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Abstract

In recent years, more and more companies make use of cloud computing; in other words, they
outsource data storage and data processing to a third party, the cloud provider. From cloud
computing, the companies expect, for example, cost reductions, fast deployment time, and
improved security. However, security also presents a significant challenge as demonstrated by
many cloud computing–related data breaches. Whether it is due to failing security measures,
government interventions, or internal attackers, data leakages can have severe consequences,
e.g., revenue loss, damage to brand reputation, and loss of intellectual property. A valid strategy
to mitigate these consequences is data encryption during storage, transport, and processing.
Nevertheless, the outsourced data processing should combine the following three properties:
strong security, high efficiency, and arbitrary processing capabilities.

Many approaches for outsourced data processing based purely on cryptography are available.
For instance, encrypted storage of outsourced data, property-preserving encryption, fully
homomorphic encryption, searchable encryption, and functional encryption. However, all of
these approaches fail in at least one of the three mentioned properties.

Besides approaches purely based on cryptography, some approaches use a trusted execution
environment (TEE) to process data at a cloud provider. TEEs provide an isolated processing
environment for user-defined code and data, i.e., the confidentiality and integrity of code and
data processed in this environment are protected against other software and physical accesses.
Additionally, TEEs promise efficient data processing.

Various research papers use TEEs to protect objects at different levels of granularity. On the
one end of the range, TEEs can protect entire (legacy) applications. This approach facilitates
the development effort for protected applications as it requires only minor changes. However,
the downsides of this approach are that the attack surface is large, it is difficult to capture the
exact leakage, and it might not even be possible as the isolated environment of commercially
available TEEs is limited. On the other end of the range, TEEs can protect individual, stateless
operations, which are called from otherwise unchanged applications. This approach does not
suffer from the problems stated before, but it leaks the (encrypted) result of each operation
and the detailed control flow through the application. It is difficult to capture the leakage of
this approach, because it depends on the processed operation and the operation’s location in
the code.

In this dissertation, we propose a trade-off between both approaches: the TEE-based
processing of data structures. In this approach, otherwise unchanged applications call a
TEE for self-contained data structure operations and receive encrypted results. We examine
three data structures: TEE-protected B+-trees, TEE-protected database dictionaries, and
TEE-protected file systems. Using these data structures, we design three secure and efficient
systems: an outsourced system for index searches; an outsourced, dictionary-encoding–based,
column-oriented, in-memory database supporting analytic queries on large datasets; and an
outsourced system for group file sharing supporting large and dynamic groups.

Due to our approach, the systems have a small attack surface, a low likelihood of security-
relevant bugs, and a data owner can easily perform a (formal) code verification of the sensitive
code. At the same time, we prevent low-level leakage of individual operation results. For
all systems, we present a thorough security evaluation showing lower bounds of security.
Additionally, we use prototype implementations to present upper bounds on performance. For
our implementations, we use a widely available TEE that has a limited isolated environment—
Intel Software Guard Extensions. By comparing our systems to related work, we show that
they provide a favorable trade-off regarding security and efficiency.
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Zusammenfassung

Seit einigen Jahren nutzen immer mehr Unternehmen Cloud Computing. Hierbei wird die
Datenspeicherung und -verarbeitung zu einer dritten Partei, dem sogenannten Cloud-Anbieter,
ausgelagert. Von Cloud Computing versprechen sich Unternehmen unter anderem folgende
Vorteile: reduzierte Kosten, schnellere Bereitstellung und erhöhte Sicherheit. Zahlreiche Da-
tenpannen haben jedoch gezeigt, dass mangelnde Sicherheit noch immer ein großes Problem
beim Cloud Computing darstellt. Für Unternehmen können solche Datenpannen verheeren-
de Folgen haben, wie z. B. Umsatzeinbrüche, Reputationsverlust und Verlust von geistigem
Eigentum. Diese negativen Konsequenzen können minimiert werden, wenn die ausgelagerten
Daten während der Speicherung, Übertragung und Verarbeitung verschlüsselt sind. Neben
der Sicherheit der Daten muss dabei stets eine hohe Effizienz sowie die uneingeschränkte
Verarbeitung gewährleistet werden.

Bei folgenden, beispielhaft aufgeführten Ansätzen der ausgelagerten Datenverarbeitung
beruht die Sicherheit nur auf Kryptographie: verschlüsseltes Auslagern von Daten, eigenschafts-
erhaltende Verschlüsselung (property-preserving encryption), vollhomomorphe Verschlüsselung
(fully homomorphic encryption), durchsuchbare Verschlüsselung (searchable encryption) und
funktionale Verschlüsselung (functional encryption). Keiner dieser Ansätze vereint die drei
obengenannten Kriterien.

Daneben gibt es Ansätze, bei denen die Sicherheit neben Kryptographie auch auf Trusted
Execution Environments (TEEs) beruht, die beim Cloud-Anbieter für die Datenverarbeitung
eingesetzt werden. TEEs bieten eine isolierte Umgebung, die die Integrität und Vertraulichkeit
der darin ausgeführten Programme und der verarbeiteten Daten gegenüber anderen Programmen
und physischem Zugriff schützt. Außerdem ist die Effizienz der Datenverarbeitung hoch.

TEEs können Objekte von unterschiedlicher Granularität absichern: Auf der einen Seite
können komplette Applikationen geschützt werden. Wenngleich dabei der Schutz (bestehender)
Applikationen mit geringem Aufwand erfolgen kann, ist dennoch die Angriffsfläche groß und
potenzielle Datenlecks sind schwer zu bestimmen. Da aktuell verfügbare TEEs eine beschränkte
Größe der isolierten Umgebung haben, ist dieser Ansatz häufig nicht umsetzbar. Auf der anderen
Seite können TEEs einzelne, zustandslose Operationen schützen, die dann von ansonsten
unveränderten Applikationen aufgerufen werden. Dieser Ansatz leidet zwar nicht unter den
zuvor beschriebenen Problemen, aber ein Angreifer kann das (verschlüsselte) Ergebnis jeder
Operation und den genauen Programm-Ablauf lernen.

In dieser Dissertation wird ein Kompromiss aus den beiden zuvor beschriebenen Lösungen
vorgeschlagen: die Nutzung von TEEs, um Datenstrukturen zu verarbeiten. Dabei verwenden
ansonsten unveränderte Applikationen Datenstruktur-Operationen, die in sich abgeschlossen
von einer TEE verarbeitet werden. Bestandteil der Untersuchung sind drei Datenstrukturen:
TEE-geschützte B+-Bäume, TEE-geschützte Datenbank-Wörterbücher und TEE-geschützte
Dateisysteme. Mit diesen Datenstrukturen werden drei sichere und effiziente ausgelagerte
Systeme entworfen: ein System für Index-Suchen, eine Wörterbuch-basierte, spaltenorientierte,
In-Memory-Datenbank und ein System für den gruppenbasierten Austausch von Dateien.

Der in dieser Arbeit vorgestellte Ansatz führt dazu, dass die Systeme eine möglichst kleine
Angriffsfläche und eine geringe Anfälligkeit für sicherheitsrelevante Programmierfehler haben.
Der sicherheitskritische Programmcode ist einfach zu überprüfen und ein Angreifer kann das
Ergebnis einzelner Operationen nicht lernen. Ausführliche Sicherheitsevaluierungen zeigen untere
Sicherheitsschranken der Systeme und prototypische Implementierungen werden genutzt, um
obere Schranken der Performanz aufzuzeigen. Hierbei kommt Intel Software Guard Extensions,
eine weit verbreitete TEE mit beschränkter Größe der isolierten Umgebung, zum Einsatz.
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1
Introduction

For decades, companies owned, managed, and maintained their applications and infrastructure.
In 1996, the term “cloud computing” was coined [1] referring to a concept in which companies
outsource their applications and infrastructure to a third party. This third party is called the
cloud provider and it provides its services over a network; in most cases, the Internet. In 2006,
cloud computing gained more attention as large companies, e.g., Amazon and Google, used the
term and began to offer commercially available cloud computing services.

A recent cloud computing survey [2] states that, in 2018, 73% of the respondents used cloud-
based applications and infrastructure, and the usage increased to 81% in 2020. Furthermore,
2% of the survey respondents plan to adopt cloud applications in the next 12 months and an
additional 6% plan adoption in the next 12 to 36 months. In 2021, companies plan to invest
32% of their total IT budget into cloud computing. This trend is visible across many industries,
e.g., education, manufacturing, healthcare, financial service, and government.

The top five reasons for companies to outsource applications and infrastructure to the
cloud are the following: cost reduction; faster deployment time; increased efficiency; improved
security; and increased flexibility and choice [3]. In contrast, the top three challenges with
cloud computing are the following: controlling cloud costs; data privacy and security; and
securing/protecting cloud resources [2]. Thus, on the one hand, companies expect an increased
security from outsourced data processing, which is a valid assumption according to Gartner [4].
On the other hand, companies fear to lose their sensitive and business-critical data, which is
also a valid fear considering recent cloud-related data breaches [5]–[8]. According to a recent
IDC survey of 300 chief information security officers [9], 79% of the participating companies
report a cloud data breach in the last 18 months.

Multiple security measures are recommended to mitigate the risk of data breaches, e.g.,
network firewalls, hardened operating systems (OSes), and virus scanners. However, these
measures can have bugs or can be misconfigured. Additionally, governments might subpoena
the cloud providers to hand over data, which circumvents these measures. Even if all security
measures are successful and the cloud provider does not cooperate with governments, the data
owner might not trust the cloud provider, because an internal attacker can easily leak sensitive
data.

Whether it is due to failing security measures, governments, or internal attackers, a data
leak can have severe consequences, e.g., revenue loss, damage to brand reputation, and loss
of intellectual property. To mitigate the consequences of a data leak, data owners should
incorporate data encryption as a last line of defense throughout the data’s lifecycle, i.e.,
during storage, transport, and processing. We denote this concept by secure, outsourced data
processing.

Ideally, outsourced data processing approaches combine strong security, high efficiency, and
arbitrary processing capabilities. Many approaches in the literature, such as the following three,
are based purely on cryptography:

1. In the encrypted outsourced storage approach, the data owner encrypts its data locally
with a secure encryption scheme, e.g., advanced encryption standard (AES), outsources
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the data, and retains the encryption key. This approach provides perfect security, but
the cloud provider cannot do any processing. Consequently, the efficiency is low as all
data needs to be downloaded for local processing at the data owner.

2. Property-preserving encryption (PPE) [10]–[12] preserves properties of the underlying
plaintext data in the corresponding ciphertexts. As a result, PPE allows some processing
capabilities on encrypted data, e.g., equality comparisons and range queries. The efficiency
for these operations is high, but the security is debatable [13]–[15].

3. Fully homomorphic encryption (FHE) [16]–[18] enables the processing of arbitrary circuits
on encrypted data and offers semantic security. However, it is too inefficient for adoption
in practical systems [19].

Alternatively, a trusted execution environment (TEE) at the cloud provider can support the
secure, outsourced data processing. TEEs provide an isolated processing environment for
user-defined code and data, i.e., the confidentiality and integrity of code and data processed in
this environment are protected against other software and physical accesses. In particular, a
TEE protects against all privileged software, e.g., OS, hypervisor, and firmware. Furthermore,
the processing of protected data is very efficient. Thus, TEEs are ideally suited for secure and
efficient data processing in a scenario with an untrusted cloud provider.

In this dissertation, we use a TEE to protect the outsourced processing of data structures.
We embed such TEE-protected data structures in cloud-based systems and show that this
approach achieves strong security, high efficiency, and arbitrary processing capabilities.

In the remainder of this chapter, we first describe the contributions of this dissertation in
Section 1.1. Then, in Section 1.2, we present the outline of the dissertation and a reading
guideline. We conclude the chapter in Section 1.3 with the publications related to this
dissertation.

1.1 Contributions

The research question we address in this dissertation is the following:

For outsourced systems using a memory-limited, widely available trusted ex-
ecution environment (TEE) to process data structures at an untrusted cloud
provider, what are lower bounds of security and corresponding upper bounds
on performance?

This research question specifies the target technology, the scenario, the main investigation
object—data structures, and the security and performance goals of this dissertation. In the
following, we elaborate on these four points and then describe the main contributions of this
dissertation.

Target technology. We assume that a cloud provider offers TEE-enabled machines as part
of its cloud computing service. Such a TEE provides an isolated processing environment for
user-defined code, a so-called enclave, which securely processes data. Besides confidentiality
and integrity protection for user-defined enclaves, we require that the used TEE supports at
least four capabilities: (1) remote attestation, i.e., the enclave can prove its integrity and that
it is protected by a specific TEE to a remote party; (2) remote provisioning, i.e., a remote party
can securely provision sensitive data into the enclave; (3) data sealing, i.e., the enclave can
store data in the untrusted environment while the TEE guarantees the data’s confidentiality,
integrity, and freshness; and (4) source of randomness, i.e., the enclave can securely access a
trusted source of randomness.
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In 2015, Intel released CPUs supporting Intel Software Guard Extensions (Intel SGX) [20]–
[28], a TEE which is now widely available in most Intel Core and Xeon processors. During the
timeframe in which the research for this dissertation was done, Intel SGX was the only TEE
providing the capabilities listed before1. Therefore, we use Intel SGX as TEE throughout this
dissertation. Intel SGX enables arbitrary processing of encrypted data, it is highly efficient,
and the concept is secure.

A downside of Intel SGX is that it is memory limited, i.e., the enclave code and the data
processed by the enclave at once cannot exceed 96 MB without a severe performance decrease.
As other papers [29]–[31] and this dissertation show, Intel SGX still enables secure, outsourced
processing of data far beyond 96 MB, and Intel SGX’s efficiency is vastly superior to related
approaches without a TEE. Another downside is that various attacks on Intel SGX were
presented over the last years. The attacks result from side channels [32]–[34], enclave code
exploits [35], [36], enclave-based malware [37], [38], and processor bugs [39]–[41]. In this
dissertation, we argue that the main strategy to mitigate attacks on Intel SGX is to have a
small enclave size, i.e., the enclave should only have a few lines of code (LOC).

Scenario. As mentioned in the introduction, data owners should incorporate encryption
throughout the lifecycle of their sensitive, outsourced data, and we call this concept secure,
outsourced data processing. As we assume that the cloud provider uses a TEE for data
processing, we denote the scenario considered in the dissertation by secure, outsourced, TEE-
based data processing. This scenario is illustrated in Figure 1.1a and it works as follows: A
trusted data owner encrypts its data locally and outsources the encrypted data to an untrusted
cloud provider. Whenever the data owner wants to process the outsourced data, it sends a
corresponding request, which might contain encrypted data, to the cloud provider. The data is
processed by the cloud provider using a TEE and a response is sent back to the data owner,
who might need to decrypt contained data. In this scenario, we interchangeably use the terms
user and data owner, as the data owner outsources and uses the outsourced data. The user
can also be an application, which uses the outsourced processing capabilities. A real-world
example for this scenario is the following: a company outsources its database; an application of
the same company triggers database requests and receives the corresponding result sets.

Trusted Untrusted

Cloud ProviderData Owner/
User

Request

Response
Encryption/
Decryption

TEE-supported
Processing

Data
Encryption

Data Outsourcing

(a)

Data OutsourcingData
Encryption

Cloud ProviderData Owner

User(s) Request

Response
Encryption/
Decryption

TEE-supported
Processing

(b)

Figure 1.1: Secure, outsourced, TEE-based data processing scenario variants: (a) data owner
and user are equal, (b) data owner and user(s) are independent.

In some cases, we consider a variant of this scenario, which is presented in Figure 1.1b. The
only difference is that the data owner and the user(s) are distinct. A real-world example for
this variant is the following: a student outsources her files to the cloud and other students can
request (parts of) these files.

Data structures. The secure, outsourced, TEE-based data processing scenario does not define
the processing done inside an enclave, which ranges from the executing of entire applications

1 We discuss alternative TEEs and their capabilities in Section 3.3.
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to individual, stateless operations. Both extremes have their advantages and disadvantages
(see Section 4.8). In this dissertation, we use a trade-off and process data structures inside an
enclave.

In particular, we examine the secure, outsourced, TEE-based data processing of three data
structures in the three main chapters of this dissertation: B+-trees, database dictionaries, and
file systems. A B+-tree is a balanced, n-ary search tree, and our outsourced B+-trees can be
used to search single search keys and search key ranges. A database dictionary provides data
compression in a column-oriented database, and our outsourced dictionaries enable equality
and range searches. A file system contains files and directories, and our outsourced file system
allows, among other features, remote file storage, group data sharing, and deduplication.

Security and performance goals. In this dissertation, we intend to enhance the architecture
of outsourced systems using TEE-protected data structures. Our goal is to achieve a trade-off
that improves over existing work regarding security and performance. In more detail, the
outsourced data processing systems should:

• Limit the amount of leaked information in transit between the user and cloud provider;
during storage at the cloud provider; and during processing at the cloud provider.

• Provide an as low as possible latency to the user of the outsourced processing.

Main contributions. In the secure, outsourced, TEE-based data processing scenario, the TEE
can protect different objects. The proposition of this dissertation is that TEEs should be used
to process outsourced data structures. From this proposition, we expect a much smaller enclave
size compared to approaches which protect entire applications with a TEEs. A small enclave
size has multiple benefits, e.g., a small attack surface, a low likelihood of bugs, a low interface
complexity, and a facilitation for code verification by the data owner. Additionally, we expect
to not leak low-level result as done by approaches which protect individual, stateless operations
with a TEEs.

To verify our proposition, we design three TEE-protected data structures and use them to
build three systems:

• Using TEE-protected B+-trees, we design an outsourced system for index searches—
denoted by HardIDX.

• Using TEE-protected dictionaries, we design an outsourced, dictionary-encoding–based,
column-oriented, in-memory database supporting analytic queries on large datasets—
denoted by EncDBDB.

• Using a TEE-protected file system, we design an outsourced system for group file sharing
supporting large and dynamic groups—denoted by SeGShare.

For all three systems, we present a thorough security evaluation showing lower bounds of
security. Additionally, we use Intel SGX, a memory-limited, widely available TEE for prototype
implementations. Based on these implementations, we present upper bounds on performance.
Consequently, we use three examples to provide an answer to the research question stated at
the beginning of this section.

1.2 Outline

In the following, we provide the outline of this dissertation. At the end of this section, we
provide a brief reading guideline.

In Chapter 2, we first explain the notation that is used throughout this dissertation. Then,
we formally introduce the cryptographic primitives that are used by our secure data structures;
by related, secure, outsourced data processing approaches; and by various TEEs.

6



1.3 Related Publications

In Chapter 3, we provide definitions for TEEs, enclaves, the enclave memory, and the enclave
size. Additionally, we list TEE capabilities that we require for the approaches presented in this
dissertation. Then, we present details of the only TEE that fulfills these capabilities—Intel SGX.
As many news articles about Intel SGX cover attacks on it, we dedicate a section to attacks on
Intel SGX and mitigations against these attacks. Finally, we differentiate technologies related
to TEEs and classify commercially available TEEs according to our list of required capabilities.

In Chapter 4, we differentiate this dissertation from related approaches, i.e., approaches
that also enable secure, outsourced data processing (with and without a TEE). We show that
all of these approaches cover another scenario and/or they fail in at least one of the following
aspects: strong security, high efficiency, or arbitrary processing capabilities. Namely, we
describe encrypted outsourced storage, secure multi-party computation (MPC), fragmentation,
property-preserving encryption (PPE), searchable encryption (SE), homomorphic encryption,
functional encryption (FE), and TEE-based approaches that do not process a data structure in
an enclave.

In Chapter 5, we motivate and describe the design principles that we use for our TEE-
protected data structures. Additionally, we present the security and performance assessment
methodology that we use to answer our research question.

Chapters 6, 7, and 8 are the three main chapters of this dissertation. In these chapters,
we present a system for secure index searches using TEE-protected B+-trees, a secure database
using TEE-protected database dictionaries, and a system for group file sharing using a TEE-
protected file system, respectively. Each of the three chapters follows the same schema: In the
introduction, we outline the TEE-protected data structure covered in the chapter, introduce
the system that uses this data structure, mention related approaches, and present a list of
contributions of the chapter. In a following design considerations section, we provide details
about the data structure (without protection), the system, and the attacker model. Afterwards,
we differentiate our system from existing approaches in a related work section. At this point in
each chapter, the foundations are expressed, and we proceed to the design of our TEE-protected
data structure and the corresponding system. To provide a concise description in the design
section, we extract possible extensions to a separate section that follows after the design section.
Then, we briefly discuss the implementation of the system in a dedicated section. The following
evaluation section uses the implementation for a thorough performance (and storage overhead)
evaluation. Besides, the evaluation section provides a security evaluation. Each main chapter
concludes with a brief summary.

Chapter 9 concludes this dissertation. We first summarize all chapters and relate them to
our research questions. Then, we give an outlook on potential future research avenues.

Reading guideline. As we illustrate in Figure 1.2, the main reading path of this dissertation
is to read through all chapters subsequently. However, Chapter 3 might be of interest to a
reader that wants to learn details about Intel SGX and related TEEs, independent of the
remainder of this dissertation. If the reader is familiar with cryptographic primitives and Intel
SGX, Chapter 6, 7, and 8 are understandable without the preceding chapters and the chapters
are independent of each other.

1.3 Related Publications

Ideas developed in the process of writing this dissertation have been published or submitted.
The following publications are directly related and are used in the specified chapters:
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Introduction1

Preliminaries2

Trusted Execution Environments (TEEs)3

Related Approaches for Secure, Outsourced Data Processing4

Methodology5

Protected B+-trees: HardIDX6

Protected Database Dictionaries: EncDBDB7

Protected File System: SeGShare8

Conclusion9

Figure 1.2: Reading guideline for this dissertation.

• B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A. Sadeghi, “HardIDX:
Practical and Secure Index with SGX”, in Proceedings of the IFIP Annual Conference on
Data and Applications Security and Privacy, ser. DBSec, 2017.
This publication forms the basis for Chapter 6 covering outsourced B+-trees. It received
the best paper award at the DBSec 2017.

• B. Fuhry, R. Bahmani, F. Brasser, F. Hahn, F. Kerschbaum, and A. Sadeghi, “HardIDX:
Practical and secure index with SGX in a malicious environment”, Journal of Computer
Security, JCS, 2018.
This publication extends the last publication by considering an outsourced B+-tree secure
against a malicious cloud attacker. This extension is also part of Chapter 6.

• B. Fuhry, J. Jayanth H A, and F. Kerschbaum, “EncDBDB: Searchable Encrypted, Fast,
Compressed, In-Memory Database using Enclaves”, arXiv.org, arXiv:2002.05097, 2020.
This publication forms the basis for Chapter 7 covering outsourced database dictionaries,
which are used in column-oriented databases for data compression.

• B. Fuhry, L. Hirschhoff, S. Koesnadi, and F. Kerschbaum, “SeGShare: Secure Group
File Sharing in the Cloud using Enclaves”, in Proceedings of the Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, ser. DSN, 2020.
This publication forms the basis for Chapter 8 covering outsourced file systems.

The following paper gained from the insights of this dissertation, but its content is not part of
the dissertation:

• A. Fischer, B. Fuhry, F. Kerschbaum, and E. Bodden, “Computation on Encrypted
Data using Dataflow Authentication”, Proceedings on Privacy Enhancing Technologies,
PoPETS, 2020.

• A. Fischer, B. Fuhry, J. Kussmaul, J. Janneck, F. Kerschbaum, and E. Bodden, “Improved
Computation on Encrypted Data using Dataflow Authentication”, (under submission),
2020.
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2
Preliminaries

In this chapter, we first review the notation that is used throughout this dissertation, in
Section 2.1. Afterwards, in Section 2.2, we formally introduce the cryptographic primitives
that are used by the secure data structures presented in this dissertation, by related secure,
outsourced data processing approaches, and by various TEEs. Namely, we describe the following
primitives: pseudorandom functions (PRFs), pseudorandom permutations (PRPs), symmetric-
key encryptions (SKEs), message authentication codes (MACs), authenticated encryptions
(AEs), cryptographic hash functions, set hash functions, and Merkle trees.

2.1 Notation

General notation.
• The set of positive integers is denoted by N.
• The set of binary strings of length n ∈ N is denoted by {0, 1}n.
• The set of finite-length binary strings is denoted by {0, 1}∗.
• The length of a binary string V in bits is denoted by |V |.
• The concatenation of two binary strings U ∈ {0, 1}n, V ∈ {0, 1}m is denoted by U ||V ∈
{0, 1}n+m.

• The exclusive or operation of two binary values U and V is denoted by U ⊕ V .
• We use bold letters to refer value collections.
• A set X contains |X| unique values, i.e., X = {X0, . . . , X |X|−1} and ∀ i, j ∈ [0, |X| −

1] ∧ i 6= j : Xi 6= Xj . An empty set is denoted by ∅.
• A tuple T contains |T | values, i.e., T = (T 0, . . . , T |T |−1). An empty tuple is denoted by
∅.

• For a partially ordered set X, n,m, x ∈ X, and n ≤ m, R = [n,m] denotes the
range R = {x |n ≤ x ≤ m}, R = [n,m) denotes the range R = {x |n ≤ x < m},
R = (n,m] denotes the range R = {x |n < x ≤ m}, and R = (n,m) denotes the range
R = {x |n < x < m}.

• A value V that is contained in a set X, tuple T , or range R is denoted by V ∈X, V ∈ T ,
and V ∈ R.

• A value V that is chosen uniformly at random from a set X, tuple T , or range R is
denoted by V $←−X, V $←− T , and V

$←− R.
• For a named value, set, tuple, or range, we use superscript, e.g., V name, Xname, T name,

and Rname.
• If a value V has an attribute U , we denote it by V .U , and if V ’s attribute is a tuple T

by V .T .

Algorithms.
• We do not differentiate between a function and an algorithm, and use the terms inter-

changeably.
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2 Preliminaries

• The security parameter of algorithms is always denoted by λ ∈ N. The unary representa-
tion 1λ is used if it is passed to an algorithm.

• For a (probabilistic) algorithm A, x← A denotes that A outputs x.
• For a tuple, we define an append function that appends a value to the end of the tuple, a

pop function that returns the first value and removes it from the tuple, and a last function
that returns the last value of the tuple. For instance, let T = {T 0, T 1} be a tuple, then
T .Append(T 2) = {T 0, T 1, T 2}, T 0 ← T .Pop() with T = {T 1} after the operation, and
T 1 ← T .Last() with T = {T 0, T 1} after the operation.

2.2 Cryptographic Primitives
In this section, we introduce cryptographic primitives that are relevant for this dissertation.
Unless explicitly noted, the definitions are based on the textbook by Katz et al. [48]. We follow
the asymptotic security approach stating that a scheme should be secure against an “efficient”
adversary, which can break the security with a “very small probability”. We call an adversary
efficient if its computation is probabilistic polynomial-time (PPT), and the adversary’s success
probability is very small if it is negligible in the security parameter. These concepts are defined
in the following:

Definition 1 (Probabilistic polynomial time (PPT)). An algorithm A is probabilistic if it has
access to a source of randomness, and it runs in polynomial time if there exists a polynomial
p(·) such that, for every input V ∈ {0, 1}∗, the computation A(V ) terminates within p(|V |)
steps.

Definition 2 (Negligible function). A function f is called negligible if for every polynomial
p(·) there exists an N ∈ N such that for all n ∈ N with n > N it holds that f(n) < 1

p(n) . We
denote a negligible function by negl.

To model a powerful PPT adversary A, the adversary may receive access to an oracle O. This
oracle computes an auxiliary function that A cannot compute (efficiently). We denote an
adversary A with access to an oracle O by AO(·).

2.2.1 Pseudorandom Function (PRF)
The definition of a pseudorandom function (PRF) requires the definition of a keyed function:

Definition 3 (Keyed function). A keyed function is a function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
where the first input is called key denoted by k.

A keyed function F is called efficient if a PPT algorithm can compute F(k, x). Furthermore, F
is called length-preserving if the key, input, and output have the same length, i.e., |k| = |x| =
|F(k, x)|.

Definition 4 (Pseudorandom function (PRF)). Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an
efficient, length-preserving, keyed function. The function F is a pseudorandom function if for
all probabilistic polynomial-time distinguishers D, there exists a negligible function negl such
that: ∣∣∣Pr[DF (k,·)(1λ) = 1]− Pr[Dfn(·)(1λ)]

∣∣∣ = negl(λ)

where k ← {0, 1}λ is chosen uniformly at random and fn is a function chosen randomly from
the set of all functions mapping n-bit strings to n-bit strings.
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2.2.2 Pseudorandom Permutation (PRP)
The definition of a pseudorandom permutation (PRP) requires the definition of a keyed
permutation, which is based on a keyed function:

Definition 5 (Keyed permutation). Let F be a keyed function. The function F is a keyed
permutation if it is bijection for every k.

A keyed permutation F is efficient if a PPT algorithm can compute F(k, x) and the inverse
F−1(k, y). It is called length-preserving if |F(k, x)| = |x| = |k|.

Definition 6 (Pseudorandom permutation (PRP)). Let PRP : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
be an efficient, length-preserving, keyed permutation. The function PRP is a pseudorandom
permutation if for all probabilistic polynomial-time distinguishers D, there exists a negligible
function negl such that:∣∣∣Pr[DF(k,·),F−1(k,·)(1λ) = 1]− Pr[Dfn(·),f−1

n (·)(1λ)]
∣∣∣ = negl(λ)

where k ← {0, 1}λ is chosen uniformly at random and fn is a function chosen randomly from
the set of all functions mapping n-bit strings to n-bit strings.

2.2.3 Symmetric-Key Encryption (SKE)
A symmetric-key encryption (SKE) scheme uses a single secret key to encrypt and decrypt
values. SKE schemes are useful in a single-party or two-party setting: If a single party does the
encryption and decryption, no further setup is necessary. For instance, the party can encrypt a
value, store the encrypted value, and later decrypt the value before reading. If the encryption
and decryption party differ, a secure key distribution scheme is necessary to establish a shared
key. After a successful key distribution, the encryption party can encrypt a value under the
shared key. Then, the encryption party sends the encrypted value to the decryption party,
which decrypts the value using the shared key.

The syntax of an SKE scheme is as follows:

Definition 7 (Symmetric-key encryption (SKE) syntax). A symmetric-key encryption scheme
is a tuple of three PPT algorithms SKE =

(
SKE Gen, SKE Enc, SKE Dec

)
such that:

SK ← SKE Gen(1λ): Take a security parameter λ as input and output a secret key SK.
C ← SKE Enc(SK, V ): Take a secret key SK and a plaintext value V ∈ {0, 1}∗ as input.

Output the ciphertext C.
V ← SKE Dec(SK,C): Take a secret key SK and a ciphertext C as input. Return V iff V

was encrypted with SKE Enc under the key SK. Otherwise, return ⊥.

For a meaningful definition, we require the correctness of an SKE scheme:

Definition 8 (SKE correctness). Let SKE denote a symmetric-key encryption scheme consisting
of the three algorithms as in Definition 7. For every λ, every secret key SK output by SKE
Gen, and every V ∈ {0, 1}∗, it holds that SKE Dec(SK, SKE Enc(SK, V )) = V .

To define the security of an SKE scheme, it is necessary to define the threat model and the
security goal, i.e., the power of an adversary and when a scheme is considered broken. In
cryptography literature, it is common to define the threat model via a security experiment
conducted between a challenger and an adversary, and the security goal by a probability with
which the adversary succeeds in this experiment. For SKE schemes there are two widely
accepted security definitions: indistinguishability under chosen plaintext attacks (IND-CPA)
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and indistinguishability under chosen ciphertext attacks (IND-CCA). In the following, we
recapitulate the IND-CCA experiment, the IND-CCA–security definition, and briefly mention
the difference to the weaker IND-CPA–security definition.

Definition 9 (IND-CCA experiment). Let SKE denote a symmetric-key encryption scheme
consisting of the three algorithms as in Definition 7. For an adversary A and a security
parameter λ, the IND-CCA experiment ExpIND−CCAA,SKE is defined as:

1. The challenger generates a secret key SK ← SKE Gen(1λ).
2. The adversary ASKE Enc(SK,·),SKE Dec(SK,·) receives input 1λ, has access to an encryption

oracle SKE Enc(SK, ·) and a decryption oracle SKE Dec(SK, ·), and outputs two challenge
values V0 ∈ {0, 1}n and V1 ∈ {0, 1}n of the same length n.

3. The challenger choses a random bit b $←− {0, 1}, computes C ← SKE Enc(SK, Vb), and
gives C to ASKE Enc(SK,·),SKE Dec(SK,·).

4. The adversary ASKE Enc(SK,·),SKE Dec(SK,·) can further use his oracle accesses, but is not
allowed to use the decryption oracle SKE Dec(SK, · ) on C. Eventually, the adversary
outputs a bit b′.

5. The experiment outputs 1 iff b = b′. ASKE Enc(SK,·),SKE Dec(SK,·) succeeds if the experiment
outputs 1.

Definition 10 (IND-CCA security). Let SKE denote a symmetric-key encryption scheme
consisting of the three algorithms as in Definition 7 and λ its security parameter. SKE is
IND-CCA secure if for all PPT adversaries A there exists a negligible function negl such that

|Pr[ExpIND−CCAA,SKE = 1]| ≤ 1
2 + negl(λ)

The definition of IND-CPA security is very similar. The only difference is that the adversary in
the corresponding experiment does not have access to a decryption oracle. Thus, it is a weaker
attacker model.

2.2.4 Message Authentication Code (MAC)
A message authentication code (MAC) is used to protect the integrity of a value, i.e., prevent
an adversary from modifying the value and confirm that the value originated from a key
holder. MACs require a shared secret between the communicating parties, and we consider the
symmetric-key setting. The sender uses the secret key to calculate an authentication tag t for
the value V and sends (V , t) to the second party. The integrity of V is verified by the second
party using the authentication tag t and the shared secret key. More formally:

Definition 11 (Message authentication code (MAC) syntax). A message authentication code
scheme is a tuple of three PPT algorithms MAC =

(
MAC Gen,MAC Tag,MAC Vrfy

)
such that:

SK ← MAC Gen(1λ): Take a security parameter λ as input and output a secret key SK with
|SK| ≥ λ.

t← MAC Tag(SK, V ): Take a secret key SK and a plaintext value V ∈ {0, 1}∗ as input.
Output the authentication tag t.

b← MAC Vrfy(SK, V , t): Take a secret key SK, a value V , and an authentication tag t as
input. Output b = 1 if the authentication tag t is valid. Otherwise, output b = 0.

Comparable to SKE, we require the correctness of a MAC scheme:

Definition 12 (MAC correctness). Let MAC denote a message authentication code scheme
consisting of the three algorithms as in Definition 11. For every λ, every secret key SK output
by MAC Gen, and every V ∈ {0, 1}∗, it holds that MAC Vrfy(SK, V ,MAC Tag(SK, V )) = 1.

12
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To define the security of a MAC scheme, we again define the threat model and the security
goal. In particular, we consider the definition of strongly secure MACs.

Definition 13 (MAC experiment). Let MAC denote a message authentication code scheme
consisting of the three algorithms as in Definition 11. For an adversary A and a security
parameter λ, the MAC experiment ExpMAC−sforge

A,MAC is defined as:

1. The challenger generates a secret key SK ← MAC Gen(1λ).
2. The adversary AMAC Tag(SK,·) receives input 1λ, has access to an oracle MAC Tag(SK,
· ), and outputs (V ′, t′). Let T be the set of all (V , t) pairs for which AMAC Tag(SK,·) used

the oracle MAC Tag(SK, · ) with value V receiving the authentication tag t as a response.
3. The experiment outputs 1 iff MAC Vrfy(SK, V ′, t′) = 1 and (V ′, t′) /∈ T . AMAC Tag(SK,·)

succeeds if the experiment outputs 1.

Definition 14 (Strongly secure MAC). Let MAC denote a message authentication code scheme
consisting of the three algorithms as in Definition 11 and λ its security parameter. MAC is
strongly secure if for all PPT adversaries A there exists a negligible function negl such that

|Pr[ExpMAC−sforge
A,MAC = 1]| ≤ negl(λ)

2.2.5 Authenticated Encryption (AE)
SKE schemes as presented in Section 2.2.3 protect the confidentiality of a value, and MAC
schemes as presented in Section 2.2.4 protect the integrity of values. The goal of an authenticated
encryption (AE) scheme is to protect the confidentiality and integrity of a value at the same
time. An AE scheme can be considered an SKE scheme with the following formal protection
guarantees:

Definition 15 (Authenticated encryption (AE)). A symmetric-key encryption scheme is an
authenticated encryption scheme if it is IND-CCA secure and unforgeable.

IND-CCA security is defined in Definition 10. Unforgeability is defined via the following
experiment and corresponding attacker success probability:

Definition 16 (Unforgeable encryption experiment). Let SKE denote a symmetric-key encryp-
tion scheme consisting of the three algorithms as in Definition 7. For an adversary A and a
security parameter λ, the unforgeable encryption experiment ExpEnc−ForgeA,SKE is defined as:

1. The challenger generates a secret key SK ← SKE Gen(1λ).
2. The adversary AAE Enc(SK,·) receives input 1λ, has access to an encryption oracle AE

Enc(SK, · ), and outputs a ciphertext C. Let T be the set of all plaintext values for which
AAE Enc(SK,·) used the oracle AE Enc(SK, · ).

3. Let V = SKE Dec(SK,C). The experiment outputs 1 iff V 6= ⊥ and V /∈ T . AAE Enc(SK,·)

succeeds if the experiment outputs 1.

Definition 17 (Unforgeable encryption). Let SKE denote a symmetric-key encryption scheme
consisting of the three algorithms as in Definition 7 and λ its security parameter. SKE is
unforgeable if for all PPT adversaries A there exists a negligible function negl such that

|Pr[ExpEnc−ForgeA,SKE = 1]| ≤ negl(λ)

Katz et al. [48] propose to construct an AE scheme by combining an IND-CPA–secure SKE
scheme and a strongly secure MAC scheme, according to the encrypt-then-authenticate approach
using two independent keys. Throughout this dissertation, however, we use AES-GCM [49] as
AE construction. AES-GCM performs encryption and authentication at the same time using a
single key. We use a formal abstraction for this construction and do not go into details:

13
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Definition 18 (AE syntax). An authenticated encryption scheme is a tuple of three PPT
algorithms AE =

(
AE Gen,AE Enc,AE Dec

)
such that:

SK ← AE Gen(1λ): Take a security parameter λ as input and output a secret key SK.
C ← AE Enc(SK, V ): Take a secret key SK and a plaintext value V ∈ {0, 1}∗ as input. Cal-

culate an authentication tag t for the value V and encrypt V resulting in a ciphertext C ′.
Output the ciphertext C = (C ′, t).

V ← AE Dec(SK,C): Take a secret key SK and a ciphertext C = (C ′, t) as input. Verify the
authentication tag t. Only if t is valid, decrypt the ciphertext C and output the plaintext
value V .

Note that the IND-CCA security, which is inherent to all AE schemes, guarantees that
ciphertexts are different, even if encrypted plaintexts are equal.

2.2.6 Cryptographic Hash Function
The goal of a hash function is to map a finite-length string to a fixed-length string called hash.
In some use cases, it is desirable that different input strings are mapped to the same hash, e.g.,
for a hash table. If the input domain is larger than the hash domain, which is the default case,
collisions must exist. We, however, are interested in collision-resistant hash functions, i.e., it
should be infeasible for a PPT adversary to find two strings that have the same hash.

In the following we define keyed, cryptographic hash functions and define their collision
resistance by stating a threat model and security goal. Afterwards, we define cryptographic
hash functions, which are a variant of keyed, cryptographic hash functions.

Definition 19 (Keyed, cryptographic hash function syntax). A keyed, cryptographic hash
function is a pair of PPT algorithms

(
H Gen,H

)
such that:

k ← H Gen(1λ): Take a security parameter λ as input and output a key k.
h← H(k, V ): Take a key k and a value V ∈ {0, 1}∗ as input and output a fixed-size hash h.

