.7202.
It has to be noted that only the nouns of the MEN standard were used to calculate
the correlation for the ALOD method. Figure 4.6 shows the relative performance
of the best ALOD feature on the gold standard. Detailed numbers are given in
tables B.3 and B.6 in the appendix.

SimLex-999 On the SimLex gold standard, the features also perform quite well:
The overall top configuration (narrower overlap of the top 500 concepts on the
XL endpoint, ρSpearman = 0.3890) outperforms all approaches in the benchmark
except for Mikolov’s word2vec when trained on a 1,000 million token corpus
(ρSpearman = 0.414). This is also the case for all configurations of the ALOD2Vec
feature.
It has to be noted, though, that the comparison is not fully accurate as in the work
presented here, only two thirds of the data set (666 nouns) were used whereas the
other models were benchmarked on the whole set. Figure 4.7 shows the relative
performance of the best ALOD feature on the gold standard. Detailed numbers are
given in the appendix in tables B.4 and B.7.
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Figure 4.6: Performance on MEN

It can be seen that the task of similarity score calculation is very hard compared to
relatedness score calculation: All models achieve lower correlation scores on this
data set compared to the others where the focus is rather on relatedness.

4.5 Regressions on Gold Standards

4.5.1 Feature Configuration

In order to find out whether the features can be combined, regressions were per-
formed on the MSGS gold standard. The following five features were used in
regressions:

1. Broader Concept Overlap (top 1,000)

2. Narrower Concept Overlap (top 500)

3. One has Other as Broader Concept

4. Number of Narrower Concepts (top 500, level 1)

5. Number of Broader Concepts

For a description of the features, see section 3.3. When using the feature One-
HasOtherAsBroaderConcept on the XL data set with level 2, every single word
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Figure 4.7: Performance on SimLex

pair of the MEN gold standard yields 1. This is a strong indicator for the noise in
the XL data set. In order to use the feature, the level was set to 1 and the over-
lap was restricted to the top 500 concepts. For the broader and narrower Jaccard
overlap, the best configurations of the previous experiments have been used, i.e.,
top 500 narrower and top 1,000 broader concepts. Features were calculated for the
ALOD Classic as well as the ALOD XL data set.
A program was implemented in Java which accepts a gold standard in CSV format
as well as features of class FeatureGenerator and outputs a file with the nu-
merical features in CSV format. The latter was then used to run the regressions
in RapidMiner. The implementation is generic, i.e., not restricted to the features
presented here.

4.5.2 Results

The MSGS-1234 gold standard (see 3.5.2) was used for feature aggregation. Two
regressions were performed: (i) A regular linear ridge regression as well as (ii) a
least absolute shrinkage and selection operator (Lasso) regression. Regression (i)
was configured with M5 prime feature selection and a ridge parameter of 1.0E-8.
The Lasso regression (ii) was additionally used because it is more aggressive than
the regular linear regression in the sense that it sets coefficients to zero whereas the
regular linear regression will only result in very small coefficients [54, pp. 4-5]. It
can, therefore, also be used for feature selection (see [54]), i.e., the reduction of
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features in order to avoid overfitting, improve interpretability, and allow for better
interpretation. Results are presented in table 4.5.

RMSE Absolute
Error w1 w2 w3 w4 w5 Y

Lasso
XL

0.446
+/- 0.021

0.4
+/-0.018

0 0 0 1.087 0.374 0.274

Regular
XL

0.43
+/- 0.025

0.376
+/-0.022

-4.504 2.75 -0.099 0.966 1.1541 0.372

Lasso
Classic

0.451
+/- 0.029

0.407
+/- 0.024

0 0 0 0.32 0.231 0.271

Regular
Classic

0.427
+/- 0.033

0.364
+/-0.03

-0.867 0 -0.221 0.441 0.841 0.418

Table 4.5: MSGS-1234 Regression Results
RMSE refers to Root Mean Squared Error, wi refers to the assigned weights where
i describes the feature as numbered in 4.5.1; Y refers to the intercept with the y-
axis.

Interpretation One can quickly see that the regression results are of low quality
given a root mean squared error in the 0.4 range on a binary label. This could be
confirmed using tests on the OAEI Anatomy data set. The results are, therefore,
discarded and not used in the following.
The regression outcome allows for multiple interpretations: First, one could argue
that the given features are not fit for the task. Another argument might be that the
gold standard is not large enough and leads to overfitting.21 It might also be the
case that the samples used are not meaningful. A combination of all those reasons
is possible as well. Given the good semantic results presented in 4.4, one can most
likely reason that the gold standard is not fit for the task at hand.
Because of the bad results obtained with regressions, the approach was not further
explored.

4.6 Ontology Matching Experiments

In this section, the implemented matcher is evaluated in various configurations
against four gold standards which are introduced in the following subsection. The

21The results are in line with earlier experiments on a smaller MSGS gold standard. MSGS was
extended as a consequence but without a positive effect. With 1234 annotations, however, the gold
standard is still small.
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results are presented in 4.6.3. The best configuration is submitted to the OAEI
2018 campaign. Expected results there are presented in 4.6.4.

4.6.1 Gold Standards Used

OAEI Anatomy In the OAEI Anatomy track, two large ontologies have to be
matched: (1) The Adult Mouse Anatomy and (2) a subset of the National Cancer
Institute (NCI) Thesaurus22 which describes the human anatomy. The vocabulary
used is domain-specific (biology domain). Reference alignments as well as the
data set itself are available online.23 The Adult Mouse Ontology has 2,744 classes
and the NCI Thesaurus has 3,304 classes. The amount of properties in this track is
negligible.

OAEI Conference The OAEI Conference track is composed of 16 ontologies
from the domain of conference organization. All ontologies are taken from the
OntoFarm collection [179] and are rather small (see table 4.6). The motivation
behind the collection was to find ontologies that are heterogeneously structured
but still describe the same domain [179, p. 46]. This setting makes the collec-
tion suitable for ontology matching. The semantic information within the on-
tologies is rare and often only embedded within the IRI. An example would be
http://cocus#Event_Setup; in this case, no label or description is given
and the most valuable semantic information has to be extracted from the IRI. There
are three reference alignments:

1. Original Reference Alignments (ra1)
They are publicly available for download.24

2. Entailed Reference Alignments (ra2)
They are a transitive closure computed on ra1 where conflicting corres-
pondences are manually resolved. Therefore, the correctness and complete-
ness of ra2 is expected to be better than that of ra1.

3. Violation Free ra2 (rar2)
For this evaluation data set, violating correspondences were automatically
identified using [162, 161]25 and then manually resolved.

22see https://ncit.nci.nih.gov/
23see http://oaei.ontologymatching.org/2017.5/anatomy/index.html
24see http://oaei.ontologymatching.org/2017/conference/eval.html
25The underlying idea of the violation detection is that mappings should not lead to new semantic

relationships between concepts of one (input) ontology which is also known as conservativity prin-
ciple [161, p. 2].

https://ncit.nci.nih.gov/
http://oaei.ontologymatching.org/2017.5/anatomy/index.html
http://oaei.ontologymatching.org/2017/conference/eval.html
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Name cl dp op Related Link
Ekaw 74 0 33 http://ekaw.vse.cz
Sigkdd 49 11 17 http://www.acm.org/sigs/sigkdd/kdd2006
Iasted 140 3 38 http://iasted.com/conferences/2005/cancun/ms.htm
Cmt 36 10 49 http://msrcmt.research.microsoft.com/cmt
Edas 104 20 30 http://edas.info/
Conference 60 18 46 -
ConfOf 39 23 13 -

Table 4.6: OAEI Conference Track Statistics
The table is a composition of one given at the OAEI Web page27 and one in the
original paper of the data set [179, p. 49]. cl, dp, and op refer to the number of
classes, data properties, and object properties in the corresponding ontology.

Even though the OAEI track uses all three alignments, only a part of ra1 is pub-
licly available for download. Table 4.6 gives an overview of the available ontolo-
gies together with statistics about the data set.