Definition 20 (Collision-finding experiment for keyed, cryptographic hash functions). Let Π
denote a keyed, cryptographic hash function consisting of the two algorithms as in Definition 19.
For an adversary A and a security parameter λ, the collision-finding experiment ExpHash−collA,Π
is defined as:

1. The challenger generates a key k ← H Gen(1λ).
2. The adversary is given k and outputs two values V and V ′.
3. The experiment outputs 1 iff V 6= V ′ and H(k, V ) = H(k, V ′). If the experiment outputs

1, A found a collision and succeeds.

Definition 21 (Collision-resistant, keyed, cryptographic hash function). Let Π denote a keyed,
cryptographic hash function consisting of the two algorithms as in Definition 19. Π is collision
resistant if for all PPT adversaries A there exists a negligible function negl such that

|Pr[ExpHash−collA,Π = 1]| ≤ negl(λ)

Definition 22 (Cryptographic hash function syntax). A cryptographic hash function is a
keyed, cryptographic hash function for which the key is fixed. It consists of one PPT algorithm
H such that:
h← H(V ): Take a value V ∈ {0, 1}∗ as input and output a fixed-size hash h.

The collision-finding experiment for cryptographic hash functions is a straightforward mod-
ification of the experiment for keyed, cryptographic hash functions. Equally, the definition
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for a collision-resistant, cryptographic hash function is a straightforward modification of the
definition for a collision-resistant, keyed, cryptographic hash function. Therefore, we do not
explicitly state the experiment and definition.

Many hash functions used in practice, e.g., MD5 [50], SHA-256 [51], and SHA-3 [52], have a
fixed key and can be considered as implementations of cryptographic hash functions. Throughout
this dissertation, we write hash functions but refer to cryptographic hash functions, and we
write that a value V is hashed meaning that the value is input to the cryptographic hash
function evaluation, i.e., h← H(V ).

2.2.7 Set Hash Function

Clarke et al. [53] propose multiset hash functions, a special kind of cryptographic hash functions.
The properties of a multiset hash functions are the following: a multiset, i.e., a finite unordered
group in which a value can occur more than once, is mapped to a fixed-size multiset hash1;
there exists an efficient equality check for two multiset hashes; a multiset hash calculated for
the multiset M ′ can be added efficiently to a multiset hash calculated for the set M and the
result is equal to a multiset hash calculated for M ∪M ′; and individual values can be added
to a multiset hash incrementally and efficiently.

In this dissertation, we introduce and use set hash functions. These hash functions are a
variant of multiset hash functions with the following three differences: (1) A set hash function
hashes a set to a fixed-size set hash2. (2) Two set hashes can only be added if all values in
the underlying sets are distinct. (3) A set hash calculated for the set M ′ can be subtracted
efficiently from a set hash calculated for the set M if M ′ is a subset of M . The result of the
subtraction is equal to a set hash calculated for M \M ′. More formally:

Definition 23 (Set hash function syntax). A set hash function is a tuple of four PPT algorithms(
SH,SH NI Add,SH SS Sub,SH Comp

)
such that:

h← SH(M): Take a set M as input, which contains values from a countable set B. Output a
set hash h, which is an element of a set with cardinality ≈ 2n for n ∈ N.

b← SH Comp(SH(M), SH(M ′)): Take two set hashes SH(M) and SH(M ′) as input. Output
b = 1 if M = M ′ and b = 0 otherwise. Note that a set does not define a value order;
thus, M and M ′ are equal if they contain the same values, independent of the order.

h← SH NI Add(SH(M),SH(M ′)): Take two set hashes SH(M) and SH(M ′) as input for which
M ∩M ′ = ∅, efficiently compute h = SH(M ∪M ′), and output h. Note that a set can
contain only single value {b} ∈ B; thus, SH NI Add can be used to add a single value to
an existing set hash.

h← SH SS Sub(SH(M), SH(M ′)): Take two set hashes SH(M) and SH(M ′) as input for
which M ′ ⊆M , efficiently compute h = SH(M \M ′), and output h. Note that a set can
contain only single value {b} ∈ B; thus, SH SS Sub can be used to subtract a single value
from an existing set hash.

Clarke et al. propose the security notions set-collision resistance and multiset-collision resistance
for multiset hash functions. We slightly modify the set-collision resistance to fit to our set hash
functions:

Definition 24 (Set-collision resistance). Let Π denote a set hash function consisting of the
four algorithms as in Definition 23 and B a countable set. A set hash function is set-collision

1 To clearly differentiate the output of a multiset hash function from a cryptographic hash function, we denote
it multiset hash.

2 See argument for multiset hash in Footnote 1.
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resistant if it is computationally infeasible to find a set M ⊆ B and a set M ′ ⊆ B such that
|M | and |M ′| are polynomial in m ∈ N, M 6= M ′ and SH Comp(SH(M), SH(M ′)) = 1.

The following set hash function construction, called Set-XOR-Hash, is a variant of MSet-XOR-
Hash from Clarke et al. [53]. The differences follow from the differences between multiset and
set hash functions described above. In the Set-XOR-Hash construction, H denotes a keyed,
cryptographic hash function.

Definition 25 (Set-XOR-Hash construction). Set-XOR-Hash is a set hash function construc-
tion with the following four PPT algorithms:
h← SHxor(M): Take a set M as input, which contains values from a countable set B = {0, 1}n

for n ∈ N. Calculate

h = (H(k, (0 || r))⊕
⊕
m∈M

H(k, (1 ||m)), |M | mod 2n, r)

where r is selected uniformly at random from B. Output h.
b← SH Compxor(SH(M),SH(M ′)): Take two set hashes SH(M) = (h, c, r) and SH(M ′) =

(h′, c′, r′) as input. Output b = 1 iff

h⊕ H(k, (0 || r)) = h′ ⊕ H(k, (0 || r′)) ∧ c ≡ c′ mod 2n.

Otherwise, output b = 0.
h′′ ← SH NI Addxor(SH(M),SH(M ′)): Take two set hashes SH(M) = (h, c, r) and SH(M ′) =

(h′, c′, r′) as input for which M ∩M ′ = ∅. Calculate

h′′ = (H(k, (0 || r′′))⊕ h⊕ H(k, (0 || r))⊕ h′ ⊕ H(k, (0 || r′)), c+ c′ mod 2n, r′′)

where r′′ is selected uniformly at random from B. Output h′′.
h′′ ← SH SS Subxor(SH(M),SH(M ′)): Take two set hashes SH(M) = (h, c, r) and SH(M ′) =

(h′, c′, r′) as input for which M ⊆M ′. Calculate

h′′ = (H(k, (0 || r′′))⊕ h⊕ H(k, (0 || r))⊕ h′ ⊕ H(k, (0 || r′)), c′ − c mod 2n, r′′)

where r′′ is selected uniformly at random from B. Output h′′.

Clarke et al. [53] prove that MSet-XOR-Hash is a set-collision resistant multiset hash function.
The security proof is a reduction to the hardness of breaking the underlying pseudorandom
function. The security of Set-XOR-Hash follows from this proof and we refer the interested
reader to the paper.

2.2.8 Merkle Tree
Merkle trees are mainly used for efficient and secure integrity checks for stored values. A Merkle
tree is a binary tree computed over n values V = (V0, . . . , Vn−1). W.l.o.g. we assume that n
is a power of 2 in the following description. Each leaf node Xi of the tree T stores one value
Vi. Each other node stores a hash of its two children, i.e., if a node Xi has the child nodes Xu

and Xw, which store U and W , then Xi stores the hash hi = H(U ||W ) with H being a hash
function and || a concatenation of values. The root node T .root of the tree stores the so-called
root hash. Figure 2.1 shows a Merkle tree example.

A typical use case for Merkle trees is that a trusted party (e.g., a client or enclave) wants
to store values at an untrusted party (e.g., a cloud server). To protect the integrity of the
outsourced data, the trusted party calculates a Merkle tree over the stored values; outsources
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h0...7 = H(h0...3 || h4...7)

h0...1 = H(V0 || V1) h2...3 = H(V2 || V3)

V0 V1 V2 V3 V4 V5 V6 V7

h4...5 = H(V4 || V5) h6...7 = H(V6 || V7)

h0...3 = H(h0...1 || h2...3) h4...7 = H(h4...5 || h6...7)

Figure 2.1: Merkle tree example. H is a hash function and || a concatenation of values. The
integrity verification of the value marked with a gray dot requires the content of
the nodes marked with a blue dot.

the data and the Merkle tree; and only retains the root hash. If the trusted party requests
a value Vi and wants to check the integrity of the returned value, it additionally needs the
content of the Merkle tree nodes adjacent to the path from Xi to T .root. With this content,
the trusted party can recalculate all hashes up to the root hash. The integrity of Vi is proven if
the calculated root hash is equal to the stored root hash. As the path from Xi to T .root is
logarithmic in the number of stored values, the trusted party needs content from a logarithmic
number of tree nodes.

For instance, assuming that the trusted party wants to perform an integrity check for the
value V5 in our example presented in Figure 2.1 (marked with a gray dot). Then, the trusted
party only needs V4, h6...7, and h0...3 (marked with a blue dot) to recalculate the root hash.

The security of a Merkle tree is defined using its collision resistance, which follows from the
collision resistance of the used hash function. More formally, let MT be the function that takes
n input values V = (V0, . . . , Vn−1), computes a Merkle tree using a collision resistant hash
function H, and outputs the root hash. Then, MT is collision resistant for any fixed n.
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3
Trusted Execution Environments (TEEs)

Traditional isolation mechanisms protect user applications from each other using memory
control, protect privileged code from user applications using multiple privilege levels, and
protect operation systems from each other using virtualization. However, they do not protect
user applications and the data processed by these applications from privileged code, e.g., the
OS, hypervisor, or firmware. Additionally, they do not protect against physical attacks, e.g.,
bus tapping or cold boot attacks [54]. TEEs can protect (parts of) user applications against
privileged code and physical attacks. This protection guarantees make TEEs especially valuable
in a cloud computing scenario as TEEs allow data owners to securely execute applications at
an untrusted cloud provider.

The term “trusted execution environment” was coined by OMTP Limited [55] in 2009. TEE
architecture specifications [56], [57] and papers defining TEEs [58], [59] followed, but the
community has not yet converged on a commonly accepted definition. A generic definition is
particularly hard to achieve, because the features of approaches calling themselves TEEs differ
in many regards [23], [60]–[64]. In this dissertation, we define a TEE as follows:

Definition 26 (Trusted execution environment (TEE)). A trusted execution environment pro-
vides an isolated processing environment for user-defined code and data, i.e., the confidentiality
and integrity of code and data processed in this environment are protected against other software
and physical accesses.

In addition, we define the terms enclave and enclave memory as follows:

Definition 27 (Enclave). An enclave is a monolithic software entity consisting of user-defined
code that processes data in an isolated processing environment provided by a TEE.

Definition 28 (Enclave memory). The enclave memory encompasses all memory regions that
are exclusively accessible by a corresponding enclave due to the protection provided by a TEE.

Furthermore, we require that a TEE supports the capabilities listed in Table 3.1.
An enclave is shipped as a binary to the cloud provider, and we could define the binary’s

size in bytes as the enclave size. However, the developer, who develops the enclave, and the
data owner, who might want to inspect the enclave’s source code, do not use the binary file for
these tasks. Instead, they work with the enclave code in a programming language, which is
often determined by a software development kit (SDK) accompanying the TEE. Additionally, a
legacy application, for which parts should be protected by an enclave, might determine the
programming language. Thus, we define the enclave size as follows:

Definition 29 (Enclave size). The enclave size is the size of an enclave’s source code in LOC.

In Section 3.1, we present details of the only commercially available TEE achieving the
capabilities listed in Table 3.11—Intel SGX. Throughout this dissertation, we assume that Intel
SGX is used as a TEE. However, Intel SGX can be replaced by any other TEE that provides

1 During the timeframe in which the research for this dissertation was performed.
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Cap. Description
C1 Execution of user-defined enclaves.
C2 Confidentiality protection for data, i.e., an attackera cannot observe any information about

the processed data.
C3 Integrity protection for code and data, i.e., an attackerb cannot affect the executed code and

the integrity and freshnessc of the processed data. The attacker might deny execution, but if
the program executes, it returns the correct output.

C4 Remote attestation mechanism, which enables the data owner to cryptographically verify that
a specific enclave has been loaded into an isolated processing environment of a specific TEE.

C5 Remote provisioning mechanism, which enables the data owner to provide sensitive data to
the enclave without leaking the data to the untrusted cloud provider or other parties.

C6 Sealing mechanism, which stores data in untrusted storage while protecting the
confidentiality, integrity, and freshness of the data.

C7 Source of randomness, which is trusted and accessible by the enclave.
a The attacker might be other software, e.g., user applications, enclaves, the OS, or device firmware;

or entities, e.g., the cloud provider, hackers, or governments.
b See Footnote a.
c Freshness guarantees that data is returned in the latest version. In other words, a freshness guarantee

protects against replay attacks.

Table 3.1: TEE capabilities required by this dissertation.

the required capabilities. In Section 3.2, we describe known attacks on Intel SGX, which
threaten the fulfillment of the listed capabilities. For all attacks, we also depict mitigations.
In Section 3.3, we differentiate related technologies, which we do not consider a TEE, and
we present to which extent other commercially available TEEs fulfill the capabilities listed in
Table 3.1.

3.1 Intel Software Guard Extensions (Intel SGX)

Intel SGX is an instruction set extension that is available in Intel Core processors since the
Skylake generation and in Intel Xeon processors since the Kaby Lake generation, making Intel
SGX a widely available TEE. Its main goal is to provide isolated processing for enclaves. In
other words, Intel SGX guarantees the integrity of enclave code, and it guarantees confidentiality
and integrity for data processed by the enclave, even in an untrusted environment.

In the following subsections, we introduce details of Intel SGX2 as far as necessary to
understand this dissertation. In sections 3.1.1, 3.1.2, 3.1.3, and 3.1.4, we explain how Intel SGX
achieves the capabilities listed in Table 3.1 using memory isolation, application separation,
attestation, and data sealing, respectively. Then, we describe the trusted computing base (TCB)
of Intel SGX–enabled applications in Section 3.1.5. In Section 3.1.6, and 3.1.7, we introduce
auxiliary capabilities of Intel SGX, which we use in this dissertation. More details about Intel
SGX can be found in the literature [20]–[28].

3.1.1 Memory Isolation

On system startup, Intel SGX hardware reserves a dedicated portion of the system’s RAM. This
portion is called processor reserved memory (PRM) and can be configured up to a maximum of
128 MB. While PRM data is cache resident, the CPU performs access control checks denying all
non-enclave access, including access by privileged software. Before moving cached PRM data

2 Precisely, we describe Intel SGXv2, the most current version at the time of writing.
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to the RAM, an on-chip memory encryption engine performs encryption at the granularity of
cache lines. Before PRM data is loaded from the RAM into CPU caches, this engine decrypts
the data, checks the data’s integrity, and verifies the data’s freshness. Consequently, not even
an attacker with physical access to the RAM can retrieve plaintext data, modify data, or
rollback data in the PRM (without being detected).

The PRM contains a region called the enclave page cache (EPC) comprising memory pages
of 4 kB each for enclave code and data. For a PRM with 128 MB, the EPC has about 96 MB
available for enclaves and the EPC is shared between all enclaves running on the system. The
remaining space of the PRM is used for management capabilities. For instance, a so-called
enclave page cache map (EPCM) stores one entry for each memory page in the EPC. Each
EPCM entry stores a validity bit, the page type, the corresponding enclave, the virtual address,
and permission bits. On each enclave page access, Intel SGX uses the EPCM for a trusted access
control check. In particular, enclaves are prevented from accessing pages of other enclaves.

The combination of access control checks for cache-resident data, memory encryption with
its integrity and freshness checks, and in-enclave page access checks achieve capabilities C2 and
C3 (from Table 3.1).

To mitigate the restriction of 96 MB EPC memory, the OS can swap out EPC pages to the
remainder of the system’s RAM or to disk. This process is similar to paging used in most
OSes [65]. The difference is that Intel SGX ensures integrity, confidentiality, and freshness
when pages are swapped in and out. Intel SGX’s EPC paging mechanism increases the usable
enclave memory, but introduces a severe performance overhead [66], [67].

Consequently, in the case of Intel SGX, the enclave memory (see Definition 28) can encompass
parts of the EPC, the entire EPC, and/or swapped out EPC pages.

3.1.2 Application Separation

To execute user-defined applications using Intel SGX, the developer has to divide the code
into two parts: an untrusted part and an isolated, trusted part—the enclave (cf. C1). All
communications between the two parts use an interface specified during design time. The
interface can offer enclave calls (ECalls) invocable by the untrusted part and outside calls
(OCalls) invocable by the enclave. Figure 3.1 illustrates the application separation and the
calls between the two parts.

Enclave
(Trusted Part)Untrusted Part

ECall

OCall

Figure 3.1: Application separation.

Whenever the untrusted part invokes an ECall, the CPU switches to a special enclave mode
(similar to a switch from user mode to kernel mode in most OSes), suspends debugging features,
backs up the current processor state, potentially copies parameters to the enclave memory, and
transfers control to a defined entry point in the enclave. The enclave code is executed until
it ends explicitly by a return or implicitly by an interrupt or an exception. On explicit exits,
the CPU might copy data out of the enclave memory to the unprotected memory, scrubs the
processor state, restores the old processor state, and exits the enclave mode. On implicit exits,
the CPU stores the current processor state to an EPC page before scrubbing the state. If the
enclave is resumed, the CPU loads the stored state. The switches into and out of the enclave
are called context switches, and they introduce a non-negligible overhead (> 8000 cycles [68])
due to the described operations.
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The enclave can invoke OCalls to perform operations it cannot do on its own, e.g., system
calls, I/O operations, and other OS operations. These operations are untrusted, because the
OS is untrusted, and the enclave has to take care of data protection. The context switch and
the induced overhead are similar to the invocation of ECalls.

The untrusted part is executed as an ordinary process within the virtual memory address
space, and it is responsible for setting up the enclave. The enclave memory is mapped into
the virtual memory of the untrusted part’s process. This mapping can be used as a further
mitigation for the restricted 96 MB EPC memory, because the enclave is allowed to access the
entire virtual memory of its host process, which can contain the whole system’s RAM and disk
space. Inherently, Intel SGX does not guarantee integrity or confidentiality for data outside the
PRM, but carefully written enclaves can provide this guarantee. Intel SGX denies all accesses
from the untrusted part to the enclave memory.

Furthermore, the enclave has access to the RDRAND instruction, which generates true random
numbers from hardware (cf. C7).

3.1.3 Attestation
Intel SGX supports two types of attestation: local and remote attestation (cf. C4). Both are
based on the enclave’s identity, defined as its measurement, which is calculated as follows: While
the CPU loads the initial code and data of an enclave into the enclave memory, it computes the
hash of all pages (called measuring in Intel SGX terminology). Once the enclave is initialized,
the hash is finalized, becomes the enclave’s measurement, and cannot be changed anymore.

Local attestation is used by an attested enclave to prove to a target enclave that it has a
specific measurement and that they are hosted by the same Intel SGX–enabled CPU. On a
high level, the local attestation is performed as following:

1. The target enclave sends its measurement to the attested enclave.
2. The attested enclave passes the target enclave’s measurement to Intel SGX’s EREPORT

instruction. First, EREPORT fills a so-called report with the attested enclave’s measure-
ment, further attributes of the attested enclave, and optionally with report data. Then,
EREPORT uses the target enclave’s measurement and a secret embedded in the processor
to derive a symmetric report key. With this key, EREPORT calculates a MAC tag over
the report. Finally, EREPORT returns the report and MAC tag to the attested enclave,
which forwards both to the target enclave.

3. The target enclave calls another Intel SGX instruction, which derives the report key using
the target enclave’s measurement and a secret embedded in the processor. Using this key
and the received MAC tag, the target enclave can verify the received report.

Remote attestation is used by an attested enclave to prove to a remote party that it has a
specific measurement and that it is hosted on an Intel SGX–enabled CPU. On a high level, the
remote attestation is done as following:

1. The remote party issues a challenge, e.g., a nonce, to the attested enclave.
2. The attested enclave performs local attestation with the quoting enclave (QE), which is

an architectural enclave provided by Intel3. During this local attestation, the challenge is
used as report data.

3 Some Intel SGX functionality is implemented as an enclave, because it is too complex for a hardware realization.
These enclaves are called architectural enclaves and besides the quoting enclave (QE), there are two other
architectural enclaves: First, the launch enclave (LE) deciding which other enclaves can be started. Second,
the provisioning enclave (PE), which uses a key fused into the CPU to proof the CPU’s authenticity to an
Intel service. After successful verification, the Intel service sends an attestation key to the PE. The PE
encrypts this key and stores it in the untrusted environment. Besides the PE, only the QE can access the
attestation key.
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3. After validating the report, the QE replaces the MAC with a signature using an attestation
key4. The resulting signed report is called quote and it is sent to the remote party.

4. The remote party uses Intel’s attestation service to verify the quote’s signature and
compares the challenge contained in the quote to the challenge send in the first step. If
both checks are successful, the remote party can compare the measurement contained in
the quote to an expected value.

The remote attestation feature also allows to establish a secure channel between an external
party and an enclave, e.g., using a Diffie-Hellman key exchange. This secure channel can be
used to deploy sensitive data, e.g., credentials, cryptographic keys, or access permissions, into
the enclave (cf. C5).

3.1.4 Data Sealing

Inherently, Intel SGX enclaves are stateless, i.e., all state information is lost when the enclave
is terminated, unless the state is explicitly persisted. To preserve data across multiple enclave
runs, Intel SGX offers data sealing (cf. C6). This process uses a sealing key to encrypt and
integrity-protect data. Afterwards, the data can be stored outside of the enclave in untrusted
memory, and only an enclave with the same sealing key can unseal the data.

Intel SGX offers two policies for data sealing:

• The sealing key can be derived from the enclave measurement, which yields a different
key for any change impacting the measurement.

• The sealing key can be derived from the enclave developer’s public key. This allows an
enclave developer to migrate sealed data to an updated enclave5 or to share sealed data
between multiple enclaves6.

To provide a concise description, we assume that the sealing key is derived from the enclave
measurement throughout this dissertation.

3.1.5 Trusted Computing Base (TCB)

According to Lampson et al. [69], the trusted computing base (TCB) can be defined as “a small
amount of software and hardware that security depends on and that we distinguish from a
much larger amount that can misbehave without affecting security.” In a secure, outsourced
data processing environment, this translates to all software and hardware having access to
plaintext data. As bugs or vulnerabilities in the TCB can compromise the security of the whole
system, the TCB should be small.

The TCB of an application executed with Intel SGX encompasses the user-defined enclave,
architectural enclaves provided by Intel (i.e., the quoting enclave, launch enclave, and provi-
sioning enclave), and Intel SGX related parts of the CPU7. The developer can only influence
the TCB by keeping the enclave size small.

4 See Footnote 3.
5 Each enclave has a security version number (SVN), which should be incremented on security relevant enclave

changes. Additionally, each CPU has an SVN, which is incremented by Intel on security relevant changes to
the CPU. A migration of sealed data is only possible from enclaves with lower SVNs to enclaves with higher
SVNs or from CPUs with lower SVNs to CPUs with higher SVNs.

6 Sharing sealed data between enclaves is only possible if both enclaves have the same product ID.
7 We consider the CPU’s microcode a part of the CPU.
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3.1.6 Protected File System Library

The protected file system library is shipped with Intel SGX’s SDK and provides a subset of
the regular C file API, e.g., file creation, file writing, and file reading. On write operations,
the library separates data into 4 kB chunks, ensures the data’s integrity with a Merkle hash
tree (see Section 2.2.8) variant, and encrypts each chunk with AES-GCM before storing the
chunk in untrusted memory. When file chunks are loaded back into the enclave, the library
verifies confidentiality and integrity. A developer can provide the encryption key manually, or
the library can derive the key automatically from the sealing key. At any point, only one file
handle can be open for writing, but many handles for reading.

3.1.7 Switchless Calls

A primary performance overhead of applications using Intel SGX are switches into and out of
an enclave. Intel SGX’s SDK supports switchless calls, a technique to reduce this overhead.
Calls into the enclave are replaced by writing tasks into an untrusted buffer and enclave worker
threads asynchronously perform the tasks. Calls out of the enclave are written into a separate
untrusted buffer and untrusted threads perform the tasks. As a result, costly context switches
are reduced, which severely decreases the performance overhead.

3.2 Attacks on Intel SGX and Mitigations

In this section, we discuss attacks on Intel SGX differentiated into four categories: inherent
side-channel attacks, i.e., attacks that result from deliberate design decisions; enclave code
exploits, i.e., attacks that result from exploitable enclave code; enclave-based malware, i.e.,
attacks that result from the fact that Intel SGX protects executed (malware) code; and processor
bugs i.e., attacks that result from bugs in Intel processors enabling the circumvention of Intel
SGX’s protection guarantees. For all categories, we also discuss mitigation strategies.

3.2.1 Inherent Side-Channel Attacks

A side channel is any resource that is influenced by the execution of an application and can be
observed by an attacker. If an attacker uses a side channel to gain sensitive information, we call
it a side-channel attack. Such attacks have been known long before Intel SGX was presented [70]
and a number of variants have been studied, e.g., software-timing [71], cache-timing [72]–[74],
and power consumption [75] side-channel attacks. From the start, Intel communicated that Intel
SGX is not designed to handle side-channel attacks and that it is the developer’s responsibility
to address these attacks [24], [25]. Thus, not surprisingly, many papers show that Intel SGX is
susceptible to side-channel attacks.

All attacks described in the following assume that the attacker knows the source code of the
enclave. This is a valid assumption as Intel SGX inherently does not protect the confidentiality
of the code8. The attacks, however, are only feasible if the enclave has secret-dependent memory
access patterns. Table 3.2 provides a brief overview about known side channels of Intel SGX.
Note that we do not consider hardware-based side-channel attacks.

The page-fault side channel is inherent to Intel SGX for the following reason: The OS is
untrusted, yet manages the enclave’s pages. Thus, the OS can induce page faults by restricting
page access and the page faults can be used to generate a precise trace of the enclave’s

8 An Intel SGX extension denoted Intel SGX Protected Code Loader can be used to protect the confidentiality
of an enclave. At build time, the extension encrypts the enclave’s binary and at enclave load time, the
extension decrypts the binary. See Intel SGX’s developer reference for more information [24].
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Side channel Weakness Exploitation method Goal
Page-fault OS is responsible for enclave’s

page management
Inject page faults Page access trace

Cache-timing Enclaves use same L1 & L2
cache as other applications on
the same core

Overwrite cache lines
+ time measurement

Cache access trace

Branch-prediction Enclaves use same branch
history as other applications on
the same core

Branch shadowing
+ last branch record
read

Control flow

Table 3.2: Overview of Intel SGX’s side channels.

page accesses. Research papers show how to combine this attack with code knowledge to
extract sensitive information from cryptographic functions [76] and enclaves processing end-user
functions, e.g., font rendering, spell-checking, and image processing [32].

Furthermore, enclaves use the same L1 & L2 cache as other applications on the same core.
This fact can be used for a cache-timing side-channel attack: A malicious application running
on the same CPU core as a victim enclave can first evict (all) cache entries. After cache
accesses by the enclave, the malicious application can observe which cache lines are evicted
by measuring access times to all cache lines. Combined with code knowledge, papers use this
side channel to extract cryptographic keys from an enclave [33], [77], [78] and to identify DNA
sequences processed by a genome indexing algorithm in an enclave [77].

Even Intel’s implementation for remote attestation, which applies several programming
techniques to protect against side-channel attacks, was vulnerable to cache-timing [79]. The
private remote attestation key (of a quoting enclave in debug mode) could be extracted only
because the implementation leaks the number of loop iterations during signature creation.

For performance reasons, modern CPUs avoid pipeline stalls by predicting the outcome
and target of branches. To improve predictions, the CPUs store a branch history. Intel SGX
does not clear the branch history when leaving the enclave mode, which can be used for a
branch-prediction side-channel attack: The attacker writes a “shadow code”, which has the
same branch instructions as the victim enclave and a collision on specific branch target address
parts. Throughout the enclave processing, the attacker interrupts the enclave with a high
frequency, runs the shadow code on the same core as the enclave, and reads the last branch
record, which logs if a branch prediction was correct. With this information, the attacker can
infer the control flow of the enclave. Lee et al. [34] use this side channel to extract cryptographic
keys.

Mitigations. Different mitigations are possible against the page-fault side channel, e.g.,
(automatic) enclave code transformation making page accesses independent of enclave secrets [76],
[80], in-enclave page management preventing page trace leakage to the OS [76], or code
randomization for enclaves [81]. Other papers propose detection of page-fault attacks from
within the enclave by measuring frequent interruptions of the enclave execution [82], [83].
Possible mitigations against the cache-timing side channel are the following: cache partitioning
between trusted and untrusted processes [77], hardware transactional memory preventing
the observation of cache misses on sensitive code [84], and compiler-based data location
randomization [85]. To mitigate the branch-timing side channel, Intel SGX could flush the
branch history when leaving enclave mode [34], the CPU could use a separate branch history
for each enclave, or the developer could use an obfuscation compiler and a runtime randomizer
for control flow randomization [86].
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Potentially, Intel could implement improvements to protect against some side-channel attacks
in future versions of Intel SGX. For instance, handling the page table inside the enclave could
protect against the page-fault side channel; having a strict cache separation between enclave
and non-enclave data could protect against the cache-timing side channel; and clearing the
branch history on leaving the enclave mode could protect against the branch-prediction side
channel. Still, it is mainly the enclave developer’s task to protect against side-channel leakage,
e.g., by using the presented mitigations. Preventing all side channels is hard if the enclave size
is large or if the enclave contains (legacy) code that was not designed for an enclave. Therefore,
the enclave size should be kept small and an enclave should be designed specifically for a given
problem.

3.2.2 Enclave Code Exploits

Besides side-channel attacks, enclaves can have vulnerabilities in their code, which are directly
exploitable by an attacker.

Lee et al. [35] present Dark-ROP, an exploitation technique that uses memory-corruption
vulnerabilities in an enclave for return-oriented programming (ROP) [87]. Dark-ROP uses
fuzzing on the enclave’s ECalls and Intel SGX’s exception handling to detect buffer overflow
vulnerabilities. Then, Dark-ROP searches ROP gadgets9 in the enclave without requiring access
to the plaintext source code. If it finds the necessary gadgets, Dark-ROP can read/inject data
from/into the enclave memory and force the enclave to perform protected functionality. For
instance, an attacker can use Dark-ROP to extract arbitrary enclave data and to break the
secure communication channel between remote party and enclave.

Weichbrodt et al. [36] present AsyncShock, a tool to exploit synchronization bugs in multi-
threaded enclaves. The attacker first searches for synchronization bugs in the enclave’s source
code and then defines a “playbook” to exploit the bug. The playbook is a list of events, e.g.,
thread creation, segmentation fault, and timer expiration, and corresponding actions, e.g.,
pausing a thread, starting a timer, or changing page permissions. As the untrusted OS controls
the page table, the attack becomes more reliable than on non-enclaved applications. The
authors use AsyncShock to bypass access control checks inside an enclave and to modify an
enclave’s control flow.

Mitigations. To mitigate Dark-ROP, the developer can, e.g., (automatically) eliminate the
necessary gadgets, integrate control flow integrity, and use address space randomization [35].
Possible mitigations against AsyncShock are sanitization of user input and prohibition of
threading [36]. Besides these mitigation strategies, the developer is responsible for writing
secure enclave code, a task which is facilitated by a small enclave size. Additionally, formal
software verification [88] can be used if the enclave size is small.

3.2.3 Enclave-based Malware

Intel SGX protects enclaves from other applications, including malware, but it does not protect
non-enclave software from malware inside an enclave. Before Intel SGX was available on the
market, Rutkowska [89] outlined that an enclave host cannot know what the enclave does.
The enclave might be a generic code loader that fetches encrypted malware from an external
source, decrypts the malware, and executes it. Intel SGX’s strong confidentiality and integrity
guarantees hide the executed malware from anti-virus software in ring 3 and even monitoring
software running in ring 0. Davenport [90] describes an enclave which is part of a botnet. The

9 ROP gadgets are (short) instruction sequences present in existing code and ending with a return instruction.
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command and control server performs remote attestation with the enclave and then uses the
enclave to execute arbitrary payload.

Schwarz et al. [37] present the first implementation of an attack using the remote loading of
malware. They use this technique to conceal a cache side-channel attack on co-located enclaves.
With this hidden cache side-channel attack, they can reconstruct the private key used in a
co-located RSA calculation.

In another paper, Schwarz et al. [38] describe how malware in an enclave can overcome the
limitation that it cannot issue system calls. They explain how a malicious enclave can find read
and write gadgets in its corresponding untrusted part. This gadget search is possible without
cooperation of the untrusted part, without the necessity of bugs in the untrusted part, and
without being detectable by the OS. The enclave uses the gadgets for ROP on its untrusted
part allowing the enclave to invoke arbitrary system calls.

Mitigations. Intel uses the following strategy to protect against enclave-based malware: Only
enclaves in release mode10 provide the guarantees described in Section 3.1. An architectural
enclave provided by Intel, the launch enclave, prevents release mode enclaves from starting if the
used public key is not on a whitelist managed by Intel. To get a public key whitelisted, enclave
developers have to meet defined development and security standards and enter a commercial
use license with Intel [91]. On the one hand, the fear of losing the possibility to create release
mode enclaves might prevent an enclave developer from incorporating malware into an enclave.
On the other hand, the enclave developer is the only party to gain from enclave-based malware
and the presented strategy does not enforce malware protection. Mainly, it is in the enclave
host’s interest to prevent enclave-based malware. A reasonable mitigation strategy to uncover
malware in an enclave is a manual inspection of the enclave code. The enclave size should be
small to facilitate this inspection.

3.2.4 Processor Bugs

The attacks on Intel SGX presented so far are out-of-scope of Intel SGX’s threat model, i.e.,
Intel does not guarantee protection against these attacks. It is the developer’s responsibility to
carefully write enclaves that are resistant to side-channel attacks and enclave code exploits.
Furthermore, it is the enclave host’s responsibility to prevent enclave-based malware. In this
section, we describe attacks that should not be possible under Intel SGX’s threat model, but
exploitable bugs in Intel processors circumvent the protection guarantees. The attacks do not
require enclaves with secret-dependent memory access patterns to be successful. We provide
the name of the attacks and briefly describe them, because they were part of many Intel SGX
related technology news over the last years [92]–[95].

Spectre- and Meltdown-type attacks. Modern CPUs massively parallel-process instructions
with multiple execution units. To keep the pipeline full at all times, the CPUs use speculative
execution, i.e., they predict the outcome of (conditional) branches and data dependencies
to process instructions before the decision is evaluated. Furthermore, they use out-of-order
execution: Instructions are processed as soon as the required execution unit and source operands
become available, even if the incoming order is different. Intermediate results are buffered in
the microarchitectural state (e.g., CPU caches and the line file buffer) and committed to the
architectural state (e.g., registers and main memory) according to the incoming order.

However, after instructions are processed speculatively, the predictions might turn out wrong,
and after instructions are processed out-of-order, an exception might occur. In both cases, the
intermediate results are discarded and do not reach the architectural state. The instructions
10 Besides release mode, Intel SGX offers a simulation, a debug, and a pre-release mode for various stages of

enclave development. These modes do not protect the enclave code and the processed data.
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that are first executed speculatively or out-of-order and then discarded, are called transient
instructions. The CPU discards transient instructions, but they may still leave traces in the
microarchitectural state. The renowned Spectre [96] and Meltdown [97] attacks on Intel CPUs
use these effects as follows: they prepare the microarchitectural state; send a trigger instruction,
which eventually will be recognized as a misprediction/exception; abuse a sequence of transient
instructions as the sending end of a covert channel; and recover the information from the
covert channel after a misprediction/exception is recognized by the CPU. Spectre-type attacks
exploit transient instructions due to mispredictions, and Meltdown-type attacks exploit transient
instructions due to exceptions. Both attack types subvert software- and hardware-based memory
isolation boundaries between, e.g., different user spaces, user and kernel space, and different
virtual machines (VMs). In the following, we only describe attacks that are (also) applicable to
Intel SGX.

SGXPectre [39] is a Spectre-type attack. It prepares an array in untrusted memory, analyzes
the victim enclave’s code, and uses non-enclave code for a targeted modification of the CPU’s
branch prediction. As a result, the processed enclave accesses the prepared array. The accessed
array index corresponds to a value stored at an attacker-defined enclave memory address.
Finally, SGXPectre loads each array entry and determines the secret by comparing the loading
times. This works, as only one array entry is cached if cache noise can be suppressed. The
authors demonstrate how SGXPectre can be used to extract register values of enclaves and
to extract cryptographic keys from Intel SGX’s architectural enclaves. With these keys, an
attacker can launch arbitrary enclaves in production mode, forge local and remote attestation
responses, and decrypt sealed data. To be successful, SGXPectre requires knowledge of the
victim enclave’s source code and vulnerabilities within the enclave.

Foreshadow [40] is a Meltdown-type attack. It first allocates a buffer in untrusted memory
with 256 slots and provokes the enclave to load a secret into the CPU’s L1 cache. Then, it
dereferences the enclave secret, which will eventually lead to a page fault. However, in the
meantime, transient instructions load one of the 256 slots corresponding to the secret. After the
page fault is retired, the attack uses cache timing to determine the accessed slot. Byte by byte,
the attacker can leak arbitrary data from the enclave. The authors demonstrate that Foreshadow
can extract cryptographic keys from Intel SGX’s architectural enclaves. Foreshadow relies solely
on the elementary behavior of Intel CPUs and does not require side-channel vulnerabilities,
vulnerable code within the enclave, or the victim enclave’s code.

ZombieLoad [41] is a Meltdown-type attack. It uses the fact that faulting load instructions
on an internal CPU buffer may transiently read stale values belonging to previous memory
operations, before being reissued. The attack can recover these stale values using known
covert channels, but the attacker cannot define the leaked enclave memory address. Instead,
ZombieLoad leaks values currently loaded or stored by the CPU core. The authors show that
ZombieLoad can be used to leak an enclave’s sealing key.

CacheOut [98] is a Meltdown-type attack similar to ZombieLoad. However, it can bypass
Intel’s countermeasures against ZombieLoad, the attacker can select the enclave memory that
should be leaked, and it is effective even without hyperthreading. CacheOut uses the observation
that data evicted from the L1 cache occasionally ends up in a CPU internal buffer, from where
the data can be leaked with techniques comparable to ZombieLoad. The authors use CacheOut
to dump enclave memory, even if the enclave is idle. In a subsequent work, called SGAxe [99],
the authors describe more details on CacheOut attacks on Intel SGX and use these attacks to
extract an enclave’s sealing key and the CPU’s attestation key.

Voltage attack. The Pludervolt [100] attack uses a privileged software interface to regulate
the processor’s voltage. By undervolting the CPU, Plundervolt injects faults in the enclave
computation, which corrupts the integrity guarantees for functionally correct Intel SGX enclaves.
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The authors demonstrate that these faults can break, e.g., the integrity of Intel SGX’s key
derivation, local attestation report MAC tags, and AES-NI calculations. The authors only
state that such attacks could break Intel SGX’s security, but leave the exploitation to future
work. Additionally, the authors show that Pludervolt can cause memory safety problems as
incorrect index calculations can result in out-of-bounds array accesses and wrong allocation
size computations to subsequent heap corruption or disclosure. The authors demonstrate that
these memory safety problems might write enclave secrets to untrusted memory.

Mitigations. For all processor bugs presented in this section, Intel provided a microcode
update to resolve11 the problem—before or shortly after the problem was made public. With
each security relevant microcode update Intel increases the CPUs’ SVN, which Intel SGX uses
in all key derivation requests and measurement calculations. The CPU’s SVNs is also embedded
in each local attestation report and thus part of each quote used for remote attestation.
Consequently, data encrypted by enclaves running with a new microcode is protected from
enclaves with an older microcode, and a remote party can verify the used microcode. In new
CPU generation, some problems are also solved via architectural changes.