OAEI Large BioMed The OAEI Large Biomed Track consists of three very large
ontologies: Foundational Model of Anatomy (FMA)28, National Cancer Institute
Thesaurus (NCI)29, and SNOMED CT30. The reference alignments are based on
the Unified Medical Language System (UMLS) Metathesaurus31. The biggest
challenge of this particular track is the sheer size of the ontologies. In addition
to the whole ontologies, subsets of the ontologies are also provided as an addi-
tional task allowing evaluation also for matchers that cannot handle the full size
of the data sets. Table 4.6.1 gives an overview of the number of classes in each
ontology.

27see http://oaei.ontologymatching.org/2017/conference/index.html
28see http://si.washington.edu/projects/fma
29see https://ncit.nci.nih.gov/ncitbrowser/
30see https://www.snomed.org/
31see https://www.nlm.nih.gov/research/umls/

http://ekaw.vse.cz
http://www.acm.org/sigs/sigkdd/kdd2006
http://iasted.com/conferences/2005/cancun/ms.htm
http://msrcmt.research.microsoft.com/cmt
http://edas.info/
http://oaei.ontologymatching.org/2017/conference/index.html
http://si.washington.edu/projects/fma
https://ncit.nci.nih.gov/ncitbrowser/
https://www.snomed.org/
https://www.nlm.nih.gov/research/umls/


CHAPTER 4. EXPERIMENTS 79

Ontology All
Classes

Small Overlap
NCI

Small Overlap
FMA

Small Overlap
SNOMED

NCI 66,724 - 6,488 23,958
FMA 78,989 3,696 - 10,157
SNOMED 122,46432 51,128 13,412 -

Table 4.7: OAEI Large BioMed Statistics
The numbers refer to the number of classes in the corresponding ontology. They
are compiled from the downloadable material of the track33.

SAP Financial Services Data Management Data Model As mentioned in the
introduction, the topic of ontology matching is also of interest to businesses. The
aforementioned FSDM data model was provided by SAP SE for the purpose of
alignment evaluation. Currently, most FSDM mappings are under development;
however, one is already completed and was provided to the author of this thesis.
The official product consists of two data model parts: A conceptual data model
(CDM) and a concrete implementation for the SAP HANA database in the form
of a physical data model (PDM). The data models as well as the mapping between
them are available in SAP PowerDesigner34, SAP’s proprietary data modeling tool.
An interesting aspect is that all information in the CDM is also represented in the
PDM. Despite this fact, the mappings are not as trivial as one might think: In the
CDM, there are 400 entities; in the PDM, there are 230 entities.35 This is due to
a performance-optimized data model which makes heavy use of data model de-
normalization and table merging. Tables in the PDM tend to have rather general
names as they comprise a lot of specializations. The main difference between the
data models is their level of granularity.
In order to apply an ontology matching algorithm, both data models have to be
translated into an ontology and the mappings between them have to be extracted.
Therefore, a PowerDesigner extension was implemented in Visual Basic Script

32Note that for the SNOMED ontology this number does still not represent the whole ontology but
the subset with NCI and FMA. In the track, however, the full ontology is not provided.

33see http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017.5/
LargeBio_dataset_oaei2017.zip

34see https://www.sap.com/products/powerdesigner-data-modeling-
tools.html

35Technical tables in the PDM which carry no semantic meaning are ignored (also not present in
the ontology). All numbers are valid as of Release 1.1.

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017.5/LargeBio_dataset_oaei2017.zip
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017.5/LargeBio_dataset_oaei2017.zip
https://www.sap.com/products/powerdesigner-data-modeling-tools.html
https://www.sap.com/products/powerdesigner-data-modeling-tools.html
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(VBS).36 Static rules were defined to translate the data models into OWL ontolo-
gies. They can be found in appendix C.9. The mappings are extracted in the XML
format given by the Alignment API.

4.6.2 Features Evaluated

The broader vector space feature showed good semantic results but turned out to
be too expensive due to the exponential amount of queries to be asked. Further-
more, semantic experiments showed that the optimum lies at a very low decay
factor (between 0.05 and 0.1 on all three data sets). However, at such a low decay
factor, the approach is equal to a simple overlap because the most weight (> 90%)
is given to the overlap at the first hop. Therefore, this feature was discarded for
concrete matching tasks.
Broader overlap and narrower overlap are evaluated in actual matching tasks using
their best configurations in semantic experiments, i.e., top 1,000 broader overlap
and top 500 narrower overlap on the XL endpoint.
All RDF2Vec feature configurations lead to good semantic results and are also
evaluated in the following.
The remaining features did not perform well in the semantic experiments; the un-
derperformance could be confirmed in early ontology matching tests. Thus, they
are not further evaluated here.37

In addition, experiments showed that the matcher profits from using a matching
restriction strategy rather than a plain strategy (see subsection 3.6.1); in this case
though, the differences between a one-to-many and a one-to-one strategy were
negligible. Therefore, results are reported in the following for the implemented
one-to-many strategy in order to reduce the configuration space.

4.6.3 Matcher Results

OAEI Anatomy Data Set

The matcher results for the Anatomy data set are given in table 4.8. The overlap-
based matchers perform slightly better than the given baseline by the OAEI38 with

36A PowerDesigner extension is similar to a Microsoft Excel macro: It allows to implement addi-
tional functionality and provides access to data structures that are internally used by the application
[150, p. 9].

37One exception are the implemented string-based methods which do not yield good semantic
results but show mediocre performance in the matching task. However, as it makes not much sense
evaluating those on their own for the scope of this thesis, they are discarded as well.

38see http://oaei.ontologymatching.org/2017/results/anatomy/index.
html

http://oaei.ontologymatching.org/2017/results/anatomy/index.html
http://oaei.ontologymatching.org/2017/results/anatomy/index.html
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the broader overlap performing better than the narrower overlap. All ALOD2Vec
matcher configurations outperform the overlap-based ones. The overall best matcher
configuration is the ALOD2Vec Classic CBOW 500.
The overall optimal thresholds show that the data set is driven by lexical matches.
When evaluating the false positives, typical candidates are homonyms or labels
that share a very large part of the tokens but are different. However, the preci-
sion is very high for all matchers. Typical false negatives are close lexical matches
which contain adjectives such as (inner ear, internal ear, =). The true positives are
mostly exact lexical matches or share many common tokens. Examples for some
true positives are given in table 4.9.

Matcher F1 Precision Recall Best Threshold
Narrower Overlap 500 XL 0.7818 0.9919 0.6451 0.85
Broader Overlap 1,000 XL 0.7830 0.9959 0.6451 0.8
ALOD2Vec Classic CBOW 200 0.7851 0.9949 0.6484 0.9
ALOD2Vec Classic CBOW 500 0.7861 0.9949 0.6497 0.85
ALOD2Vec Classic SG 200 0.7845 0.9959 0.6471 1.0
ALOD2Vec Classic SG 500 0.7850 0.9959 0.9478 1.0
ALOD2Vec XLR CBOW 200 0.7845 0.9929 0.6497 0.85
ALOD2Vec XLR SG 200 0.7851 0.9949 0.6481 0.9
OAEI Baseline39 0.766 0.997 0.622 -

Table 4.8: OAEI Anatomy Matching Results
The best matcher of each category is printed in bold. The overall best matcher
according to F1 is additionally underlined.

True Positives

Broader 1,000

superior cerebellar vein superior cerebellar cistern
pupillary membrane membrane
capillary capillary
middle caudal artery middle hemorrhoidal artery
trochlear IV nerve trochlear nerve

CBOW-500

eye chamber chamber of the eye
forebrain fore-brain
skin fluid/secretion skin fluid or secretion
head/neck muscle head and neck muscle
liver right lobe right lobe of the liver

Table 4.9: Examples for True Positives on the Anatomy Data Set
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OAEI Conference Data Set

The OAEI Conference data set is benchmarked using micro average. As just one
reference data set is publicly available for download, only the ra1 gold stan-
dard (see 4.6.1) could be evaluated. The overlap-based matchers as well as the
RDF2Vec-Classic-based ones perform equally well. The best results were achieved
with ALOD2Vec XLR SG 200 resulting in F1 = 0.5873. Table 4.6.3 comprises the
matcher results. The differences among the different configurations are marginal.

Matcher F1 Precision Recall Best Threshold
Overlap (all) 0.5841 0.7123 0.4951 0.86
ALOD2Vec Classic (all) 0.5841 0.7123 0.4951 0.86
ALOD2Vec XLR CBOW 200 0.5869 0.7136 0.4983 0.82
ALOD2Vec XLR SG 200 0.5873 0.7083 0.5016 0.78
OAEI Baseline40 0.56 0.8 0.43 -

Table 4.10: OAEI Conference Matcher Results
In this table, the micro averages are given. The best score is bold-printed and
underlined.

OAEI Large BioMed Data Set

Due to the sheer size of the large BioMed data sets, the FMA-NCI subset was
chosen for evaluation of this track. The overlap-based measures did not finish
within a given time-frame of 8 hours. However, the ALOD2Vec-based approaches
ran under 3 hours and the results are reported in the following. The campaign does
not have a string-distance baseline, but rather the average is given. Note that this is
a skewed baseline as it contains some matchers that use the UMLS-Metathesaurus
as background knowledge (such as XMAP [41]) which leads to an advantage be-
cause the reference alignments are based on the very same metathesaurus. In ad-
dition to the average, the results of a similar approach are, therefore, also given
in the following – namely WikiMatch in its latest form WikiV3 [72]. Table 4.11
comprises the results. As before, the ALOD2Vec configurations perform simil-
arly well with CBOW 500 on ALOD Classic achieving the highest F1 of 0.8875.
Differences among the different configurations are minor.

40see http://oaei.ontologymatching.org/2017/conference/eval.html

http://oaei.ontologymatching.org/2017/conference/eval.html
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Matcher F1 Precision Recall Best Threshold
ALOD2Vec Classic CBOW 200 0.8872 0.9743 0.8145 0.9
ALOD2Vec Classic CBOW 500 0.8875 0.9739 0.8151 0.85
ALOD2Vec Classic SG 200 0.8874 0.9728 0.8158 0.9
ALOD2Vec Classic SG 500 0.8873 0.9724 0.8158 0.9
ALOD2Vec XLR (all) 0.8870 0.9743 0.8142 0.9
OAEI 2017 Average41 0.891 0.946 0.844 -
WikiMatch V342 0.797 0.883 0.726 -

Table 4.11: OAEI LargeBio Matcher Results
The best matcher of each category is printed in bold. The overall best matcher
according to F1 is additionally underlined.

SAP Financial Services Data Management Data Model

As the underlying ontologies for the SAP FSDM business use case were created
within the scope of this thesis, there is no benchmark for this particular alignment
task. Therefore, the matching was evaluated also on another approach, namely
LogMap [87]. The approach was chosen as it is consistently one of the best match-
ing approaches in recent OAEI campaigns (see [88], [89], or [90]). The approach
was evaluated on all OAEI tracks and, therefore, is likely not too restricted to one
data set but rather a general-purpose approach. The coding is publicly available.43

The results can be found in table 4.12.
40see http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/results/
41see http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/results/
43The LogMap source code is publicly available on GitHub: https://github.com/

ernestojimenezruiz/logmap-matcher. A packaged stand-alone application in the form
of a jar is also availalbe for download: https://sourceforge.net/projects/logmap-
matcher/files/Standalone%20distribution/.

http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/results/
http://www.cs.ox.ac.uk/isg/projects/SEALS/oaei/2017/results/
https://github.com/ernestojimenezruiz/logmap-matcher
https://github.com/ernestojimenezruiz/logmap-matcher
https://sourceforge.net/projects/logmap-matcher/files/Standalone%20distribution/
https://sourceforge.net/projects/logmap-matcher/files/Standalone%20distribution/
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Matcher F1 Precision Recall Best Threshold
Narrower Overlap 500 XL 0.7485 0.8551 0.6655 0.55
Broader Overlap 1,000 XL 0.7485 0.8551 0.6655 0.55
ALOD2Vec Classic CBOW 200 0.7485 0.8551 0.6655 0.55
ALOD2Vec Classic CBOW 500 0.7469 0.8512 0.6655 0.55
ALOD2Vec Classic SG 200 0.7485 0.8551 0.6655 0.6
ALOD2Vec Classic SG 500 0.7485 0.8551 0.6655 0.6
ALOD2Vec XLR CBOW 200 0.7469 0.8512 0.6655 0.7
ALOD2Vec XLR SG 200 0.7485 0.8551 0.6655 0.7
LogMap 0.7459 0.8545 0.6618 0.4

Table 4.12: SAP FSDM Matcher Results
The optimal F1 score is 0.7485 and is achieved by multiple configurations.

With an F-Score of ≈ 0.75, LogMap performs quite good and competitive com-
pared to the matchers of this thesis. It can be seen that the matcher is also strong
in a real enterprise setting. To the knowledge of the author of the thesis, this is the
first time that the matcher has been evaluated in such an environment.
The matchers of this thesis perform almost all equally and only slightly better than
LogMap. This is the only data set where all matchers presented in this thesis out-
perform LogMap.

4.6.4 OAEI Participation

The matcher using CBOW 200 embeddings is also registered for the OAEI Cam-
paign 2018. This configuration has been chosen because of its good performance
compared to the other configurations evaluated in this thesis and because of a re-
latively good runtime that allows participation in the LargeBio track. In addition,
given similar outcomes, a 200-dimensional embedding is to be preferred because
of less storage requirements and higher performance.
Results are expected to be published later this year (2018). Yet, by evaluating the
submitted SEALS package locally, some performance figures can already be an-
ticipated. They are comprised in table 4.13.44 Note that the final numbers will
be more comprehensive as not all gold standards are publicly available. The fixed
threshold for the submission is t = 0.9.

44While for the figures reported before a best threshold was determined, the matcher registered
uses only one threshold. Therefore, the results differ from the ones presented before.
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F1 Precision Recall
Anatomy 0.785 0.995 0.648
Conference 0.584 0.712 0.495
Large BioMed45 0.901 0.972 0.839

Table 4.13: Expected Matcher Performance OAEI 2018

Given these figures, the matcher outperforms WikiMatch-V3 on the Conference
data set (F1 = 0.57) as well as on the Large BioMed data set (F1 = 0.79).
On the Anatomy data set, WikiMatch outperforms the registered matcher with
F1 = 0.802.

4.6.5 Results Summary

The ALOD-based features add value to the matching process and performed all
stronger than the string-distance baseline. Generally, it can be seen that ALOD
can be used for ontology alignment. However, the results are often only some
percentage points better than the string-distance baseline, the improvement is not
large.
All matcher configurations performed similarly well. In the case of the ALOD2Vec
approach, there was no clear performance gain in using 500 dimensional vectors
and the improvement in using the larger XLR data set was also relatively low. The
overlap-based configurations fall short compared to the ALOD2Vec ones when it
comes to evaluation results as well as runtime performance.
The ALOD2Vec Classic CBOW 200 matcher will also be evaluated in the OAEI
2018 campaign. It is expected that the performance is similar to other Web-based
matchers.
Furthermore, it could be shown that LogMap is not restricted to the OAEI data sets
but performs also strong in a real-world business scenario.

4.7 SAP FSDP Matching Use Case

4.7.1 Automatic Schema Matching at SAP

Despite good results on the corporate data set presented, fully automated matching
is still not precise enough for an enterprise setting where each and every corres-

45Note that the evaluation here ignores flagged repairs while the performance figures on the data set
reported before do not. This explains the slight difference in the numbers even though the threshold
is the same.
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pondence must be correct.
In addition, another key requirement that was identified in interviews at the com-
pany is the option to define rules for each correspondence. Up to now, there is no
matcher that can achieve this automatically.
Nonetheless, the research of this thesis is relevant in a business setting. The next
section presents a concrete prototype for using the algorithms of this thesis for
supporting the matching process.