3.3 Other TEEs and Related Technologies

In this chapter, we first differentiate related technologies that we do not consider a TEE.
Afterwards, we describe commercially available TEEs and present to which extent they achieve
the capabilities listed in Table 3.1. We do not consider TEEs limited to academic research, e.g.,
Sanctum [62], Bastion [63], and AEGIS [64], because they only propose processor architectures.
It would require processor manufacturing capabilities to use these TEEs.

3.3.1 Related Technologies

HSM. Hardware security modules (HSMs) [101]–[103] are dedicated, tamper-resistant exten-
sion hardware. They are mainly used to protect sensitive secrets, e.g., passwords, hashes, and
private keys; and to execute cryptographic functions, e.g., encryption, decryption, and signing.
In theory, they can host arbitrary functionality, but they are costly and have limited processing
power. As this is unsuitable for complex user-defined code, we do not consider them as TEEs.

TPM. Trusted platform modules (TPMs) [104] are dedicated, tamper-resistant coprocessors,
which are typically located on the motherboard. They can be used for remote attestation, data
sealing, and cryptographic operations, e.g., random number generation, hash functions, and
encryptions. For these operations, TPMs contain a small, dedicated memory, which protects
the confidentiality and integrity of the processed data against software and physical attacks.
However, TPMs do not support user-defined code; thus, we do not consider them as TEEs.

FPGA. Field programmable gate arrays (FPGAs) [105] are hardware devices containing blocks
of logic and interconnects between these blocks, which are configurable after manufacturing.
To protect the integrity of sensitive code, a developer can write a key into a write-only memory
of the FPGA. Afterwards, the developer can sign and encrypt a binary, which the FPGA can
decrypt and authenticate during boot. This process, however, does not scale as the developer
has to manage FPGAs, i.e., the developer has to order FPGAs, write keys into each FPGA,
and ship the FPGAs to cloud providers. Therefore, we do not consider FPGAs as TEEs.

11 Intel’s microcode update against Foreshadow can only prevent the attack if hyperthreading is disabled.
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3.3.2 Commercially Available TEEs

Now, we describe three commercially available TEEs: ARM TrustZone, AMD SEV-Secure
Nested Paging (AMD SEV-SNP), and IBM Secure Execution (IBM SE). Table 3.3 shows a
comparison between Intel SGX and these TEEs based on the capabilities listed in Table 3.1.

Intel SGX ARM
TrustZone

AMD
SEV-SNP

IBM SE

C1 (user-defined enclaves)
C2 (confidentiality protection)
C3 (integrity protection)
C4 (remote attestation) –
C5 (remote provisioning) –
C6 (sealing)
C7 (source of randomness) –
Hardware TCB CPU chip

package
CPU chip
package

CPU chip
package

CPU chip
package

Software TCB User enclave,
architectural

enclaves

Secure world
(firmware, OS,

application)

Entire VM Entire VM

Table 3.3: Comparison of TEEs. See Table 3.1 for more detailed description of capabilities C1–
C7. The symbols represent that a capability is supported ( ), partially supported
( ), not supported ( ), or that the support is unknown (–).

ARM TrustZone. ARM TrustZone [61], [106] is a set of security extensions for processors
and microcontrollers based on the ARM architecture. In the following, we present TrustZone’s
capabilities as described by ARM. However, as ARM is an intellectual property provider and
not a chip manufacturer, the manufacturer is free to add or remove capabilities.

TrustZone partitions the system’s resources between a “normal world” and “secure world”.
Software in the secure world can compromise any level in the normal world’s software stack,
but software in the normal world can only access the secure world at well-defined locations.
A special bit in memory addresses signals whether a memory access belongs to the normal
or the secure world, and the CPU sets the bit to zero for normal world address translations.
CPU caches use this bit in all addresses, effectively separating the cache entries for the two
worlds. Other hardware modules, e.g., RAM and DMA controllers, are expected to enforce the
separation of the worlds. However, the secure world’s RAM partition is not encrypted, leaving
it vulnerable to physical attacks.

In contract to Intel SGX, TrustZone does not offer an isolated environment for each individual
enclave. Instead, the secure world is shared by all enclaves. The secure world also contains a
dedicated OS, which further increases the TCB size. Out of the box, TrustZone does not offer
remote attestation, remote provisioning, or sealing.

AMD SEV-SNP. AMD Secure Encrypted Virtualization (AMD SEV) [60] enables the isolated
execution of VMs under the assumption of a “benign but vulnerable” hypervisor12. AMD SEV
tags all cache-resident code and data of a protected VM and restricts access to only the VM
corresponding to the tag. It further uses a dedicated on-chip security subsystem called AMD
secure processor (AMD-SP) for key management. Before an isolated VM starts, the AMD-SP
randomly generates a memory encryption key for the VM, shares the key with an on-chip

12 For AMD, this means that the hypervisor could have exploitable vulnerabilities, but does not actively try to
compromise the protected VMs [107].
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memory controller, and isolates the key from all software processed by the CPU. Whenever
data leaves or enters the CPU’s caches, the memory controller uses the tag to identify the
corresponding memory encryption key and transparently encrypts and decrypts the data. The
tag-based access control and memory encryption with individual keys enforce isolation between
the protected VMs.

Applications executed inside a protected VM do not require any modification, and the AMD-
SP provides an API for remote attestation and remote provisioning. However, an application’s
code and data are not protected against other software running inside the VM. In particular,
the whole guest OS is part of the TCB.

As presented initially in 2016, AMD SEV did not provide memory integrity and freshness
guarantees. In 2017, AMD introduced an extension called AMD SEV-ES [108]. This extension
encrypts the VM’s registers with the VM’s memory encryption key and computes an integrity-
check value whenever the VM is stopped (due to an interrupt or another event). Once the VM
is resumed, SEV-ES decrypts and integrity checks the registers before restoring them. In 2020,
AMD presented a further AMD SEV extension called AMD SEV-SNP [107]. This extension
adds memory integrity and freshness protection to data stored outside of the CPU, e.g., in
RAM or on disk. With AMD SEV-SNP, the hypervisor is considered fully untrusted. Note
that AMD SEV-SNP was not available while the research for this dissertation was performed.

IBM SE. Recently, IBM announced the availability of IBM SE [109], [110], a TEE for IBM
z15 and LinuxONE III generation systems. Comparable to AMD SEV, IBM SE protects VMs
from being inspected or modified by other software. As with AMD SEV, modifications of the
applications running in the VM are not necessary. A difference to AMD SEV is that IBM SE
loads an encrypted VM image into the isolated environment, enabling offline provisioning of
sensitive data, e.g., passwords, hashes, or private keys.

To achieve offline provisioning, every server has a private host key, which is only accessible to
IBM hardware and a trusted firmware called the ultravisor. The cloud provider receives a host
key document, which is signed by IBM and contains the host’s public key. The cloud provider
can forward the host key document to a customer, who verifies it using a PKI. Afterwards,
the customer creates a random image key, uses the image key to encrypt a VM image, and
creates an IBM SE header. This header is integrity protected, contains a cryptographic hash
of the image, and contains the image key encrypted with the host’s public key. After the
customer deploys the header and the encrypted image at the cloud provider, ultravisor verifies
the integrity of the header, verifies the integrity of the image, decrypts the image using the
host’s private key, and starts the image.

IBM SE provides confidentiality and integrity protection for all pages in the “secure memory”.
Every page in this memory is tagged with a VM id and they can only be accessed by the
corresponding VM and the ultravisor. The state of the VM, e.g., CPU registers, cryptographic
keys, and program status words, are also protected by the ultravisor. However, publicly
available documents do not specify if this secure memory is encrypted and thus protected
against physical attacks. The support of remote attestation, remote provisioning, and a source
of randomness is also not specified.

31





4
Related Approaches for Secure,

Outsourced Data Processing

As we describe in Section 1.1, this dissertation explores how outsourced data structures are
processed in the secure, outsourced, TEE-based data processing scenario, i.e., a data owner
wants to process its sensitive data at an untrusted cloud provider, which uses a TEE for the
processing of data structures. In this chapter, we differentiate our work from related approaches
that allow secure, outsourced data processing (with and without a TEE). Ideally, the approaches
should combine strong security, high efficiency, and arbitrary processing capabilities. We show
that many related works aim to achieve this goal, but fail in at least one of these aspects or
they cover a different scenario.

We begin with a brief description of the following approaches: encrypted outsourced storage,
secure multi-party computation (MPC), and fragmentation. Each description includes an
introduction to the respective scenario. Afterwards, we present the following approaches:
property-preserving encryption (PPE), searchable encryption (SE), homomorphic encryption,
and functional encryption (FE). These approaches use the secure, outsourced data processing
scenario, which we describe in the next paragraph. Finally, we discuss approaches using the
secure, outsourced, TEE-based data processing scenario, but do not process data structures
inside an enclave. In all cases, we end the approach description with a brief assessment stating
why the approach does not fulfill the requirements of this dissertation.

The secure, outsourced data processing scenario (see Figure 4.1) works as follows: A trusted
data owner encrypts its data locally and outsources the ciphertexts to an untrusted cloud
provider. The data owner then sends requests to the cloud provider, which processes the
encrypted data and sends a response. Request, processing, and response depend on the
approach and we explain details in the corresponding sections. The difference to our scenario is
that the cloud provider does not use a TEE for data processing. Outsourced processing without
a TEE would be preferable, as a TEE introduces additional trust assumptions. However,
security, efficiency, and/or processing capabilities are a problem for all existing approaches
without a TEE.

Trusted Untrusted

Cloud ProviderData Owner/
User

Request

Response
Encryption/
Decryption

Data
Encryption

Processing

Data Outsourcing

Figure 4.1: Secure, outsourced data processing scenario.

Note that the three main chapters of this dissertation each have a dedicated related work
section. These sections discuss approaches applicable to the secure, outsourced processing of
the specific data structure considered in the corresponding chapter.
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4.1 Encrypted Outsourced Storage
We denote the most straightforward approach for processing of outsourced data by encrypted
outsourced storage and it works as follows: In a setup phase, the data owner encrypts its data
using an SKE (or an AE) scheme and outsources the encrypted data to a cloud provider. In
the runtime phase, the data owner downloads its data, decrypts it, and performs queries on
plaintext data. The encrypted outsourced storage approach perfectly protects the confidentiality
(and integrity) of the outsourced data, and it allows arbitrary data processing. Figure 4.2
illustrates the outsourcing scenario used in this case.

Trusted Untrusted

Data Owner/
User

Data Outsourcing

Request

Response
Encryption/
Decryption 

& Processing

Data
Encryption

Cloud Provider

Figure 4.2: Outsourcing scenario used by encrypted outsourced storage.

Assessment. Technically speaking, the encrypted outsourced storage approach does not
provide outsourced data processing. Instead, the data owner has to perform the computing-
intensive processing. The data transfer is very inefficient and a main benefit of cloud computing—
cost efficient processing—is not leveraged by this approach. We still mention encrypted
outsourced storage as it is the most straightforward approach, provides the highest level of
security, and supports arbitrary processing capabilities (at the data owner).

4.2 Secure Multi-party Computation (MPC)
Secure multi-party computation (MPC) enables a group of mutually distrustful data owners
to jointly compute a publicly known function over their private inputs. An MPC protocol is
considered secure if the data owners only learn the function’s output (and the information
that can be inferred by the output). Yao [111], [112] introduces MPC for two data owners and
Goldreich et al. [113] extend it to multiple data owners. Since then, researchers made many
improvements, e.g., they introduced a formal security definition [114], explored the number of
necessary communication rounds [115], and improved the performance [116]. There are three
common MPC scenarios:

1. In the distributed MPC scenario, multiple data owners perform an interactive protocol to
compute the public function without any third party (see Figure 4.3a).

2. In the server-aided MPC scenario, an untrusted cloud server provides its computational
resources for the function evaluation, but does not contribute own inputs to the function
(see Figure 4.3b). As a result, the users are relieved (partially) from computational-
intensive processing. Depending on the approach, the server is [117] or is not allowed to
learn the output [118].

3. In the multiple-servers MPC scenario, multiple cloud servers evaluate the function on the
data owners’ inputs without contributing own inputs to the function (see Figure 4.3c).
The benefit over the server-aided scenario is that the processing is secure, even if multiple
data owners and a specific number of servers (depending on the approach) collude [119].

For more details about MPC including state-of-the-art, we refer to a paper from Evans et
al. [120].
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Figure 4.3: Outsourcing scenarios used by MPC: (a) distributed, (b) server aided, and (c)
multiple servers.

Assessment. MPC is beyond the scope of this dissertation as all three MPC scenarios
fundamentally differ from our scenario variants, which only consider a single data owner.
Furthermore, most MPC approaches are inefficient in a distributed cloud environment as they
require multiple communication rounds and/or the size of transferred messages depends on the
complexity of the computed function.

4.3 Fragmentation

Aggarwal et al. [121] introduce a combination of data fragmentation and encryption. For
a database table containing multiple attributes, the linkage of these attributes is protected
by distributing them to two non-colluding cloud providers and encrypting the attributes if
necessary. Other researchers extend the fragmentation to more than two cloud providers [122]–
[124]. For each request, the data owner needs to carefully rewrite its request to query data
from the appropriate cloud provider(s). For each response, the data owner needs to postprocess
the data to receive the final result. Figure 4.4 illustrates the scenario used in this case.

Trusted Untrusted

Cloud Provider

Processing

Data Owner/
User

Data Outsourcing

Request

Response
Encryption/
Decryption 

& Processing

Data
Encryption

Figure 4.4: Outsourcing scenario used by fragmentation approaches.

Assessment. Fragmentation approaches have two main problems: (1) The protection only
holds if two or more cloud providers do not collude, which cannot be guaranteed in practice.
(2) The query rewriting and postprocessing introduce an additional level of processing complexity
at the data owner.
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4.4 Property-preserving Encryption (PPE)
The encrypted outsourced storage approach is inefficient, because the encryption schemes used
protect all information about the underlying plaintext data. The cloud provider is untrusted;
thus, cannot receive the encryption key and cannot support the processing. The idea of
property-preserving encryption (PPE) is to preserve some properties of the underlying plaintext
data in the corresponding ciphertexts. A cloud provider can use the preserved properties to
process encrypted data without decryption. In the following subsections, we present two
PPE schemes: deterministic encryption (DET), which preserves the equality relation, and
order-preserving encryption (OPE), which preserves the order relation.

4.4.1 Deterministic Encryption (DET)
A DET scheme preserves the equality relation of plaintext values, i.e.,

DET Enc(SK, V ) = DET Enc(SK,U)⇐⇒ V = U

with DET Enc denoting the encryption algorithm of a DET scheme. In the secure, outsourced
data processing scenario (see Figure 4.1), the data owner can request equality operations, e.g.,
existence, count, and equality selection queries. The cloud provider performs these operations
on ciphertexts and sends back the result of the query. In the symmetric key setting, block
ciphers (without a random initialization vector) can be used to implement a DET scheme, and
in the public-key setting, multiple approaches exist [10], [125].

Security assessment. The equality of encrypted values, however, is also the main downside of
DET schemes as it inherently leaks the frequency of underlying plaintext values—even without
user interaction. Naveed et al. [13] show that this inherent leakage can be used for a highly
effective frequency analysis attack, e.g., for 200 encrypted hospital databases with small data
domains (at most 365 distinct values), the attacker recovers the disease severity for 100% of
the patients for 51% of the databases.

A possible security definition for DET schemes is IND-DCPA security [10], [126], which is
defined with the following experiment and probability: A challenger randomly picks a bit b, the
attacker queries pairs (V1, U1), . . . , (Vq, Uq) with distinct V1, . . . , Vq and distinct U1, . . . , Uq, and
the challenger returns DET Enc(SK, Vi) if b = 0 and DET Enc(SK, Vj) otherwise. Compared
to a random guess, the attacker’s probability to guess b should be negligible. Stronger security
definitions might be possible, but due to the inherent leakage, a DET scheme cannot be
IND-CPA secure.

4.4.2 Order-preserving Encryption (OPE)
An OPE scheme preserves the order relation of plaintexts, i.e.,

OPE Enc(SK, V ) ≤ OPE Enc(SK,U)⇐⇒ V ≤ U

with OPE Enc denoting the encryption algorithm of an OPE scheme. In the secure, outsourced
data processing scenario (see Figure 4.1), the data owner can request order operations, e.g.,
range, sort, and rank queries. The cloud provider performs these operations in logarithmic
runtime (in the number of ciphertexts) on the ciphertexts and sends back the result of the
query.

Agrawal et al. [11] introduce OPE and propose an OPE construction. However, the data
owner needs to know the plaintext distribution before encryption and a formal security analysis
is missing. Boldyreva et al. [12] state that OPE schemes cannot achieve IND-CPA security
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and introduce two new security definitions: IND-OCPA and the weaker POPF-CCA. An
IND-OCPA–secure OPE scheme leaks only the order of the underlying plaintexts. Boldyreva
et al. prove that such a scheme requires an exponentially large ciphertext space (in the size of
the plaintext space) if ciphertexts are immutable and the scheme is stateless. Furthermore,
they present a POPF-CCA–secure OPE scheme, but it does not hide the distance between
plaintexts and leaks at least half of the plaintext bits [127]. Popa et al. [128] present the first
IND-OCPA–secure OPE scheme achieving linear-length ciphertexts by using an interactive
multi-round protocol, ciphertext updates, and server-side state (linear in the number of distinct
plaintexts). Kerschbaum et al. [129] improve the idea of Popa et al. reducing the probability of
computationally expensive ciphertext updates and the number of rounds. However, the scheme
requires client-side state (linear in the number of distinct plaintexts). Kerschbaum [130] presents
a randomized OPE scheme, i.e., duplicate plaintexts are encrypted to different ciphertext. The
scheme is IND-FAOCPA secure, which is strictly stronger than IND-OCPA security as it hides
the plaintext frequency. However, it requires even more client-side state than the scheme from
Kerschbaum et al. [129].

MOPE. Boldyreva et al. [127] propose an OPE extension called modular OPE (MOPE). The
idea is to add a fixed, secret offset to all plaintext before OPE encryption and to carefully
rewrite queries to enable (modular) range queries. An MOPE scheme hides the location of
encrypted values, but its security falls back to POPF-CCA security if the attacker learns the
secret offset. Mavroforakis et al. [131] design protocols to mitigate the probability of secret
offset leakage.

ORE. Boldyreva et al. [127] also propose order-revealing encryption (ORE), a generalization
of OPE. ORE schemes assume a publicly computable function that returns the order of two
ciphertexts. Boneh et al. [132] present a stateless, non-interactive, IND-OCPA–secure1, but
inefficient ORE scheme. Chenette et al. [133] present an efficient ORE scheme, but it leaks the
first bit at which two ciphertexts differ. Lewi et al. [134] present two efficient ORE schemes:
The first is IND-OCPA secure, but only works for a small plaintext space. The second supports
large domains, but leaks the block2 at which two ciphertexts differ.

Security assessment. As can be seen from this non-exhaustive list of OPE and related
approaches, there is a plethora of research, but security definitions and assumptions are still
debatable. The practical consequences of OPE’s leakage are difficult to capture as it depends
on the attacker’s side knowledge and the data distribution.

In the following, we say that a database is dense if the encryption of each plaintext value is
contained at least once. With a dense database, all deterministic OPE and ORE schemes3 are
susceptible to a simple attack: map the sorted ciphertexts one-to-one to sorted plaintexts. With
a non-dense database, Naveed et al. [13] empirically explore the security of IND-OCPA–secure,
deterministic OPE and ORE schemes. Their attack uses a dump of encrypted data, publicly
available auxiliary information, the order leakage, and the frequency leakage. Tested on 200
encrypted hospital databases with small data domains (at most 365 distinct values), the attack
recovers more than 80% of the patient records for 95% of the databases. Durak et al. [135] use
correlation between multiple columns to perform a successful attack on location data that is
sparse in the plaintext domain and only contains unique values. In a dataset containing the
encrypted latitude and longitude 21,000 intersections in California, the attack reconstructs the
location with a precision between 2 and 140 km. Grubbs et al. [14] present an attack that uses
auxiliary information to reliably recover high-frequency elements, even if the frequency is not

1 Technically, IND-OCPA security is only defined for OPE, but we mean a straightforward adaptation.
2 A block consists of one or more bits.
3 This only excludes Kerschbaum’s randomized OPE scheme [130].
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leaked. Thus, this attack is also successful against randomized OPE schemes, e.g., it recovers
30% of first names from a customer record database encrypted with Kerschbaum’s scheme
[130]. Lacharité et al. [15] propose to consider a persistent, passive adversary, which uses rank
leakage (induced by all schemes discussed before), uniformly distributed range queries, and
access pattern leakage, i.e., the set of values matching a query. In a dense database, the attack
is able to reconstruct all plaintexts after N log(N) +O(N) queries where N is the number of
distinct values. Kellaris et al. [136] introduce so-called volume attacks. In these attacks, the
adversary only learns how many ciphertexts are returned by the server and uses this information
to recover which plaintexts are encrypted how often. Under the assumption of uniform range
queries, a maximum of 150 ciphertexts, and O(|D|4 log(|D| )) observed queries with |D| being
the domain size, their attack can reconstruct all plaintexts for all tested datasets. Grubbs et
al. [137] and Gui et al. [138] present further volume attacks, which are successful under weaker
assumptions and with fewer queries.

4.4.3 Assessment

DET and OPE support an important set of operations on encrypted data and the efficiency
is high for these operations. However, as we explained in detail in the last two sections, the
security of both PPE schemes is debatable.

4.5 Searchable Encryption (SE)

Searchable encryption (SE) enables a data owner to outsource documents4 to an untrusted cloud
provider, while preserving the ability to retrieve documents containing one or multiple keywords.
SE works as follows in the secure, outsourced data processing scenario (see Figure 4.1): After
ciphertext outsourcing, the data owner uses a secret key to generate a search token, which
he sends to the cloud provider. The cloud provider uses the search token to unveil for each
document whether it contains the searched keyword(s).

The goal of SE is to leak nothing beyond the outcome of the search and the pattern of a
sequence of searches. In particular, without a search token the ciphertexts should be IND-CPA
secure. Thus, SE achieves a stronger notion of security than PPE, because PPE inherently
leaks the preserved information about the underlying plaintext data, even without a single
request. In the following, we explore SE schemes supporting two different query types: First,
SE schemes supporting keyword searches, i.e., the cloud provider can use the search token to
determine if a document contains a keyword. Second, SE schemes supporting range searches,
i.e., the cloud provider can use the search token to determine if a document contains a keyword
in a certain range. For both query types, we discuss approaches that do and do not use an
index. For an in-depth introduction and other search types, we refer to a survey from Bösch et
al. [139].

Keyword searches without an index. Song et al. [140] introduce symmetric SE and propose a
scheme for exact keyword searches. Depending on an adjustable parameter, the scheme returns
a low or high number of false positives. Boneh et al. [141] propose a public-key SE scheme that
allows any party knowing the public key to encrypt keywords, but only secret key holders can
generate search tokens. Due to the computation cost of public key encryption, the scheme is
only applicable on a small number of keywords. A downside of both schemes mentioned so far
is that their search time is linear in the size of all ciphertexts.

4 The term documents is used generically and can mean, e.g., text documents, emails, or audit logs.
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Keyword searches using an index. Goh [142] proposes the use of an inverted index to build
an SE scheme with a search time linear in the number of indexed documents. Additionally, he
formulates the first security definition for secure search indices (IND-CKA), which demands
that besides the knowledge gathered from previous queries, the content of documents should
not be revealed by the index and from other channels. Goh’s SE scheme uses bloom filters
inducing false positives. Chang et al. [143] also propose an index-based SE scheme. This
scheme uses pseudorandom bits to mask entries in a prebuilt directory, does not have false
positives, and achieves a stronger security definition (IND2-CKA), which additionally hides
the document sizes. However, the scheme requires two rounds and thus is less efficient than
Goh’s scheme. Curtmola et al. [144] introduce a new attacker model differentiating adaptive
and non-adaptive attackers, i.e., the adversary can or cannot choose her queries based on the
previously obtained search tokens and results. They state that all SE schemes presented before
are only secure for non-adaptive adversaries and present an SE scheme secure in an adaptive
adversary setting. In this scheme, the search token and the server-side storage are linear in the
size of the largest document.

Range searches without an index. Boneh et al. [145] propose an SE scheme supporting range
searches in the public-key setting. Their scheme is inefficient as the ciphertext and public
key size are linear in the plaintext domain. Shen et al. [146] propose an SE scheme in the
private-key setting. The scheme supports inner-product queries, which can also be used for,
e.g., conjunctive, disjunctive, and exact threshold queries. However, the ciphertexts produced
by the scheme are also linear in the plaintext domain. Shi et al. [147] present an SE scheme in
the public-key setting. This scheme has a ciphertext and public key size logarithmic in the
plaintext domain, but it leaks the plaintext of matching ciphertexts. The main issue of the SE
schemes by Boneh et al., Shen et al., and Shi et al. is that they have linear search time (in the
number of documents).

Range searches using an index. Lu [148] combines the SE scheme from Shen et al. [146] with
an index tree to achieve polylogarithmic search time. However, his index tree inherently reveals
the order of the ciphertexts, making it vulnerable for the attacks presented for OPE. Demertzis
et al. [149] present an SE scheme (Logarithmic-URC) that does not leak the ciphertext order
and improves the constant factor of a range search.

Assessment. As we have seen in this section, SE schemes provide a wide range of processing
capabilities and have strong security definitions. The main issue with SE is that a search is
orders of magnitude slower than TEE-based approaches. For instance, if the scheme from
Demertzis et al. [149] is used to encrypt 100,000 documents, a range search for 100 keywords
takes more than a second (see Section 6.6.2). A corresponding TEE-based search implemented
by us takes 0.125 ms.

4.6 Homomorphic Encryption

Fully homomorphic encryption (FHE) supports a set of operations, e.g., addition and multipli-
cation, on ciphertexts without decryption, i.e.,

FHE Dec(SK,FHE Enc(SK, V )⊗ FHE Enc(SK,U)) = V � U

where � is an operation from this set in the plaintext domain and ⊗ not necessarily the same
operation on the ciphertexts. Using a composition of these operations, the data owner can
request the execution of an arbitrary function F (also called circuit) on ciphertexts in the
secure, outsourced data processing scenario (see Figure 4.1). The cloud provider executes F

39



4 Related Approaches for Secure, Outsourced Data Processing

and returns the encrypted result. Fully homomorphic encryption (FHE) provides semantic
security for stored encrypted values, during processing, and for the results.

Rivest et al. [16] proposed the idea already in 1978, but only in 2009, Gentry [17] presented
the first instantiation of FHE. Since then, Gentry et al. [18], Halevi et al. [150], Chillotti et
al. [151], and others present improved FHE schemes.

PHE. Goldwasser et al. [152] introduce partial homomorphic encryption (PHE) schemes. These
schemes allow only one specific arithmetic operations on encrypted data, e.g., addition [153],
multiplication [154], and bitwise XOR [152], with an improved efficiency compared to FHE.

PHE-TEE hybrid. Quite recently, Fischer et al. [46]5 proposed to combine PHE schemes
with a TEE. If data is encrypted with a PHE scheme supporting the required operation,
the operation is executed on encrypted data. Otherwise, a TEE is used to decrypt the data
and encrypt it to the required PHE scheme, before the operation is executed. Consequently,
multiple operations can be supported with different PHE schemes.

Assessment. FHE offers an optimal solution for the secure, outsourced data processing
scenario regarding security and processing capabilities. However, FHE is too inefficient for
adoption in the systems we consider in this dissertation. PHE schemes are more efficient,
but they only support one operation on encrypted data; thus, they are insufficient for the
complex outsourced data processing we target. For the PHE-TEE hybrid approach, it is an
open question to determine the security, efficiency, and processing capabilities achievable if it is
used for large applications in the secure, outsourced data processing scenario.

4.7 Functional Encryption (FE)

As with FHE, functional encryption (FE) allows the evaluation of an arbitrary function F
on ciphertexts. FE is even more powerful than FHE, because it can reveal the result of F
and not only a ciphertext of the result. In the secure, outsourced data processing scenario
(see Figure 4.1), FE is used as following: After the ciphertext outsourcing, the data owner
uses a secret key to generate a token for a specific function F. The data owner (or a user,
who received the token) sends the token to the cloud provider. For each ciphertext C with
underlying plaintext value V , the cloud provider uses the token to evaluate F(V ) and returns
the results back to the data owner (or user). The only information leaked to the cloud provider
is the result of F(V ).

Sahai et al. coined the term functional encryption in a presentation [155]. O’Neill [156]
and Boneh et al. [157] formally introduce the general concept of FE (in a public-key setting).
Goldwasser et al. [158] extend the general concept to multi-input functions, i.e., the data owner
sends a token, which the cloud provider uses to reveal F(V1, . . . , Vn) for n ciphertexts C1, . . . ,
Cn with underlying plaintext values V1, . . . , Vn.

Special cases of FE. In the following, we briefly describe three special cases of FE and we
note that most of them are older than the term functional encryption:

1. In searchable encryption, the data owner outsources its encrypted documents, generates
search tokens, and sends the tokens to the cloud provider [140], [141]. Using the search
token, the cloud provider evaluates F to unveil for each document whether it matches the
search and sends back the matching documents.

2. In attribute-based encryption, the data owner assigns attributes to data, outsources the
encrypted data together with the attributes, and generates access tokens for users [159]–

5 The author of this dissertation is co-author of this paper.
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[161]. Using their access tokens, users can recover plaintext data if the access control
check done by F grants the access.

3. Some order-revealing encryption schemes can be considered a special case of multi-input
functional encryption, at which F returns the order relation of ciphertexts [132], [134].

Assessment. FE combines strong security and arbitrary processing capabilities. Yet, the
main problem of FE is that it is too inefficient for practical systems. This is especially true for
generic FE constructions [162], [163], but is also true for the cryptographic systems that can be
considered a special case of FE.

4.8 TEE-based Approaches

All related approaches presented so far only rely on software for secure, outsourced data
processing. Now, we explore approaches in the secure, outsourced, TEE-based data processing
scenario, i.e., the cloud provider can use a TEE for (parts of) the outsourced processing.

In this scenario, the granularity of the processed object, which is protected by the TEE,
is flexible. The granularity ranges from the protected processing of entire applications to
the protected processing of individual, stateless operations. In this section, we first describe
approaches from both ends of this range and discuss their advantages and disadvantages.
Finally, we provide an assessment of both approaches and briefly introduce the trade-off that
we use in this dissertation.

4.8.1 Protect Entire Applications

The following approaches protect the execution of entire (legacy) applications using Intel SGX.
The goal is to reduce the necessary modification to unprotected application versions as far as
possible. To achieve this goal, the approaches wrap the applications with auxiliary software of
varying extent to simulate a regular OS.

Baumann et al. [164] propose Haven, an approach which uses an in-enclave, Drawbridge-
based [165] library OS to execute unmodified Windows application as an enclave. The library
OS supports secure variants of OS functionality in the enclave, e.g., confidentiality- and
integrity-protected file I/O, user-level threading, and secure virtual memory management.
Haven simulates the full OS API to the enclave by handling many tasks in the enclave and
calling a narrow set of primitives at the host OS. Baumann et al. only evaluate Haven with
a simulated TEE, because the paper predates the availability of Intel SGX–enabled CPUs.
Haven’s auxiliary software has millions of LOC and 209 MB.

Tsai et al. [166] present Graphene-SGX, an approach which uses an in-enclave, Graphene-
based [167] library OS to execute unmodified Linux applications as an enclave. As done by
Haven, the library OS provides many OS functions inside the enclave. It additionally supports
enclave-level forking and secure inter-process communication. Graphene-SGX restricts the
application’s resource access using a manifest, which is specified and signed by the developer.
The manifest can also be used by the developer to provide hashes of trusted files and to define
untrusted output files and directories. Tested on three Linux web servers, the peak throughput
of Graphene-SGX is 26–66% lower compared to native implementation. Graphene-SGX’s
auxiliary software has about 1,348,000 LOC.

Arnautov et al. [67] propose SCONE, a container mechanism for Intel SGX enclaves using
Docker. Instead of an in-enclave library OS, SCONE uses an in-enclave C library. To cater for
the missing OS functionality, SCONE delegates the calls to the host OS instead of emulating
them inside the enclave. To achieve efficient processing, it uses an in-enclave, asynchronous
system call interface and a SCONE kernel module outside of the enclave. Like Haven, SCONE
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supports confidentiality- and integrity-protected file I/O and user-level threading. Furthermore,
it offers encrypted console streams and a TLS endpoint inside the enclave for secure network
communication. After static recompilation of four small applications fitting into the EPC,
the peak throughput of SCONE is between 40% lower and 20% higher compared to native
implementations6. SCONE’s auxiliary software has about 187,000 LOC.

Shinde et al. [168] propose PANOPLY, a mechanism for micro-containers in enclaves. These
micro-containers expose OS functionality such as file system access, network access, multithread-
ing, forking, and thread synchronization to unmodified applications. As SCONE, PANOPLY
delegates OS functions to the host OS instead of emulating them inside the enclave. Opposed
to SCONE, PANOPLY offers applications a synchronous POSIX-level interface instead of an
asynchronous system call interface. As a result, PANOPLY does not require any libc library
in the enclave. Furthermore, PANOPLY enables the developer to partition an application
into multiple enclaves using annotations. Tested on four applications, PANOPLY introduces
an average performance overhead of 24%, and the authors report a 5–10% higher overhead
compared to Graphene-SGX. PANOPLY’s auxiliary software has about 20,000 LOC.

Discussion. It would be ideal for developers to put entire applications into an enclave, because
it saves the refactoring overhead. However, we see three problems with this approach:

1. Recall that the TCB of an Intel SGX–enabled application has only one flexible component—
the enclave size (see Section 3.1.5). The auxiliary software of the presented approaches
alone have thousands to millions LOC. Together with the potentially large (legacy)
applications, this opens up a huge attack surface. We agree with a statement given by
Intel in the Intel SGX developer reference [24]: “The application writer should make
the trusted part as small as possible. It is suggested that enclave functionality should
be limited to operate on the secret data. A large enclave statistically has more bugs
and (user created) security holes than a small enclave. [. . .] Embracing the above design
considerations will improve protection as the attack surface is minimized.” Besides
the problems mentioned by Intel, the following issues become more problematic with a
growing enclave size: the data owner might want to (formally) verify the enclave code
and an attacker can try to hide malware inside an enclave.

2. Approaches using a library OS such as Haven and Graphene pull most OS functionality
into the enclave. This reduces the size and complexity of the enclave’s interface, but
(vastly) increases the TCB. Other approaches such as SCONE and PANOPLY use more
delegated system calls to reduce auxiliary software in the enclave. This decreases the
TCB, but increases the size and complexity of the interface. A critical aspect of both
ideas is that the original applications were designed under the assumption of a trusted
OS. Therefore, the developers did not worry about the leakage of calls to the OS. The
auxiliary software protects some calls, but it is very difficult to determine the leakage of
all calls across the enclave boundary, especially for large applications.

3. In the current Intel SGX version, the EPC has only about 96 MB. With a high probability,
the application’s code and data, together with the auxiliary software, exceed this restricted
memory space. This causes paging and with it a devastating performance penalty.

4.8.2 Protect Individual, Stateless Operations

The following approaches use TEEs7 to protect the processing at the minimal granularity—the
processing of individual, stateless operations. The two approaches that we present use secure,

6 Arnautov et al. do not explain the increased peak throughput.
7 Strictly speaking, the approach by Arasu et al. [169] uses an FPGA to evaluate isolated execution. This was

done, because TEEs were not yet widely available.
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operator-based processing in an encrypted database management system (DBMS) setting. They
offer different security levels on a column basis and allow processing across different levels. As
we are only interested in the implementation of the idea, we abstract from the setting and
assume that generic values are encrypted on the highest security level.

Arasu et al. [169] present Cipherbase, which uses a dedicated, custom-designed FPGA for the
secure processing of individual, stateless operations. The authors propose to encrypt every data
value individually and to change every operation invocation to the following process: transfer
the corresponding encrypted data to the FPGA, decrypt the data in the FPGA, perform
the operations in the FPGA, and return the (encrypted) result. Cipherbase supports various
primitives, e.g., equality comparisons, arithmetic operations, and aggregations. For all boolean
operations, the result is plaintext. The decryption keys are derived from a master key, which
has to be provisioned to the FPGA securely. As FPGAs do not support remote attestation
and remote provisioning, this has to be done in a secure environment before the FPGA is
shipped to the cloud provider, which is unsuitable for (large scale) cloud deployment (see
Section 3.3). In a follow-up paper [170], the authors present performance optimizations. Due
to the high round-trip latency between CPU and FPGA, and the low processing power of the
FPGA, Cipherbase still reduces the throughput of a protected DBMS to 40% compared to
an unprotected version. The authors briefly mention Intel SGX, but leave an adaptation of
Cipherbase open for future work.

Vinayagamurthy et al. [29] present StealthDB, an encrypted database using Intel SGX.
Comparable to Cipherbase, the authors propose to encrypt every data value individually and
to change every operation invocation to a call to an Intel SGX enclave. StealthDB supports
arithmetic operations (e.g., +,−, ∗), relational operations (e.g., <,>,<>), boolean operations
(e.g., AND,OR,NOT ), hash functions, and math functions (e.g., sin, cos, tan). The operations
are data-oblivious to protect against side-channel leakage.

Discussion. On the one hand, the approaches presented adhere to Intel’s recommendation
to keep the enclave as small as possible and to limit the operations on secret data. As the
set of low-level primitives is limited, the enclave can have a constant size and can be used
generically for various applications. As a result, application protected with these approaches
have a small attack surface, a low likelihood of bugs, and a low interface complexity. Compared
to a large enclave, it is easier for the developer to protect against attacks, easier for the data
owner to verify the enclave code, and harder for an attacker to hide malware inside an enclave
(see Section 3.2). It might even be possible to build a compiler, which automatically transforms
applications. Such a compiler could reduce the development overhead for applications designed
for a TEE environment and it could reduce the refactoring overhead for legacy applications.

On the other hand, the approaches presented inherently leak the (encrypted) result of each
operation to a persistent attacker. It is difficult to capture the exact leakage, because it depends
on the processed operation and the operation’s position in the code. For instance, a data search
using relational operations leaks the relation of all processed encrypted data; the plaintext
result of a boolean operation might leak plaintext of the involved encrypted values; and the
input and result sizes of an arithmetic operation might leak a value range of the encrypted
values. Furthermore, the approaches leak the exact path taken through the application code,
which might inherently leak sensitive information. Another downside is the high number of
calls to the TEE, which introduces a non-negligible overhead.

4.8.3 Assessment

As a multitude of Intel SGX-based papers [171] and this dissertation show, TEE-based solutions
enable arbitrary data processing combined with a high efficiency. The processing is also secure
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if the TEE concept is implemented flawlessly by the vendor. In Section 3.2, we give an extensive
overview of attacks on Intel SGX and mitigations for these attacks. Our main observation is
that the enclave size should be kept small. Besides that, it is up to a user to evaluate whether
the security guarantees are strong enough.

In the last two sections, we explained why it is problematic to put entire applications or
individual, stateless operations into an enclave. In summary, the downsides of the entire
application approach are that the TCB is large, it is difficult to capture the exact leakage, it
impedes attack mitigations (see Section 3.2), and the enclave might not even fit into available
TEEs. The individual, stateless operations approach does not suffer from these problems, but
it leaks the result of each operation to a persistent attacker.

In this dissertation, we use a trade-off between both approaches—the TEE-based processing
of data structures. We introduce this approach and explain its advantages and disadvantages
in Section 5.1.
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In this chapter, we first motivate and describe the design principles that we use for the
approaches presented in this dissertation. Then, we present our security and performance
assessment methodology, which we use in the following chapters to answer our research question
(see Chapter 1.1): “For outsourced systems using a memory-limited, widely available trusted
execution environment (TEE) to process data structures at an untrusted cloud provider, what
are lower bounds of security and corresponding upper bounds on performance?”