4.7.2 FSDM Semantic Search

In interviews with people actively involved with the task of creating mappings for
FSDM, one particular pain point that was mentioned several times was the issue of
finding concrete entities without knowing their name. A consultant, for instance,
might want to find the relevant entity used for customer. As PowerDesigner only
performs a boolean search, looking for the concept returns no results. This is due
to the fact that the actual entity is called BusinessPartner in FSDM. An ontology
matcher will only return one result, i.e., the matching; the user in this case, how-
ever, is interested in the top n related concepts. Given that multiple similarity
calculators were already implemented, a quick solution in the form of a simple
prototype was implemented as Web server. A consultant can connect to the server
in his terminal and retrieve the top n closest semantic FSDM concepts to her search
term. This can help her not only for schema matching but also when building views.
An exemplary search is depicted in figure 4.8. A quick user guide on how to use
the server can also be found in appendix C.10. The server is implemented in Java
and any subclass of FeatureGenerator can be used as search algorithm, i.e.,
all features presented in this thesis.
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Figure 4.8: FSDM Semantic Search: Depicted is an exemplary search process.
After the user connected to the server she is prompted to enter what she would
like to do. She chooses to search for "business partner" and the top 5 results are
returned. Note in this case that Company, Organization, and IndividualPerson are
indeed relevant results as they are specializations of BusinessPartner.
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4.7.3 Business Value of this Thesis

In addition to the search prototype presented, the PowerDesigner Ontology and
Mapping Extractor Extension, and the newly created FSDM Ontology, a meta
structure was developed for the company so that future mappings and the rules
between them can be persisted in a uniform format. This allows the department
to collect mapping data in a machine-readable way and to use this data for further
research later on.
Moreover, two inventions were made in the context of this thesis: By proving that
the financial data model can be viewed as a graph, direct implications for SQL
view building were recognized. Two patents were filed out of which one is already
registered in the US [19]. Note that everything presented in this thesis is in the
public domain. The inventions patented are loosely related to the topic at best but
are a valuable by-product of this thesis for SAP.



Chapter 5

Conclusion

5.1 Critical Remarks

5.1.1 Data Sets

OAEI Anatomy Data Set Concerning the anatomy data set it has to be men-
tioned that the OAEI gold standard alignments have a heavy exposure to lexical
similarity which can already be seen by the baseline string equivalence solution of
0.7661. This is an advantage for algorithms exploiting the lexical structure, like
LogMap [87] which achieves a very high f-measure without much effort.

FSDM Data Set The FSDM data set was created within the scope of this thesis.
It is a real integration scenario that is actually used in business. However, out of
the multitude of integration scenarios, the selected scope can be considered to be a
rather simple task: First, the data models are from the same vendor – i.e., SAP SE
– which already might be an indication for the semantic heterogeneity being small-
er compared to situations where models of different vendors are to be matched.
Second, the data model is rather small as opposed to very mature operational data
models in the banking sector. Lastly, the lexical overlap is still relatively high.

Remaining Data Sets Interestingly, the textual overlap on all data sets evaluated
is high. However, due to the insufficient data situation it cannot be concluded
whether this is the norm or an anomaly.

1see http://oaei.ontologymatching.org/2016/results/anatomy/index.
html
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CHAPTER 5. CONCLUSION 90

5.1.2 Semantic Experiments

Despite very good results in semantic experiments, the matcher does not outper-
form current top-notch OAEI approaches. One important aspect about the data
sets has to be highlighted here: The concepts used in the semantic experiments are
rather common ones like river, flower, sun (MEN), winter, child, book (SimLex)
or paper, plane, football (WordSim). In matching tasks, on the other hand, the
vocabulary is much more domain specific. As a consequence, very good results on
semantic experiments can still lead to unsatisfactory results in the matching task
due to the vocabulary mismatch.
Furthermore, the semantic experiments were restricted to nouns but the matching
data sets were not.

5.1.3 Ontology Matching and Evaluation Tools

Even though the syntactic heterogeneity is very low due to common standards for
ontologies and reference alignments, and even though the OAEI organizes cam-
paigns since 14 years as of now, the provided tool set for ontology alignment de-
velopment and evaluation is not satisfactory. The Alignment API is important for
defining a common interface and allows for simplistic evaluation of a matcher;
however, only slightly more complex tasks such as calculating micro and macro
averages, are not supported anymore. Comprehensive functions required for the
development of a matcher – like calculating the number of non-trivial correspond-
ences found or outputting false positives and false negatives – are not possible
out-of-the box.
Similarly, the SEALS framework provides rather crude evaluation functions. In
addition, the framework is not intuitive and not easily usable. A significant amount
of time has been spent resolving framework incompatibilities leading to a reim-
plementation of the persistence approach used in this thesis because the problem
could not be solved even after contacting an expert.
The Hobbit platform might be the right idea: Creating a common cloud platform
for matcher evaluation is certainly helpful. However, as of now the performance
on the platform is quite bad2 and the evaluation capacities are limited to precision,
recall, and F-measure. Furthermore, the amount of boilerplate code required for
the packaging and uploading a matcher to Hobbit is cumbersome and error-prone.
There are approaches in simplifying the overall process3 but there still is a long

2A simple string matcher on the OAEI Anatomy data set can take well above one day until results
are online.

3The ontMatching template by Sven Hertling is a good step in the right direction, see https:
//github.com/sven-h/ontMatchingHobbit.

https://github.com/sven-h/ontMatchingHobbit
https://github.com/sven-h/ontMatchingHobbit
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way to go.
Due to the lack of tooling, a significant amount of time of this thesis was spent
on developing a basic technical infrastructure. There certainly is upward potential
when it comes to ontology alignment tooling.

5.2 Limits

5.2.1 ALOD Data Set

As the Web is no reviewed source of truth and since ALOD is based on the Web,
the data set contains a lot of noise and should not be used as the only source for
knowledge if reliable information is required. The concept of Bill Clinton4, for
instance, has George Bush as broader concept with a relatively high confidence
value of 0.7357.
Furthermore, the corpus used in this thesis is not up-to-date because it is based
on an older version of the common crawl. The concept of Donald Trump5, for
example, does not have any indication that he is the 45th President of the United
States. Nonetheless, this issue can be easily resolved by updating the data set.
Another challenge is the fact that the information given in the data set can be very
subjective and also conflicting. According to ALOD, Donald Trump is a genius as
well as a lunatic, racist, and a buffoon.
Despite the good coverage numbers, the ALOD data set also suffers from the tail
entity problem: While popular entities have many broader and narrower concepts
on ALOD (president6 has 55,675), tail-entities do exist but have very view relations
to other concepts. An example would be cerebral dura mater7 which has two
broader concepts and no narrower ones. Another example would be iliopsoas8

and iliopsoas muscle9: The first one has 6, the latter one has 18 broader concepts.
Even though describing the same real world concept, none of those is overlapping.
The distribution analysis of relations revealed that most concepts are probably not
usable since they barely have any relations. It can be concluded that the good
coverage numbers are deceiving at first sight.

4see http://webisa.webdatacommons.org/concept/bill_clinton_
5see http://webisa.webdatacommons.org/concept/donald_trump_
6XL IRI: http://webisa.webdatacommons.org/concept/president
7XL IRI: http://webisa.webdatacommons.org/concept/cerebral%20dura%

20mater
8XL IRI: http://webisa.webdatacommons.org/concept/iliopsoas
9XL IRI: http://webisa.webdatacommons.org/concept/iliopsoas%

20muscle

http://webisa.webdatacommons.org/concept/bill_clinton_
http://webisa.webdatacommons.org/concept/donald_trump_
http://webisa.webdatacommons.org/concept/president
http://webisa.webdatacommons.org/concept/cerebral%20dura%20mater
http://webisa.webdatacommons.org/concept/cerebral%20dura%20mater
http://webisa.webdatacommons.org/concept/iliopsoas
http://webisa.webdatacommons.org/concept/iliopsoas%20muscle
http://webisa.webdatacommons.org/concept/iliopsoas%20muscle


CHAPTER 5. CONCLUSION 92

Because of the automatic text extraction approach, the data set lacks the distinction
of homonyms: Apple10, for instance, is a fruit crop (0.8608 confidence) as well as
a silicon valley company (0.8288 confidence). As the example demonstrates, the
lack of word sense disambiguation increases the noise for concepts with multiple
meanings.
Moreover, the hypernymy graph is not consistent, i.e., two concepts can both be
hypernyms of each other at the same time.11 There are even concepts, where the
concept itself is listed as a hypernym (e.g. piece of the puzzle12 has itself as a
hypernym on second position when ranked according to confidence).
Lastly, it has to be noted that the data set is only available in the English language
which limits the amount of use cases. From a technical perspective, though, it
should be possible to apply the same extraction process to other languages when
the patterns are translated.

5.2.2 Linking to LOD Resources

Although linking to LOD resources works well, the approach is very expensive
when it comes to the number of queries performed. This is due to the fact that after
every string modification and every time after a token is removed, the data set is
queried. When using the SPARQL online access point, this leads to a low perform-
ance induced by network transmission time. From an architectural perspective,
it would be better to just submit the query term, do the processing on the server
side and return the result – as it is done by typical search APIs. In such cases,
specialized data structures can be used as SPARQL queries are likely not the best
option from a performance perspective. The current approach was chosen because
no such API exists for the ALOD data sets.
The implemented linker generally prefers longer concepts which are more specific.
However, in some cases this might lead to the situation where a found concept is
not valuable due to very few hypernymy relations as described in the paragraph
above. Nonetheless, this is rather a restriction of the data set used.
Another restriction is that the linker does not find concepts with similar writing.
Searching concepts using the term Tolkien will not return the concept J. R. R.
Tolkien despite the high likelihood of referring to the same underlying concept.
For such operations, a real search API with optimized data structures would be
required.

10see http://webisa.webdatacommons.org/concept/_apple_
11In fact, this is not a seldom phenomenon but very common. This can be easily proved by setting

a high level when using features A Has Broader Concept B and B Has Broader Concept A (see 3.3.1)
simultaneously.

12see http://webisa.webdatacommons.org/concept/_piece_of+the+puzzle

http://webisa.webdatacommons.org/concept/_apple_
http://webisa.webdatacommons.org/concept/_piece_of+the+puzzle
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5.2.3 MSGS-1234

The gold standard for monosemous synonymy gold standard performed bad in the
regressions performed. The indication is strong that the gold standard is not very
useful because of its small size.
In addition, the concepts used are rather uncommon, like bouquet or nosegay, due
to the strict monosemy restriction. Retrospectively, it can be seen that feature se-
lection should have been performed on a larger, less restricted gold standard with
more common terms.

5.2.4 ALOD Matcher

It could be observed that the addition of the ALOD data set can add value to a
matcher and outperforms string-based methods. Nonetheless, the outperformance
is not dramatically large. String-based methods work surprisingly well on all data
sets evaluated. This observation has also been made earlier [71], the real challenge
is to detect the remaining non-trivial cases.
One of the largest drawbacks of the matcher – and probably one of the main reasons
for a rather mediocre performance – is the missing handling of non-nouns. Many
labels and descriptions contain adjectives which cannot be linked and are, hence,
regarded as an unknown increasing the penalty score.
Concerning the techniques to onotology matching, it has to be noted that the cur-
rent matcher does only work with labels but completely ignores other information
such as the structures of the ontologies to be aligned. This makes the matcher
presented here vulnerable to homonyms. Nonetheless, it is easily possible to em-
bed the features presented in this work in a more sophisticated and comprehensive
alignment approach.
Another limitation of the matcher is the restriction to only equivalence relations (=)
and the restriction to non-complex alignments, exclusively. Although this is very
common for OAEI matchers, a real solution to the ontology matching problem and
also to data integration for companies would require a matcher to recognize such
cases and to be able to resolve those.
The matcher presented in this thesis is a one-size-fits-it-all solution. The idea that
there is one configuration which performs well on any data set is not realistic,
though. The OAEI Anatomy data set, for instance, profits from very aggressive
String-based techniques, like applying a Porter stemmer, whereas the conference
data set does not.
Lastly, the matcher presented in this thesis can only match English ontologies.
Cross-language matching is not supported due to the monolingual data set used.
Theoretically, a dictionary could be used but it is very likely that this would deteri-
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orate results due to information lost in translation and the linking process.

5.3 Challenges for Web-Based Matchers

One challenge for most matchers is the infinite size of the configuration space.
Even though good configuration ranges have been heuristically determined, e.g.
by optimizing semantic relatedness scores, the number of configuration paramet-
ers is still very high in the implementation at hand. This likely accounts to all Web
matchers as the number of ways in which Web knowledge might be utilized are
infinite.
Another challenge is the sheer size of the Web and Web-based data sets such as
WebIsALOD. Simple processes, like a random-walk generation on a very large
data set, are very expensive and time consuming. Many graph algorithms are not
optimized for Web-scale graphs. In addition, frameworks such as Apache Jena
cannot be used efficiently on those large RDF graphs and the only option is to
implement algorithms that operate on file level. Furthermore, the size requires suf-
ficient hardware. The server used in this thesis with more than 120 GB of memory
quickly reached its limit.
Also related to Web-based data is data quality. While there is valuable informa-
tion on the Web (and consequently in the ALOD graph), the amount of noise is
very challenging. A matcher must be able to judge the quality of a statement. The
WebIsALOD confidence score is a good step into this direction but still not precise
enough.
Concerning performance, like other Web-request-based matchers, the SPARQL-
based approaches heavily suffer from transmission times and SPARQL overhead
on the Web. Here, vector-based representation for concepts are more interesting as
they perform well when stored locally and do not require a network connection (at
the cost of higher disk/RAM requirements).
Lastly, handling the issue of proportionalization is still challenging on graphs.
Finding a good concept representation or concept comparison method is very im-
portant for the quality of a matcher.

5.4 Summary

The contributions of this thesis are manifold: Detailed statistics about the WebIsA
data set and its LOD derivatives, ALOD Classic and ALOD XL, were presen-
ted in terms of the size of the data sets and the distribution of relations within
the networks. It could be shown that the distribution of degrees follows a power-
law which is more pronounced in the ALOD XL data set. In addition, coverage
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statistics have been calculated which indicate that the ALOD XL data set clearly
outperforms DBpedia when it comes to concept coverages of nine ontologies.
Furthermore, two promising approaches have been presented that utilize hyper-
nymy knowledge that was automatically extracted from the Web in order to cal-
culate concept similarities: SPARQL-based hypernymy overlap and ALOD2Vec.
ALOD2Vec is based on an adaption of the relatively new propositionalization ap-
proach RDF2Vec.
A simple method has been presented that allows to link labels to concepts on the
Web and is additionally able to detect sub-concepts. The linker is not restricted to
WebIsALOD but is also used for DBpedia and can be used for other data sets as
well.
Using three gold standards, correlation results were presented which indicate that
there is semantic knowledge contained in the knowledge graph and that the ap-
proaches presented perform competitively.
A synonymy gold standard was created comprising 1,234 instances of synonyms
among monosemous concepts. Even though the gold standard turned out to be
not helpful in the task of learning good concept similarity functions, it is publicly
available and can be used for other research.
A full matcher was implemented and presented. The different concept similarity
algorithms were individually evaluated within the ontology matching process. Us-
ing publicly available OAEI data sets as well as a corporate one, it could be shown
that the approaches outperform string-based features and can add value within the
matching process. However, current top-notch OAEI matchers could not be outper-
formed. To the knowledge of the author of this thesis, this is the very first approach
utilizing the RDF2Vec method for the task of ontology matching. The matcher will
also be evaluated in the upcoming OAEI campaign.
Moreover, an analysis was conducted in an enterprise environment, using real data
models. In this context, a converter was presented that automatically generates on-
tologies from data models. These ontologies were matched using a gold standard
provided by the company. An evaluation revealed that the matcher of this thesis
performs close to one of the top-notch ontology matchers, namely LogMap. To
the knowledge of the author of the present paper, this is the first time the LogMap
matcher is used and evaluated in an enterprise environment. Even though, a fully
automated matcher is not usable in a business scenario yet, a prototype was presen-
ted which allows to semantically query an existing data model and, thereby, speed-
ing up the manual matching process. It could be demonstrated that the underlying
similarity function of ontology matchers can help in assisting humans.
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5.5 Outlook and Future Work