5.1 Design Principles

As we show in Section 4.8, the secure, outsourced, TEE-based data processing scenario offers a
favorable combination of strong security, high efficiency, and arbitrary processing capabilities,
compared to other known approaches allowing secure, outsourced data processing. However,
we also show that it has severe downsides to put entire applications or individual, stateless
operations into an enclave.

We draw three lessons from the observations in Section 4.8: (1) we want to use a TEE at the
cloud provider for secure, outsourced data processing, (2) we want to keep the enclave size as
small as possible, and (3) we do not want to leak the result of every individual decision. We
adhere to these lessons using a trade-off between both approaches presented in Section 4.8—we
use a TEE for the processing of data structures. In more detail, we perform self-contained
data structure operations in our enclaves and only return the result, e.g., use one ECall (see
Section 3.1.2) to perform a range search in a B+-tree, an equality search in a dictionary, or an
access control check in a file system.

The following example highlights the difference between the individual, stateless operations
approach and the data structure approach: We assume that an array contains encrypted values
and an enclave should be used for a binary search. In the individual, stateless operations
approach, the algorithm sends two encrypted values to the enclave, receives the plaintext result
of the comparison, and repeats this process until the search is done. In the data structure
approach, the algorithm sends the whole array to the enclave at once and only receives the
result of the search.

Our data structure approach requires more enclave code than the individual, stateless
operations approach, because the processing is more complex. However, it requires considerably
less enclave code than the entire application approach with its auxiliary software, because we
keep all system code that does not process sensitive data, outside of the enclave. Consequently,
our enclave size is small, and we share many benefits with the individual, stateless operations
approach, e.g., a small attack surface, a low likelihood of bugs, a low interface complexity, and
a facilitation for code verification by the data owner. As we show in the section about attacks
on Intel SGX (Section 3.2), a small enclave size is key for attack mitigation. A downside of
our approach is that it cannot be used as a generic solution to protect (legacy) application.
Instead, we design our enclaves specifically for a given problem.

45



5 Methodology

We expect that large datasets are processed in the secure, outsourced, TEE-based data
processing scenario. Yet, Intel SGX has only about 96 MB of EPC memory and during the
timeframe in which the research for this dissertation was done, it was the only TEE fulfilling
the required capabilities (see Chapter 3). If we load data into an Intel SGX enclave exceeding
96 MB, Intel SGX starts paging (see Section 3.1.1). Alternatively, we can store encrypted data
in untrusted memory and let the enclave load the data on demand in smaller chunks. In the
evaluation section of Chapter 6, we compare these alternatives and show that paging leads to
severe performance degradation and on demand loading should be preferred.

To achieve a high performance when loading data into the enclave on demand, it is important
to have a high throughput. To achieve this goal, Intel SGX enclaves can access the memory of
its host application to prevent expensive copy instructions (see Section 3.1.2) and Intel SGX
provides switchless calls to prevent context switches (see Section 3.1.7).

Overall, we adhere to the following design principles:
• Use a TEE for the secure, efficient processing of outsourced data.
• Keep the enclave size small.
• Use enclaves to process data structures.
• Store data in the untrusted environment and load it chunk-wise on demand.
• Strive for a high data load throughput.

5.2 Security Assessment Methodology

In the next three chapters, we describe three TEE-protected data structures. Namely, B+-trees
in Chapter 6, database dictionaries in Chapter 7, and file systems in Chapter 8. Using these
data structures, we build outsourced systems for secure index searches, database queries, and
group file sharing, respectively.

To assess the security of these systems, we first formulate an attacker model in each chapter.
The attacker model states the capabilities of the attacker and our security assumptions about
the TEE. Then, we follow different methods to assess the security of our systems: a formal
security proof, a comparison to related work, and explicit security objectives. We describe the
methods in the following and explain why we use them in each case.

Formal security proof. In Chapter 6, we present two constructions of TEE-protected B+-tree,
which we integrate into an outsourced system for index searches. The constructions are related
to symmetric searchable encryption (SSE) and the security of the two constructions differs only
slightly. Thus, we assess their security based on the three-step, formal-proof framework for SSE
introduced by Curtmola et al. [144]: The first step of this framework is to formulate a leakage
Lenc, i.e., an upper bound of the information that an adversary can gather from the protocol.
Secondly, one defines a RealA(λ) and an IdealA,S(λ) game for an adaptive adversary A and
a polynomial time simulator S. RealA(λ) is the actual protocol execution and IdealA,S(λ)
uses S to simulate the real game by using only the formulated leakage Lenc. An adaptive
adversary can use information learned in previous protocol iterations for its queries. Third,
a scheme is denoted CKA2-secure if one can show that A can distinguish the output of the
games with negligible probability. If this is the case, A does not learn anything besides the
leakage stated in the first step, because otherwise A could use this additional information to
distinguish the games.

We extend this framework, because security models of SSE schemes only cover the transaction
between the user and server in their leakage. TEE-based solutions, however, have an additional
transaction between the server and the enclave, which is observable by A. Therefore, we extend
CKA2 security introducing Lhw—a new type of leakage consisting of the inherent leakage of a
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TEE and the inputs/outputs to/from the enclave. We denote the extended CKA2 security by
CKA2-HW security.

In our security evaluation, we define the leakages Lenc and Lhw for both B+-tree constructions
and prove thatA can distinguish the output of theRealA(λ) and an IdealA,S(λ) with negligible
probability.

Comparison to related work. In Chapter 7, we present nine TEE-protected database dic-
tionary types, which we integrate in an outsourced, column-oriented, in-memory database.
Each dictionary type has a different security level and the data owners can freely choose one
dictionary type per database column according to their security requirements. We assess the
security of six dictionary types by comparing them with security schemes or definitions known
in literature. In more detail, we provide a security scheme or definition for six dictionary
types with comparable security. By comparable security, we mean that this security scheme
or definition leaks at least as much as the dictionary type, but it has the smallest leakage
compared to others we found. Afterwards, we classify the relative security of the six dictionary
types and integrate the three remaining dictionary types in this classification.

Explicit security objectives. In Chapter 8, we present a TEE-protected file system, which
we integrate into an outsourced system for group file sharing. As many papers present such
group file sharing systems, we analyze ten of them—six of them are purely cryptographically
protected and four are TEE-supported. From this analysis, we derive a list of five important
security objectives, with sub-objectives in some cases. We use these objectives to classify our
system and the ten related systems.

5.3 Performance Assessment Methodology

To assess the performance of the three systems under a memory-limited, widely available trusted
execution environments (TEEs), we implemented each system and performed experiments using
Intel SGX. Each chapter has a dedicated section describing implementation details, e.g., the
used programming languages, libraries, and Intel SGX SDK.

For the three systems, we measure the latency of the outsourced data processing, i.e.,
the time between sending a request and receiving a response, as we consider this the most
important acceptance parameter for users. The measurements either exclude the network
latency (Chapter 6 and 7) or include it (Chapter 8). All our systems only require one round
of communication per request and there are good reasons for excluding and for including the
network latency in this case. Excluding the network latency isolates the latency caused by the
outsourced processing. Especially if the network latency is (severely) higher than the system’s
latency, it might hide the poor performance of the system. Furthermore, the network latency
severely depends on the evaluation setup. Consequently, a comparison between systems is
facilitated if the network latency is excluded. Including the network latency, however, gives
more realistic latency results for the system’s users as they are typically not co-located with
the system.

In Chapter 6, we use a local Intel SGX machine for all latency measurements as no cloud
provider offered machines with Intel SGX at the time of our evaluation. We provide latency
measurements for both B+-tree constructions and we compare the latency with the fastest
related work supporting the same functionality. This related work is purely cryptography-based,
because there was no TEE-based related work at the time of our evaluation.

In Chapter 7, we perform the measurements with one Intel SGX–enabled machine running
at Microsoft Azure [172]. We provide detailed latency measurements for each dictionary type.
Additionally, we compare these measurements with plaintext variants of each dictionary type
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and with an open source, plaintext database implementation. Furthermore, we list the overhead
induced by related, TEE-based solutions compared to a plaintext database.

In Chapter 8, we use two machines at Microsoft Azure distributed in the United States to
provide a representative measurement for users of the group file sharing system. We show that
the latency of our encrypted file sharing system is between two known file sharing systems
that serve plaintext files. Furthermore, we use five performance objectives to classify our file
sharing system, related purely cryptographically protected file sharing systems, and related
TEE-protected file sharing systems.

In Chapter 7 and 8 we also evaluate the storage overhead of our encrypted systems compared
to plaintext variants. This is important, because a system’s performance can always be increased
by using additional storage.
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In this chapter, we describe the secure, outsourced, TEE-based processing of the B+-tree data
structure [173]. A B+-tree is a balanced, n-ary search tree used to index values by search
keys. Searches can be performed for single search keys or search key ranges. B+-trees are
frequently used for database indices in DBMSes [174], [175], for document indices [176], and for
file systems [177], [178] to vastly improve the performance of search operations.

Using TEE-protected B+-trees, we design HardIDX—a secure, efficient, outsourced system
for index searches. Throughout this chapter, we only consider range searches, but HardIDX
trivially supports equality searches. Furthermore, it can be adapted to other search operations,
e.g., prefix, suffix, or substring search, and it can be deployed as a database index of an
encrypted database.

We discuss two HardIDX constructions differing in the management of the B+-tree. Construc-
tion 1 loads the whole B+-tree structure in the enclave memory and performs search queries
thereafter. Due to Intel SGX’s restricted EPC size (see Section 3.1.1), loading large trees
into the EPC leads to paging, which introduces a major performance overhead. To mitigate
this problem, construction 2 only loads those data into the EPC that are currently needed to
process a search query.

For HardIDX’s security evaluation, we start with proofs for a passive attacker. Although
the encrypted tree does not directly leak information about its content, it leaks access pattern
information, which an attacker can observe, during query processing. For both constructions, we
show the access pattern leakage with respect to Intel SGX’s inherent side channels. Furthermore,
we show that the leakage of both constructions is almost the same differing only by granularity.
Based on the leakage discussion for a passive attacker, we present the security implications of
an active attacker.

We implemented a prototype of HardIDX and use it for multiple performance evaluation
experiments: a latency comparison of both constructions, a memory management impact of
both constructions, and a comparison to the fastest related approach supporting range queries
on encrypted data.

Index searches can also be implemented using cryptographic approaches that allow arbitrary
computation on encrypted data, e.g., MPC [113], [179] or FHE. However, MPC and FHE
schemes are still too inefficient for encrypted data search [19], [180]. Other cryptographic
solutions are also applicable, e.g., PPE [10], [12], FE [157], or SE [140], [144], [148], [181], but
performing efficient and secure range queries are commonly considered to be very challenging.
CryptDB [182] resorts to OPE for this purpose which is susceptible to simple ciphertext-
only attacks as shown by Naveed et al. [13]. Many SE schemes supporting range queries
require search time linear in the number of database records [145]–[147]. Other papers use an
index structure to achieve polylogarithmic search time [148], [149], [183]. Yet, the scheme by
Lu [148] is inefficient, because it applies pairing-based cryptography, and it also leaks sensitive
information about the plaintext, namely the order of the plaintexts. Demertzis et al. [149] and
Faber et al. [183] present approaches with polylogarithmic search time utilizing only lightweight
cryptography, that is, pseudorandom function (PRF) and symmetric-key encryption (SKE).
Out of the many schemes presented by Demertzis et al. [149], the most secure approach, without
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false positives and bearable storage cost achieves practical deployability. However, it still leaks
a significant amount of sensitive information, e.g., the search pattern and the range size of each
query, and it is orders of magnitude slower than HardIDX.

The contributions of this chapter are as follows:
• Two secure, efficient, outsourced, TEE-based index searches using protected B+-trees.

Both searches have a minimal enclave size, logarithmic complexity in the size of the index,
and latency within a few milliseconds.

• Formal model and proof of the index searches showing that their security (leakage) is
comparable to the best-known searchable encryption schemes.

• Security inspection of the index searches under an active attacker.
• Implementation and performance evaluation of the index searches.
• Evaluation of a performance bottleneck of Intel SGX based on two index searches with

different memory-management strategies.
The remainder of this chapter is structured as follows: In Section 6.1, we provide a comprehensive
introduction into B+-trees; introduce HardIDX, the system in which we embed protected B+-
trees; and present the attacker model. In Section 6.2, we give an overview of related work.
Afterwards, we focus on the design of two different HardIDX constructions under a passive
attacker in Section 6.3. In Section 6.4, we present two extensions, which can be combined with
both constructions. Namely, multi-user support and protection under an active attacker. In
Section 6.5, we cover our HardIDX prototypes and explore implementation details relevant for
security and performance. Based on the two HardIDX constructions and the implementation
details, we provide in-depth security and performance evaluations in Section 6.6. Finally,
Section 6.7 provides a summary of this chapter.

6.1 Design Considerations
In this section, we introduce the data structure under investigation, a B+-tree; the system in
which we embed TEE-protected B+-trees, HardIDX; and the attacker model.

6.1.1 Data Structure: B+-tree
A B+-tree is a balanced, n-ary search tree, which indexes values by search keys. It can be used
to search for a single search key, e.g., search for one staff id to find the corresponding database
record (see Figure 6.1), and to perform range searches, e.g., search all staff ids between an
upper and a lower limit to find the corresponding records. A range search can also be done for
all search keys below or above a specified limit.

A B+-tree T contains |X| nodes X, and we differentiate three node types: the root node
T .root, inner nodes, and leaf nodes. The root node T .root becomes a leaf node if it is the only
node in the tree, and an inner node otherwise. The height of a B+-tree is defined by the length
of the longest path from the root node to a leaf node and we denote it T .h. Additionally, we
define X→parent1 as the parent node of X in T , and X→parentl specifies the node that is
reached by moving l layers up in the tree T starting from node X.

Each node X ∈X contains search keys X.K from a search key domain D. The number of
search keys is node-specific, and we denote it |X.K|, i.e., X.K = (X.K1, . . . , X.K |X.K|). The
search keys are stored in a non-decreasing order, i.e., X.K1 ≤ . . . ≤ X.K |X.K|. Additionally,
each node contains pointers X.P . The number of pointers is |X.K| + 1 and we denote it
|X.P |, i.e., X.P = (X.P 0, . . . , X.P |X.K|). The branching factor T .b of a B+-tree T defines the
minimal and maximal number of pointers (and with it the minimal and maximal number of
search keys) a node can have.
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Figure 6.1: B+-tree example: the search keys, which are unique staff ids, are used to index
values, which are staff records. The random storage positions are illustrated on
the left side of the nodes.

The following must apply at all times:

• Root node X is a leaf node: 1 ≤ |X.P | ≤ T .b− 1.
• Root node X is an inner node: 2 ≤ |X.P | ≤ T .b.
• Inner node X: dT .b/2e ≤ |X.P | ≤ T .b.
• Leaf node X: dT .b/2e ≤ |X.P | ≤ T .b.

Each inner node X stores search keys and pointers to child nodes. In more detail, every search
key X.Ki with i ∈ [1, |X.K| ] has a corresponding pointer X.P i that points to a child node
containing only search keys greater than or equal to X.Ki and smaller than any other search
key X.Kj with j ∈ [i + 1, |X.K| ]. X.P 0 points to a child node containing only search keys
smaller than X.K1. As a result, the |X.K| search keys separate the search key domain D into
(|X.K| + 1) = |X.P | subtrees that are reachable by |X.P | child pointers.

Each leaf node X store search keys and pointers to values1. In more detail, each pointer
X.P i with i ∈ [1, |X.K| ] points to the value indexed by X.Ki. X.P 0 is not used for leaf nodes.
We denote all B+-tree nodes without the values by B+-tree structure.

The B+-trees used in this chapter extend textbook B+-trees with further attributes: each
node X ∈ X has a unique id X.id and stores if it is a leaf in X.isLeaf . A deviation from
textbook B+-trees is that we use unchained B+-trees, i.e., the leaves are not connected. The
reason is that a range query would directly leak the relationship among leaves if links are
followed during a query. Linked leaves would increase the search performance, but it would
severely deteriorate the security. Additionally, we denote the storage position (in the physical
memory) of a node X by X.pos.

In contrast to other approaches using encrypted B+-trees, we do not require to define the
search key domain D in advance. It is not even necessary that the domain is a range of integers.
Instead, D can be an arbitrary domain with a defined order relation and a defined minimal and
a maximal element, i.e., ∀X.K ∈ D : −∞ < X.K <∞ with −∞ and ∞ denoting the minimal
and maximal domain values.

1 A main difference between B+-trees and B-trees is that B+-trees store pointers to values only in leaf nodes
and B-trees store pointers to values in leaf and inner nodes.
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6.1.2 System: HardIDX

Based on the B+-tree data structure described in the last section, we build HardIDX—a secure,
efficient, outsourced index search using a TEE. Throughout this chapter, we consider a static
B+-tree, i.e., the data stored in the tree is outsourced at one point in time. Afterwards, only
search queries are possible and a data update would require a replacement of the whole tree.

Figure 6.2 presents the process flow and an overview of HardIDX involving two entities: a
trusted user, who is the data owner, and an untrusted cloud server with a trusted (Intel SGX)
enclave. Next, we describe HardIDX’s setup and query phase.

7 B+-Tree Search

SGX-enabled Cloud Server 

K4 Provision

3 Remote Attestation

5 Deploy Tree and Data

6 Send Query

9 Result Pointers

8 Load Tree

...

Trusted Untrusted

Enclave
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K
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K

V V 10 Load Values

2 Prepare Data

1 Generate
K V

12 Decrypt
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Figure 6.2: Overview and process flow of HardIDX. For visualization purposes, the tree nodes
and values at the server are shown to be encrypted as a block. In reality, nodes
and values are encrypted individually.

Setup phase. The setup phase is only executed once and consists of the following steps:

1 The user generates two keys: SKK and SKV .
2 The user prepares its values, which can be any data, e.g., rows in a relational database,

values in a key-value store, or files. It stores all values in a pseudorandom order, augments
the values with search keys, and inserts these search keys into a B+-tree. It then
pseudorandomly shuffles the storage order of all nodes in the B+-tree. Finally, it uses
an AE scheme (see Section 2.2.5) to encrypt all B+-tree nodes with SKK and all values
with SKV .

3 The user uses Intel SGX’s remote attestation feature to authenticate the enclave (see
Section 3.1.3), and to establish an authenticated channel to the enclave.

4 The user uses the authenticated channel to provision SKK into the enclave2.
5 The user deploys the encrypted B+-tree nodes and encrypted values to the untrusted

cloud.

Query phase. After the setup, the user can send range queries to the server. Note that it
is straightforward to express equality queries, upper limit queries, and lower limit queries as
range queries.

2 The enclave can use Intel SGX’s sealing feature to securely store SKK in untrusted memory (see Section 3.1.3).
Sealing SKK enables to reboot the enclave without repeating step 3 and 4 .
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6 The user encrypts the search range with AE under SKK and sends the encrypted query
to the enclave at the Intel SGX–enabled cloud server. The untrusted server cannot learn
anything about the query, not even if the same query was sent before, because AE is a
randomized encryption scheme.

7 The enclave has access to SKK ; thus, can decrypt the incoming query. It then starts the
B+-tree search

8 For this search, the enclave loads the required nodes from the untrusted storage into
enclave memory and decrypts the nodes. In construction 1, the entire tree is loaded
into the enclave and the search is performed afterwards. If the tree size exceeds the
EPC memory, this leads to severe performance degradations. As a countermeasure,
construction 2 loads only a subset of tree nodes into the enclave and loads further nodes
on demand until the search is finished.

9 In both constructions the search algorithm eventually reaches a set of leaf nodes, which
hold pointers to values matching the query. This list of pointers represents the search
result. The enclave decrypts the pointers, shuffles the list, and passes the list to the
untrusted part, which only learns the cardinality of the result set.

10 The untrusted part uses the pointers to fetch the encrypted values from untrusted storage.
11 The untrusted part sends the encrypted values to the user.
12 The user uses SKV to decrypt the received values. Notably, SKV never leaves the user;

thus, plaintext values are never available on the server, not even inside the Intel SGX
enclave.

6.1.3 Attacker Model

We assume that the cloud provider deploys HardIDX on a machine supporting a TEE with the
capabilities listed in Table 3.1. The TEE does not protect against side channels, which could
potentially be used by the attacker to extract sensitive information.

The attacker aims to learn any sensitive information about the B+-tree, e.g., plaintext search
keys, plaintext values, or the order relation between the indexed values. We assume the attacker
has full control over all software on the system running HardIDX and thus can perform the
following attacks:

1. Observe all interactions between the enclave and external resources. In particular, the
attacker can observe the access pattern to B+-tree nodes stored outside the enclave.

2. The attacker can use the page-fault side channel to observe data access inside the enclave
at page granularity [32], [76]. Through this side channel, the attacker can observe access
patterns on the B+-tree stored inside the enclave.

3. The attacker can use a cache-timing side channel to learn about code paths or data access
patterns inside the enclave [33], [77], [78].

4. The attacker can deviate from the defined protocol to gain additional sensitive information.

As we show in Section 3.2, Intel SGX is vulnerable to other (side-channel) attacks and multiple
mitigations are known. In this chapter, we only consider the side channels mentioned before
and consider the mitigation of other attacks an orthogonal problem. Nevertheless, HardIDX
has a minimal enclave size; therefore, the presented mitigations should be straightforward to
integrate. Hardware and denial of service (DoS) attacks are out of scope.

For ease of explanation, we first consider a passive attacker in our design section (Section 6.3)
and explain protection against an active attacker as an extension in Section 6.4.2.
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6.2 Related Work

HardIDX is related to TEE-based applications; software-only, encrypted databases; and search-
able encryption.

6.2.1 TEE-based Applications

Besides the TEE-based applications that we discuss in Section 4.8, we consider the following
applications related to HardIDX.

VC3 [184] adapts the MapReduce computing paradigm to Intel SGX. Mapper and Reducer
entities are executed in individual enclaves and thus the data flow between them can leak
sensitive information. While VC3 is tailored towards Intel SGX, they exclude information
leakage from their adversary model. In contrast, we specifically focus on information leakage
in the interaction of an enclave with other entities.

Ohrimenko et al. [185] present data-oblivious machine learning for Intel SGX. The authors
adapt four machine learning algorithms to prevent side-channel exploitation. They transfer all
secret-dependent data and code accesses to data-oblivious accesses using a library that provides
a set of data-oblivious primitives. Access to external data, specifically input data, is addressed
by randomizing the data and always accessing all data, i.e., their solution has a complexity of
O(n), even for tree searches. Following the same approach, HardIDX could trivially achieve
data-oblivious access to the tree since the nodes of our tree are randomized as well. However,
we would lose a main feature of our system: search time complexity of O(logn).

6.2.2 Software-only, Encrypted Databases

Some software-only, encrypted databases use PPE for efficient search, e.g., CryptDB [182] and
Monomi [186]. PPE has a low deployment and runtime overhead due to the ability to use
internal index structures of the database engine in the same way as on plaintext. However,
the security of PPE schemes, such as DET, OPE, and ORE, is debatable (see Section 4.4.2).
For instance, Naveed et al. [13], Grubbs et al. [14], and Lacharité et al. [15] present attacks
recovering plaintext with a high success rate.

There have been a number of attempts to build indices for range queries based on DET.
Bucketization groups ciphertexts on the server and filters results at the user [187]. Wang
et al. [188] use distance-revealing encryption in order to build an r-tree. Li et al. [189] use
prefix-preserving encryption in order to build a prefix tree for range searches. However, all of
these approaches are susceptible to the attacks mentioned above.

Three further approaches for a secure DBMS allowing range queries have been published:
Firstly, Pappas et al. [190] evaluate encrypted bloom filters using MPC. To achieve practical
efficiency, the authors propose to split the server into two non-colluding parties. Our approach
does not require any additional party. Secondly, Egorov et al. [191] present ZeroDB, a database
system that enables a user to perform equality and range searches with the help of B+-trees.
ZeroDB is an interactive protocol requiring many rounds and thus is unsuitable for network
sensitive cloud computing. Thirdly, Poddar et al. [192] present Arx. This system uses a binary
tree with garbled circuits at every node. The garbled circuits evaluate the tree traversal decisions
in a protected manner, but any traversal destroys the visited garbled circuits. Therefore, the
user has to provide new circuits in an additional round or with the next query. This interactive
reparation step severely reduces the usefulness in a highly concurrent cloud scenario.
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6.2.3 Searchable Encryption (SE)

In Section 4.5, we provide a detailed introduction into SE schemes with various processing
capabilities and security definitions. Here, we compare HardIDX only with SE schemes
supporting range queries, because HardIDX also supports this query type. Table 6.1 shows a
summary of the comparison results.

Scheme Search time Query size Storage size Search pattern
leakage Order leakage

Boneh et al. [145] O(n |D| ) O(|D| ) O(n |D| )
Shi et al. [147] O(n log |D| ) O(log |D| ) O(n log |D| )
Shen et al. [146] O(n log |D| ) O(log |D| ) O(n log |D| )
Lu [148] O(logn log |D| ) O(log |D| ) O(n log |D| )
Demertzis et al. [149]
Faber et al. [183] O(logR) O(logR) O(n log |D| )

HardIDX O(logn) O(1) O(n)

Table 6.1: Comparison of range-searchable encryption schemes. n is the number of indexed
search keys, |D| is the size of the plaintext domain, and R is the query range size.
The symbols represent that a leakage is present ( ) or not present ( ).

Boneh et al. [145] present the first range-searchable scheme, which encrypts every entry linear
in the size of the plaintext domain. The scheme from Shi et al. [147] only requires logarithmic
storage per entry in the domain, but their scheme additionally leaks the plaintext of matching
ciphertexts. The construction is based on inner-product predicate encryption, which Shen et
al. [146] make fully secure. All of these schemes have linear search time.

Lu [148] builds the range-searchable encryption from Shen et al. into an index, thereby
enabling polylogarithmic search time. However, his encrypted inverted index tree reveals
the order of the plaintexts and is hence only as secure as OPE. Wang et al. [193] propose a
multidimensional extension of Lu’s scheme, but the extension suffers from the same order leakage
problem. We implemented the range-searchable encryption proposed by Lu and ascertained that
the approach requires several seconds or minutes for a single range search, even with a security
parameter much weaker than HardIDX’s security parameter. Hence, we not only improve
asymptotic search time, but also reduce the constants enabling range-searchable encryption on
much larger datasets.

Cash et al. [194] introduce a protocol called OXT that allows evaluation of boolean queries
on encrypted data. Faber et al. [183] extend OXT to support range queries but either leak
additional information on the queried range or the result set contains false positives. Demertzis
et al. [149] present several approaches supporting secure range queries. They evaluate the
security and performance of their approaches based on the OXT protocol. The scheme that is
most comparable to HardIDX, Logarithmic-URC, is quite equal to the range query approach
without false positives from Faber et al. and also exhibits additional leakage. We provide an
experimental comparison in Section 6.6.2.

There is no known searchable encryption scheme for ranges that has polylogarithmic search
time and leaks only the access pattern—until HardIDX. Oblivious RAM (ORAM) can be used
to hide the access pattern, but Naveed [195] shows that the combination of the two is not
straightforward. Special ORAM techniques, such as TWORAM [196], are needed.
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6.3 Design
The focus of this section is on two HardIDX constructions, which enable users to search for
single search keys and search key ranges on data that is outsourced to an untrusted cloud
provider. First, we introduce the concept of a hardware secured B+-tree (HSBT) and provide
corresponding correctness and security definitions. An HSBT splits the execution of a B+-
tree search into trusted client-side, untrusted server-side, and trusted server-side algorithms.
Afterwards, we present the two HardIDX constructions, which instantiate an HSBT, achieve
logarithmic search complexity, and use Intel SGX to protect the confidentiality and integrity
of the outsourced data under a passive attacker. We present protection strategies against an
active attacker as a HardIDX extension in Section 6.4.2.

6.3.1 Hardware Secured B+-tree
Based on the B+-tree introduction in Section 6.1.1, we define the notion of a hardware secured
B+-tree (HSBT) as follows. We assume that a B+-tree stores n search keys K = (K1, . . .Kn)
and their corresponding values V = (V 1, . . . , V n). S denotes the set of key-value pairs, i.e.,
S = ((K1, V 1), . . . , (Kn, V n)).

Definition 30 (HSBT). An HSBT scheme is a tuple of six PPT algorithms
(
HSBT Setup,

HSBT Enc,HSBT Tok,HSBT Dec,HSBT SearchRange,HSBT SearchRange Trusted
)
.

Algorithms executed at the user:
SK ← HSBT Setup(1λ): Take a security parameter λ as input and output a secret key SK.
γ ← HSBT Enc(SK,S): Take a secret key SK and key-value pairs S as input. Output an

encrypted B+-tree γ.
τ ← HSBT Tok(SK,R): Take a secret key SK and a range R = [Rs, Re] as input. Output an

encrypted search token τ .
V ′ ← HSBT Dec(SK,C′): Take a secret key SK and a set of ciphertexts C′ as input. Decrypt

the ciphertexts and output plaintext values V ′.

Executed at the server on untrusted hardware:
C′ ← HSBT SearchRange(τ , γ): Take an encrypted search token τ and optionally an encrypted

tree γ as input and call the enclave function HSBT SearchRange Trusted. Output a set of
encrypted values C′.

Executed at the server in an enclave:
P ← HSBT SearchRange Trusted(τ ,X): Take an encrypted search token τ and optionally nodes

X as input. Output a set of pointers P .

In the following definitions, we assume a passive attacker. The security implications of an
active attacker are presented in Section 6.6.

Definition 31 (HSBT correctness). Let G denote an HSBT scheme consisting of the six
algorithms described in Definition 30. Given a passive attacker, we say that G is correct if for
all λ ∈ N, for all SK output by HSBT Setup(1λ), for all key-value pairs S used by HSBT Enc(
SK,S) to output γ, for all R used by HSBT Tok(SK,R) to output τ , for all C′ output by
HSBT SearchRange(τ , γ), the values V ′ output by HSBT Dec(SK,C′) are all values in S for
which the corresponding search keys fall into R, i.e., V ′ = {V i | (Ki, V i) ∈ S ∧Ki ∈ [Rs, Re] =
R}.

We define the security of a HSBT based on the extended framework for SSE security proofs
introduced in Section 5.2:
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Definition 32 (HSBT CKA2-HW security). Let G denote an HSBT scheme consisting of the
six algorithms described in Definition 30. Consider the probabilistic experiments RealA(λ) and
IdealA,S(λ), whereas A is a stateful passive adversary and S is a stateful simulator that gets
the leakage functions Lenc and Lhw.

RealA(λ): The challenger runs HSBT Setup(1λ) to generate a secret key SK. A outputs
key-value pairs S = ((K1, V 1), . . . , (Kn, V n)). The challenger calculates γ ← HSBT
Enc(SK,S) and passes γ to A. Afterwards, A makes a polynomial number of adaptive
queries for arbitrary ranges R. For each query, the challenger calculates τ ← HSBT
Tok(SK,R) and returns the encrypted search token τ . A can use γ and the returned
tokens at any time to make queries to the enclave. The enclave returns a set of pointers
P . Finally, A returns a bit b that is the output of the experiment.

IdealA,S(λ): The adversary A outputs key-value pairs S = ((K1, V 1), . . . , (Kn, V n)). Using
Lenc, S creates γ and passes it to A. Afterwards, A makes a polynomial number of
adaptive queries for arbitrary ranges R. For each query, the simulator S creates an
encrypted search token τ and passes it to A. The adversary A can use γ and the returned
tokens at any time to make queries to S (that simulates the enclave). S is given Lhw and
returns a set of pointers P . Finally, A returns a bit b that is the output of the experiment.

G is CKA2-HW secure against adaptive chosen-keyword attacks if for all PPT adversaries A,
there exists a PPT simulator S such that

|Pr[RealA(λ) = 1]− Pr[IdealA,S(λ) = 1]| ≤ negl(λ)

6.3.2 Construction 1

In this section, we describe our first correct (according to Definition 31) and secure (according
to Definition 32) HardIDX construction. The guiding idea of construction 1 is that the entire
B+-tree structure should be stored and processed inside the enclave. We start with a brief
repetition of HardIDX’s setup phase (see Section 6.1.2) enriched with details about construction
1. Then, we describe how construction 1 is an initialization of an HSBT scheme and present its
correctness and security. Finally, we discuss the problems of construction 1.

Setup phase. The cloud provider deploys the server-side algorithms, which are described
later, to an Intel SGX–enabled cloud server. The user generates SKK and SKV , constructs
the B+-tree, encrypts the B+-tree structure with an AE scheme under SKK , and encrypts the
values with an AE scheme under SKV . Then, the user uses Intel SGX’s remote attestation
protocol (see Section 3.1.3) to authenticate the enclave used for the B+-tree search, establishes
an authenticated channel to the enclave, and uses this channel to deploy SKK inside the
enclave. As a result, SKK is only known by the user and the enclave, and SKV never leaves
the user. The enclave can use sealing (see Section 3.1.4) to securely store SKK in untrusted
memory, which would support enclave reboots without repeating remote attestation and key
transfer.

Next, the user sends the encrypted B+-tree structure and the encrypted values to an untrusted
storage region at the cloud server. The enclave loads the B+-tree structure into the enclave
memory (see Section 3.1.1), decrypts the nodes with SKK , and keeps the plaintext nodes in the
enclave memory. Remember that the nodes are still protected, because Intel SGX guarantees
confidentiality and integrity for all data inside the enclave memory. The encrypted values,
which can be huge, remain in untrusted memory. Consequently, less data resides in the enclave
memory, which reduces the necessity of slow EPC paging (see Section 3.1.1). Note that this
has no negative security implications as the values are encrypted with an AE scheme and the
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values are stored in a randomized order. After this setup, the enclave is ready to receive search
queries from the user.

HSBT scheme. Construction 1 is an HSBT scheme denoted by HSBT1 consisting of six PPT
algorithms

(
HSBT1 Setup,HSBT1 Enc,HSBT1 Tok,HSBT1 Dec,HSBT1 SearchRange,HSBT1

SearchRange Trusted
)
. The scheme uses a pseudorandom permutation PRP : {0, 1}λ ×{0, 1}|X|

→ {0, 1}|X|.
Algorithms executed at the user:
SK ← HSBT1 Setup(1λ): Take the security parameter λ as input to execute AE Gen(1λ) two

times generating SKV and SKK . Output SK =
(
SKK , SKV

)
. Keep SKV and SKK

secret at the user. Share SKK with the enclave at the cloud server using the authenticated
channel established during remote attestation.

γ ← HSBT1 Enc(SK,S): Take the key SK and the key-value pairs S = ((K1, V 1), . . . ,
(Kn, V n)) as input. Store all values V = (V 1, . . . , V n) in a random order. Then, insert
all search keys into a B+-tree using a textbook B+-tree insertion with five variations:

1. Give every newly created node X an id according to the creation order, i.e., X0.id = 0
for the first node X0, X1.id = 1 for the second node X1 et cetera.

2. After all search keys are inserted, fill up all nodes with search keys and values. More
specifically, fill a node X that contains |X.K| search keys from the domain D with
(T .b− 1− |X.K|) times the search key ∞ and (T .b− |X.K|) dummy pointers.

3. Pad all search keys and pointers to a fixed bit-length.
4. Use the node ids to store each node at a pseudorandom position, i.e., a node X with

id X.id is stored at position X.pos = PRP(SKK , X.id).
5. Use AE Enc(SKV , · ) to encrypt each value V ∈ V and use AE Enc(SKK , · ) to

encrypt each node X ∈X.
Return the encrypted tree γ, which consists of the encrypted values and nodes.

The described variations lead to an encrypted B+-tree in which every node occupies
the same storage space, the order of the nodes is random, and the order of the values is
random.

τ ← HSBT1 Tok(SKK ,R): Take SKK and a range R = [Rs, Re] as input, calculate τ ← AE
Enc(SKK , Rs||Re), and output τ . Queries for all elements below Re or all elements above
Rs can be created by using Rs = −∞ or Re =∞, respectively.

V ′ ← HSBT1 Dec(SKV ,C′): Take SKV and the encrypted values C′ =
(
C0, . . . , Cj

)
as input,

decrypt all values, i.e., V ′ =
(
AE Dec(SKV , C0), . . . ,AE Dec(SKV , Cj)

)
, and output

V ′.
Executed at the server on untrusted hardware:
C′ ← HSBT1 SearchRange(τ): Take an encrypted search token τ as input, pass τ to HSBT1

SearchRange Trusted, and return the result values C′ =
(
C0, . . . , Cj

)
by dereferencing

the received pointers. See Algorithm 1 for details.

Algorithm 1 HSBT1 SearchRange(τ)
1: P res = HSBT1 SearchRange Trusted(τ)
2: return *P res

0 , *P res
1 , . . . . Return dereferenced pointers

Executed at the server in an enclave:
P ← HSBT1 SearchRange Trusted(τ): Take the encrypted search token τ as input, decrypt the

token, perform a B+-tree traversal, and return the pointers corresponding to values falling
in the queried range in a random order. See Algorithm 2 for details.
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During the B+-tree traversal, the algorithm accesses all search keys in every accessed
node to mitigate secret-dependent decisions. Furthermore, it shuffles the currently
processed nodes X in every round to hide the order. Note that the enclave does not have
to decrypt the nodes, because the user’s encryption was removed in the setup phase. The
nodes reside in the enclave memory and therefore the CPU has plaintext access to them.

Algorithm 2 HSBT1 SearchRange Trusted(τ)
1: τplain = AE Dec(SKK , τ)
2: parse τplain as

(
Rs, Re

)
3: P = ∅ . Result pointers
4: X = (T .root) . Currently processed nodes
5: while X 6= ∅ do
6: P tmp = ∅ . Temporary pointers
7: X = X.Pop()
8: if not X.isLeaf && Rs < X.K1 then
9: P tmp.Append(X.P 0)

10: for i = 1; i < T .b− 1; i++ do
11: If (X.Ki ≤ Rs < X.Ki+1) || (X.Ki ≤ Re < X.Ki+1) ||

(Rs ≤ X.Ki && X.Ki+1 ≤ Re) then
12: P tmp.Append(X.P i)
13: if X.Kb−1 ≤ Re then
14: P tmp.Append(X.PT .b−1)
15: for P in P tmp do
16: if X.isLeaf then
17: P .Append(P )
18: else
19: X.Append(*P )
20: X = random permutation of X
21: P = random permutation of P
22: return P

Correctness and security. Construction 1 is correct according to Definition 31, because it
basically performs a textbook B+-tree traversal inside the enclave. The only difference is that
the accessed nodes and returned pointers are randomized. Furthermore, the encryption (at the
user) and the decryption (inside the enclave) are based on a correct AE scheme.

The following theorem states the security of construction 1 and it is proven in our security
evaluation (Section 6.6.1):

Theorem 1 (HSBT1 security). The hardware secured B+-tree construction HSBT1 is CKA2-
HW secure according to Definition 32.

Problems. Construction 1 suffers from the substantial problem mentioned before: the main
memory region reserved for all enclaves running on an Intel SGX–enabled CPU—the EPC—is
limited to about 96 MB. If the enclaves use more space, paging occurs. According to our
experiments, at least 50,000,000 values are possible with construction 1. However, if a DBMS
should be protected by Intel SGX, a B+-tree is only a small part of the whole system. Other
components would occupy large regions of the EPC and thus limit the available space for the
encrypted B+-tree structure. For that reason, we present a second construction in the next
section that mitigates the EPC restriction issue.
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6.3.3 Construction 2

In this section, we describe our second correct (according to Definition 31) and secure (according
to Definition 32) HardIDX construction. Instead of loading all nodes into the enclave, the
main idea is to load the nodes required to traverse the tree step by step. The challenge is
to optimize the communication bottleneck between the untrusted part and the enclave. We
performed extensive benchmarking and algorithm engineering in order to identify and minimize
time-consuming tasks, such as switches between the untrusted part and the enclave. The
decisive advantage of our second construction is that the required memory space inside the
enclave is O(1) for a tree of arbitrary size. The trade-off is that all nodes are stored encrypted
inside untrusted main memory or on the untrusted disk; therefore, the nodes have to be
decrypted by the enclave. Compared to construction 1, this leads to a slightly larger leakage,
namely a finer-granular access pattern on node level instead of page level. Details are described
by a formal model and proof in the security evaluation section (Section 6.6.1).