While matching with contextual information from the Web has a lot of potential,
the current approaches are still in a very early stage.
Research on graph embeddings have made a big progress in recent years with
new algorithm families, like word2vec-based approaches or translation-based ap-
proaches. Thus far, approaches have rarely been benchmarked against each other
and no superior approach has been identified. It can be expected that the progress
in this area will continue.
Similarly, not many ontology matchers use external knowledge other than thesauri.
The area of how the Web can be used to derive meaningful semantic knowledge for
the ontology matching process is still not well explored and interesting for further
research.
The most promising approaches for concrete applications in the near-term will
likely be semi-automatic approaches. Thus far, the human is still a crucial element
in the process and will stay there for a forseeable time. Even though most OAEI
matchers are fully automated matchers, the performance in terms of F1-measure is
still too low. Especially in an enterprise context, correctness is a conditio sine qua
non, i.e., there must not be any mistakes in the alignments. Interactive approaches
which allow for concrete user interaction with the matcher are already being ex-
plored [52]; the OAEI has an interactive track for evaluating such matchers since
2015.13 Within this area, another promising research direction is active learning.
Here, the learner interacts with the human by asking her about concrete instances.
This approach allows to train a good classifier by providing a very limited set of
human annotations (compared to very large pre-built gold standards). [125, p. 1]
So far, current approaches do not cover the whole data integration process: Up to
now, data translation rules still have to be defined manually without much assist-
ance. Especially in an enterprise environment, this is a time-consuming process
and an interesting research area for the future.
The focus of the present paper is on schema matching. Given that the ALOD data
set – unlike thesauri – also contains named instances such as persons and places,
the matcher might also be suited for instance matching or even combined schema
and instance matching14.
Concerning the approach presented in this thesis, only one option for utilizing Web-
scale knowledge has been pursued. There are three ways in which the current re-
search focusing on this approach can be improved in the future: Firstly, more pro-

13see http://sws.ifi.uio.no/oaei/interactive/
14In the OAEI 2018 campaign, a new track has been presented which combines schema

and instance mapping and is based on the DBkWik data set [79]. See: http://oaei.
ontologymatching.org/2018/knowledgegraph/index.html

http://sws.ifi.uio.no/oaei/interactive/
http://oaei.ontologymatching.org/2018/knowledgegraph/index.html
http://oaei.ontologymatching.org/2018/knowledgegraph/index.html
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positionalization techniques for very large data sets could be explored. Secondly,
the matcher itself can be enhanced to use more information available in ontologies.
And lastly, the data sets to be used can be improved. WebIsALOD is currently the
only Web-scale RDF data-set and still has some pitfalls such as the restriction to
hypernymy relations and noise. More such data sets can be created in the future
that address the issues described and, thereby, help to better utilize the knowledge
contained in the Web.
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[139] Radim Řehůřek and Petr Sojka. Software Framework for Topic Modelling
with Large Corpora. In Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Valletta, Malta, May 2010.
ELRA.

[140] Reuters. Deutsche-Bank-IT-Chefin nach umstrittenen Äußerungen unter
Druck. Reuters, March 2018. Accessed: 2018-07-08.

[141] Nick Riemer. Introducing Semantics. Cambridge Introductions to Language
and Linguistics. Cambridge University Press, Cambridge; New York, 2015.

[142] Marek Ristock. Transformation in die IT einer Bank. In Kai-Oliver Klauck
and Claus Stegmann, editors, Basel III: Vom regulatorischen Rahmen zu
einer risikoadäquaten Gesamtbanksteuerung, pages 299–310. Schäffer-
Poeschel Verlag, Stuttgart, 2012.

[143] Petar Ristoski. Exploiting Semantic Web Knoweldge Graphs in Data Min-
ing. PhD thesis, Universität Mannheim, Mannheim, 2017.

[144] Petar Ristoski, Christian Bizer, and Heiko Paulheim. Mining the Web
of Linked Data with RapidMiner. Web Semantics: Science, Services and
Agents on the World Wide Web, 35:142–151, December 2015.

[145] Petar Ristoski and Heiko Paulheim. A Comparison of Propositionalization
Strategies for Creating Features from Linked Open Data. In Proceedings of
the 1st Workshop on Linked Data for Knowledge Discovery, volume 1232,
pages 6–15, Nancy, 2014.

[146] Petar Ristoski and Heiko Paulheim. RDF2vec: RDF Graph Embeddings for
Data Mining. In International Semantic Web Conference, pages 498–514.
Springer, 2016.

[147] Petar Ristoski, Jessica Rosati, Tommaso Di Noia, Renato De Leone, and
Heiko Paulheim. RDF2vec: RDF Graph Embeddings and Their Applica-
tions. Semantic Web Journal, 2017.



BIBLIOGRAPHY 112

[148] Claude Sammut and Geoffrey I. Webb, editors. Encyclopedia of Machine
Learning and Data Mining. Springer, Boston, MA, 2017.

[149] SAP SE. Feature Scope Description for SAP Financial Services Data Man-
agement, 2017.

[150] SAP SE. Customizing and Extending PowerDesigner, 2018.

[151] SAP SE. SAP Annual Report 2017 on Form 20-F, 2018.

[152] Ferdinand de Saussure, Charles Bally, Albert Riedlinger, Herman Lommel,
and Peter Ernst. Grundfragen der allgemeinen Sprachwissenschaft. De-
Gruyter-Studienbuch. de Gruyter, Berlin, 3rd edition, 2001.

[153] Julian Seitner, Christian Bizer, Kai Eckert, Stefano Faralli, Robert Meusel,
Heiko Paulheim, and Simone Paolo Ponzetto. A Large DataBase of Hyper-
nymy Relations Extracted from the Web. In LREC, 2016.

[154] Nino Shervashidze, Pascal Schweitzer, Erik Jan von Leeuwen, Kurt Mehl-
horn, and Karsten M. Borgwardt. Weisfeiler-Lehman Graph Kernels.
Journal of Machine Learning Research, 12:2539–2561, 2011.

[155] Amit Sheth and Vipul Kashyap. So Far (Schematically) yet So Near (Se-
mantically). In Interoperable Database Systems (Ds-5), pages 283–312.
Elsevier, 1993.

[156] Pavel Shvaiko and Jérôme Euzenat. Ten Challenges for Ontology Matching.
In Robert Meersman and Zahir Tari, editors, On the Move to Meaningful In-
ternet Systems: OTM 2008, volume 5332, pages 1164–1182. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.

[157] Pavel Shvaiko and Jérôme Euzenat. A Survey of Schema-Based Match-
ing Approaches. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nier-
strasz, C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzo-
poulos, Dough Tygar, Moshe Y. Vardi, Gerhard Weikum, and Stefano Spac-
capietra, editors, Journal on Data Semantics IV, volume 3730, pages 146–
171. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[158] Pavel Shvaiko and Jérôme Euzenat. Ontology Matching: State of the Art
and Future Challenges. IEEE Transactions on Knowledge and Data Engi-
neering, 25(1):158–176, January 2013.



BIBLIOGRAPHY 113

[159] Carina Silberer, Vittorio Ferrari, and Mirella Lapata. Visually Groun-
ded Meaning Representations. IEEE Trans. Pattern Anal. Mach. Intell.,
39(11):2284–2297, 2017.

[160] Arvind Singh. Is Big Data the New Black Gold? https:
//www.wired.com/insights/2013/02/is-big-data-the-
new-black-gold/, 2013. Accessed: 2018-08-11.

[161] Alessandro Solimando, Ernesto Jiménez-Ruiz, and Giovanna Guerrini. De-
tecting and Correcting Conservativity Principle Violations in Ontology-to-
Ontology Mappings. In Peter Mika, Tania Tudorache, Abraham Bernstein,
Chris Welty, Craig Knoblock, Denny Vrandečić, Paul Groth, Natasha Noy,
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Appendix A

Program Code / Resources

In the following, smaller code examples are listed. Note that the full implementa-
tion is not listed here due to its size. For all the coding refer to the CD attached to
this thesis.
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A.1 ALOD Modification Sequence

The following describes the sequence of string modifications applied to a label in
order to link it to the ALOD data set. The modifications are executed in ascending
order and get more aggressive.

1. LowerCaseModifier
Lowercases the label; European Union, for instance, is transformed to euro-
pean union.

2. TokenizeSpaceSeparateLowercaseModifier
This modifier tokenizes a label and concatenates the tokens using spaces.
Leading and trailing spaces are removed and the label is lowercased. An
example would be EuropeanUnion which is transformed to european union.

3. CharactersOnlyTokenizeSpaceSeparateLowercase
Modifier
This modifier will delete all non-ASCII characters and then process the label
further like the TokenizeSpaceSeparateLowercaseModifier. An
example would be TreatyOfLisbon_2007 which would be translated into
treaty of lisbon.



APPENDIX A. PROGRAM CODE / RESOURCES 118

A.2 Python Code: Word2vec Most Related Concepts

The code presented in listing A.1 is used to retrieve the most similar concepts for
a given user input.