In the following, we describe the setup phase of construction 2, show how construction 2 is
an initialization of an HSBT scheme; and present the correctness and security of construction 2.

Setup phase. As in construction 1, the user generates SKK and SKV , constructs the B+-tree,
encrypts the B+-tree using the two keys, performs remote attestation, deploys SKK inside the
enclave using an authenticated channel, and sends the encrypted B+-tree to the cloud server.
In contrast to construction 1, the search algorithm in the enclave does not load the complete
B+-tree structure into the enclave memory. Instead, it only reserves a fixed space, which we
denote reservedSpace, for on the fly processing. Let s be the block size of the used encryption
scheme and o the number of blocks required by each node. Then, the search algorithm loads at
most maxAmount = breservedSpace/(s · o)c nodes into the enclave memory at the same time.

HSBT scheme. Construction 2 is an HSBT scheme denoted by HSBT2 consisting of six PPT
algorithms

(
HSBT2 Setup,HSBT2 Enc,HSBT2 Tok,HSBT2 Dec,HSBT2 SearchRange,HSBT2

SearchRange Trusted
)
. The scheme uses a pseudorandom permutation PRP : {0, 1}λ ×{0, 1}|X|

→ {0, 1}|X|.
All algorithms but HSBT2 SearchRange and HSBT2 SearchRange Trusted exactly match the

corresponding algorithms of HSBT1. Thus, we only describe the two modified algorithms in
the following. Compared to the HSBT1 versions, HSBT2 SearchRange additionally receives the
encrypted tree γ and HSBT2 SearchRange Trusted receives a tuple of nodes X.
Executed at the server on untrusted hardware:
C′ ← HSBT2 SearchRange(τ , γ): Take an encrypted search token τ and the encrypted tree γ

as input. Initially, pass only γ’s root node γ.root to the enclave and receive pointers to
nodes that should be traversed next. Pass nodes until no further nodes are requested.
Then, output C′ by dereferencing all pointers to the values. See Algorithm 3 for details.

A trivial solution is to pass one node after another to the enclave, but each context
switch from the untrusted part to the enclave causes a substantial performance overhead.
Instead, the algorithm optimizes the number of context switches transferring as many
nodes as currently in the queue, but not more than maxAmount.

Executed at the server in an enclave:
P ← HSBT2 SearchRange Trusted(τ ,X): Take an encrypted search token τ and nodes X as

input. Decrypt τ and X using SKK , which was deployed to the enclave during the setup
phase. Then, search in all nodes for search keys falling in the query range. Finally, return
the pointers corresponding to the found search keys in a random order. See Algorithm 4
for details.

During the search for search keys falling in the query range, the algorithm accesses all
search keys to mitigate secret-dependent decisions.
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Algorithm 3 HSBT2 SearchRange(τ , γ)
1: P res = ∅ . Result pointers
2: X = (γ.root) . Currently processed nodes
3: while X 6= ∅ do
4: for i=0; i < |X| && i < maxAmount; i++ do
5: Xtmp.Append(X.Pop())
6: P tmp = HSBT2 SearchRange Trusted(τ ,Xtmp)
7: for (isLeaf, P tmp) in P tmp do
8: if isLeaf then
9: P res.Append(P tmp)

10: else
11: X.Append(*P tmp)
12: return *P res

0 , *P res
1 , . . . . Return dereferenced pointers

Algorithm 4 HSBT2 SearchRange Trusted(τ ,X)
1: P = ∅ . Result pointers
2: τplain = AE Dec(SKK , τ)
3: parse τplain as

(
Rs, Re

)
4: Xplain = (AE Dec(SKK , X0),AE Dec(SKK , X1), . . . ) . Currently processed nodes
5: for X in Xplain do
6: if not X.isLeaf and Rs < X.k1 then
7: P .Append(X.P 0)
8: for i = 1, i < T .b− 1, i++ do
9: if (X.ki ≤ Rs < X.ki+1) || (X.ki ≤ Re < X.ki+1) || (Rs ≤ X.ki && X.ki+1 ≤ Re) then

10: P .Append(X.P i)
11: if Re ≥ X.kb−1 then
12: P .Append(X.P b−1)
13: P = random permutation of P
14: return ((*P res

0 .isLeaf, P res
0 ), (*P res

1 .isLeaf, P res
1 ), . . . )

Correctness and security. Construction 2 is correct according to Definition 31, because it is
based on a textbook B+-tree traversal. The difference to the textbook algorithm is that the
nodes are loaded into the enclave one after another and that each node is encrypted. These
changes do not influence the correctness, because each node remains accessible to the enclave,
as a passive attacker provides the requested nodes. Furthermore, the encryption (at the user)
and the decryption (inside the enclave) are based on a correct AE scheme.

The following theorem states the security of construction 2 and it is proven in our security
evaluation (Section 6.6.1):

Theorem 2 (HSBT2 security). The hardware secured B+-tree construction HSBT2 is CKA2-
HW secure according to Definition 32.

6.4 Extensions

In this section, we present two extensions that can be used for both HardIDX constructions:
multiple user support and protection under an active attacker. The extensions are independent,
and it is straightforward to combine them.
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6.4.1 Multiple User Support

So far, we considered a setup comprising one user, who is also the data owner (i.e., the user
that prepared and uploaded the data). Considering multiple users, we differentiate between
the data owner and users (see scenario presented in Figure 1.1b). The data owner performs all
setup steps described before. If all users have access to the key SKK to create query tokens
and SKV to decrypt the result, HardIDX supports multiple users without any change. The
reason is that concurrent tree traversals do not influence each other.

With three protocol modifications, it is possible to hide the search pattern of users from each
other:

1. The data owner encrypts all nodes with SKK , performs remote attestation with the
enclave, and shares SKK with the enclave, but not with the users.

2. Each user performs remote attestation with the enclave and deploys its own key SKU at
the enclave.

3. Each user uses its key SKU for query encryption and attaches a user identifier to the
query. The enclave uses the identifier to decrypt the query with the corresponding key
SKU , performs a regular search, and re-encrypts the result with SKU .

6.4.2 Protection Under an Active Attacker

In Section 6.3.2 and Section 6.3.3, we present constructions 1 and 2. Theorem 1 and 2 state
that the constructions are secure under a passive attacker, and proofs for these theorems follow
in our security evaluation (Section 6.6.1). The main goal of HardIDX, however, is an outsourced
index search at untrusted cloud providers. In this case, it is important to consider an active
attacker, i.e., an attacker that tries to thwart the correctness and tries to gain additional
sensitive information by not following the defined protocol.

The security evaluation provides an in-depth discussion about possible attack vectors of an
active attacker. For this section, only the result of this discussion is important, which states
that an activate attacker can only do the following protocol deviations: (1) do not pass the
root node first to the enclave, (2) do not pass all requested nodes to the enclave, and (3) do
not pass all results to the user.

In the following, we focus on modifications for construction 2 that prevent these deviations.
It is straightforward to adapt them to construction 1. The modifications involve the B+-tree
creation at the user, the data transferred via the authenticated channel, the algorithm HSBT2
SearchRange, the algorithm HSBT2 SearchRange Trusted, and result processing at the user. On
a high level, deviation (1) is mitigated assigning a nonce to each query, and deviations (2)
and (3) are mitigated managing multiple set hashes (see Section 2.2.7) for each nonce. The
modifications only require O(1) additional enclave memory per query.

• Changes to B+-tree creation. Each leaf node X stores the plaintext hash X.hashi =
H(V i) of each linked value V i next to the corresponding pointer X.P i. Each non-leaf
node X stores the id of each child X.chIdi next to the corresponding pointer X.P i.

• Changes to data transferred via the authenticated channel. Besides the key
SKK , the user transfers the id of the root node Xroot.id to the enclave.

• Changes to HSBT2 SearchRange and HSBT2 SearchRange Trusted. For clarity, we
abbreviate HSBT2 SearchRange and HSBT2 SearchRange Trusted with Untrusted and
Trusted, in the following description. W.l.o.g., we assume that Untrusted sends one
node X at a time to Trusted.

Trusted decrypts X and checks if X.id matches Xroot.id. If this is the case, the algorithm
creates a new nonce, and stores the nonce in a list of known nonces. Otherwise, Trusted
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expects to receive a nonce from Untrusted that is in the list of known nonces. Trusted
aborts if it neither receives the root node nor a known nonce, which prevents deviation
(1).

If a new nonce was created, Trusted initializes four attributes belonging to the nonce:
number of expected nodes expectedNodesNumber = 1, a set hash for expected nodes
expectedNodesHash← SH(∅), a set hash for received nodes receivedNodesHash← SH(
X.id), and a set hash for result values resultV aluesHash← SH(∅). Otherwise, Trusted
loads those attributes.

Afterwards, Trusted reduces expectedNodesAmount by one, calculates receivedNodes-
Hash← SH NI Add(receivedNodesHash,SH(X.id)), and searches for search keys falling
in the search range as described in the unchanged algorithm. If X is a non-leaf
node, Trusted calculates expectedNodesHash ← SH NI Add(expectedNodesHash, SH(
X.chIdi)) for each X.P i pointing to a child node falling into the search range. If X is a
leaf node, Trusted calculates resultV aluesHash ← SH NI Add(resultV aluesHash,SH(
X.hashi)) for each hash X.hashi corresponding to a search key falling into the search
range. Trusted increases expectedNodesNumber according to the expected number of
nodes. Finally, it passes a shuffled list of pointers and the nonce to Untrusted.

At one point, Trusted reduces expectedNodesNumber to 0 with an incoming node and
the search does not lead to more expected nodes. Then, Trusted calculates b← SH Comp(
expectedNodesHash, receivedNodesHash). If b = 0, Trusted did not receive the correct
nodes from Untrusted, aborts and deletes the nonce and the set hashes. Thus, Trusted
guarantees that it traversed all nodes that might contain an eligible result and thereby
protects against deviation (2). If the hashes match, Trusted calculates resultV alues-
Hash← SH NI Add(resultV aluesHash,SH(X.hashi)) for each result found in the last
search round, calculates t← MAC Tag(SKK , resultV aluesHash), and returns t together
with the pointers. Untrusted adds t to the response for the user.

• Changes to result processing. After the decryption, the user calculates a set hash
over the received values resulting in resultV aluesHash′, calculates t′ ← MAC Tag(SKK ,
resultV aluesHash′), and accepts the result only if t′ = t. The MAC creation and
verification protect against deviation (3).

Summarizing, all possible deviations are mitigated. Hence, the extension described in this
section provides security under an active attacker. Performance measurements show that the
described modifications introduce an overhead of about 0.3 ms at a query result set size of 100.

6.5 Implementation

For our experiments, we implemented a HardIDX prototype for both constructions. They
are implemented in C/C++ and use the Intel SGX SDK in version 1.1. In the following,
we elaborate implementation details, which are important with respect to performance and
security.

Side channels. As stated in the attacker model (see Section 6.1.3), we consider three possible
side channels: external resource access, page-fault, and cache-timing side channel. Using these
side channels, an adversary can observe access patterns to memory with the goal of inferring
sensitive information. The first two side channels cannot be mitigated by the implementation
as they are inherent to Intel SGX. We further discuss these side channels in our security
evaluation (Section 6.6.1).

The cache-timing side channel allows a noisy, but fine-grained observation of memory accesses
on cache line level. This observation does not reveal sensitive data directly, but can reveal
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sensitive information if an access depends on sensitive data. To protect against cache-timing
side-channel attacks, our algorithms and implementation do the following: During the B+-tree
creation, every node is filled up with dummy search keys and dummy pointers; all search keys
and pointers are padded to a fixed bit-length (32 bit in our implementation); and all nodes and
values are stored at a random position. B+-tree searches inside the enclave always access every
search key and pointer, even if the search could end once a search key is found that is larger
than the search range. By these and other fine-grained implementation details, we achieve data
independent accesses and thwart the cache-timing side channel.

Memory Management. In particular construction 2 is optimized with respect to memory
transfer operations and context switches between untrusted part and enclave. To reduce the
number of context switches, the untrusted part holds a list of all requested nodes. Nodes from
this list (up to a specified maximum) are transferred and processed at once, i.e., with only one
switch. The memory transfer is optimized by exploiting the fact that the enclave can access the
memory of its host process. The B+-tree is loaded in the host process’s memory from where
the enclave can fetch nodes directly. This is much more efficient than copying nodes explicitly
into enclave memory.

Cryptography. As AE implementation, we use AES-128 in GCM mode [49], which is supported
by the Intel SGX SDK. It uses leakage resilient implementations and hardware features [197].
For instance, it uses AES-NI hardware which holds the S-Boxes in CPU registers instead of
RAM, thus hampering cache side-channel attacks [198], [199]. As set hash function, we use the
Set-XOR-Hash construction (see Section 2.2.7).

6.6 Evaluation

Based on the two HardIDX constructions presented in Section 6.3 and the implementation details
provided in Section 6.5, this section gives an in-depth security and performance evaluation.

6.6.1 Security Evaluation

First, we evaluate the security of the constructions individually. Then, we compare their
leakages. Finally, we discuss the security under an active attacker.

Construction 1. We start by considering two side channels stated in HardIDX’s attacker
model (see Section 6.1.3): page-fault and cache-timing side channel. We do not discuss the
cache-timing side channel as it is mitigated by our implementation (see Section 6.5). Afterwards,
we define the leakage under a passive attacker and use it to prove Theorem 1.

For the B+-tree search, the external-resource-access side channel is not relevant, because the
whole B+-tree structure is loaded into the enclave memory during the setup phase. Therefore,
the search does not require any external accesses. The only external communication is the
input of an encrypted query and the output of a shuffled list of result pointers. The query is
encrypted with AE and thus an attacker does not learn anything about the query. In particular,
AE hides if an equal query was sent before. The leakage of the output pointers is considered in
the leakage functions, which we define later in the section.

The page-fault side channel allows an attacker to observe all accesses to individual enclave
memory pages, but accesses within the same page are indistinguishable. Each enclave memory
page can contain both, code and data, and allocates 4 kB of main memory. Our implementation
uses 128 bit AES blocks. Thus, up to k = 4 kB/(o · 128 bit) nodes are contained in one page
where o denotes the number of AES blocks used by each node. Our experiments show that
o = 102 if T .b = 100 and 32 bit search keys and pointers are used. Therefore, multiple (huge)
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nodes fit within a single page. We use the notation X ∈ ρ to express that X is stored in page ρ.
The B+-tree nodes are stored next to each other in memory, and they fit into |ρ| = dk/ |X| e
pages ρ =

(
ρ1, . . . ρ|ρ|

)
.

Based on this side-channel discussion, the HSBT1 algorithms, the attacker model, and the
HSBT CKA2-HW–security definition (see Section 6.3.1), we now define the leakage functions
of HSBT1:

Lenc(S): Given the key-value pairs S = ((K1, V 1), . . . , (Kn, V n)), this function outputs the
number of B+-tree nodes |X|, the number of indexed values n, and the size of every
value.

Lhw(S,T ,R, t): Given the key-value pairs S, the plaintext B+-tree T , the search range R,
and a point in time t, this function outputs the pages access pattern Φ(S,T ,R, t) and
the values access pattern Ψ(S,T ,R, t).

Loosely speaking, the pages access pattern Φ(S,T ,R, t) is a tree that contains all
pages in ρ that get accessed when the range R is searched for. A directed edge in Φ
from a parent to a child means that the parent gets accessed before the child. For a
more formal definition, we define M as the set of all pages in which leaf nodes are
present that contain search keys falling in the search range, i.e., M = {ρ | ρ ∈ ρ ∧X ∈
ρ∧X ∈T ∧ X.isLeaf ∧ ∃ j ∈ [1, T .b− 1] : X.Kj ∈R}. Now, we can specify the node set
Y of Φ as Y = {ρi | ρi ∈M}

⋃
{ρi | ∃ l ∈ [1, T .h] : X2 == X1→parentl ∧X1 ∈ ρj ∧ ρj ∈

M ∧ X2 ∈ T ∧ X2 ∈ ρi ∧ ρi ∈ ρ}. The edge set of Φ is {(ρi, ρj) | ρi, ρj ∈ Y ∧ ρi 6=
ρj ∧ ∃X1, X2 ∈ T : (X1 ∈ ρi ∧X2 ∈ ρj) ∧X1 == X2→parent1}. The time parameter t
specifies a random but fixed order of sibling nodes in Φ. See Figure 6.3 for an illustrative
example.

The values access pattern Ψ(S,T ,R, t) is a set of page-pointers tuples. Each tuple
is a combination of a page containing leaf nodes containing search keys falling in the
search range and the set of the corresponding pointers. More formally, Ψ(S,T ,R, t) =
{(ρ,P ρ) | ρ ∈ ρ ∧ X ∈ ρ ∧ X ∈ T ∧ X.isLeaf ∧ ∃ j ∈ [1, T .b − 1] : X.Kj ∈ R ∧ P ρ =
{X.P l |X ∈ ρ ∧ l∈ [1, T .b− 1] ∧X.K l ∈ R}}. The time parameter t specifies a random
but fixed order of the pointers.

ρ3 29 44

ρ1 34 39 ρ2 59 64ρ1 13 21

ρ3 21 25 ρ2 34 35 ρ1 44 53 ρ2 64 69

ρ3 13 16 ρ2 29 31 ρ1 59 61ρ3 39 42

(a)

ρ3

ρ1 ρ2

ρ2 ρ2 ρ3 ρ1

(b)

ρ3

ρ2 ρ1

ρ1 ρ2 ρ3 ρ2

(c)

Figure 6.3: Illustration of page access pattern leakage Φ: (a) example B+-tree T with the
pages containing the node on the left, (b) leakage Φ(S,T ,R, t) for R = [33, 55]
and B+-tree T at t, (c) leakage Φ(S,T ,R, t) for R = [33, 55] and B+-tree T at t′.
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The pages access pattern Φ and the values access pattern Ψ are worst-case estimations. An
attacker would require many queries to exactly determine which page is a child of another page
in Φ. The same applies for the exact matching of result values to a page, which is leaked by Ψ.

Proof of Theorem 1. We describe a PPT simulator S for which a PPT adversary A can
distinguish RealA(λ) and IdealA,S(λ) with negligible probability:

• Setup: S creates a random key SKrnd = AE Gen(1λ) and stores it.
• Simulating γ: S gets Lenc. It uses the contained number of nodes |X| to create a set

of nodes Xrnd =
(
X1, . . . , X|X|

)
filled with random search keys and random pointers.

S encrypts each node X ∈ Xrnd with AE Enc(SKrnd, X), assigns each node a unique,
random id Xi.id ∈ [0, |X| − 1], and stores the encrypted nodes at the position Xi.pos =
PRP(SKrnd, Xi.id). As a result, the nodes will be scattered randomly in the pages(
ρ1, . . . ρ|ρ|

)
. Additionally, S uses the received number of values n and the size of the

values to generate n encryptions of random values C =
(
C1, . . . , Cn

)
using AE Enc. S

outputs γ = (Xrnd,C)
All described operations are possible, because the number of nodes |X|, the amount n of

values, and the size of every value are included in the leakage Lenc. In comparison to the
tree output by RealA(λ), the simulated γ contains the same number of nodes, the nodes
have the same size, and the encrypted values have the same size. The IND-CCA security
of AE makes the nodes and values indistinguishable from the output of RealA(λ).

• Simulating τ : The simulator S creates a random range R = [Rs, Re] and encrypts the
range, i.e., τ ← AE Enc(SKrnd, Rs||Re). S outputs τ .

The IND-CCA security of AE makes the simulated τ indistinguishable from the output
of RealA(λ).

• Simulating the enclave: At time t, the simulator S receives an encrypted range token τ
and Lhw. S uses Φ to simulate the page access pattern: it starts at the root of Φ and
follows the links unambiguously defined by t. Afterwards, S creates P res = ⋃

(ρ,P ρ)∈ΨP
ρ.

Using Ψ, S determines the order of the pointers in P res and outputs P res.
A cannot distinguish the page access of RealA(λ) and the simulated access, because

the page access pattern delivers deterministic results. Therefore, the results are consistent
for different requests of the same range and for queries of distinct or overlapping ranges.
Furthermore, the number of result pointers matches and the pointers are consistent,
because Ψ(S,T ,R, t) is unambiguous. The values pointed to are indistinguishable,
because they are protected by the IND-CCA security of AE.

Construction 2. In this section, we precisely define the leakage of construction 2 under a
passive attacker and use it to prove Theorem 2. Regarding the two side channels not handled
by our implementation—the page-fault and cache-timing side channels—we only describe the
differences compared to construction 1.

The external-resource-access side channel is relevant for the B+-tree search at construction 2,
because the enclave accesses individual nodes. Thus, we explicitly consider this leakage in Lhw.
The page-fault side channel does not leak additional information at construction 2, because
nodes are smaller than memory pages. Therefore, this information is already contained in the
leakage of the external-resource-access side channel.

Based on this side channel discussion, the HSBT2 algorithms, the attacker model, and the
HSBT CKA2-HW–security definition, we now define the leakage functions of HSBT2.

Lenc(S): Given the key-value pairs S = ((K1, V 1), . . . , (Kn, V n)), this function outputs the
number of B+-tree nodes |X|, the number of values n, and the size of every value.
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Lhw(S,T ,R, t): Given the key-value pairs S, the plaintext B+-tree T , the search range R,
and a point in time t, this function outputs the nodes access pattern Υ(S,T ,R, t) and
the value access pattern Ψ(S,T ,R, t).

The nodes access pattern Υ(S,T ,R, t) is a tree that contains the storage positions
of all nodes in T that get accessed when searching for the range R. A directed edge in
Υ(S,T ,R, t) from a parent to a child means that the parent gets accessed before the child.
For a more formal definition, we denote the set of leaf nodes that contain search keys from
the search range by M , i.e., M = {X |X ∈T ∧ X.isLeaf ∧ j ∈ [1, T .b− 1] : X.Kj ∈R}.
Now, we can specify the node set Y of Υ as Y = {Xi.pos |Xi ∈M} ∪ {Xi.pos |Xi ∈
T ∧ X ∈ M ∧ ∃ l ∈ [1, T .h] : Xi == X→parentl}. The set of directed edges in Υ is
{(Xi.pos,Xj .pos) |Xi.pos,Xj .pos ∈ Y ∧ Xi == Xj→parent1}. The time parameter t
specifies a random but fixed order of sibling nodes in Υ. See Figure 6.4 for an illustrative
example.

The values access pattern Ψ(S,T ,R, t) is a set of node-pointers tuples. Each tuple
is a combination of a leaf node containing search keys falling in the search range and
the set of the corresponding pointers. More formally, Ψ(S,T ,R, t) = {(X,PX) |X ∈
T ∧X.isLeaf ∧∃ j ∈ [1, T .b−1] : X.Kj ∈ R∧PX = {X.P l | l∈ [1, T .b−1]∧X.K l ∈ R}}.
The time parameter t defines a random but fixed order of the pointers.

0 29 44

3 34 39 1 59 642 13 21

4 21 25 10 34 35 7 44 53 8 64 69

6 13 16 11 29 31 9 59 615 39 42

(a)
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11 5 10 7
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0

1 3
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Figure 6.4: Illustration of nodes access pattern leakage Υ: (a) example B+-tree T with the
nodes’ storage positions on the left, (b) leakage Υ(S,T ,R, t) for R = [33, 55] and
B+-tree T at t, (c) leakage Υ(S,T ,R, t) for R = [33, 55] and B+-tree T at t′.

The nodes access pattern Υ and the values access pattern Ψ are again worst-case estimations.

Proof of Theorem 2. We describe a PPT simulator S for which a PPT adversary A can
distinguish RealA(λ) and IdealA,S(λ) with negligible probability.

• Setup: S creates a random key SKrnd = AE Gen(1λ) and stores it.
• Simulating γ: S gets Lenc. It uses the contained number of nodes |X| to create a set

of nodes Xrnd =
(
X1, . . . , X|X|

)
filled with random search keys and random pointers.

S encrypts each node X ∈ Xrnd with AE Enc(SKrnd, X), assigns each node a unique,
random id Xi.id ∈ [0, |X| − 1], and stores the encrypted nodes at the position Xi.pos =
PRP(SKrnd, Xi.id). As a result, the nodes will be scattered randomly in the memory.
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Additionally, S uses the received number of values n and the size of the values to generate n
encryptions of random values C =

(
C1, . . . , Cn

)
using AE Enc. S outputs γ = (Xrnd,C)

All described operations are possible, because the number of nodes |X|, the amount n of
values, and the size of every value are included in the leakage Lenc. In comparison to the
tree output by RealA(λ), the simulated γ contains the same number of nodes, the nodes
have the same size, and the encrypted values have the same size. The IND-CCA security
of AE makes the nodes and values indistinguishable from the output of RealA(λ).

• Simulating τ : The simulator S creates a random range R = [Rs, Re] and encrypts the
range, i.e., τ ← AE Enc(SKrnd, Rs||Re). S outputs τ .

The IND-CCA security of AE makes the simulated τ indistinguishable from the output
of RealA(λ).

• Simulating the enclave: At time t, the simulator S receives encrypted nodes X, an
encrypted token τ , and Lhw. S decrypts each node X ∈X with AE Dec(SKrnd, X), uses
X.id to calculate the storage position, i.e., X.pos = PRP(SKrnd, Xi.id), and performs a
dummy search starting at X.pos with the same access pattern as the actual search. Then,
it further processes X based on the leaf attribute:

– X is not a leaf: S uses Υ(S,T ,R, t) to determine the child nodes that should be
requested based on the received node. For each child, it returns a tuple containing
false and the pointer to the child in the order defined by t.
A cannot distinguish the output of RealA(λ) and the simulated output, because

the pointers point to indistinguishable nodes according to the IND-CCA security of
AE. Furthermore, the results are consistent for different requests of the same range
as the nodes access pattern delivers deterministic results and the pseudorandom
permutation creates unambiguous positions for the simulated nodes. The same
argument applies for queries of distinct or overlapping ranges.

– X is a leaf: S uses the leakage Ψ to create a set with all result pointers P res =⋃
(X,PX)∈ΨP

X in the order defined by t. S combines each value in P res with true
and returns the result.

This output is indistinguishable from the output of RealA(λ) as the number of
result pointers matches and the pointers are consistent because Ψ is unambiguous.
The values pointed on are indistinguishable, because they are protected by the
IND-CCA security of AE.

Leakage comparison. The main difference in the leakages of construction 1 and construction 2
is the granularity of the leakages. In construction 1, the attacker can reveal accesses on a
page level, because Intel SGX inherently leaks the page access pattern. In construction 2, the
attacker can reveal accesses on a node level, because external accesses are necessary. This
means that construction 2 leaks data on a finer granularity.

Active attacker. We omit the correctness and CKA2-HW–security definitions under an active
attacker for brevity, but they are easily deducible from Definition 31 and Definition 32. We
further only consider construction 2 under an active attacker, but the arguments and techniques
can be applied to construction 1 with minor modifications.

We identified two basic attack vectors that cover a wide range of possibilities: First, an
active attacker can try to attack the protection mechanisms of Intel SGX to gain insights about
data and algorithm execution not under her control. According to our attacker model (see
Section 6.1.3), we have to protect against three side-channel attacks. As explained before, we
mitigate one with our implementation and the other two are covered by the leakage functions
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of constructions 1 and 2. For other attacks, we rely on Intel SGX’s protection mechanism to
guarantee security and correctness under an active attacker.

Second, an active attacker can try to influence the data and protocol execution under her
control to gain additional sensitive information or to prevent the user from getting the correct
result:

• Unprotected static data: The only static data influenceable by the active attacker are
values and nodes. The usage of AE guarantees the security of this data. The AE scheme
also thwarts correctness attacks trying to modify static data, because these actions are
noticed by the decryption algorithm. However, an attacker might delete nodes or values.

• Unprotected dynamic data: The only dynamic data influenceable by the attacker
are search tokens. The security and integrity of search tokens are guaranteed by AE. A
replay attack does not provide the attacker with any additional information as the tree
is static and the leakage stays the same for a replayed token. The attacker could drop
tokens, but such a DoS attack is out of scope according to our attacker model.

• Unprotected algorithms: HSBT2 SearchRange is the only algorithm under attacker
control. Besides DoS, there is only a fixed set of possible protocol deviations. Modified
static or dynamic data is directly noticeable by the enclave, which can reject further
processing. Reducing the number of nodes passed to the enclave at once slows down the
process, but does not lead to additional information and does not impact the correctness.
In fact, passing one node after another is already covered by the defined leakage. Passing
nodes to the enclave that are not expected does not leak additional information, as this
information is leaked by the enclave not requesting them. The only remaining deviations
are the following: (1) do not pass the root node first to the enclave, (2) do not pass all
requested nodes to the enclave, and (3) do not pass all results to the user. Note that the
open issue discussed for unprotected static data—node and value deletions—have the
same result as deviation (2) and (3).

Overall, the deviations (1)–(3) are the only possibilities of an active attacker that we consider.
A mechanism to protect against these deviations is presented in Section 6.4.2. It is important
to note that the deviations do influence the correctness of the protocol, but not the security.
Thus, the security proofs provided for passive attackers are also valid for active attackers.

6.6.2 Performance Evaluation

In this section, we present performance results of multiple experiments. First, we compare
our two constructions described in the design section. Then, we examine the effect of the
constructions’ different memory-management strategies. Finally, we compare our solution
against the currently3 fastest, polylogarithmic range query search algorithms [149], [183].

We performed all experiments with one Intel SGX–enabled Intel Core i7-6700 @ 3.40 GHz
and 32 GB DDR4 RAM. We further used 64-bit Ubuntu 14.04.1 extended with Intel SGX
support. All presented latencies measure the processing time spent at the server excluding any
network delay.

Construction 1 vs. construction 2. For this experiment, we set the branching factor T .b to
10 and the tree contains 1,000,000 key-value pairs. We perform 1000 random range queries
R = [Rs, Re] with five result set sizes: 20, 24, 28, 212, 216. In more detail, a range start Rs is
selected uniformly at random from the value domain. Next, Re is set to the search key that
comes 20, 24, . . . entries later in a sorted list of the search keys contained in the tree. If Rs is

3 At the time of the publication of the paper [42] corresponding to this chapter.
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not followed by enough search keys, the sampling is repeated. The following range searches
have a result set size of 20 in the example depicted in Figure 6.1: [2, 4], [40, 40], and [60, 82].

Figure 6.5 depicts the results of the described experiment, whereby the x-axis shows the size
of the result set and the y-axis shows the mean query latencies. Construction 2 is slower than
construction 1 by a small factor at any result set sizes. The performance difference can be
explained by the following effects:

• Context switch. On each call into and out of the enclave, Intel SGX performs a context
switch. As we explain in detail in Section 3.1.2, this switch includes, e.g., storing processor
state, restoring processor state, and copying data. Construction 1 only requires one
context switch. In contrast, construction 2 requires O(T .h) switches, as at least each
level of the B+-tree is loaded into the enclave individually.

• Data transfer. In construction 1, the data transfer between untrusted part and enclave
is limited to the incoming query and the outgoing result set. In contrast, construction 2
additionally transfers individual nodes between untrusted part and enclave.

• Access to plaintext. In construction 1, decryption is a one-time effort done in the
setup phase. During query processing, construction 1 has plaintext access to all nodes
of the B+-tree. Construction 2 incrementally loads the B+-tree nodes from untrusted
storage and decrypts all processed nodes individually.

For an increasing size of the result set, both algorithms search a linearly increasing part of the
tree. The latencies of our two constructions converge (on a logarithmic scale). This shows that
the effects described above diminish compared to the search time of the algorithm.

Figure 6.5: Comparison of constructions (95% confidence interval).

Memory management. In order to identify the limiting parameters in the memory manage-
ment of our two constructions, we evaluate B+-trees with different tree sizes, i.e., number of
key-value pairs, and branching factors. For both constructions and for each tree size, we run
1000 randomly chosen queries with a fixed result set size of 100 and test the branching factors
10, 25, 50 and 100. The results for the two constructions are depicted in Figure 6.6a and
Figure 6.6b. The x-axis shows the size of the B+-tree and the y-axis shows the mean query
latencies.

In Figure 6.6a, we see a sharp increase of the latency above a tree size of 106. This is due to
the exhausted EPC memory and the virtual memory mechanism of the OS that swaps pages in
and out. This is not security critical since pages remain encrypted and integrity protected by
Intel SGX, even when they are swapped out of the EPC.

We see a significant difference in the impact of paging between the different branching factors.
This becomes clear by considering the number of required page swaps. The lower the branching
factor of a B+-tree, the higher the number of nodes (scattered in main memory). The higher
the number of nodes, the higher the number of accesses to different memory pages. The higher
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(a)

(b)

Figure 6.6: Effect of different branching factors in (a) construction 1 and (b) construction 2
with 95% confidence interval.

the number of different page accesses, the higher the probability of an access to a swapped-out
page.

In Figure 6.6b, we see that construction 2 is not affected by paging albeit supporting an
unlimited tree size. Our data also shows that, as expected, higher branching factors result in
better performance. Disregarding the paging problem of construction 1 above a tree size of
106 records, a direct comparison of the constructions reveals that the latency of construction 2
approaches the latency of construction 1 for higher branching factors.

Comparison with related work. As final experiment, we compare construction 2 against the
currently fastest approach with comparable security features and a security proof presented by
Demertzis et al. [149]. The authors present seven constructions that support range queries. The
constructions have different trade-offs regarding security, query size, search time, storage, and
false positives. We do not compare against the highly secure scheme with prohibitive storage
cost and also exclude the approaches with false positives as construction 2 does not lead to
false positives. Instead, we compare against the most secure approach without these problems:
Logarithmic-URC. Demertzis et al. do not determine a SSE scheme on which Logarithmic-URC
is based on. However, they use the OXT construction from Cash et al. [194] for security and
performance evaluation. Thus, our implementation also uses OXT as SSE scheme.

Faber et al. [183] present a construction quite equal to Logarithmic-URC. We implemented
the algorithm of Demertzis et al., but a security and performance comparison to the construction
of Faber et al. would lead to comparable results.

For our comparison between Logarithmic-URC and construction 2, we search for random
ranges with a result set size of 100 and repeat each test 1000 times with four tree sizes: 100,
1000, 10,000, and 100,000. At construction 2, we use a branching factor T .b of 100. Table 6.2
shows the results of this experiment.
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Tree Size 100 1000 10,000 100,000
Logarithmic-URC 0.015 s 0.020 s 0.051 s 1.052 s
Construction 2 (T .b = 100) 0.119 ms 0.121 ms 0.124 ms 0.125 ms

Table 6.2: Latency comparison of random range queries with Logarithmic-URC [149] and
construction 2.

Construction 2 runs in about a tenth of a millisecond and with a very moderate increase for all
tree sizes. In contrast, Logarithmic-URC requires at least multiple milliseconds up to a second
for bigger trees. A reason for the performance difference might be that OXT construction itself
is less efficient than our construction. Furthermore, the search time of OXT depends on the
number of entries. Logarithmic-URC fills the OXT construction with elements from a binary
tree over the search key domain D for every stored search key. An increasing domain severely
increases the tree height of a binary tree and thus the number of entries for OXT. In contrast,
the height of the B+-tree in our construction is independent of the domain size. The height
only grows in the number of search keys and is dependent on the branching factor.

Besides the latency difference, our construction only requires index storage in O(n) and
Logarithmic-URC requires O(n logD). A functional difference between Logarithmic-URC and
construction 2 is that Logarithmic-URC requires to fix the search key domain D beforehand. In
our constructions, it is not necessary to fix the domain and the domain size has no performance
implications.

It is not trivial to compare Logarithmic-URC and construction 2 regarding security. The
access pattern leakage and the leakage of the internal data structure of Logarithmic-URC are
comparable to our access pattern leakages. However, Logarithmic-URC additionally leaks the
domain size, the search range size, and the search pattern. The search pattern reveals whether
the same search was performed before, which might be sensitive information.

6.7 Summary
In this chapter, we introduced how TEE-protected B+-trees can be used for a secure, efficient,
outsourced data processing system. This system—HardIDX—supports range searches and
equality searches over encrypted data using a TEE. HardIDX is also deployable as a secure
index in an encrypted database. We presented two HardIDX constructions with different
memory-management strategies. For both constructions, we presented leakage functions under
a passive attacker, explicitly including side channels aspect of Intel SGX. We provided formal
security proofs for the claimed leakages and showed how to secure HardIDX in an active attacker
environment. HardIDX’s TCB is small exposing a small attack surface. The performance
evaluation showed that range queries over 50 million encrypted B+-tree entries require about
1 ms if the result size is 100. This demonstrates that HardIDX scales to large tree sizes. In
contrast, the fastest related work requires more than a second for 100,000 encrypted entries.
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Protected Database Dictionaries: EncDBDB

In this chapter, we examine the secure, outsourced, TEE-based processing of the dictionary
data structure. To be precise, we examine dictionaries that are used for dictionary encoding
of database columns. Dictionary encoding splits each database column into two structures: a
dictionary containing a list of (potentially unique) values and an attribute vector containing
references to dictionary entries according to the original column. The main goal of dictionary
encoding is data compression. The compression rate is high if the original column has many
values in total, but only a few unique values.

Using TEE-protected dictionaries, we design EncDBDB—a secure, efficient, outsourced,
dictionary-encoding–based, column-oriented, in-memory database supporting analytic queries
on large datasets. Dictionary encoding reduces the storage space overhead of large (encrypted)
datasets [200], [201], column-oriented data storage optimizes the processing of analytic work-
loads [202]–[205], and in-memory processing boosts the overall performance [206]–[208].

Therefore, EncDBDB is especially suited for data warehouses, which are used by companies
for business intelligence and decision support. Such warehouses contain large datasets and the
underlying DBMSes are optimized for complex, read-oriented, analytic queries. In this chapter,
we focus on one complex, required query type: range queries. Equality queries are supported
implicitly, as they can be expressed as range searches. Additionally, we explain how EncDBDB
can handle joins, insertions, deletions, updates, counts, aggregations, and average calculations.

EncDBDB offers nine encrypted dictionary types, which provide different security, per-
formance, and storage efficiency trade-offs for the stored data. The data owners can select
an arbitrary encrypted dictionary type for each database column according to their desired
requirements.

Our evaluation describes the security, performance, and storage efficiency trade-off of the
different encrypted dictionary types. In the security evaluation, we first compare the security of
six encrypted dictionary types with security schemes known in literature. Then, we classify the
security of the remaining three encrypted dictionary types relative to the six others. Using an
Intel SGX-based EncDBDB prototype and a real-world dataset, we perform multiple storage
and performance experiments. Finally, we provide a usage guideline for the different encrypted
dictionary types.

An encrypted database can also be built using purely cryptographic protection. For instance,
FHE [17] supports arbitrary computations on encrypted data. However, FHE is too slow for
an efficient encrypted database [19], [180]. CryptDB [182] and Monomi [186] use multiple
encryption schemes, e.g., DET [10], [125], OPE [11], [12], [127], [129], and ORE [127], [132], [133],
to perform different database functionalities. The encryption schemes are layered and/or stored
in parallel, introducing a storage overhead. Additionally, careful query rewriting is necessary
to receive a result securely and efficiently. Alternatively, a TEE can be used to build an
encrypted database, but related TEE-based approaches assume an enclave memory size that is
not supported efficiently by available TEEs [164], [209], do not provide DBMS functionality [42],
do not support persistency [30], or leak the result of every primitive operation [29]. Also, all
mentioned TEE-based approaches do not consider data compression to reduce the size of large
databases.
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The contributions of this chapter are the following:
• A secure, efficient, outsourced, TEE-based, column-oriented, in-memory database using

protected dictionaries.
• Nine encrypted dictionary types from which data owners can freely select per column

according to their requirements. The nine types provide different security (order and
frequency leakage), performance, and storage efficiency trade-offs. The security ranges
from the equivalent of deterministic ORE [132] to range predicate encryption (RPE) [148].

• Integration of the EncDBDB approach into MonetDB [210]–[212], an open source DBMS.
The enclave has only 1129 LOC, reducing the potential for security-relevant implemen-
tation errors and side-channel leakages. Query optimization and auxiliary database
functionalities, e.g., storage, transaction, and database recovery management still operate
without changes to the original code.

• Sub-millisecond overhead for encrypted range queries compared to plaintext range queries,
on a real-world customer database containing millions of entries.

• Less storage space required for a compressed, encrypted column with the appropriate
encrypted dictionary type than for a plaintext column with the same data.

The remainder of this chapter is structured as follows: In Section 7.1, we give an in-depth
introduction into dictionaries; discuss the benefits of dictionary-encoding–based, column-
orientated, in-memory databases; explore EncDBDB in detail assuming the existence of
multiple encrypted dictionary types; and present the attacker model. In Section 7.2, we discuss
approaches related to EncDBDB. Afterwards, we present the design of the nine encrypted
dictionary types in Section 7.3. In Section 7.4, we present an EncDBDB extension enabling
EncDBDB to handle dynamic data, followed by relevant implementation details of our Enc-
DBDB prototype in Section 7.5. In Section 7.6, we provide an in-depth security, storage, and
performance evaluation for the different encrypted dictionary types. In the same section, we
additionally present a usage guideline for the encrypted dictionary types. We conclude this
chapter with a summary in Section 7.7.

7.1 Design Considerations
Our goal is to use TEE-protected dictionaries to build a secure, efficient, outsourced, dictionary-
encoding–based, column-oriented, in-memory database. In this section, we first give an in-depth
introduction of the data structure considered in this chapter: dictionaries. Next, we discuss
the benefits of combining in-memory processing, column-orientated storage, and dictionaries.
Then, we give an overview of the considered system called EncDBDB. Finally, we present the
assumed attacker model.

7.1.1 Data Structure: Dictionary

A mechanism denoted dictionary encoding can be used by databases for data compression. The
idea of dictionary encoding is to split a column C = (C0, . . . , C |C|−1) into two structures: a
dictionary D and an attribute vector AV . The dictionary D = (D0, . . . , D|D|−1) is filled with
all values V ∈ C and every V has to be present in D at least once. The index i of a dictionary
entry Di is called its ValueID (vid). The attribute vector AV = (AV 0, . . . , AV |AV |−1) is
constructed by replacing all values V ∈ C with one vid that corresponds to V . As a result,
AV contains |AV | = |C| ValueIDs. The index j of an attribute vector entry AV j is called its
RecordID (rid). un(C) denotes the set of unique values in C, |un(C)| the number of unique
values in C, oc(V ,C) the occurrence indices of a unique value V in C, and |oc(V ,C)| the
number of occurrences of V in C. We define the correctness of a column split as follows:
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Definition 33 (Split Correctness). A split of column C into a dictionary D and an attribute
vector AV is correct if i is the ValueID stored in the attribute vector at position j and Di

equals Cj, i.e., ∀ j ∈ [0, |AV | − 1] : (i = AV j ⇐⇒ Di = Cj).

In Figure 7.1, we present a dictionary encoding example based on a first name column (FName).
For instance, Jessica is inserted in the dictionary at the ValueID 1 and all positions from
the original column that contain Jessica are replaced by this ValueID in the attribute vector
(see RecordIDs 0, 2, and 3). The set of unique values is un(C) = {Hans, Jessica,Archie}, the
number of unique values is |un(C)| = 3, Archie occurs at the indices oc(Archie,C) = {1, 5},
and Archie occurs |oc(Archie,C)| = 2 times.

FName
Jessica 

Jessica 

Archie

Archie
Jessica 

Hans

RecordID

4
5

3
2
1
0 Hans

Jessica 
Archie2

1
0 1

1

2

2
1

04
5

3
2
1
0

Column

ValueValueID ValueIDRecordID

Dictionary Attribute Vector

Figure 7.1: Dictionary encoding example.

Dictionary encoding reduces the storage space of a column in many cases, because a ValueID of
i Bits is sufficient to represent 2i different values in the attribute vector and the (variable-length)
values only have to be stored once in the dictionary. For instance, a column that contains
10,000 strings of 10 characters each, but only 256 unique values, requires 256 · 10 B for the
dictionary and 10,000 · 1 B for the attribute vector. In total, dictionary encoding reduces the
required storage from 100,000 B to 12,650 B in this case. Dictionary encoding achieves the
best compression rate if columns contain few unique but many frequent values, because every
value has to be stored only once. The real-world data used for our performance evaluation (see
Section 7.6.3) and other studies [213], [214] show that this is a characteristic of many columns
in data warehouses. The high compression rates achieved by dictionary encoding sparingly use
the scarce resource of in-memory databases—main memory.

When using dictionary encoding, two steps are necessary for a range search: a dictionary
search followed by an attribute vector search. The dictionary search checks for each V ∈D if it
falls into range R and returns the matching ValueIDs vid. The attribute vector search linearly
scans the attribute vector searching for each value V ∈ vid and returns a list of matching
RecordIDs rid. This scan is parallelizable with a speedup expected to be linear in the number
of threads.

In the example of Figure 7.1, a dictionary search for R = [Archie,Hans] returns vid = {0, 2}.
The corresponding attribute vector search returns rid = {1, 4, 5}

7.1.2 Dictionary-encoding–based, Column-oriented, In-memory Databases

In-memory database. Many commercial and open source DBMS vendors offer in-memory
databases for analytical data processing, e.g., SAP HANA [215], Oracle RDBMS [216], and
MonetDB [217]. In-memory databases permanently store the primary data in main memory
and use the disk as secondary storage. The major benefit of in-memory databases is the lower
access time of main memory compared to disk storage. This speeds up every data access for
which disk access would be necessary. Additionally, the fast memory accesses lead to shorter
locking times in concurrency control; thus, fewer cache flushes and a better CPU utilization.
We refer to the literature for more details about in-memory databases [206]–[208].
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Column-oriented, In-memory Database. One possible database storage concept is column-
oriented storage, i.e., successive values of each column are stored consecutively (in main memory
or on disk), and surrogate identifiers are (implicitly) introduced to connect the rows [202]–[205].
The combination of in-memory databases and column-oriented storage reduces the number of
cache misses, which strongly influences the in-memory performance. All in-memory databases
mentioned above support column-oriented storage.

The main drawbacks of column-oriented storage are the following: (1) so-called tuple
reconstruction is necessary to reassemble a projection involving multiple attributes and (2) any
modification of a whole tuple accesses non-contiguous storage locations. These problems are
not severe at analytical applications, e.g., data warehousing and business intelligence, because
analytical queries often involve a scan on a significant number of all tuples, but only a small
subset of all columns [203], [218]. Additionally, bulk loading of data is often used in this context
and complex, long, read-only queries are executed afterwards [205], [219]. An example query is
a report on total sales per country for products in a certain price range. Only the few columns
that are involved in the query have to be loaded and they can be processed sequentially, which
is beneficial as it decreases CPUs’ cache misses.

Dictionary-encoding–based, Column-oriented, In-memory Databases The three commer-
cial DBMSes mentioned above and many other databases use data compression mechanisms
to exploit redundancy within data [200], [201]. Abadi et al. [200] study multiple database
compression schemes, e.g., null suppression, run-length encoding, and dictionary encoding,
and show how these schemes can be applied to column-oriented databases. According to the
authors, column-oriented databases in particular profit from compression. In this chapter,
we only consider dictionary encoding, because it is the most prevalent compression used in
column-oriented databases [200]. High compression rates achieved by dictionary encoding
sparingly use the scarce resource of in-memory databases—main memory.

7.1.3 System: EncDBDB

EncDBDB is an encrypted, column-oriented, dictionary-encoding–based, in-memory database.
It offers nine encrypted dictionary types, which provide different security, performance, and
storage efficiency trade-offs. Additionally, EncDBDB supports nine plaintext dictionary types.
These use the same algorithms as the encrypted dictionary types, but the algorithms operate
on plaintext data and are not executed in an enclave. We only consider the plaintext dictionary
types in our performance evaluation as the focus of this dissertation is on encrypted data
processing. Three operations differ for the encrypted dictionary types:

1. Encrypted dictionary creation.
2. Dictionary search.
3. Attribute vector search.

Details about those operations are presented in the design section (Section 7.1). In this section,
we consider the different encrypted dictionary types as an existing building block and present
how they are used by EncDBDB.

Figure 7.2 presents an overview of EncDBDB’s architecture and the process flow, which
involve four entities: a trusted data owner, a trusted proxy, a trusted application, and an
untrusted cloud server with a trusted (Intel SGX) enclave. In the following, we give an overview
of EncDBDB’s setup and query phase. For this overview, we only discuss range queries on a
static database, i.e., the data is outsourced at one point in time. As (in)equality selects and
greater/less than selects can be expressed as range queries, they are covered implicitly. In
Section 7.4, we present how EncDBDB handles joins, insertions, deletions, updates, counts,
aggregations, and average calculations.

76



7.1 Design Considerations

SGX-enabled Cloud Server 

13 RecordIDs

Data Owner

2 Prepare Data

1 Generate
DB

Proxy

Application Result
Renderer

Query Evaluation Engine

12 Attribute Vector Search

Storage Management
Disk

D
D

D

Main Memory

D
D

10
Load

Dictionary

11
ValueIDs

3 Remote Attestation

5 Deploy Data

DB4 Provision
9 Dictionary

Search

Enclave

8
[.,.]

D

DB

Trusted Untrusted

Query
6 15

Results

4
Provision

DB

Query
Parser

Query
Decomposer

Query
Optimizer

7 7

7

7 Send Query Query
D

14 Results
D

Figure 7.2: Overview and process flow of EncDBDB.

Setup phase. In one possible EncDBDB variant, the cloud provider is assumed trusted for the
initial setup. The data owner can upload plaintext columns and the cloud provider can support
the data owner in choosing an appropriate encrypted dictionary type for each column. For
instance, the cloud provider can guide the data owner with questions about the data sensitivity.
Afterwards, the cloud provider performs the corresponding column splits and encryptions. We,
however, discuss another variant in which the cloud provider is untrusted also during the setup
phase and plaintext data never leaves the realm of the data owner. The setup phase is only
executed once and consists of the following steps:

1 The data owner defines a security parameter λ and generates a secret key SKDB = AE
Gen(1λ).

2 The data owner takes its plaintext database PDB and selects one encrypted dictionary
type for each column C ∈ PDB. Based on the selected encrypted dictionary type, the
data owner performs the column split. Then, the data owner encrypts the resulting
dictionary with an individual key SKD, which is derived from SKDB , the table name, and
the column name, using a key derivation function. The result is an encrypted database
EDB.

3 The data owner uses Intel SGX’s remote attestation feature (see Section 3.1.3) to
authenticate the cloud server’s enclave and to establish an authenticated channel to the
enclave.

4 The data owner uses the authenticated channel to provision SKDB to the enclave.
Additionally, the data owner provisions SKDB to the proxy via a secure out-of-band
mechanism.

5 As a last step of the setup, the data owner uses an import functionality of the cloud
provider to deploy EDB. The storage management of the in-memory database stores all
data on disk for persistency and loads (parts of) it into main memory.

Query phase. From this point on, the application can send an arbitrary number of queries,
which are processed as follows:

6 The application issues an SQL query Q to the proxy. W.l.o.g. we assume that Q selects
and filters only one column. The filter can be an equality select, an inequality select, a
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greater than select (inclusive or exclusive), a less than select (inclusive or exclusive) or
a range select (inclusive or exclusive). The proxy converts all filters to a range select
with range R. For instance, the SQL query SELECT FName FROM t1 WHERE FName <=
'Ella' is converted to SELECT FName FROM t1 WHERE FName >= −∞ and FName <=
'Ella' where −∞ is a placeholder for the smallest domain value. Next, the proxy
derives SKD using SKDB, the table name, and the column name. Afterwards, the
proxy encrypts the range start and end (Rs and Re) with AE Enc under SKD. The
resulting encrypted query eQ of our SQL example is SELECT FName FROM t1 WHERE
FName >= AE Enc(SKD, −∞) and FName <= AE Enc(SKD, 'Ella'). Because of the
query conversion, the untrusted cloud provider cannot differentiate query types, and
because AE is a probabilistic encryption, the cloud provider also cannot learn if the values
were queried before.

7 The proxy sends the encrypted query eQ to the cloud provider, where eQ is handled by
a DBMS-specific query pipeline. For instance, the query is processed by a query parser, a
query decomposer, and a query optimizer. The query optimizer selects a query plan and
shares it with a query evaluation engine. As only one column is filtered in our example,
the plan contains one encrypted dictionary eD, one plaintext attribute vector AV , and
one encrypted range filter τ that has to be executed.

8 The query evaluation engine enriches eD with metadata: the table name, the column
name, and the column size. Then, it passes τ and a reference to eD to the enclave.

9 Depending on the encrypted dictionary type of the filtered column, the enclave performs
a specific dictionary search.

10 During this search, the enclave loads the necessary dictionary entries from the untrusted
realm.

11 Finally, the enclave returns a list of ValueIDs vid for which the corresponding values fall
into the search range R.

12 The query evaluation engine performs an attribute vector search corresponding to the
encrypted dictionary type of the filtered column.

13 The query evaluation engine passes a list of RecordIDs rid to the result renderer.
14 The result renderer creates one encrypted result column eC by undoing the column

split, i.e., eC = (eDj | j = AV i ∧ i ∈ rid). Additionally, it enriches eC with column
metadata—the table and column name. If a filter query were executed on other columns
in the same table, the result renderer would use rid to prefilter these columns. It would
also use rid for projections. Finally, the result renderer passes eC back to the proxy.

15 The proxy receives one encrypted column eC from the cloud provider and uses the
attached column metadata to derive the column specific key SKD. Every entry in eC is
decrypted individually with SKD resulting in one plaintext column C, which is passed
back to the application.

Notably, only a very small part of the query processing is done inside the trusted enclave, and
the required enclave memory is limited. In particular, it is independent of the dictionary and
attribute vector size. There is no need to modify auxiliary database functionalities such as
persistency management, multiversion concurrency control, or access management. Still, the
complete processing is protected.

7.1.4 Attacker Model

We consider the data owner, the proxy, and the application, which uses the database, as trusted.
An untrusted cloud provider deploys EncDBDB on a TEE-enabled machine. The TEE supports
the capabilities listed in Table 3.1. We assume an honest-but-curious attacker, i.e., a passive
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attacker who follows the protocol, but tries to gain as much information as possible. Except the
enclave, the attacker can observe all software running at the cloud provider, e.g., the OS, the
firmware, and the DBMS. As a result, the attacker has full access to data stored on disk and in
main memory, and she can observe the access pattern to them. Additionally, she can track all
communication between the enclave and resources outside of it, and all network communication
between the proxy and the DBMS. This includes the incoming queries in which only the data
values are encrypted. The enclave is assumed not to have intentional data leakage.

As we show in Section 3.2, Intel SGX is vulnerable to various attacks and multiple mitigations
are known. We consider attacks on Intel SGX and their mitigations an orthogonal problem
and do not consider them in this chapter. Nevertheless, EncDBDB has a minimal enclave size;
therefore, the presented mitigations should be straightforward to integrate. Hardware and DoS
attacks are out of scope.

We assume that the attacker targets each database column independently, i.e., she does
not use correlation information to target columns. It remains future work to evaluate how
decorrelation of columns protects the database in practice.

7.2 Related Work
In this section, we compare EncDBDB to TEE-based, encrypted databases; software-only,
encrypted databases; and searchable encryption.

7.2.1 TEE-based, Encrypted Databases

In the following, we outline TEE-based approaches ranging from large to small enclave sizes, and
classify EncDBDB accordingly. In Table 7.1, we provide a comparison of existing TEE-based
encrypted database approaches and EncDBDB.

Approach Optimized for Workload Protection Object
EnclaveDB [209] OLTP In-memory storage and query engine
ObliDB [30] OLTP & OLAP Data structure (array or B+-tree)
StealthDB [29] OLTP Primitive operators (e.g., ≤, ≥, +, ∗)
EncDBDB OLAP Data structure (dictionary)

Approach Compression
Overhead

TCB LOCStorage Performance
EnclaveDB [209] N/A > 20 % ∼235,000
ObliDB [30] > 100 % > 200 % ∼10,000
StealthDB [29] > 300 % > 20 % ∼1500
EncDBDB < 100 % ∼ 8.9 % 1129

Table 7.1: Comparison of related TEE-based, encrypted databases and EncDBDB. The
overheads compare the respective approach with a plaintext database. We present
lower bounds of the overheads to the advantage of the approaches, taken from
the corresponding papers where available. The symbols represent that a feature is
supported ( ) or not supported ( ). The last column presents the lines of code of
the trusted computing base.

Haven [164] and SCONE [67] protect entire applications in an untrusted environment using
Intel SGX (see Section 4.8.1). Such an application can also be an off-the-shelf DBMS. However,
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a complete DBMS with millions of LOC is prone to security-relevant implementation errors or
side-channel leakages that could leak arbitrary data from the enclave. Furthermore, no TEE
on the market does support the huge enclaves that are necessary for this concept.

Priebe et al. propose EnclaveDB [209], a protected database engine that uses Intel SGX
to provide confidentiality, integrity, and freshness for online transaction processing (OLTP)
workloads. EnclaveDB loads the tables, indices, and metadata into the enclave memory, which
is too large for efficient processing using commercially available TEEs. Furthermore, EnclaveDB
has a large TCB as the query engine, transaction manager, and stored procedures are inside
the enclave. As a result, the problems described for Haven and SCONE are only slightly less
severe. A further downside is that all possible queries have to be known in advance.

ObliDB [30] is an Intel SGX–based encrypted database that hides the access pattern using
oblivious query processing algorithms on a B+-tree index or a linear array. The additional
protection introduces a latency overhead of 200% compared to a plaintext database. Additionally,
ObliDB lacks transaction management and disk persistency.

HardIDX, which is presented in Chapter 6, uses Intel SGX to protect B+-trees. It performs
equality and range searches inside the enclave, and it either loads the entire tree at once into
the enclave memory or individual nodes on demand. In the second case, only a few megabytes
of enclave memory are necessary and the enclave has only a few LOC. However, a B+-tree is
only one building block of an encrypted database.

Cipherbase [170] and StealthDB [29] use an FPGA and Intel SGX as trusted hardware,
respectively. These approaches have the smallest TCB by putting the execution of individual,
stateless operations, e.g., <, >, and =, into a trusted environment. The operations are executed
on encrypted data and the results are passed back. Only minor changes to an application are
necessary as plaintext operations are just replaced by protected operations. However, much
information is leaked as an attacker learns the result of each operation (see Section 4.8.2 for
more information).

7.2.2 Software-only, Encrypted Databases

Some software-only, encrypted databases, such as CryptDB [182] and Monomi [186], use PPE
for efficient search. Every database functionality requires its own encryption scheme with
additional storage overhead. For instance, DET [10] is used to support equality selects, and
OPE [11], [12], [127], [129] allows range queries. However, the security of PPE schemes is
debatable (see Section 4.4.2). For instance, Naveed et al. [13], Grubbs et al. [14], and Lacharité
et al. [15] present attacks recovering plaintext data with a high success rate. Some encrypted
dictionary types are affected by the mentioned attacks, but the data owner can freely choose a
security level that fits his requirements without losing functionality. Furthermore, EncDBDB
handles equality and range queries with one encryption scheme having a small performance
and storage overhead.

Other approaches not using PPE have been published: Cash et al. [194] introduce a protocol
that allows boolean query evaluation on encrypted data. Faber et al. [183] extend this protocol
to support range queries but either leak additional information on the queried range or the
result set contains false positives. Pappas et al. [190] evaluate encrypted bloom filters using
MPC. However, in order to achieve practical efficiency, the authors propose to split the server
into two non-colluding parties. Egorov et al. [191] present ZeroDB, a database that enables a
user to perform equality and range searches with the help of B+-trees. It uses an interactive
protocol requiring many rounds and thus is not usable for network-sensitive cloud computing.
EncDBDB does neither return false positives, nor does it require an additional party, nor does
it need multiple rounds.

80



7.3 Design

7.2.3 Searchable Encryption (SE)

We provide a detailed introduction into SE in Section 4.5. Here, we briefly compare EncDB-
DB’s performance with SE schemes supporting range queries. Some range-searchable schemes
have a linear search time [145], [147]. Others use an inverted index to achieve (amortized)
polylogarithmic search time [148], [220]. Demertzis et al. [149] present multiple constructions
that improve the constant factor of range searches. However, their best construction (without
prohibitive storage cost and false positives) requires more than a second to perform a range
search within 100,000 values (see Section 6.6.2). EncDBDB operates on millions of entries in
milliseconds.

7.3 Design

In Section 7.1.3, we present how encrypted dictionary types are used to build EncDBDB, an
encrypted, column-oriented, dictionary-encoding–based, in-memory database. Throughout this
chapter, we use range queries to describe details about the nine encrypted dictionary types
that EncDBDB offers. In Section 7.4, we present how EncDBDB supports other query types.

The encrypted dictionary types differ from each other in two dimensions—repetition and
order of values in the dictionary—with three options each (see Table 7.2). The repetition options
are the following: frequency revealing, frequency smoothing, and frequency hiding. The order
options are the following: sorted lexicographically, sorted and rotated around a random offset,
and unsorted. An encrypted dictionary type is defined by one option from each dimension,
which leads to nine encrypted dictionary types (ED1–ED9). In the following, we present how
the six options impact the encrypted dictionary types regarding security, performance, and
storage efficiency. Then, we describe each encrypted dictionary type in detail.

Order options
Sorted Rotated Unsorted

R
ep

et
iti

on
op

tio
ns

Frequency revealing ED1 ED2 ED3

Frequency smoothing ED4 ED5 ED6

Frequency hiding ED7 ED8 ED9

Table 7.2: Characteristics of encrypted dictionary types.

The repetition options increase the number of repeated dictionary values from frequency
revealing to frequency hiding. This affects two features of the resulting encrypted dictionary
types (see Table 7.3): the security feature frequency leakage and the dictionary size |D|. Note
that |D| is fixed for frequency revealing and frequency hiding. For frequency smoothing, the
worst-case size is |AV |, but we give the average size, which depends on a configurable parameter
bsmax.

Repetition options Frequency leakage Dictionary size |D|
Frequency revealing Full |un(C)|
Frequency smoothing Bounded ∼

∑
V ∈C

2·|oc(V ,C)|
1+bsmax

Frequency hiding None |AV |

Table 7.3: Security feature frequency leakage and dictionary size of repetition options.
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The order options affect the order of dictionary values, which determines two features of the
encrypted dictionaries (see Table 7.4). First, they determine the security feature order leakage,
i.e., the information an attacker with memory access can learn about the plaintext order of
the encrypted values in D. Second, they determine the search time combining the dictionary
and attribute vector search time. The dictionary search time depends on |D| and the search
algorithm, which differs for the order options. The attribute vector search time depends on the
ValueIDs returned by the dictionary search, because AV has to be scanned for them.

Order options Order leakage Search time
Sorted Full O(log |D| ) +O(|AV | )
Rotated Bounded O(log |D| ) +O(|AV | )
Unsorted None O(|D| ) +O(|AV | · |vid| )

Table 7.4: Security feature order leakage and search time of order options.

Three operations differ for the nine encrypted dictionary types:
1. Encrypted dictionary creation at the data owner.
2. Dictionary search inside the enclave at the cloud provider.
3. Attribute vector search in the untrusted realm at the cloud provider.

In the next subsections, we describe the corresponding operations in detail and denote these
operations by:

1. EncDB.
2. EnclDictSearch.
3. AttrVectSearch.

As mentioned before, an encrypted dictionary type is defined by an order and a repetition
option. We start by describing the frequency revealing repetition option and explain how it
is combined with the three order options to instantiate ED1–ED3. Then, we do the same for
the frequency smoothing repetition option and its combinations (ED4–ED6), followed by the
frequency hiding repetition option and its combinations (ED7–ED9).

Throughout the following description, we always assume a closed search range to provide a
concise description. However, open or half-open ranges can be handled trivially.

7.3.1 Frequency Revealing: ED1–ED3

For the frequency revealing option, the split of a column C is performed by inserting each
unique column value V ∈ un(C) into D exactly once at an arbitrary position, i.e., |D| =
|un(C)| ∧ ∀V ∈ un(C) : V ∈ D. The ValueIDs in AV are set such that the split is correct
according to Definition 33.

This column split provides the best compression rate possible with dictionary encoding and
thus frequency revealing is the most storage efficient repetition option. However, an attacker
can learn the frequency of each value Dj ∈D by counting the occurrences of j in AV . This is
still the case if each V ∈D is encrypted with AE, because the encryption does not affect the
indices in AV . Therefore, all encrypted dictionary types with the frequency revealing option
have full frequency leakage.

ED1. For each column C that is protected with ED1, EncDB 1 performs the frequency
revealing column split, sorts the values in D lexicographically, and adjusts the ValueIDs in AV
such that the split is correct. Afterwards, EncDB 1 derives SKD from the data owner’s secret
key SKDB, the table name, and the column name, using a key derivation function. EncDB 1
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then encrypts all values in D individually with AE Enc under SKD. The resulting dictionary
containing encrypted values is denoted by eD. Figure 7.3 presents an example column C and
the result of ED1 before AE Enc is performed. ED1 has full order leakage because an attacker
knows the plaintext order of the encrypted values in eD.
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Figure 7.3: Example for ED1 before encryption.

ED1’s dictionary search EnclDictSearch 1, which is executed in the enclave at the cloud provider,
is presented in Algorithm 5. The function gets an encrypted range τ and an encrypted dictionary
eD as input. First it derives SKD and decrypts the start and end of the range individually.
Then, one leftmost and one rightmost binary search is performed to find the dictionary
indices where the searched range starts (vidmin) and ends (vidmax). All dictionary values
are encrypted and stored in untrusted memory. The binary searches load the values into the
enclave individually, decrypt them, and compare them with the search value. The number of
load, decrypt and compare operations is logarithmic in |D|. For brevity, we omit one detail in
Algorithm 5, which is used in our implementation: the results of the searches, and whether a
value was found, is used to handle cases in which a value is not present.

Algorithm 5 EnclDictSearch 1(τ , eD)
1: SKD = DeriveKey(SKDB , columnName, tableName)
2: Rs = AE Dec(SKD, τs), Re = AE Dec(SKD, τe)
3: vidmin = BinarySearchLM(eD, Rs)
4: vidmax = BinarySearchRM(eD, Re)
5: return vid = [vidmin, vidmax]

Note that only small, constant enclave memory is required for EnclDictSearch 1. This is also
the case for the EnclDictSearch operations of all other encrypted dictionary types. Specifically,
the required enclave memory is independent of |D|.

AttrVectSearch 1 is executed in the untrusted realm at the cloud provider. It linearly scans
the corresponding AV , checks if the ValueIDs fall between vidmin and vidmax, and returns the
matching RecordIDs rid, i.e., rid = {i |AV i ∈ AV ∧AV i ∈ [vidmin, vidmax]}. This operation
is parallelizable with a speedup expected to be linear in the number of threads.

ED2. The idea of ED2 is to sort and randomly rotate D and it is based on an approach
presented by Kerschbaum et al. [221]. EncDB 2 executes the frequency revealing column split,
sorts the values in D lexicographically, generates a random offset rndOffset, and rotates D
by this offset. More formally, let D′ be the sorted dictionary, then D = (Di |Di = D′j ∧ i =
(j + rndOffset) mod |D′|). Afterwards, EncDB 2 adjusts the ValueIDs in AV such that the
split is correct. Finally, it encrypts rndOffset and each V ∈D with AE under SKD, resulting
in encRndOffset and eD. The order leakage of EncDB 2 is bounded, because an attacker who
can observe no or a limited number of queries, does not know where the smallest and largest
values are stored in eD.
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Figure 7.4 illustrates an example with rndOffset = 3 (before encryption). For instance,
“Jessica” has the ValueID 2 in a sorted dictionary D′. After the rotation, the ValueID is
1 = (2 + 3) mod 4.
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Figure 7.4: Example for ED2 with rndOffset = 3 and before encryption.

The processing inside the enclave (EnclDictSearch 2) is illustrated in Algorithm 6. First,
EnclDictSearch 2 derives SKD and decrypts the encrypted range τ and encRndOffset with it.
Then, it calls a special binary search variant, which is explained in the next paragraph, to
search the start and end indices of the range—vidmin and vidmax. These indices have to be
processed further inside the enclave, because the positions of the indices relative to rndOffset
define the final result of the dictionary search and rndOffset is sensitive. There are three
possibilities: both indices are lower than rndOffset; both are greater than or equal to rndOffset;
or vidmin is above and vidmax is below rndOffset. In the first and second case, the results are
in the range [vidmin, vidmax]. In the third case, there are again two possibilities: vidmin does
or does not equal |eD|. In the first case, the range start was not found in eD, but it is higher
than the last value in it. Accordingly, all results are in the range [0, vidmax]. Otherwise, the
results are split in a lower range [0, vidmax] and an upper range [vidmin, |eD| − 1]. We always
return a dummy range if the result is only one range to simplify attribute vector search.

Algorithm 6 EnclDictSearch 2(τ , eD, encRndOffset)
1: SKD = DeriveKey(SKDB , columnName, tableName)
2: Rs = AE Dec(SKD, τs), Re = AE Dec(SKD, τe)
3: rndOffset = AE Dec(SKD, encRndOffset)
4: vidmin = BinSearchSpecialS(eD, Rs, rndOffset, SKD)
5: vidmax = BinSearchSpecialE(eD, Re, rndOffset, SKD)
6: vid = ∅
7: if (vidmin < rndOffset & vidmax < rndOffset) || (vidmin > rndOffset & vidmax > rndOffset) then
8: vid = {[vidmin, vidmax], [−1,−1]}
9: else if vidmin > rndOffset & vidmax < rndOffset then

10: if vidmin ! = |eD| then
11: vid = {[0, vidmax], [vidmin, |eD| − 1]}
12: else
13: vid = {[0, vidmax], [−1,−1]}
14: return vid

Algorithm 7 presents the details of the special binary search with slightly different handling
of the range start (BinSearchSpecialS) and end (BinSearchSpecialE). The goal is to perform a
binary search that has an access pattern that is independent of rndOffset. A binary search
that considers rndOffset during the data access would leak rndOffset in the first round, which
would thwart the additional protection.

To achieve this goal, Algorithm 7 uses a string encoding operation Encode, which converts
string values of a fixed maximal length to an integer representation preserving the lexicographical
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data order. Each character is converted individually to an integer of fixed length and the
integers are concatenated to one resulting integer. For instance, the encoding of “AB” would be
3334 and “BA” would lead to 3433. The lexicographical order is preserved by right padding the
resulting integer to a fixed maximal length. In many DBMSes, the values in each column of a
database have a fixed maximal length, which is fixed either implicitly by the datatype, e.g., 32
bit for INTEGER columns (in MySQL), or fixed explicitly with the datatype, e.g., 30 characters
for VARCHAR(30) columns. For instance, Encode converts “AB” to the decimal 3334000000 for
a VARCHAR(5) column.

Algorithm 7 BinSearchSpecialS/BinSearchSpecialE(eD, sV al, rndOffset, SKD)
1: l = 0, h = |eD|
2: r = Encode(AE Dec(SKD, eD0))
3: N = Encode(column maximum)
4: sV al = (Encode(sV al)− r) %N
5: while l < h do
6: j = d(l + h)/2e
7: m = Encode(AE Dec(SKD, eDj))
8: cV al = (m− r)%N
9: if (cV al < sV al) (cV al <= sV al) then

10: l = j + 1
11: else
12: h = j

13: return (l) (l − 1)

Algorithm 7 first initializes the low and high value of the search, determines a value r by
decrypting eD0, and executes Encode on the result. Then, it performs Encode on the maximum
value that fits the column, which is implicitly defined by the fixed maximal length of the column.
It also executes Encode on the search value sV al, subtracts r from the encoded value, and
takes the result modulo N . The algorithm loads all values m accessed during the search into
the enclave and handles them as sV al. Note that 0 is a possible value for rndOffset, because
rndOffset is chosen uniformly at random between 0 and |D| − 1. We omit the special handling
for brevity. The runtime of EnclDictSearch 2 is logarithmic in |D| and the encoding introduces
only a constant factor compared to EnclDictSearch 1.

AttrVectSearch 2 linearly scans AV outside of the enclave and checks for each value V ∈ AV
if it falls in either range that was returned by EnclDictSearch 2. Finally, AttrVectSearch 2
returns the RecordIDs rid of the matching values.

ED3. This encrypted dictionary type combines the repetition option frequency revealing and
the order option unsorted. Accordingly, EncDB 3 performs the frequency revealing column split
and randomly shuffles the unique values in D, resulting in an unsorted dictionary. Afterwards,
the ValueIDs in AV are set such that the split is correct and each V ∈D is encrypted with
AE Enc under SKD. Figure 7.5 shows an example for EncDB 3 before AE Enc is performed.
EncDB 3 trivially has no order leakage.

ED3’s unsorted dictionary prevents any dictionary search with logarithmic runtime. Instead,
EnclDictSearch 3 performs a linear scan over all values in eD (see Algorithm 8). EnclDictSearch
3 derives SKD and uses it to decrypt the encrypted search range τ . The algorithm loads each
C ∈ eD into the enclave, decrypts C, and checks if the value V = AE Dec(SKD, C) falls into
the range R. The result is a list of all matching ValueIDs vid.

AttrVectSearch 3 compares each V ∈ AV with each U ∈ vid returned by EnclDictSearch
3. Thus, the runtime complexity is O(|AV | · |vid| ). Integers are compared in this case,
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Figure 7.5: Example for ED3 before encryption.

Algorithm 8 EnclDictSearch 3(τ , eD)
1: SKD = DeriveKey(SKDB , columnName, tableName)
2: Rs = AE Dec(SKD, τs), Re = AE Dec(SKD, τe)
3: vid = ∅
4: for i = 0; i < |D| ; i++ do
5: V = AE Dec(SKD, eDi)
6: if Rs ≤ V ≤ Re then
7: vid.Append(i)
8: return vid

which is a highly optimized operation in most CPUs. Additionally, AttrVectSearch 3 is easily
parallelizable.

7.3.2 Frequency Smoothing: ED4–ED6

The main problem of the frequency revealing option is that an attacker can learn the frequency of
each value D ∈D, even if the values are encrypted. The reason is that the underlying plaintext
values are present only once with a unique ValueID. As a countermeasure, the frequency
smoothing option inserts plaintext duplicates into D during the column split, bounding the
frequency leakage. The foundation of this repetition option is the “Uniform Random Salt
Frequencies” method presented by Pouliot et al. [222].

In more detail, the frequency smoothing column split executes a parameterizable and
probabilistic experiment for each unique value V ∈ un(C) to determine how often V should
be inserted into D (see Algorithm 9). We say that a plaintext value V is split into multiple
buckets and every bucket has a specific size. The random experiment receives the number of
occurrences of V in C (|oc(V ,C)|) and a bucket size maximum bsmax. The random size for an
additional bucket is picked from the discrete uniform distribution U{1, bsmax} until the total
size is above |oc(V ,C)|. The size of the last bucket is then set such that the total size matches
|oc(V ,C)|. The experiment returns the bucket sizes Bsizes.

Algorithm 9 getRndBucketSizes( |oc(V ,C)| , bsmax)
1: prevTotal = total = 0
2: Bsizes = ∅
3: while total < |oc(V ,C)| do
4: rnd

$←− [1, bsmax]
5: Bsizes.Append(rnd)
6: prevTotal = total
7: total += rnd

8: Bsizes.Last() = |oc(V ,C)| − prevTotal
9: return Bsizes
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The column split inserts
∣∣Bsizes

∣∣ repetitions of V into D. For each i ∈ oc(V ,C), it randomly
inserts one of the

∣∣Bsizes
∣∣ possible ValueIDs into AV i. Each ValueID is used exactly as often

as defined by Bsizes. As a result, the frequency leakage has a bound, because the number of
occurrences of each ValueID in AV is guaranteed to be between 1 and bsmax.
bsmax can be chosen independently for each column. The selection affects |D|, which

determines storage efficiency, search time, and frequency leakage. For instance, a large bsmax
leads to few repeating entries in D, which slightly increases |D| compared to the frequency
revealing option. This decreases the EnclDictSearch performance, because more data needs
to be loaded into the enclave, more decryptions are performed, and more comparisons are
necessary. The performance of AttrVectSearch also decreases, because more values have to be
compared. A small bsmax leads to many repetitions in D, which further increases |D| and the
search times. Yet, it leads to a low frequency leakage bound, as each ValueID in AV is present
at most bsmax times.

Next, we explain how the frequency smoothing column split impacts the three order options,
which were introduced in detail before. We omit the discussion of order leakage as it is
independent of the repetition option, and we do not explain AttrVectSearch 4–AttrVectSearch
6, because these operations are equal to AttrVectSearch 1–AttrVectSearch 3.

ED4. EncDB 4 performs the frequency smoothing column split and sorts all values in D
lexicographically determining the order of repetitions randomly. Then, it adjusts the ValueIDs
in AV such that the split is correct while considering how often each ValueID can be used,
which is defined by Bsizes. Finally, EncDB 4 encrypts each V ∈D with AE Enc under SKD.
Note the IND-CCA security of AE guarantees that an attacker cannot distinguish ciphertexts
with an equal underlying plaintext except with negligible probability.

EnclDictSearch 4 is equal to EnclDictSearch 1, because leftmost and rightmost binary searches
inherently handle repetitions. The performance penalty compared to ED1 is small, because the
binary search only slows down logarithmically with a growing |D|.

ED5. EncDB 5 performs the frequency smoothing column split, sorts all values in D lexico-
graphically, rotates the ValueIDs as described in EncDB 2, sets the ValueIDs in AV such that
the split is correct (considering Bsizes), and encrypts each V ∈ D with AE Enc under SKD.
Figure 7.6 shows an example for ED5 with bsmax = 3 and rndOffset = 1 not considering the
encryption.
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Figure 7.6: Example for ED5 with bsmax = 3 and rndOffset = 1 without encryption.

The special binary searches are more complex for ED5 than for ED2, because they have to
handle a corner case: the plaintext value of the last and first entry in D might be equal
and present more than two times (as in the example in Figure 7.6). For the same reason,
EnclDictSearch 5 has to perform a more complicated postprocessing of vidmin and vidmax
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compared to EnclDictSearch 2. The performance penalty compared to ED2 is small, because
the binary search slows down logarithmically in |D|.

ED6. For columns that are protected with ED6, EncDB 6 performs the frequency smoothing
column split, randomly shuffles the values in D, sets the ValueIDs in AV such that the
split is correct (considering Bsizes), and encrypts each V ∈ D with AE Enc under SKD.
EnclDictSearch 6 is equal to EnclDictSearch 3, but the linear scan potentially loads, decrypts,
and compares more values if D contains duplicates. If EnclDictSearch 6 returns more values
compared to EnclDictSearch 3, the number of comparisons in AttrVectSearch 6 increases.

7.3.3 Frequency Hiding: ED7–ED9

Now we discuss the frequency hiding column split, which prevents frequency leakage. The idea
is to add a separate entry into D for every value in C, i.e., ∀ i ∈ [0, |C| − 1] : Di = Ci. In other
words, each unique value V ∈ un(C) is added |oc(V ,C)| times into D. The attribute vector
is set such that the split is correct and each ValueID is used once. The resulting dictionary
encoding does not provide compression anymore (|D| = |C| = |AV | ), but the frequency of
every ValueID is perfectly equal, i.e., there is no frequency leakage.

ED7, ED8 and ED9. EncDB 7, EncDB 8 and EncDB 9 perform the frequency hiding column
split of C; sort, rotate, and shuffle D, respectively; adjust the ValueIDs in AV such that the
split is correct and every index in D is only used once in AV ; and encrypt each V ∈D with
AE Enc under SKD.

Frequency Hiding can be interpreted as a special case of frequency smoothing with a bsmax of
1. Therefore, the EnclDictSearch and AttrVectSearch operations are equal as described for ED4,
ED5, and ED6, and the advantages and disadvantages are equivalent to the ones described for
a small bsmax.