1 from gensim.models import KeyedVectors
2
3 # the path to the pre-trained word2vec vectors
4 path_to_vector_file = ’C://GoogleNews-vectors-

negative300.bin’
5
6 # loading the vectors
7 word_vectors = KeyedVectors.load_word2vec_format\
8 (path_to_vector_file, binary=True)
9

10 # allowing the user to search for the topn similar
11 # words using the console
12 # for exiting the user can write ’exit’ and hit

enter
13 user_input = ’’
14 while(user_input != ’exit’):
15 user_input = input(’Next Word:’)
16 print(’Your Input: ’ + user_input)
17
18 try:
19 result = word_vectors.most_similar(

user_input, topn=15)
20 for word, score in result:
21 print(word + " (" + str(score) + ")")
22 print(’\r\n’)
23 except KeyError:
24 print(’Term not found.\r\n’)

Listing A.1: Code to Retrieve Closest Concepts



Appendix B

Further Experimental Results

In the following, further experimental results are listed.
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B.1 Coverage Statistics: DBpedia vs. ALOD Classic

Dataset DBpedia WebIsALOD

Name # of Terms
(English) Whole Term Tokens Whole Term Tokens

Anatomy 11,928 0.17010 0.85680 0.20154 0.62332
Conference 488 0.18647 0.85450 0.26639 0.87909
BioMed 408,483 0.10749 0.77326 0.07974 0.61286
Disease and
Phenotype 315,186 0.09125 0.37975 0.02715 0.05215

University
Admission 173 0.10982 0.83236 0.11560 0.87283

Birth
Registration 232 0.36206 0.89655 0.27155 0.93103

Synthetic 803 0.80946 0.94396 0.13574 0.71481
Doremus 1782 0.31481 0.58641 0.09876 0.28226
FSDM 2015 0.07806 0.90645 0.16774 0.95419

Table B.1: Coverage Statistics DBpedia vs. ALOD Classic
The best results on the whole term and on individual tokens are underlined.
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B.2 Similarity Experiments: Correlation of Narrower/Broader
Overlap

ALOD XL ALOD Classic
Feature Spearman’s ρ Correlation Spearman’s ρ Correlation
Broader Overlap
Top 50 0.3733 0.2762 0.1560 0.2266

Broader Overlap
Top 100 0.3873 0.2757 0.2455 0.2455

Broader Overlap
Top 500 0.3855 0.2493 0.2494 0.2370

Broader Overlap
Top 1,000 0.4170 0.2335 0.1782 0.1934

Narrower Overlap
Top 50 0.3625 0.1485 0.3617 0.2076

Narrower Overlap
Top 100 0.3986 0.1523 0.3597 0.2224

Narrower Overlap
Top 500 0.5149 0.1634 0.2624 0.2134

Narrower Overlap
Top 1,000 0.5376 0.1730 0.1928 0.1834

Table B.2: Correlation of Narrower/Broader Overlap with WS-353
The best value for Spearman’s ρ is bold printed for each endpoint and each feature,
the best overall value is additionally underlined.
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ALOD XL ALOD Classic
Feature Spearman’s ρ Correlation Spearman’s ρ Correlation
Broader Overlap
Top 50 0.4415 0.3628 0.4112 0.4018

Broader Overlap
Top 100 0.4827 0.3864 0.4614 0.4402

Broader Overlap
Top 500 0.5843 0.4537 0.4102 0.4034

Broader Overlap
Top 1,000 0.5960 0.4660 0.3539 0.3585

Narrower Overlap
Top 50 0.3835 0.3062 0.4653 0.3983

Narrower Overlap
Top 100 0.4850 0.3634 0.4706 0.4062

Narrower Overlap
Top 500 0.6826 0.4870 0.3657 0.3513

Narrower Overlap
Top 1,000 0.6698 0.5130 0.3323 0.3445

Table B.3: Correlation of Narrower/Broader Overlap with MEN
The best value for Spearman’s ρ is bold printed for each endpoint and each feature,
the best overall value is additionally underlined.
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ALOD XL ALOD Classic
Feature Spearman’s ρ Correlation Spearman’s ρ Correlation
Broader Overlap
Top 50 0.3007 0.2021 0.3086 0.2448

Broader Overlap
Top 100 0.3024 0.1888 0.3349 0.2767

Broader Overlap
Top 500 0.2944 0.1611 0.2855 0.2817

Broader Overlap
Top 1,000 0.3035 0.1778 0.2291 0.2302

Narrower Overlap
Top 50 0.2391 0.1978 0.3360 0.2893

Narrower Overlap
Top 100 0.3048 0.2249 0.3448 0.3063

Narrower Overlap
Top 500 0.3890 0.2663 0.2012 0.1799

Narrower Overlap
Top 1,000 0.3854 0.2777 0.1304 0.1232

Table B.4: Correlation of Narrower/Broader Overlap with SimLex-999
The best value for Spearman’s ρ is bold printed for each endpoint and each feature,
the best overall value is additionally underlined.
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B.3 Similarity Experiments: Correlation of ALOD2Vec

Feature Spearman’s ρ Correlation
ALOD2Vec Classic SG 200 0.5191 0.4900
ALOD2Vec Classic SG 500 0.5236 0.4716
ALOD2Vec Classic CBOW 200 0.5539 0.5116
ALOD2Vec Classic CBOW 500 0.5195 0.4668
ALOD2Vec XLR CBOW 200 0.5828 0.5693
ALOD2Vec XLR SG 200 0.6599 0.6191

Table B.5: Correlation of ALOD2Vec with WS-353
The best value for Spearman’s ρ for each data set used is bold printed. The overall
best score is additionally underlined.

Feature Spearman’s ρ Correlation
ALOD2Vec Classic SG 200 0.6224 0.6089
ALOD2Vec Classic SG 500 0.6200 0.5950
ALOD2Vec Classic CBOW 200 0.6199 0.6043
ALOD2Vec Classic CBOW 500 0.6168 0.5857
ALOD2Vec XLR CBOW 200 0.6797 0.6888
ALOD2Vec XLR SG 200 0.7202 0.7322

Table B.6: Correlation of ALOD2Vec with MEN
The best value for Spearman’s ρ for each data set used is bold printed. The overall
best score is additionally underlined.

Feature Spearman’s ρ Correlation
ALOD2Vec Classic SG 200 0.3051 0.3106
ALOD2Vec Classic SG 500 0.3173 0.3174
ALOD2Vec Classic CBOW 200 0.3354 0.3214
ALOD2Vec Classic CBOW 500 0.2691 0.2697
ALOD2Vec XLR CBOW 200 0.2740 0.2994
ALOD2Vec XLR CBOW 200 0.2828 0.3108

Table B.7: Correlation of ALOD2Vec with SimLex-999
The best value for Spearman’s ρ for each data set used is bold printed. The overall
best score is additionally underlined.



Appendix C

Further Reference Material

In the following, further reference material (examples, equations, images, enumer-
ations) is presented.
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C.1 Evaluation Measures

The following basic evaluation measures are cited according to [113, pp. 154-157].
They are not restricted to the field of information retrieval and data mining but are
also used for ontology alignment evaluation.1 The contingency matrix below (table
C.1) shows which correspondences count as true positives (tp), false positives (fp),
false negatives (fn), and true negatives (tn). In the literature, the matrix is also
known as confusion matrix [112, p. 81].