7.4 Extensions

In this section, we present EncDBDB extensions, which allow EncDBDB to handle joins,
dynamic data, counts, aggregations, and average calculations.

7.4.1 Joins

Join operators are implemented by replacing the operations on ciphertexts with calls to the
enclave. All join algorithms (i.e., hash-based, merge-sort, and nested loop joins) are compatible
with all encrypted dictionary types, although optimizations are feasible but out of scope. The
access pattern can be hidden using oblivious joins [223]. However, since some of the dictionaries
already leak the access pattern, the additional protection only applies to some encrypted
dictionaries. We present an exemplary algorithm for hash-based joins with enclave calls in
Algorithm 10.

7.4.2 Dynamic Data

So far, we only discussed static data, i.e., the data owner prepares the data once and uploads
it to an EncDBDB-enabled cloud provider. This is sufficient for most analytical scenarios,
because bulk loading of data is often used in this context and complex, read-only queries are
executed afterwards [205], [219]. For other usage scenarios, we present an approach on how
EncDBDB can support dynamic data, i.e., data insertions, deletions, and updates.
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Algorithm 10 Hash-based join for columns C1 and C2

1: for all AV ∈ AV 1 do . Iterate attribute vector of C1

2: D = ResolveDictionary(AV )
3: h = CalculateHashInEnclave(D)
4: HashTable.Insert(h,D)
5: for all AV ∈ AV 2 do . Iterate attribute vector of C2

6: D = ResolveDictionary(AV )
7: h = CalculateHashInEnclave(D)
8: T = HashTable.Get(h)
9: for all T ∈ T do

10: if CompareInEnclave(D,T ) == true then
11: ResultTable.Append(D,T )

We use a concept called delta store (or differential buffer) [205], [224], [225]: the database—more
specifically each column—is split into a read optimized main store and a write optimized delta
store. Both stores have a validity vector indicating whether a row is valid. New values are
appended to the delta store and the corresponding rows are marked valid. For updated values,
the new value is appended to the delta store, the row is marked valid, and the corresponding old
row is marked invalid. Deletions are realized by an update of the validity bit. The overall state
of the column is the combination of both stores. Thus, a read query becomes more complex: it
is executed on both stores normally and the results are merged while checking the validity of
the entries. The delta store should be kept orders of magnitude smaller than the main store to
efficiently handle read queries. This is done by periodically merging the data of the delta store
into the main store. Hübner et al. [225] describe different merging strategies.

For EncDBDB, any encrypted dictionary can be used for the main store and ED9 should
be employed for the delta store. New entries can simply be appended to a column of type
ED9 by re-encrypting the incoming value inside the enclave. Searches in the delta store use
EnclDictSearch 9 and AttrVectSearch9. As a result, neither the data order nor the frequency
is leaked during the insertion and search. A drawback of ED9 is that it has a high memory
space overhead and low performance. However, the periodic merges mitigate this problem. The
enclave handles the merging process as follows: First, it re-encrypts every value in D. Then,
columns with the rotated order option are randomly re-rotated and columns with the unsorted
order option are reshuffle. The process has to be implemented in a way that does not leak
the relationship between values in the old and new main store, e.g., with oblivious memory
primitives [226], [227].

7.4.3 Counts, aggregations, and average calculations

For ED1–ED3 a count query is processed without any calls to the enclave by simply scanning
the attribute vector, counting the occurrence of each ValueID, and returning the count together
with the corresponding encrypted dictionary entry. For ED4–ED9, a count query is handled by
the enclave with the following process: it performs the ValueID counting, performs a dictionary
scan to merge the counts, and returns the counts together with re-encrypted dictionary entries.
For all encrypted dictionaries, aggregations and average calculations are performed in the
enclave with a slight deviation of the just described process: instead of merging the counts,
the enclave uses the dictionary scan to calculate the aggregate or average, and returns the
encrypted result.
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7.5 Implementation

For our experiments, we implemented a EncDBDB prototype in C/C++ using the Intel SGX
SDK in version 2.5. The prototype is based on MonetDB, an open-source, column-oriented,
in-memory DBMS [210]–[212]. MonetDB focuses on read-dominated, analytical workloads
and thus perfectly fits our use case. It is a commercial relational DBMS, which exploits the
large main memory of modern computer systems for processing and it uses disk storage for
persistency.

MonetDB uses a variant of dictionary encoding for all string columns: The attribute vector
contains offsets to the dictionary, but the dictionary contains data in the order it is inserted
(for non-duplicates). The dictionary does not contain duplicates if it is small (below 64 kB),
and a hash table and collision lists are used to locate entries. The collision list is only used as
long as the dictionary does not exceed a certain size. As a result, the dictionary might store
values multiple times.

The front-end query language of MonetDB is SQL. We implemented the nine encrypted
dictionary types as SQL data types in the front end and new internal data types in the back
end. The encrypted dictionary types can be used in SQL create table statements like any other
data type, e.g., CREATE TABLE t1 (c1 ED7, c2 ED5, ...). We further split each dictionary
into a dictionary head and dictionary tail. The dictionary tail contains variable length values
that are encrypted with AES-128 in GCM mode. The values are stored sequentially in a
random order. The dictionary head contains fixed size offsets to the dictionary tail and the
values are ordered according to the selected encrypted dictionary type. This split is done to
support variable length data while enabling an efficient binary search.

For dictionary searches, we pass a pointer to the encrypted dictionary into the enclave, which
loads the required data from memory of the host process (see Section 3.1.2). Thus, only one
context switch is necessary for each query. All operations mentioned as easily parallelizable so
far run parallel in our implementation.

7.6 Evaluation

In this section, we provide security, storage, and performance evaluations of our nine encrypted
dictionary types. Based on these evaluations, we conclude the section with a usage guideline
regarding the different encrypted dictionary types.

7.6.1 Security Evaluation

We start the security evaluation considering the enclave size of EncDBDB. As described in
Section 3.1.5, a small enclave size is crucial for security. Besides the Intel SGX SDK, the
enclave of the EncDBDB prototype has only 1129 LOC. Only 412 of those LOC are written by
us, the remainder is taken up by a big integer library [228] used for the dictionary search in
ED2, ED5 and ED8. An enclave of this size can be efficiently verified by a user of EncDBDB.

In the remainder of this section, we discuss the security of the nine encrypted dictionary
types under the attacker model defined in Section 7.1.4, i.e., an honest-but-curious attacker
that targets each column independently. The attacker passively examines the processing of an
encrypted dictionary eD and an attribute vector AV in multiple rounds and she knows which
encrypted dictionary type is used. First, we use the following definition to describe the security
of ED1–ED3 and ED7–ED9:

Definition 34 (Comparable Security). We say that the security of an encrypted dictionary type
is comparable to a specific security scheme or definition if this security scheme or definition has
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the smallest leakage of the schemes and definitions that leak at least as much as the encrypted
dictionary type.

Table 7.5 presents a summary of this evaluation on which we elaborate later. A detailed analysis
of the different security definitions is beyond the scope of this dissertation as it is highly data
dependent, but we reference known attacks in the same table. Afterwards, we describe the
security of ED4–ED6 relative to the other encrypted dictionary types. The relation between
the security provided by the different encrypted dictionary types is summarized in Figure 7.7.
Finally, we discuss rerandomization.

Frequency
leakage

Order
leakage

Comparable
security

Known
attacks

ED1 Full Full Ideal, deterministic ORE [132] [14], [229]
ED2 Full Bounded MOPE [127] [14], [131], [229]
ED3 Full None DET [10] [13], [229]
ED7 None Full IND-FAOCPA [130] [136]–[138]
ED8 None Bounded IND-CPA-DS [221] [136]–[138]
ED9 None None RPE [148] [136]–[138]

Table 7.5: Security of ED1–ED3 and ED7–ED9.
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Figure 7.7: Relative security classification. EDX ≤ EDY means that EDY provides the same
or better security than EDX.

ED1–ED3 and ED7–ED9. ED1’s security is comparable to an ideal, deterministic variant of
ORE [132]. Only a publicly known “function”—the dictionary—reveals the value order. It is
ideal as neither the encrypted dictionary eD itself nor the values in it, which are encrypted
with AE, leak anything but the order. It is deterministic, as equal plaintexts have the same
ciphertext.

ED2’s security is comparable to MOPE [127]. A column protected with ED2 only leaks the
“modular” order of the values. MOPE uses deterministic OPE and ED2 uses deterministic ORE,
which is more secure.

ED3’s security is comparable to DET [10]. It has no order leakage, but leaks the frequency
of all values.

ED7’s security is comparable to IND-FAOCPA security [130]. Each ciphertext is present
exactly once in eD and if a plaintext is encrypted multiple times, the assignment of each
attribute vector entry to a ValueID is done with the help of a “random coin flip”. Thus, the
ValueIDs in eD form a randomized order (see definition by Kerschbaum [130]) of the plaintext
values.

ED8’s security is comparable to IND-CPA-DS security [221]. EncDB 8 and Enc as defined
by Kerschbaum et al. [221] are different, but the security of the result is equal. Furthermore,
EnclDictSearch 8 matches Search as defined by Kerschbaum et al. [221]. Therefore, the leakage
during processing is equal.

ED9’s security is comparable to the security of RPE [148]. As defined by RPE’s plaintext
privacy, EnclDictSearch 9 and AttrVectSearch 9 only leak the information that an entry falls
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into the search range. The “predicates” of ED9 are plaintexts encrypted with AE, which
provides RPE’s predicate privacy.

ED4–ED6. The frequency smoothing algorithm used by ED4 makes the ciphertext frequencies
close to uniform by randomly selecting a frequency between 1 and bsmax, independent of the
plaintext frequency. As ED1 fully leaks the ciphertext frequency and ED7 hides it completely,
the security of ED4 lies between the security of ED1 and ED7. ED5 is more secure than ED2
and is less secure than ED8 for the same reason. The same is true for the triple ED6, ED3
and ED9. The frequency smoothing algorithm is based on an algorithm described by Pouliot
et al. [222] and the authors only state that the last frequency is not selected from the same
distribution, which might give an advantage to an attacker. An in-depth security evaluation is
an open research question.

Rerandomization. According to the data owner’s sensitivity requirements, EncDBDB can use
the TEE to repeat the random rotation for ED3–ED6, the random shuffle for ED7–ED9, and
the random experiment for ED2, ED5, and ED8, at arbitrary points in time. Using oblivious
memory primitives [226], [227], the relation between old and new encryptions is hidden.

7.6.2 Storage Evaluation

For our storage evaluation, we use a snapshot of a real-world SAP customer’s business warehouse
(BW) system. The largest columns contain 168.7 million data values. To evaluate the influence
of the number of unique values to our algorithms, we search for columns having the same
number of values, but different distributions. The dataset contains 30 large columns with 10.9
million values. We present the results for two extreme cases: C1 with 6.96 million unique values
and C2 with 13,361.

Table 7.6 presents the storage space requirements of different variants. The plaintext file
contains all plaintext values present in the column without any compression. This file is
comparable to a plaintext column for which dictionary encoding is not used. The encrypted file
contains every value from the plaintext file, but individually encrypted with AE, which has the
same storage requirements as an encrypted column without dictionary encoding. MonetDB’s
storage requirements are presented as a baseline.

Size C1 Size C2
Plaintext file 136 MB 93 MB
Encrypted file 437 MB 392 MB
MonetDB 132 MB 43 MB*
ED1/ED2/ED3 347 MB 22 MB
ED4/ED5/ED6, bsmax = 100 347 MB 56 MB
ED4/ED5/ED6, bsmax = 10 367 MB 123 MB
ED4/ED5/ED6, bsmax = 2 455 MB 331 MB
ED7/ED8/ED9 515 MB 475 MB
*Recall that MonetDB reduces some but not all
duplicates (see Section 7.5).

Table 7.6: Storage size of various variants.

The size of the plaintext files decreases from C1 to C2, because the strings in these columns
are 12 and 10 characters long, respectively. As expected, we see that EncDBDB requires less
space if fewer unique values are present. We see that for C2 protected with ED1, ED2, or ED3,
EncDBDB requires less storage space than the plaintext file, i.e., less space than a plaintext
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column without dictionary encoding. We also see a further expected behavior: a smaller bsmax
increases the required storage space as more duplicates are stored.
Note that the encrypted dictionaries are stored outside of the enclave and individual values
are loaded and decrypted. Hence, Intel SGX’s restricted EPC memory does not constitute a
limitation for EncDBDB.

7.6.3 Performance Evaluation

For the performance evaluation, we use the same columns introduced in the storage evaluation.
Besides the original columns, which we call full datasets, we sample datasets from 1 to 10
million records using the distribution and values of the original columns.

MonetDB is used as one baseline measurement in our experiments to compare ourselves
against a commercial plaintext DBMS. Additionally, we implement PlainDBDB—a plaintext
variant of EncDBDB. PlainDBDB uses the same algorithms as EncDBDB, but the dictionaries
are plaintext and the algorithms are processed without an enclave. We use PlainDBDB as a
second baseline to evaluate the performance overhead of encryption and Intel SGX.

All experiments are performed with the confidential computing offering provided by Microsoft
Azure [172]. We use a DC4s machine with 4 Intel SGX–enabled vCPUs of an Intel Xeon
E-2176G @ 3.70 GHz and 16 GB RAM. All presented latencies measure the processing time
spent at the server excluding any network delay or processing at the proxy or user. Our protocol
runs in one round and only encrypts the values in the query. Thus, the communication and
latency overhead compared to any database in the cloud is negligible.

We use the term range size (RS) to describe how many consecutive unique values from
the dataset are searched in a range query, i.e., if sorted(un(C)) = (V0, . . . , V|un(C)|−1) is a
sorted list of all unique values in C, then RS defines the search range R = [Vi, Vi+RS−1] for
i ∈ [0, |un(C)| −RS]. For every dataset and encrypted dictionary type, we perform 500 random
range queries with range sizes 2 and 100. The same random range queries are executed for
MonetDB, PlainDBDB, and EncDBDB. Note that the number of result rows returned by the
server is greater than RS if a value in the search range is present multiple times in the column
(see Figure 7.8). For instance, 65,067 values are returned on average for the full dataset of C2
and RS = 100.

Figure 7.8: Average number of results returned by 500 random range queries for columns C1
and C2 (95% confidence interval; note that logarithmic y-axis distorts error bars).

ED1. The first and fourth column in Figure 7.9a present the latencies of ED1 for C1 and
C2 and the range sizes 2 and 100. We highlight three observations from these plots. First,
EncDBDB and PlainDBDB outperform MonetDB for both range sizes at both columns. The
main reason is that MonetDB’s attribute vector search performs a linear number of string
comparisons. In contrast, EncDBDB and PlainDBDB require only a logarithmic number of
string comparisons in the dictionary search and a linear number of integer comparisons in
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(a)

(b)

(c)

Figure 7.9: Average latencies of 500 random range queries for columns C1 and C2, which are
protected by (a) ED1–ED3, (b) ED4–ED6, and (c) ED7–ED9 (95% confidence
interval not big enough to be visible).

the attribute vector search. Second, EncDBDB slows down if a column with equal size has
fewer unique values: the average latencies increase from 6.55 ms at C1 to 8.79 ms at C2 for
the full dataset and RS = 100. This seems counterintuitive, because fewer unique values
result in a smaller dictionary size |D| improving the dictionary search performance. However,
only logarithmically fewer decryptions and string comparisons are necessary in the dictionary
search, but many results are returned by the attribute vector search (see Figure 7.8). As a
result, the DBMS has to spend more time for tuple reconstruction, i.e., to build the result set
based on the found RecordIDs and the dictionary. Third, encryption is cheap: the average
latency overhead of EncDBDB compared to PlainDBDB is 0.36 ms (8.9 %). The overhead is
minor for two reasons: (1) as explained in the implementation section, only one context switch
per column is required, which is negligible in the overall latency and (2) hardware-supported
AES-GCM encryption is used.
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ED2. The second and fifth column in Figure 7.9a present the latencies of ED2. The main
observation is that the latency of EncDBDB and PlainDBDB is almost equal to the latency of
ED1 for the two columns. The only difference between ED1 and ED2 is that ED2 uses a special
binary search and post-processing of the resulting ValueIDs to handle the random rotation,
which introduces only a minor overhead. In fact, the average latency overhead from ED1 to
ED2 is 1.88 ms for EncDBDB.

ED3. The third and sixth column in Figure 7.9a show the latencies of ED3. We observe
that the average latencies of PlainDBDB and EncDBDB, and their relative latency differences,
severely depend on the number of unique values and the range size RS. C2 has a smaller |D|
than C1, which decreases the latency of the linear dictionary search and therefore the average
latency of the query execution. Additionally, a smaller |D| decreases the number of necessary
decryptions for EncDBDB and therefore the relative latency difference between PlainDBDB
and EncDBDB.

ED4, ED5, ED6. Figure 7.9b presents the latency plots for ED4–ED6. The latencies of
MonetDB obviously do not change. In the following, we focus on EncDBDB discussing the
latencies for ED4–ED6 compared to ED1–ED3. |D| is larger for ED4–ED6, because the
frequency smoothing algorithm adds duplicates to D (bsmax = 10 in our experiments). For
ED4 and ED5, |D| influences the latency only logarithmically. Compared to ED1 and ED2, the
average overheads are only 0.002 ms and 0.11 ms, respectively. At ED6, the dictionary search
might return more than x ValueIDs for the range size x as eD contains duplicate plaintexts.
Every returned value has to be compared to each attribute vector entry. This increases the
average latencies for the full dataset at RS = 100 to 3.59 s and 10.64 s for C1 and C2.

ED7, ED8, ED9. Figure 7.9c presents the latency plots for ED7–ED9. We again focus
on EncDBDB’s latency in ED7–ED9 compared to ED1–ED3. Compared to ED1 and ED2,
the average overheads of ED7 and ED8 are 0.01 ms and 0.23 ms, respectively. For the full
dataset at RS = 100, the average latencies of ED9 increase to 5.43 s and 60.82 s for C1 and C2,
respectively.

7.6.4 Usage Guideline

The data owner can select an arbitrary encrypted dictionary type per column, according to the
desired sensitivity. If plaintext is not an option, but the weakest security level is acceptable,
ED1 can be used. It has a small storage size and it is almost as fast as PlainDBDB, even
with different range sizes and unique value amounts. If order leakage should be reduced and
a minor performance overhead is acceptable, ED2 is preferable over ED1. If order leakage
is unacceptable, a column contains few unique values, and RS is small, ED3 has a practical
overhead. For instance, EncDBDB’s average latency overhead from ED1 to ED3 for C2 and
RS = 2 is 6.87 ms. If the frequency leakage should be bounded, ED5 can be used with a minor
performance and storage overhead compared to ED2. In many cases, ED5 is the best security,
latency, and storage trade-off among our encrypted dictionary types. If security and latency
are critical, but not storage size, ED8 is the most favorable encrypted dictionary. If security is
the main objective, ED9 should be used.

7.7 Summary

In this chapter, we used TEE-protected dictionaries to build a secure, efficient, outsourced,
column-oriented, in-memory database—EncDBDB. This system supports analytic queries on
large datasets providing nine encrypted dictionary types with distinct security, performance,

95



7 Protected Database Dictionaries: EncDBDB

and storage efficiency trade-offs. Range queries over columns with almost 11 million encrypted
rows require less than 13 ms (on average), even without frequency leakage and bounded order
leakage. If some frequency leakage is acceptable, the compressed encrypted data requires less
space than a plaintext column. Moreover, the TCB of EncDBDB consists only of 1129 LOC
exposing only a small attack surface. With those features, EncDBDB is ideally suited for an
entity that wants to outsource its database containing sensitive data to an untrusted cloud
environment.
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8
Protected File System: SeGShare

In this chapter, we examine the secure, outsourced, TEE-based processing of a file system. A
file system contains files and directories, whereby a directory is a collection of files and/or
further directories. We choose to focus on the sharing capabilities of file systems, as file sharing
between users is a common scenario across many applications. One option is to distribute the
files to each group member individually. A better option is to use a shared file system to store
files and manage access control.

Using a TEE-protected file system, we design SeGShare—a secure, efficient, outsourced
system for group file sharing supporting large and dynamic groups. All sensitive processing
steps are done inside an enclave, which is deployed at an untrusted cloud provider. Via
authentication tokens, users authenticate themselves to the enclave and establish a secure
channel with it, e.g., using TLS. This channel is used for all subsequent communication. On
every user access, the enclave checks encrypted access control policies to enforce read and/or
write access on files and directories. Users can upload arbitrarily large files through the secure
channel directly to the enclave. If the upload is granted, the enclave encrypts the files with
an AE scheme (see Section 2.2.5) under a random key and stores the encrypted files in the
untrusted environment. On each granted file request, the file is decrypted inside the enclave and
sent to the user over the secure channel. SeGShare separates authentication and authorization
using identity information in authentication tokens. As long as the identity information is
preserved, a user’s token can be replaced and a user can use different tokens for multiple
devices—without requiring server-side file changes or re-encryptions. Furthermore, immediate
permission and membership revocations only require a minor, inexpensive modification of an
encrypted file. Among other features, SeGShare protects the confidentiality and integrity of all
data and administration files; supports data deduplication; and mitigates rollback attacks. A
comprehensive list of SeGShare’s features is presented in Table 8.2.

We agree with the authors of A-SKY [230], who state that “given the memory and computa-
tional limitations of SGX enclaves (e.g., trusted computing base (TCB) size, trusted/untrusted
transition latency), it is far from trivial to develop such a [file and access control] proxy service
able to scale and sustain a high data throughput, considering dynamic access control operations.”
The key to achieve a high throughput under dynamic groups is that SeGShare does not require
complex cryptographic operations on permission or membership changes. Besides that, we
build an efficient, Intel SGX–enabled TLS stack; use switchless enclave calls for all network
and file traffic; and the enclave requires only a small, constant size buffer for each request.

In the evaluation section of this chapter, we examine SeGShare’s security, storage, and
performance. Regarding security, we focus on the end-to-end protection of user files, which is
achieved by multiple design decisions of SeGShare. Based on a SeGShare prototype, we show
how small the storage overhead of encrypted files is compared to plaintext files. Additionally,
we use the prototype to present five performance experiments measuring the latency of different
operations, e.g., file uploads, file downloads, and permission revocations.

Some cloud providers, e.g., MEGA [231] and Sync.com [232], offer secure group file sharing
systems. They use hybrid encryption (HE) [233] to enforce access control, i.e., a file is encrypted
with a unique, symmetric file key, and the file key is encrypted with the public key of each user
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that should have access. Besides HE, many cryptographic schemes have been proposed [160],
[161], [234]–[239] to improve access control policies regarding, e.g., key distribution, the number
of keys, and expressiveness. Various papers use these schemes to build cryptographically
protected file sharing systems [233], [237], [240]–[243]. The main drawback of such systems is
that users gain plaintext access to the file key. To achieve immediate permission revocation, it
is necessary to re-encrypt the corresponding file with a new key. Depending on the scheme,
this involves expensive cryptographic operations and the new key has to be distributed to
many users. The problem is more severe on immediate group membership revocation, as
many files require re-encryption. This becomes a critical problem if membership operations
occur frequently [244]. Alternatively, a TEE can be used to build secure group file sharing
systems. Some approaches use cryptographic access control schemes and thus also suffer from
users’ access to plaintext file keys [230], [245]. Other approaches propose a client-side enclave,
which is a severe drawback due to the heterogeneity of end-user devices [246]. The approach
most comparable to SeGShare is Pesos [247], but Pesos does not offer multiple important
features, e.g., deduplication of encrypted files, rollback protection, and confidentiality of group
memberships.

The contributions of this chapter are the following:

• A secure, efficient, outsourced, TEE-based group file sharing system supporting large and
dynamic groups.

• The first file sharing system combining confidentiality and integrity of all data and admin-
istration files; immediate revocations without expensive re-encryption; data deduplication;
rollback protection; and separation of authentication and authorization.

• A latency average of 2.39 s and 2.17 s to upload and download a 200 MB file—faster than
Apache WebDAV serving plaintext files in the same setup. Latency under 170 ms for
membership and permission operations, independent of file sizes, stored files in total,
number of group members, number of user permissions, and groups sharing a file.

• A storage overhead of only 1.06% for an encrypted file shared with more than 1000 groups
containing 200 MB plaintext data.

• An Intel SGX–enabled, optimized TLS implementation.
• An enclave with only 8441 LOC, reducing the potential for security-relevant implementa-

tion errors, unintended leakages, hidden malware, and side-channel leakages.

The remainder of this chapter is structured as follows: In Section 8.1, we present a file system
model, introduce SeGShare’s access control model, specify SeGShare’s design objectives, and
state the attacker model. Afterwards, we discuss to which extent related file sharing systems
fulfill the design objectives in Section 8.2. In Section 8.3, we present SeGShare’s design
in detail, which fulfills most of the design objectives. The remaining design objectives are
fulfilled by SeGShare extensions introduced in Section 8.4. Security and performance-critical
implementation details of our SeGShare prototype are discussed in Section 8.5. Based on the
SeGShare design and the prototype, we provide in-depth security, storage, and performance
evaluations in Section 8.6. Finally, Section 8.7 concludes this chapter with a summary.

8.1 Design Considerations

In this section, we first describe the data structure under consideration, a file system. Then,
we give an overview of SeGShare introducing its access control model, illustrating its features,
and deducing a set of functional, performance, and security objectives. Finally, we describe the
assumed attacker model.
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8.1.1 Data Structure: File System

We use a generic file system model that applies to various operating systems (cf. the file system
model by Tanenbaum et al. [248]). A file system (FS) is composed of files (FC) and directories
(FD). We denote the former content files and the latter directory files as both are stored in files.
Each FC ∈ FC contains a linear array of bytes that can be read and written. Each FD ∈ FD

is a collection of files and/or further directories, and it stores a list of all its children. The
directories form a tree with a root directory file (FDroot) at the root of the tree. The parent
directory of each F ∈ FS is specified by its parent in the tree.

Each FD ∈ FD has a directory name. The directory name of FDroot is defined as “/”, and
all other directory names are flexible excluding the character “/”. Furthermore, Each FD

has a path that is specified by its location in the directory tree hierarchy: the path is the
concatenation of all directory names in the tree from FD

root to FD delimited and concluded
by “/”. Each FC ∈ FC has a filename, and FC ’s path is the concatenation of the path of its
parent directory and its filename.

8.1.2 System: SeGShare

Based on the file system described in the last section, we build SeGShare—a secure, efficient,
outsourced system for group file sharing using a TEE. In the following, we provide an overview
of SeGShare, define SeGShare’s objectives, and introduce a formal access control model. In
the design and extension sections (Section 8.3 and Section 8.4), we describe how SeGShare
achieves the defined objectives in detail.

SeGShare involves three entities: a trusted file system owner (FSO), multiple trusted users
(U), and an untrusted cloud provider with a trusted (Intel SGX) enclave. The FSO has a
relation to the users U , e.g., the FSO is a company and the users are employees of this company.
The users want to share files among each other via a file-sharing system hosted at the cloud
provider.

The FSO has an authentication service, which provides an authentication token with identity
information to all users. To use EncDBDB, each user only has to store its authentication
token. Each user uses its token while establishing a secure channel with the enclave running at
the cloud provider. Without any special hardware, users use the established secure channel
for the following requests: create/update/move/download/remove files; create/list/move/
remove directories; set file/directory permissions for an individual user or a group; create
groups; and change group memberships. None of these requests requires interaction with
other users. For each request, authentication is done with the identity information contained
in the authentication token and authorization is done based on permissions stored for the
authenticated identity at the cloud server. This separation of authentication and authorization
allows the replacement of a user’s authentication token or the use of different authentication
tokens for multiple devices as long as the identity information is preserved. W.l.o.g., we use a
certificate authority (CA) as authentication service and certificates as authentication tokens
throughout this chapter.

Table 8.1 presents an overview of SeGShare’s access control model. A user U ∈ U is assigned
to one group G ∈ G or multiple groups. Additionally, each user U is part of its default group
GU , i.e., a group that only contains U . Each group G has at least one group owner (GO), which
initially is the user U adding the first member to G. A GO can change group memberships
(RG) and extend the group ownership (RGO) to other groups. Every F ∈ FS has at least
one file owner (FO), which initially is the user uploading a file or creating a directory. For
any file F and group G, the FO can extend the file ownership (RFO) and set file permissions
(RP ). The permission can either be a combination of read (P r) and write permissions (Pw), or
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access can be denied (P deny). As a result, a user’s permissions depend on the permissions of
all groups he is a member of. The main benefit of group-based permission definitions is that a
membership update is sufficient to provide or revoke a user’s access to many files instead of
changing the permissions of all affected files individually. Each file owner can define that a file
F ∈ FS should inherit permissions from its parent (RI). This enables, for example, central
permissions management of multiple files: create a directory, set the desired permissions for
the directory, add files to the directory, and define that the files should inherit permissions.

Element Description
U Set of individual users U
G Set of individual groups G; each user U has a default group GU

P Set of individual permissions P ∈ {P r, Pw, P deny}
FC Set of stored individual content files FC

FD Set of stored individual directory files FD

FS File system FS = FC ∪ FD

RG ⊂ U ×G (U,G) ∈ RG: user U is member of group G
RGO ⊂ G×G (G,G′) ∈ RGO: group G owns group G′

RF O ⊂ G× FS (G,F ) ∈ RF O: group G owns file F
RP ⊂ P ×G× FS (P ,G, F ) ∈ RP : group G has permission P for file F
RI ⊂ FS F ∈ RI : file F inherits permissions from its parent

Table 8.1: SeGShare’s access control model.

We also expect the following features from a secure, efficient, outsourced file sharing system:
(1) Immediate revocation, i.e., file permission and membership updates, especially revocations,
are enforced instantly without time-consuming re-encryption of files F ∈ FS. (2) A constant
number of ciphertexts for each F ∈ FS, independent of permissions and group memberships. (3)
Confidentiality and integrity protection of all content files, the file system structure, permissions,
existing groups, and group memberships. (4) Storage space reduction by file deduplication and
use of the same encrypted files for different groups. (5) Rollback protection for individual files
and the whole file system.

Overall, SeGShare fulfills the objectives listed in Table 8.2.

8.1.3 Attacker Model

All users trust the CA and know its public key, which is the case in many corporate environments.
The CA securely creates certificates for users and securely provisions the certificates to the
users. At the cloud provider, we assume a malicious attacker, i.e., an attacker that does not
need to follow the protocol and tries to gain as much information as possible. Only the enclave
is protected by a TEE and it supports the capabilities listed in Table 3.1. The code is assumed
not to have intentional data leakage and it contains a hard-coded copy of the CA’s public key.
All other software is controlled by the attacker. As a result, she can monitor and/or change
data on disk or in memory; rollback individual files or the whole file system; send arbitrary
requests to the enclave; view all network communications; and monitor communication between
the untrusted and trusted software part. An attacker controlling multiple users should only
have permissions according to the union of permissions of the individual controlled users. We
do not protect the number of files, the file sizes, and the file access pattern.

As we show in Section 3.2, Intel SGX is vulnerable to various attacks and multiple mitigations
are known. We consider attacks on Intel SGX and their mitigations an orthogonal problem and
do not consider them in this chapter. However, SeGShare has small enclave size and therefore
the mitigations are straightforward to integrate. Hardware and DoS attacks are out of scope.
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Obj. Description
F1 File sharing with individual users / groups
F2 Dynamic permissions / group memberships
F3 Users set permissions
F4 Separate read and write permissions
F5 Users (and administrators) do not need special hardware
F6 Non-interactive permission / membership updates
F7 Multiple file owners / group owners
F8 Separation of authentication and authorization
F9 Deduplication of encrypted files
F10 Permissions can be inherited from parent directory
P1 Constant user storage
P2 Group-based permission definition
P3 File permission / group membership revocations do not require re-encryption of

content or directory files
P4 Constant number of ciphertexts for content and directory files
P5 Different groups can access the same encrypted file
S1 Protect confidentiality of content files / file system structure / permissions / existing

groups / group memberships
S2 Protect integrity of content files / file system structure / permissions / existing

groups /group memberships
S3 End-to-end protection of user files
S4 Immediate revocation
S5 Protection against rollback of individual files / whole file system

Table 8.2: Expected functional (Fx), performance (Px) and security objectives (Sx). Sub-
objectives are separated by “/”.

8.2 Related Work
In this section, we discuss to which extent related file sharing systems fulfill the design
objectives defined in Table 8.2. We distinguish between pure cryptographically protected and
TEE-supported file sharing systems. We begin with an introduction to cryptographic access
control mechanisms, because some file sharing systems are based on these mechanisms. For the
related systems, Table 8.3 provides an overview of the fulfilled objectives and (if applicable) on
which access control mechanism the systems are based on.

8.2.1 Cryptographic Access Control Mechanisms

A simple access control mechanism is hybrid encryption (HE): a file is encrypted with a unique,
symmetric file key, and the file key is encrypted with the public key of each user that should
have access. HE requires public-key management, e.g., a public key infrastructure (PKI), to
establish a trusted connection between users and public keys.

Identity-based encryption (IBE) [234], [235], [249] allows to use arbitrary strings as public
key for each user. By replacing HE’s public key primitives with IBE, public key management is
not necessary anymore.

Attribute-based encryption (ABE) [160], [161], [250] enables fine-grained access control by
defining a set of attributes for users and files. Files can only be decrypted if a defined number
of attributes match [160], the policy defined in the user’s secret key matches the ciphertext’s
attribute [161], or the policy defined in the ciphertext matches the user’s attributes [250].

The idea of broadcast encryption (BE) [236], [237], [251] is that a broadcaster encrypts
messages, sends them via a broadcast channel, and only a permitted subset of users is able to
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System Based on F1 F2 F3 F4 F5 F6 F7 F8 F9 F10
Pure Cryptographically Protected File Sharing Systems
Goh et al. [233] HE /– /– /– /–
Kallahalla et al. [240] HE /– /– /– /–
Boneh et al. [237] BE /– /– /– /–
Garrison et al. [244] IBE, ABE / / / /
Popa et al. [241] BE /– /– /– /–
Li et al. [243] ABE /– /– /– /–
TEE-Supported File Sharing Systems
Contiu et al. [230] HE / / / /
Contiu et al. [245] IBBE / / / /
Djoko et al. [246] / / / /
Krahn et al. [247] / / / /
SeGShare / / / /

System P1 P2 P3 P4 P5 S1 S2 S3 S4 S5
Pure Cryptographically Protected File Sharing Systems
Goh et al. [233] /– – / / /–/– / / /–/– /
Kallahalla et al. [240] /– – / / /–/– / /–/–/– /
Boneh et al. [237] /– – / / /–/– / / /–/– /
Garrison et al. [244] / / / / / / / / / /
Popa et al. [241] /– – /–/ /–/– /–/ /–/– /–
Li et al. [243] /– – / / /–/– / / /–/– /
TEE-Supported File Sharing Systems
Contiu et al. [230] / / / / / / / / / /
Contiu et al. [245] / / / / / / / / / /
Djoko et al. [246] / / / / / / / / / /
Krahn et al. [247] / /–/ / / /–/ / / /
SeGShare / / / / / / / / / /

Table 8.3: Classification of SeGShare and related work based on objectives defined in Table 8.2.
The symbols represent that an objective is supported ( ), partially supported ( ),
not supported ( ), or not part of the design (–). Note that some objectives in
Table 8.2 have multiple sub-objectives separated by “/”, which are also used in
this table.

decrypt the messages. BE can be used for file sharing by considering the files as messages and
the file system as a broadcast channel. BE schemes have various trade-offs regarding private
key, public key, and ciphertext size, but no scheme is constant in all sizes.

Identity-based broadcast encryption (IBBE) [238], [239], [252] is a combination of IBE and
BE. Messages are encrypted under a public key for receivers that are identified by an arbitrary
string, and receivers can decrypt messages with their private keys if their identity is part of the
receiver set. As with BE schemes, IBBE schemes are not constant in all keys.

8.2.2 File Sharing Systems

All pure cryptographically protected file sharing systems use the just presented cryptographic
access control mechanisms and enrich them with, e.g., key regression [240], integrity proofs [241],
and data deduplication [243]. Some TEE-based file sharing systems also use the cryptographic
access control mechanisms to design an anonymous file sharing system [230] or an IBBE scheme
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with reduced encryption complexity [245]. NEXUS [246], Pesos [247], and SeGShare are not
based on the cryptographic access control mechanisms.

All file sharing systems that are based on a cryptographic access control mechanism use
HE or a combination of HE and IBE, ABE, BE, or IBBE. This, e.g., allows to remove the
public-key management, reduces the number of keys, and/or increase the expressiveness of
access control policies. However, permitted users gain plaintext access to the file key on each
file access. Therefore, the following process has to be executed to enforce immediate permission
revocation: a new file key is generated, the file is re-encrypted with the new key, and the new
key is encrypted for each user or group still having access. On membership revocation, the just
mentioned process has to be performed for every file the group has access to. Objective P3 is
not fulfilled by those file sharing systems.

Additionally, Garrison et al. [244] state that (1) most IBE schemes are pairing-based, which
is an order of magnitude slower than public-key encryption used at HE, (2) ABE incurs
substantially higher costs than IBE, even for simple access control policies, (3) existing schemes
for proxy re-encryption [253], [254] do not solve the problem, and (4) cryptographic access
controls lead to prohibitive computational cost for practical, dynamic workloads.

Only Pesos [247] does support multiple file owners and no system supports multiple group
owners (F7). Only NEXUS [246] and Pesos [247] separate authentication and authorization
(F8). Deduplication of encrypted files (F9) is only supported by REED [243], and no system
supports permission inheritance (F10). Most cryptographically protected file sharing systems
do not support group-based permission definition (P2). Therefore, each objective related to
groups is not part of their design. Only the approach from Garrison et al. [244] and Pesos [247]
support that different groups can access the same encrypted file (P5), which can significantly
reduce the required storage for files shared with different groups. Only NEXUS [246] protects
the confidentiality and integrity of the file system (S1 and S2). Half of the systems perform
immediate revocation (S4), and all others propose lazy revocation, i.e., re-encryption is deferred
until the next file update. This opens a window of opportunity for security breaches, as a
revoked user can still access all files that are not updated. No related work provides a rollback
protection for individual files and the whole file system, which is enforced at every point in
time (S5).

8.3 Design

In this section, we discuss SeGShare’s design, which fulfills most objectives presented in
Table 8.2. The remaining objectives are fulfilled by extensions discussed in Section 8.4. Our
following discussion uses SeGShare’s components, which are illustrated in Figure 8.1. We start
with the setup phase in which trust between users and the enclave is established, followed by
the runtime phase in which user requests are processed.

8.3.1 Setup Phase

The setup phase of SeGShare establishes bilateral trust between each user U ∈ U and the
enclave running at the cloud provider. This phase is only executed once, and the established
trust is the basis for the end-to-end security of user files (see obj. S3 in Table 8.3).

Establish user trust in the enclave. The CA’s certificate service component connects to the
untrusted certification component, one external interface of SeGShare, to perform remote
attestation of the enclave (see Section 3.1.3). The CA’s public key is hard-coded into the
enclave. Thus, if the CA receives the expected measurement, it is assured to communicate
with an enclave that was built specifically for this CA. During remote attestation, the CA
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Figure 8.1: SeGShare architecture.

establishes a secure channel that ends at the trusted certification component. This channel is
used for all messages exchanged in the following process:

1. The CA requests a certificate signing request (CSR) from the enclave.
2. The enclave generates a temporary key pair and provides the CA with a CSR containing

the public key of the temporary key pair.
3. The CA uses the received CSR to generate a server certificate. Afterwards, the CA signs

this certificate with its private key and provides the certificate to the enclave.
4. The enclave checks the certificate’s validity using the hard-coded public key of the CA.

On success, the enclave persists the server certificate in untrusted memory, seals the
key pair (see Section 3.1.4), and triggers the trusted TLS interface to update its server
certificate.

The CA can request a new CSR and subsequently replace the server certificate at any time.
During runtime, the users receive the server certificate on every connection. As the CA

checks the validity of the enclave and the users trust the CA, the users only have to verify the
server certificate with the CA’s public key to be sure that they communicate with a trusted
SeGShare enclave. Notably, the user does not need to perform remote attestation.

Establish enclave trust in users. For each user U ∈ U , the CA validates U ’s identity and
securely provides a client certificate to U . This certificate contains identity information, e.g., a
user ID, a mail address, and/or a full name. A user U can check that the certificate is signed by
the trusted CA as U knows CA’s public key. During the TLS handshake, U ’s user application
presents U ’s client certificate to the enclave, which validates the certificate using the CA’s
public key. On success, the enclave can be sure that it communicates with a valid user of the
system.

8.3.2 Runtime Phase

Each request starts and each response ends at a user application. Therefore, we introduce the
user application first and then explain which parts of the processing are done by the other
components.

User Application. The user application links the users’ local file systems to the remote file
system at the cloud provider. For this link, it establishes a connection to SeGShare’s second
external interface, the untrusted TLS interface. This interface is used to establish a secure TLS
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connection ending at the trusted TLS interface. Further details about the two TLS interfaces
are discussed in the corresponding component description.

After a TLS handshake, the user application can send requests to the enclave. We only
discuss the following requests in detail: create a directory; create/update a file; get file content
or directory listing; set file/directory permission for a group; and add/remove a user to/from
a group. Remember that each user is part of its default group; thus, permission requests
also apply for individual users. A request defining that a file should inherit its permissions
is described in Section 8.4.2. We do not discuss the following requests for brevity, but their
implementation is straightforward: remove file/directory; move file/directory; update ownership
of file/directory; update group ownership; and delete group.

Notably, the user application does not require any special hardware (see obj. F5), and it only
needs to store a client certificate and the corresponding private key, independent of the number
of outsourced files, permissions or group memberships (see obj. P1). SeGShare has low hard-
and software requirements at the user making it widely applicable.

TLS Interface. The TLS interface is partitioned into an untrusted and trusted part (inside
the enclave). The untrusted TLS interface terminates the network connection (e.g., TCP),
because the enclave cannot perform I/O. All TLS records are forwarded to the trusted TLS
interface, which first performs the TLS handshake using the most recent server certificate.
Afterwards, it decrypts/encrypts all incoming/outgoing TLS records. As such, the trusted TLS
interface is the endpoint of a secure channel from the user application to the enclave.

Request Handler. The request handler component parses each incoming request, checks the
syntax, uses the identity information in the client certificate to allocate the request to a user
U , and processes requests as outlined in Algorithm 11. During processing, it uses internal
operations (see Table 8.4), which are provided by the access control and file manager components
described later. We omit error handling in the algorithms for brevity.

Operation Description
F ← toFile(path) Get file F corresponding to path path
path′ ← parent(path) For path path, get parent directory’s path path′

write(path, con) Create or update file at path path with content con
con← read(path) Read file at path path
{0, 1} ← existsF(path) Check if file with path path exists, i.e., ∃F ∈ FS : toFile(path) = F
{0, 1} ← existsG(G) Check if group G exists, i.e., ∃G′ ∈ G : G == G′

{0, 1} ← isDir(path) Check if file with path path is a directory i.e.,
∃F ∈ FD : toFile(path) == F

C ← AE Enc(SK, V ) Encrypt value V with an AE scheme under key SK
V ← AE Dec(SK,C) Decrypt the ciphertext C with an AE scheme under key SK
{0, 1} ← authF(U,P , F ) Check if user U has permission P on file F , i.e.,

∃G : (U,G) ∈ RG ∧ ((P ,G, F ) ∈ RP ∨ (G,F ) ∈ RF O)
{0, 1} ← authG(U,G) Check if user U is allowed to change group G, i.e.,

∃G′ : (U,G′) ∈ RG ∧ (G′, G) ∈ RGO

updateRel(R,R′) Update relation R to R′

Table 8.4: SeGShare’s handling of internal operations.

SeGShare achieves separation of authentication and authorization (see obj. F8) by allocating
a request to U based on the identity information in the client certificate and using U for
authorization decisions. Furthermore, the combination of operations outlined in Algorithm 11
allows a user to share a file or directory with individual users (using their default groups) and
groups (see obj. F1 and P2); dynamically change permissions and group memberships (see
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Algorithm 11 SeGShare’s external requests.
. User U wants to create a directory at path path
function putDir(U, path);

path′ = parent(path)
if isDir(path) and !existsF(path) and existsF(path′) then

if path′ == “/” or authF(U,Pw, toFile(path′)) then
updateRel(RF O,RF O ∪ (GU , toFile(path)))
write(path,“”)
con ← AE Dec(SKf ′, read(path′))
write(path′,AE Enc(SKf ′, con+ path))

. User U wants to create or update a file at path path with content con
function putFile(U, path, con)

path′ = parent(path)
If !isDir(path) and ((path′ == “/”) or

(existsF(path′) and authF(U,Pw, toFile(path′))) or
(existsF(path) and authF(U,Pw, toFile(path)))) then
if !existsF(path) then

con′ ← AE Dec(SKf ′, read(path′))
write(path′,AE Enc(SKf ′, con′ + path))
updateRel(RF O,RF O ∪ (GU , toFile(path)))

write(path,AE Enc(SKf , con))
. User U requests file content if toFile(path) = F ∈ FC and directory listing if toFile(path) = F ∈ FD

function get(U, path)
if authF(U,P r, toFile(path)) then

return AE Dec(SKf , read(path))
. User U wants to set permission P for group G for file at path
function setP(U, path,G, P )

if authF(U,“”, toFile(path)) then
updateRel(RP ,RP ∪ (P ,G, toFile(path)))

. User U wants to add user U ′ to group G
function addU(U,U ′, G)

if !existsG(G) then
updateRel(G,G ∪G)
updateRel(RGO,RGO ∪ (GU , G))

if authG(U,G) then
updateRel(RG,RG ∪ (U ′, G))

. User U wants to remove user U ′ from group G
function rmvU(U,U ′, G)

if authG(U,G) then
updateRel(RG,RG \ (U ′, G))

obj. F2 and F3); and set separate read and write permissions (see obj. F4). None of the listed
operations requires any interaction with other users (see obj. F6). Updates of file and group
ownerships are not listed, but the operations only require a straightforward update of RFO

and RGO. These updates allow the setting of multiple file and group owners (see obj. F7).

Access Control. The access control component is responsible for relation updates (internal
operation updateRel) and access control checks (internal operations authF and authG). For
both tasks, it uses the file manager components to read and write the required relations.

File Managers. The trusted and untrusted file manager components handle all files stored
in untrusted memory. The trusted file manager component encrypts/decrypts the content of
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all files that should be written/read with AE Enc/AE Dec using a unique file key SKf per file.
The file key is derived from a root key SKr, which the trusted file manager generates and
seals (see Section 3.1.4) on the first enclave start and unseals on subsequent enclave starts.
All encrypted data is passed/received to/from the untrusted file manager component, which
handles the actual memory access (internal operations read and write). The file managers
handle the following file types:

1. Each F ∈ FS is stored as a regular file.
2. For each F ∈ FS, an ACL file is stored under F ’s path appended with a suffix, e.g.,

“.acl”. This ACL file stores F ’s access permissions (RP ) and file ownerships (RFO).
3. One group list file stores all present groups (G)
4. For each user U ∈ U , a member list file stores U ’s group memberships (RG) and also

keeps track of U ’s group ownerships (RGO).
The first two file types are stored in the so-called content store, the latter two in the group store.
In the OS’s file system, the two stores are two independent directories stored on disk. The files
in the content store are stored in dictionaries according to the structure given by their paths.
A root directory file stores a list of first level children. The files in the group store are stored
flat and a root directory file stores a list of all contained files. This separation adds an extra
layer of security and improves the performance as file, directory, and permission operations are
independent of group operations.

The content of ACL files, member list files, and the group list file are kept sorted. Thus,
a permission update only requires one decryption of the corresponding ACL, a logarithmic
search, one insert or update operation, and one encryption of the ACL. Membership updates
require the same operations on one member list file and (in some cases) on the group list
file. Thus, permission and membership revocations do not require re-encryption of content
and directory files (see obj. P3), and they are performed immediately (see obj. S4). Each
F ∈ FS is stored in one encrypted file and F is accompanied by one encrypted ACL file.
Consequently, the number of ciphertexts is constant for each content and directory file (see
obj. P4). Obviously, the same encrypted content or directory file can be accessed by different
groups (see obj. P5). The confidentiality and integrity of content files, permissions, existing
groups, and group memberships are protected by encrypting the corresponding files with an
AE scheme (see obj. S1 and S2). Note that SeGShare is optimized for dynamic groups, but it
is inefficient to remove a complete group as the member list of each user has to be checked and
possibly modified.

8.4 Extensions
In this section, we present SeGShare extensions that fulfill the remaining objectives: data
deduplication; inherited permissions; filename and directory structure hiding; individual file
rollback protection; and file system rollback protection. Additionally, we discuss SeGShare
replication and file system backups. The combination of extensions is explained if it is not
straightforward.

8.4.1 Data Deduplication

The goal of data deduplication is to save storage cost by only storing a single copy of redundant
objects, which can either be files [255], [256] or blocks. Blocks can be further divided in
fixed-size [257] or variable-size [258] blocks. Deduplication can be done client side, i.e., users ask
the server if a file is already present and only upload the whole file if necessary, or server-side,
i.e., users always upload and the server performs deduplication.
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SeGShare is compatible with all mentioned deduplication alternatives. However, we focus on
a mechanism for file- and server-based deduplication, because it does not require additional
client-side processing, prevents client-side attacks [259], [260], and has the smallest leakage of
the server-side approaches [261].

Data deduplication is enabled in SeGShare (see obj. F9) by introducing a third store, denoted
by deduplication store, and modifying the trusted file manager. For each uploaded content file,
the trusted file manager performs the following steps:

1. Temporarily store the file in the deduplication store under a unique random name.
2. Calculate t ← MAC Tag(SKr, fileCon) with fileCon being the file content of the

temporarily stored file.
3. Convert t to a hex string hName.
4. If no file with the name hName is present in the deduplication store, rename the temporary

file to hName. Otherwise, remove the temporary file.
5. Add a content file to the content store as presented in Section 8.3.2 with the slight

modification that the content file is not filled with the actual file content but with hName
(comparable to symbolic links in file systems).

For each request to a content file, the trusted file manager accesses the file in the content store
and follows the indirection to the file in the deduplication store.

Our server-side deduplication is different from any scheme presented in related work: plaintext
data is deduplicated and only a single copy is encrypted. This is possible because the enclave
has access to the file keys. Furthermore, the scheme supports deduplication of data belonging
to different groups and immediate membership revocation without re-encryption.

8.4.2 Inherited Permissions

Permissions for any file F ∈ FS can be inherited from a parent directory (see obj. F10) with the
following extension of SeGShare. The user application and request handlers are extended with a
new request to add/remove F to/from the inherit relation (RI). The access control component
only allows a file owner to execute such requests, and the trusted file manager adds/removes an
inherit flag to/from F ’s ACL file. If the inherit flag is not set in F ’s ACL file, access control
checks for F are performed by authF as defined in Table 8.4. Otherwise, a permission P defined
for a group G on F has precedence over a permission P ′ defined for G on F ’s parent F ′. In
other words, if F ′ is F ’s parent and the inherit flag is set, authF uses the following predicate:
∃G : (U,G) ∈ RG ∧ ((P ,G, F ) ∈ RP ∨ (G,F ) ∈ RFO∨((P ,G, F ) 6∈ RP ∧ (P ,G, F ′) ∈ RP ))1.

8.4.3 Filename and Directory Structure Hiding

To protect the confidentiality of the file system structure (see obj. S1), this extension hides all
filenames and the directory structure. A change of the trusted file manager is sufficient: before
passing a path path to the untrusted file manager, calculate t ← MAC Tag(SKr, path) and
convert t to its hexadecimal representation. As a result, all files are stored in a flat directory
structure at a pseudorandom location. Note that SeGShare stores the original path in the
directory files. Therefore, directory listing is still possible.

As performance optimization, the extension can use a fixed number of x characters of t’s
hexadecimal representation as a directory name and the remaining characters as filename. As
a result, all files are spread across 16x subdirectories. A similar technique is used in the version
control system Git [262].

1 The difference to authF from Table 8.4 is highlighted in green.
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8.4.4 Rollback Protection for Individual Files
The trusted file manager encrypts the content of all files with an AE scheme, and thus guarantees
confidentiality and integrity on each file individually. However, an attacker can perform a
rollback attack on each encrypted file, i.e., the attacker uses an outdated version of an encrypted
file to replace the current version. Not preventing such a rollback can have severe consequences,
e.g., an old member list could enable a user to regain access to files for which the permissions
were previously revoked.

To protect the rollback for individual files (see obj. S5), the extension that we describe in
this section uses a Merkle tree variant (see Section 2.2.8). For brevity, we only describe how to
protect files in the content store, but protecting the group store (and deduplication store) is a
straightforward adaptation.

In our Merkle tree variant, each content file, ACL file, and empty directory file is represented
by a leaf node, and each non-empty directory file is represented by an inner node. Each leaf
node stores a hash that is a combination of hashes over the file path and the file content. Each
inner node stores a hash that is a combination of the hash of all children (content files, ACL
files, and directory files), a hash over the directory path, and a hash over the directory content
(children list). The path is part of the combined hashes for three reasons: (1) files with the
same content but stored at different paths should have different hashes, (2) the hash of a file
should change if a file is moved, and (3) an empty directory should have a hash.

Before encryption, the trusted file manager prepends the content of content files, ACL files,
and directory files with the combined hashes. After decryption, the trusted file manager reads
the hashes from there. As each file stores its own hash, we denote each file representing a leaf
node, inner node, sibling node, and child node of the tree by leaf file, inner file, sibling file, and
child file, respectively. The tree’s root hash is stored in the root directory file, which we denote
by root file in this section. Figure 8.2 shows a file system example and the corresponding hash
tree.

h0 = H(/) || 
H(D/,D.acl) || h1 || h2

h3 =
H(/D/F) || H(C)

h1 = H(/D/) || 
H(F,F.acl) || h3 || h4

h4 =
H(/D/F.acl) || H(P2)

h2 =
H(D.acl) || H(P1)

Path
Cont.

Path
Content

/D/F.acl
P2

/D/F
C

/
D/, D.acl

/D.acl
P1

/D/
F, F.acl

Figure 8.2: Example of a file system (left) and its corresponding hash tree (right). || denotes
the concatenation of hashes.

With a regular Merkle tree, a leaf file update or a leaf file addition leads to an update of all
hashes on the path from the leaf file to the root file. In each level of the tree, all sibling files
have to be accessed to combine their hashes. On a leaf file read, a validation is performed
starting from the leaf file to the root file, which also accesses all sibling files. We propose two
modifications to optimize this process:

1. Instead of a cryptographic hash function H, we use a set hash function SH for all
individual hashes, SH NI Add to combine hashes, and SH SS Sub to subtract hashes (see
Section 2.2.7).

This modification improves leaf file updates and additions, because it allows hash
updates of each inner file by using SH SS Sub to subtract the hash of the no longer valid
child file and SH NI Add to add the hash of the new child file, without accessing any
sibling file.
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2. Depending on the number of child files, each inner file stores one main hash and multiple
bucket hashes. The main hash stores a combination of the hashed file path, the hashed
file content, and the file’s bucket hashes. Each bucket hash stores a combination of the
main hashes of specific child files. The mapping of child files to bucket hashes is done via
a hash calculated over the child files’ path.

This change slightly deteriorates update performance as two hashes have to be updated
for every level of the tree. However, for leaf file validation, it is sufficient to recalculate
and compare a single bucket hash per tree level (using SH Comp), which only requires an
access to all files in the same bucket.

Note that the individual file rollback protection extension does not protect a rollback of the root
file, which we consider a rollback of the whole file system for which a mitigation is presented in
the next section. However, the extension protects the integrity of the file system structure (see
obj. S2).

8.4.5 Rollback Protection for Whole File System

Even with the protection from Section 8.4.4, an attacker can still roll back the whole file system.
The key to mitigate this rollback is to protect the root hash against rollbacks as it represents a
state of the complete file system. Based on TEE functionality, we propose two solutions to
protect the root hash and with it prevent rollbacks of the whole file system (see obj. S5).

First, if the TEE offers a protected memory that can only be accessed by a specific enclave
and is persisted across restarts, it is sufficient to write/read the root hash into/from this
memory, instead of storing it in the root file. Second, if the TEE offers a monotonic counter
that can only be accessed by a specific enclave and is persisted across restarts, we propose
the following. On each file update, the trusted file manager increments the TEE’s monotonic
counter and writes the new counter value into the root file before encryption. On validity
checks of the root hash, it compares the TEE’s monotonic counter with the counter value stored
in the root file.

The group store’s (and deduplication store’s) root hash have to be protected by the same
mechanism to protect the rollback of all permissions (and deduplicated files).

Note that Intel SGX provides monotonic counters, but the current implementation has
issues [263]: read and write operations on the non-volatile memory are slow; the counter wears
out after approximately 1 million increments; and the non-volatile memory resides outside the
processor package making it vulnerable to bus tapping and flash mirroring attacks. Until a
better hardware-based monotonic counter is available, one can use ROTE [263]. LCM [264] is
another alternative, but it requires periodic interactions with the majority of users.

8.4.6 SeGShare Replication

As we show in our evaluation section, SeGShare has a very low latency. Nonetheless, it might
be necessary to deploy SeGShare on multiple servers if many users want to use the file sharing
service. Assuming that all enclaves access the data from one central data repository, two changes
are necessary for SeGShare replication: (1) the untrusted file manager must be extended to
access data from the central data repository, and (2) all enclaves need access to the same root
key SKr.

The first change is only an implementation issue and therefore we only discuss the second in
detail. We denote enclaves that already have SKr by root enclaves and the others by non-root
enclaves. We propose that the CA tasks one enclave with the generation of SKr during the
provisioning of the server certificate. The CA provides all other enclaves with addresses of root
enclaves during server certificate provisioning. Each non-root enclave randomly selects one
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root enclave and performs remote attestation with it. If the measurements of both enclaves are
equal, the non-root enclave is assured to communicate with another enclave that was compiled
for the same CA, as the CA’s public key is hard-coded. During remote attestation, a secure
channel is established between the enclaves, and the root enclave transfers SKr to the non-root
enclave using this channel.

SeGShare replication is also useful for file system owners, which might be afraid to lose access
to their files, because SKr is only accessible by a single enclave. With the proposed method,
SKr is contained inside trusted enclaves at all time, but still usable on multiple replicas.

To combine the whole file system rollback protection and SeGShare replication, it is necessary
to use a non-local protected memory or monotonic counter for each store. We note that locking
problems and data storage replication is beyond the scope of this dissertation.

8.4.7 File System Backup

SeGShare supports file system backups in a straightforward manner: the cloud provider only
has to copy the files on disk. Backup restoration depends on the enclave that handles the
restored data. If the enclave is the same that wrote the files in the first place, it poses the
required decryption key. Otherwise, the SeGShare replication process described in Section 8.4.6
is necessary.

Restoration becomes more complicated if the whole file system rollback protection is active,
because it might be necessary to restore an old state. We propose that the CA can send
a signed reset message to the enclave for this case. The enclave checks the validity of the
message’s signature, reads the stored hashes from the root files of the various stores, recalculates
the root hashes, and compares the hashes. Assuming a successful check and the monotonic
counter–based rollback solution, the enclave overwrites the stored monotonic counter with the
TEE’s current monotonic counter.

8.5 Implementation

Our prototype is implemented in C/C++ using the Intel SGX SDK in version 2.5. The prototype
follows the WebDAV standard [265], which is an extension to the HTTP standard designed
for change and permission management of web resources. WebDAV makes the prototype
compatible with existing clients on Android [266], iOS [267], Windows [268], Mac [269], and
Linux [270]. The secure channel to transfer messages is established with TLSv1.2 using the
ECDHE-RSA-AES256-GCM-SHA384 cipher suite, and the Set-XOR-Hash construction is
used as set hash function (see Section 2.2.7). All requests are parsed by an imported HTTP
parser [271]. For all file accesses, we use Intel’s Protected File System Library (see Section 3.1.6).
The prototype contains the following extensions: filename and directory structure hiding, and
rollback protection for individual files.

Our prototype tackles three performance problems:
1. A main performance bottleneck is the TLS stack. Unfortunately, publicly available Intel

SGX–enabled TLS stacks [272], [273] are mainly designed for embedded scenarios and do
not provide the desired performance. Intel only provides an Intel SGX optimized version
of OpenSSL’s cryptographic library, without networking capabilities. Our prototype
combines Intel’s cryptographic library with the network part of OpenSSL [274] in version
1.1.1c.

2. Switches into and out of the enclave have a high overhead [67]. To mitigate this problem,
our prototype uses switchless calls (see Section 3.1.7) for our TLS library and for Intel’s
Protected File System Library.
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3. Intel SGX has restricted EPC memory. Our prototype addresses this problem via
streaming, i.e., users send and receive small, fixed-size chunks and the enclave processes
one chunk at a time. The same chunk-wise processing is done for all storage operations.
Thus, the enclave only requires a small, constant size buffer for each request.

8.6 Evaluation

Based on the SeGShare design presented in Section 8.3, the SeGShare extensions described
in Section 8.4, and the implementation details explained in Section 8.5, we provide a security,
storage, and performance evaluation for SeGShare in this section.

8.6.1 Security Evaluation

For our security evaluation, we focus on SeGShare’s main security objective: end-to-end
protection of user files (see obj. S3). The basis for this objective is SeGShare’s setup phase and
mutual authentication during runtime (see Section 8.3.1): the trusted CA securely provisions
certificates only to valid SeGShare enclaves and user applications, SeGShare enclaves only
accept user applications, which present a valid client certificate, and user applications only send
files to an enclave, which present a valid server certificate. Based on this trust, a secure TLS
channel is established between user applications and SeGShare enclaves protecting all messages
in transit. The enclave has plaintext access to messages and file contents, but the enclave
protects the processing and processed data. The enclave also enforces authorizations according
to our access control model (see Table 8.1), which enforces that an attacker is restricted to the
union of permissions of the users under her control. As discussed in the design and extensions
sections, the enclave protects the integrity and confidentiality of all files stored in untrusted
storage (see obj. S1 and S2), enforces revocations immediately (see obj. S4), and mitigates
rollbacks (see obj. S5). Overall, user files are protected in transit, during processing, and during
storage.

We note that SeGShare’s security hinges on a trusted enclave, which we assume in our
attacker model. Nevertheless, we kept the enclave code as small as possible, as this reduces the
probability of security-relevant implementation errors, unintended leakages, hidden malware,
and side-channel leakages. Besides the Intel SGX SDK, the enclave has only 8441 LOC. 2099
of these are due to the imported HTTP parser and 2376 due to our TLS implementation, which
can be replaced by a formally verified implementation [275].

8.6.2 Storage Evaluation

The storage overhead for each file F ∈ FS depends on F ’s ACL file and the overhead introduced
by Intel’s Protected File System Library (see Section 3.1.6) for both files. Remember that the
size of an ACL file depends on the number of file owners and group permissions, and Intel’s
library uses a Merkle tree with 4 kB nodes. Our prototype uses 32 bit for the number of file
owners and the inheritance flag, and 32 bit for each file owner and group permission. A 10 MB
plaintext file together with its ACL file requires 10.11 MB and 10.15 MB encrypted storage,
if the ACL contains up to 95 and 1119 entries, respectively. This corresponds to a relative
storage overhead of 1.12% and 1.48%. A 200 MB plaintext file with the same ACL files requires
202.09 MB and 202.13 MB encrypted storage corresponding to 1.05% and 1.06% overhead.
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8.6.3 Performance Evaluation
For the performance evaluation, we measure SeGShare’s latency for file uploads and downloads,
membership additions and revocations, and permission additions and revocations. Additionally,
we measure the latency introduced by the rollback protection for individual files. We perform
all latency measurements with two machines hosted at Microsoft Azure [172]:

• A client with 2 vCPU cores of an Intel Xeon CPU E5-2673 v4 @ 2.30 GHz and 8 GB
RAM located in the Central US region.

• A server with 4 Intel SGX–enabled vCPUs of an Intel Xeon E-2176G @ 3.70 GHz and
16 GB RAM located in the East US region.

We measure the latency from the start of the request at the user application until the complete
response arrived. Consequently, the reported results also include network latency. SeGShare
interleaves sending and processing due to our streaming technique; hence, we do not present
the pure network latency of each request. We present all latencies as mean of 100 runs with a
95% confidence interval (in our plots).

In the first experiment, we upload and download files with sizes from 1 MB to 200 MB to
SeGShare. For the baseline, we execute the same test with two TLS-enabled—but plaintext
storing—WebDAV servers: Apache HTTP Server [276] in version 2.4 and nginx [277] in version
1.17.8. Figure 8.3 shows that uploads and downloads of a 200 MB file, on average, take 2.39 s
and 2.17 s for SeGShare, 4.74 s and 2.62 s for the Apache server, and 1.84 s and 0.93 s for the
nginx server. Overall, the upload and download performance of SeGShare is in between the
two plaintext WebDAV servers.

Figure 8.3: Mean latency of 1000 up-/downloads with different file sizes.

In the second experiment, we measure the latency to add/revoke a user to/from his first group.
These membership operations only affect the member list file of the user. Therefore, they
are independent of the number of permissions |RP |, stored files |FS|, inherit flags |RI |, file
owners |RFO|, group owners |RGO|, and the file sizes. Furthermore, these operations are also
independent of the number of members the group had before, because SeGShare does not
explicitly store a list of all group members. On average, it takes 154.05 ms and 153.40 ms for
additions and revocations, respectively.

In the third experiment, we measure the latency of adding/revoking a user to/from a group
if the user is already a member of several groups. Again, only the member list file is affected,
and the latency is independent of |RP |, |FS|, |RI |, |RFO|, |RGO|, and the file sizes. However,
the latency now depends logarithmically on the number of the user’s group memberships,
because a logarithmic search is necessary to insert or remove a group membership into or from
the member list file. As presented in Figure 8.4, this dependency is negligible in the mean
latency even up to 1000 group memberships: the latency is between 150.29 ms and 150.92 ms
for additions, and between 150.11 ms and 151.13 ms for revocations.
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Figure 8.4: Mean latency of adding/revoking a user to/from a group (x-axis: number of
memberships before operation).

In the fourth experiment, we measure the latency of adding/revoking a group permission
to/from a file if several groups already have access. For these operations, only permissions in
the ACL file are accessed; thus, the latency is independent of the number of group memberships
|RG|, |FS|, |RI |, |RFO|, |RGO|, and the file sizes. The latency depends logarithmically on the
number of groups having access, but Figure 8.5 shows that this dependency is again negligible
in the total latency.

Figure 8.5: Mean latency of adding/revoking a group permission to/from a file (x-axis: number
of permissions before operation).

In the last latency experiment, we evaluate the overhead of SeGShare’s individual file rollback
protection extension with the following measurement for x ∈ [0, 14]. As preparation, we upload
(2x− 1) times a 10 kB file to SeGShare according to two directory structures: (1) directories are
organized as a binary tree and each leaf contains one file and (2) all files are stored flat under
the root. Then, we measure the upload and download of one additional 10 kB file. Figure 8.6
shows that due to our optimizations, the overhead introduced for uploads is negligible in the
total latency. The minimal, average download latencies for directory structure (1) and (2) are
111.65 ms and 111.65 ms. Even for 16,384 files, the average latency only increases to 115.93 ms
and 121.95 ms.

8.7 Summary
In this chapter, we showed how a TEE-protected file system can be used to build a secure,
efficient, outsourced system for group file sharing supporting large and dynamic groups—
SeGShare. This system protects the confidentiality and integrity of content files, the file system
structure, permissions, existing groups, and group memberships. Among other features, it
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Figure 8.6: Mean latency with enabled and disabled individual file rollback protection exten-
sion and different directory structures.

enforces immediate permission and membership revocations; supports deduplication; mitigates
rollback attacks; and provides separation of authentication and authorization. SeGShare’s
enclave code comprises 8441 LOC minimizing common pitfalls in deploying code to TEEs. A
200 MB plaintext file requires only 202.13 MB encrypted storage, even if it is shared with more
than 1000 groups. Due to our optimized TLS stack and chunk-wise streaming, it takes under
2.4 s to upload and download a 200 MB plaintext file, which is faster than Apache WebDAV
serving plaintext files in the same setup. Permissions and memberships updates require under
170 ms, independent of the number of stored files, file sizes, number of group members, number
of user permissions, and groups sharing a file.
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9
Conclusion

In the following, we first summarize the chapters of this dissertation. Then, we conclude the
dissertation with an outlook on potential future research avenues, in Section 9.1.

In our introduction (Chapter 1), we established that security is one of the main challenges
for companies that want to outsource data processing to the cloud. We listed approaches
trying to solve this security challenge purely based on cryptography. As these approaches have
severe shortcomings, we proposed that the untrusted cloud provider uses a TEE for secure and
efficient data processing. In particular, the TEE should be used to process data structures, and
the resulting TEE-protected data structures can be embedded in outsourced systems. Based on
this proposition, we formulated our research question, explored various aspects of the research
question, and listed the three systems on which we want to test our proposition.

In Chapter 2, we introduced the notation that we use consistently throughout this dissertation.
Additionally, we formally introduced cryptographic primitives that are required for the remainder
of the dissertation, e.g., authenticated encryptions, message authentication codes, and set hash
functions.

As TEEs are an essential aspect of this dissertation, we dedicated Chapter 3 to their
description. After some important definitions, we listed seven capabilities that we expect from
a TEE. In principle, the systems we present in this dissertation can be implemented with
any TEE supporting these seven capabilities. However, during the timeframe in which the
research for this dissertation was done, only Intel SGX fulfilled all capabilities. Therefore,
we elaborated how Intel SGX fulfills the capabilities, described its TCB, and highlighted its
auxiliary capabilities. As many attacks on Intel SGX were presented in the last years, we
explained these attacks and discussed mitigations against them. In particular, we concluded
that a small enclave size is key to mitigate most attacks. We concluded Chapter 3 with a
differentiation to technologies related to TEEs and a classification of commercially available
TEEs according to our list of seven capabilities.

At this point, we had the necessary foundations for an in-detail exploration of related
approaches enabling secure, outsourced data processing. In Chapter 4, we explained related
approaches, reviewed whether these approaches are compatible with our secure, outsourced,
TEE-based data processing scenario, and checked if they provide strong security, high efficiency,
and arbitrary processing capabilities. We demonstrated that the approaches based purely on
cryptography cover other scenarios and/or they fail in at least one of these aspects. We also
presented TEE-based approaches that put entire applications or individual, stateless operations
into an enclave. A benefit of these approaches is that they provide a generic solution, which
can be applied to legacy applications. However, protecting entire applications leads to a large
TCB, makes it difficult to capture the exact leakage, and impedes attack mitigation strategies.
Protecting individual, stateless operations does not suffer from these problems, but leaks the
result of each operation.

In Chapter 5, we used the result of the related work section to introduce our approach
combining strong security, high efficiency, and arbitrary processing capabilities—the TEE-
protected processing of data structures. We differentiated this approach from the individual,
stateless operations approach, and we listed five design principles that we want to adhere
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to for our TEE-protected data structures. In Chapter 5, we also explored our security and
performance assessment methodology, which we used in the following sections to validate our
research question.

Chapter 6 is the first main chapter of this dissertation. In it, we explained how TEE-protected
B+-trees were used to design HardIDX—a secure, efficient, outsourced system for index searches.
We presented two HardIDX constructions with different memory-management strategies: The
first construction loads the whole B+-tree in the enclave memory and the enclave processes
search queries thereafter. The second construction initially loads only the root node into the
enclave memory and the enclave loads required nodes on demand during the tree traversal. For
both constructions, we provided a formal security proof. Additionally, we presented latency
measurements for both constructions, and showed that the second construction requires about
1 ms to perform range queries on B+-trees containing 50 million encrypted entries.

In Chapter 7, we explored a second TEE-protected data structure: database dictionaries.
Using this data structure, we designed EncDBDB—a secure, efficient, outsourced, dictionary-
encoding–based, column-oriented, in-memory database supporting analytic queries on large
datasets. EncDBDB provides nine encrypted dictionary types with distinct security, perfor-
mance, and storage efficiency trade-offs. In our security evaluation, we classified the security
of each encrypted dictionary type based on known security schemes or definitions. In our
performance evaluation, we presented latency measurements for each encrypted dictionary type.
On average, EncDBDB executes range queries over columns with almost 11 million encrypted
rows in less than 13 ms, even without frequency leakage and with bounded order leakage.

We presented our third TEE-protected data structure, a file system, in Chapter 8. Our third
system, SeGShare uses a TEE-protected file system to provide secure, efficient, outsourced
group file sharing supporting large and dynamic groups. Among other features, SeGShare also
enforces immediate permission and membership revocations; supports deduplication; mitigates
rollback attacks; and provides separation of authentication and authorization. We classified
the security of SeGShare using five security objectives and showed that no related approach
can fulfill these objectives. Additionally, we established that the same is true for five important
performance objectives, and we presented latency measurements for important group file sharing
operations. Due to our optimized TLS stack and chunk-wise streaming, it takes under 2.4 s to
upload and download a 200 MB plaintext file, which is faster than Apache WebDAV serving
plaintext files in the same setup.

In conclusion, Chapter 6, 7, and 8 have shown that the integration of TEE-protected data
structures in outsourced systems is a valid approach. In all cases, we answered our research
question by providing lower bounds of security and corresponding upper bounds on performance.
Moreover, we demonstrated that our approaches provide a favorable trade-off regarding security
and efficiency compared to related approaches.

9.1 Outlook

The results of this dissertation open a number of interesting avenues for future work. In the
following, we briefly explore three avenues: extension of our systems, adoption of our approach
to new TEEs, and protection of further data structures.

The three systems presented in our main chapters can be extended in various directions:
• HardIDX uses B+-trees for range searches and thus trivially supports equality searches.

With minor modifications, HardIDX could also support prefix, suffix, or substring searches.
Additionally, HardIDX could be embedded in a larger data analysis framework for secure
and efficient queries. In this case, HardIDX should also support secure and efficient
insertions, updates, and deletions.
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• EncDBDB’s current implementation support equality and range queries, but the imple-
mentation could be easily extended to support further described functionality, i.e., joins,
insertions, deletions, updates, counts, aggregations, and average calculations. Further-
more, integrity protection for whole columns instead of individual values would be a
valuable extension to EncDBDB.

• The current version of SeGShare can be shipped as a standalone application for secure
group data sharing. With slight modifications, SeGShare could also hide the identity of
the users from the cloud provider and from other users accessing the data. Such a system
is valuable in various settings, e.g., in a military organization, the files and the users with
a specific data access are confidential; in a business acquisition setting, the corporate
files and the bidding parties might be confidential; and in a hospital, a patient’s files and
the doctors with access might be confidential, because the doctors’ specialty can leak
sensitive information.

Quite recently, AMD SEV-SNP was unveiled, and it is the only TEE other than Intel SGX
which supports the capabilities required by this dissertation. In contrast to Intel SGX, the
RAM region protected by AMD SEV-SNP is only limited by the size of the RAM. Most
certainly, comparable TEEs will be presented by multiple vendors in the near future. With
such TEEs, it might be useful to adapt some of our designs. For adaptations to large protected
RAM regions, we claim that only the data size processed by an enclave should be increased.
The enclave size, i.e., the size of an enclave’s source code in LOC, should be kept small. This
is important, because a large enclave size leads to a large TCB, makes it difficult to capture
the exact leakage, and impedes attack mitigations. A possible adaptation of HardIDX is the
following: the enclave caches the top-level nodes of the B+-tree, loads more and larger nodes,
and parallel-processes multiple nodes. This would strengthen HardIDX’s security and improve
its performance.

In this dissertation, we cover three TEE-protected outsourced data structures. Besides these
three, our approach could be used for the secure and efficient processing of other data structures.
For instance, TEE-protected hash tables would provide a very efficient alternative for key-to-
value(s) mappings; TEE-protected suffix trees would provide efficient string operations; and
TEE-protected graphs could be used for various commonly used operations (e.g., shortest path
calculations, breadth-first searches, minimum spanning tree calculations).
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Cryptographic Group Access Control using Trusted Execution Environments”, in Pro-
ceedings of the Annual IEEE/IFIP International Conference on Dependable Systems
and Networks, ser. DSN, 2018 (cit. on pp. 98, 102, 103).

[246] J. B. Djoko, J. Lange, and A. J. Lee, “NEXUS: Practical and Secure Access Control on
Untrusted Storage Platforms using Client-side SGX”, in Proceedings of the IEEE/IFIP
International Conference on Dependable Systems and Networks, ser. DSN, 2019 (cit. on
pp. 98, 102, 103).

[247] R. Krahn, B. Trach, A. Vahldiek-Oberwagner, T. Knauth, P. Bhatotia, and C. Fet-
zer, “PESOS: Policy Enhanced Secure Object Store”, in Proceedings of the European
Conference on Computer Systems, ser. EuroSys, 2018 (cit. on pp. 98, 102, 103).

[248] A. S. Tanenbaum and H. Bos, Modern operating systems. Pearson, 2015 (cit. on p. 99).
[249] B. Waters, “Efficient Identity-Based Encryption Without Random Oracles”, in Pro-

ceedings of the Annual International Conference on the Theory and Applications of
Cryptographic Techniques, ser. EUROCRYPT, 2005 (cit. on p. 101).

[250] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-Based Encryp-
tion”, in Proceedings of the IEEE Symposium on Security and Privacy, ser. S&P, 2007
(cit. on p. 101).

[251] D. Naor, M. Naor, and J. Lotspiech, “Revocation and Tracing Schemes for State-
less Receivers”, in Proceedings of the Annual International Cryptology Conference,
ser. CRYPTO, 2001 (cit. on p. 101).

137



Bibliography

[252] K. He, J. Weng, J. Liu, J. K. Liu, W. Liu, and R. H. Deng, “Anonymous Identity-Based
Broadcast Encryption with Chosen-Ciphertext Security”, in Proceedings of the ACM
on Asia Conference on Computer and Communications Security, ser. ASIACCS, 2016
(cit. on p. 102).

[253] A. Boldyreva, V. Goyal, and V. Kumar, “Identity-based Encryption with Efficient
Revocation”, in Proceedings of the ACM Conference on Computer and Communications
Security, ser. CCS, 2008 (cit. on p. 103).

[254] M. Green and G. Ateniese, “Identity-Based Proxy Re-encryption”, in Proceedings of the
International Conference on Applied Cryptography and Network Security, ser. ACNS,
2007 (cit. on p. 103).

[255] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer, “Reclaiming Space
from Duplicate Files in a Serverless Distributed File System”, in Proceedings of the
International Conference on Distributed Computing Systems, ser. ICDCS, 2002 (cit. on
p. 107).

[256] S. Keelveedhi, M. Bellare, and T. Ristenpart, “DupLESS: Server-Aided Encryption for
Deduplicated Storage”, in Proceedings of the USENIX Security Symposium, ser. USENIX
Security, 2013 (cit. on p. 107).

[257] S. Quinlan and S. Dorward, “Venti: a new approach to archival storage”, in Proceedings
of the USENIX conference on file and storage technologies, ser. FAST, 2002 (cit. on
p. 107).

[258] A. Muthitacharoen, B. Chen, and D. Mazières, “A Low-bandwidth Network File System”,
in Proceedings of the ACM Symposium on Operating Systems Principles, ser. SOSP,
2001 (cit. on p. 107).

[259] D. Harnik, B. Pinkas, and A. Shulman-Peleg, “Side channels in cloud services, the case
of deduplication in cloud storage”, in Proceedings of the Symposium on Security and
Privacy, ser. S&P, 2010 (cit. on p. 108).

[260] F. Armknecht, C. Boyd, G. T. Davies, K. Gjøsteen, and M. Toorani, “Side Channels in
Deduplication: Trade-offs between Leakage and Efficiency”, in Proceedings of the ACM
on Asia Conference on Computer and Communications Security, ser. ASIACCS, 2017
(cit. on p. 108).

[261] H. Ritzdorf, G. Karame, C. Soriente, and S. Čapkun, “On Information Leakage in
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