Relevant Nonrelevant
Retrieved true positives (tp) false positives (fp)
Not Retrieved false negatives (fn) true negatives (tn)

Table C.1: Contingency Matrix

Precision (P) can be defined as follows:

Precision =
# of relevant items retrieved

# of retrieved items
=

tp

tp+ fp
(C.1)

Recall (R) can be defined as follows:

Recall =
# of relevant items retrieved

# of relevant items
=

tp

tp+ fn
(C.2)

F-Measure combines the two metrics and can be defined as:

F =
1

α ∗ 1
P + (1− α) ∗ 1

R

=
(β2 + 1) ∗ P ∗R
β2 ∗ P +R

where β2 =
1− α
α

(C.3)

where α ∈ [0, 1] and, hence, β ∈ [0,∞]. A very common form is the balanced
F-Measure (also known as F1) where α = 1

2 and, thus, β = 1:

F1 =
2 ∗ P ∗R
P +R

(C.4)

1For an example see the OAEI 2017 Anatomy results: http://oaei.
ontologymatching.org/2017/results/anatomy/index.html.

http://oaei.ontologymatching.org/2017/results/anatomy/index.html
http://oaei.ontologymatching.org/2017/results/anatomy/index.html
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C.2 Ten Challenges for Ontology Matching

In 2008, Shvaiko and Euzenat present ten challenges for ontology matching which
are listed in the following in the order they are mentioned [156]:

1. Large-Scale Evaluation

2. Performance of Ontology-Matching Techniques

3. Discovering Missing Background Knowledge

4. Uncertainty in Ontology Matching

5. Matcher Selection and Self-Configuration

6. User Involvement

7. Explanation of Matching Results

8. Social and Collaborative Ontology Matching

9. Alignment Management: Infrastructure and Support

10. Reasoning with Alignments

In 2013, eight challenges were recapitulated as they were not solved yet [158].
Thereby, the following challenges were dropped:

1. Uncertainty in Ontology Matching

2. Reasoning with Alignments
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C.3 Paradigmatic Relations

Figure C.1: Paradigmatic relations according to Busch and Stenschke [27, p. 189]
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C.4 Broader Vector Space Calculation Example

For exemplary purposes, the difference between Ernest Hemingway and Charles
Dickens shall be calculated. The following configuration is chosen:

• LEVEL: 2

• MINIMUM CONFIDENCE: 0.6

• LIMIT: 3

• ELEMENT BASE VALUE: FIX

• DECAY FACTOR: 0.5

In the following figures (C.2 and C.3), the confidence is given in brackets and nodes
are depicted even though they do not fulfill the minimum confidence criterion.
Those are dropped in the calculation. The concept literary giant does not have any
hypernyms and is therefore a node without any outgoing edges.

Figure C.2: ALOD Graph of the Concept Charles Dickens
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Figure C.3: ALOD Graph of the Concept Ernest Hemingway

The following vectors can be derived with the given configuration (see table C.4):

ernest_hemingway charles_dickens
literary_giant 1 1
social_reformer 1 0
writer 1 0
person 0.5 0
condition 0.5 0
professional 0.5 0
american_writer 0 1
famous_author 0 1

Table C.2: Vectors of Charles Dickens and Ernest Hemingway in Broader Vector
Space

From the vectors given in table C.4, one can calculate the Euclidean distance as
follows:

d = 2
√

(1− 1)2 + (1− 0)2 + (1− 0)2 + (0.5− 0)2 + (0.5− 0)2+ (C.5)

(0.5− 0)2 + (1− 0)2 + (1− 0)2 (C.6)

=
2
√

4.75 (C.7)

≈ 2.1794 (C.8)
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C.5 Levenshtein Algorithm

First published in 1965 (1966 in English) [109, p. 1], the Levenshtein edit distance
is commonly used to numerically determine how similar or dissimilar two Strings
are [5, p. 2355].
In its plain form, the Levenshtein distance distlevenshtein is the minimal number
of insertions, deletions, and substitutions of characters to transfer one string into
the other [5, p. 2355]. The Levenshtein distance between child and children, for
example, is 3 because the first String can be transformed to the second one by
applying three insertions.
distlevenshtein is a plain number which needs to be normalized in order to take into
account different lengths of words if the scores shall be comparable. The following
equation shows how to calculate the Levenshtein similarity and is given according
to [30, p. 104]:

simlevenshtein(s1, s2) = 1.0− distlevenshtein(s1, s2)

max(|s1|, |s2|)
(C.9)
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C.6 Simlex-999 Instructions

Figure C.4: Instructions for Simlex-999 annotators [77, p. 9]
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C.7 Spearman’s Rank Correlation Coefficient

Under the assumption that no rank is assigned twice for one variable, Spearmans ρ
is given as:

rSP = 1−
6
∑n

i=1(Ri −R′i)2

(n− 1)n(n+ 1)
(C.10)

where Ri and R′i are the ranks of the values of the variables xi and yi. [6, p. 35].
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C.8 Dice Coefficient

Originally published 1945 in the context of ecology, the Dice Coefficient (origin-
ally called "coincidence index" [40, p. 298]) can be used to normalize the overlap
of two sets to the [0.0, 1.0] range [30, p. 107]. The coefficient is given as follows:

simDice =
2 ∗ ccommon

c1 + c2
(C.11)

where ccommon are common elements and c1 are the elements in set1 and c2 are
the elements in set2.
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C.9 Data Model to Ontology: Transformation Rules

The conceptual and the physical data models of the SAP FSDM product were trans-
ferred into ontologies using the static rules presented in the following. The starting
point was Fahad’s approach [51], called ER2OWL, which describes how to trans-
form an entity-relationship model into an OWL ontology. As the conceptual data
model contains more semantics than the model underlying the approach, the rules
were extended. The same accounts for the physical data model.

Rules Applied to the CDM

1. OWL classes are used to represent entities.

2. OWL datatype properties are used to represent attributes in the following
way:

(a) To express that an attribute belongs to an entity, unique properties are
used and membership is expressed using rdfs:domain.

(b) Primary keys can be used since OWL 22. Therefore, owl:hasKey
is used rather than Fahad’s approach of making keys functional and
inverse-functional at the same time [51, p. 34].

3. OWL object properties are used to represent relations in the following way:

(a) The relation source is expressed using rdfs:domain and the target
is expressed using rdfs:range.

(b) Restrictions are used to represent cardinalities of relations.

(c) Dependent relations are detected and treated as primary key.

4. All elements have English labels (using rdfs:label).

5. Inheritance relations in the conceptual data model are also covered using
rdfs:subClassOf.

Rules Applied to the PDM
For the physical data model the same rules as above were applied when applicable
with the following exceptions:

1. There are no inheritance relations.
2see https://www.w3.org/TR/owl2-new-features/#F9:_Keys

https://www.w3.org/TR/owl2-new-features/#F9:_Keys
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2. Foreign keys are ignored as they are semantically expressed by so called
associations which are treated like relations.3

3. History tables that are used for versioning are ignored as they are related to
the technical feature of two-dimensional versioning rather than to the onto-
logy itself.4

4. Versioning attributes are ignored for the same reason.

3The reason for this is the HANA HDI CDS notation.
4As history tables carry the same name as their corresponding current table (plus some suffix),

there is no problem when the ontology alignments are to be used in real mapping tasks because those
mappings can be derived.
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C.10 FSDM Semantic Search Server

In the following, a shortened user guide is given on how to use the FSDM Semantic
Search that was written for SAP.

C.10.1 Using the Client on a Windows PC

Setup Enable Telnet (skip this step if you have used telnet before):

1. Open Control Panel

2. Open Programs

3. Select Turn Windows features on or off

4. Check the Telnet Client box

5. Click OK

Connect Givent that the server is runing, you can start the application out of the
box. The only thing you have to do is open your terminal (Windows Key→ type
CMD→ Enter). If the server is already running in the network you can connect to
it using:

telnet <IP> 5500

If you run the server on your local machine, type:

telnet localhost <your specified port>
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Search After the connection has been established, a welcome screen appears:

Figure C.5: FSDM Semantic Search Welcome Screen
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To get to the search enter 1 and hit enter. You can enter your search term and hit
the return key. In the screenshot below the search term is “business partner”. A
ranked result list with the results will appear. After your search you will be guided
back to the main menu.

Figure C.6: FSDM Semantic Search Process
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Configuration If you want more than 5 results, go to the configuration menu by
typing c and hitting enter. You can change the number of results by entering 1 (+
return) and then your desired number of hits (+ return). After your configuration,
you are brought back to the main menu.

Figure C.7: FSDM Semantic Search Configuration
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Exit In order to exit the program, enter x or exit and return.

Figure C.8: FSDM Semantic Search Exit

C.10.2 Running the Server (Windows, Linux)

You can run the server from the IDE or package it as JAR and run it from the
command line. When using the latter option, make sure all resources are available
if any are required by the selected feature; you can then start the server by going
into the directory of the JAR and typing:
Java -jar <jar name> <port>
If you do not specify a port, port 5,000 will be used by default. After starting the
server and after the server printed “Server ready to accept requests on port 5000”
clients can start connecting to the server.
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