
Towards Exploiting Implicit Human Feedback
for Improving RDF2vec Embeddings?

Ahmad Al Taweel and Heiko Paulheim

University of Mannheim, Germany
Data and Web Science Group

ahmad.altaweel@outlook.de,heiko@informatik.uni-mannheim.de

Abstract. RDF2vec is a technique for creating vector space embeddings
from an RDF knowledge graph, i.e., representing each entity in the graph
as a vector. It first creates sequences of nodes by performing random
walks on the graph. In a second step, those sequences are processed by
the word2vec algorithm for creating the actual embeddings. In this paper,
we explore the use of external edge weights for guiding the random walks.
As edge weights, transition probabilities between pages in Wikipedia
are used as a proxy for the human feedback for the importance of an
edge. We show that in some scenarios, RDF2vec utilizing those transition
probabilities can outperform both RDF2vec based on random walks as
well as the usage of graph internal edge weights.

Keywords: RDFvec · Random Walks · Edge Weights ·Knowledge Graph
Embedding · Human Feedback

1 Introduction

RDFvec [18] was originally conceived for exploiting Semantic Web knowledge
graphs in data mining. Since most popular data mining tools require a fea-
ture vector representation of records, various techniques have been proposed for
creating vector space representations from subgraphs, including straightforward
techniques like adding features for datatype properties or binary dimensions for
types, [17], as well as techniques based on graph kernels [9, 21].

Given the increasing popularity of the word2vec family of word embedding
techniques [11], which learns feature vectors for words based on the context in
which they appear, this approach has been proposed to be transferred to graphs
as well. Since word2vec operates on (word) sequences, several approaches have
been proposed which first turn a graph into sequences by performing random
walks, and then applying the idea of word2vec to those sequences. Such ap-
proaches include node2vec [5], DeepWalk [14], Wembedder [12], and the afore-
mentioned RDF2vec.

While random walks are a straightforward technique for transforming a graph
into sequences, they lack a notion of importance of edges, and assign each edge

? Copyright c© 2020 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).

2 Ahmad Al Taweel and Heiko Paulheim

in the graph – be it important or not – the same weight. This observation has
lead to the inspection of various biases in the walk generation, e.g., preferring
edges to nodes with a high or low PageRank [4]. However, the results using those
graph-internal biases were not very conclusive so far.

In this paper, we present an initial set of experiments which, instead of gen-
erating a bias signal from data which is internal to the graph (e.g., by utilizing
PageRank), uses external data for assigning weights to edges. More specifically,
we utilize transition probabilities between Wikipedia pages, created from user
logs in Wikipedia, as a proxy for the importance of an edge in a knowledge graph
derived from Wikipedia, i.e., DBpedia.

The rest of this paper is structured as follows. In section 2, we discuss some
relevant related work. In section 3, we introduce the approach and data used. We
present some initial experimental findings in section 4. In section 5, we discuss
the results and their possible impact on applications, as well as how they can be
generalized to other datasets and embedding methods.

2 Related Work

The generation of knowledge graph embeddings is a highly active and vibrant
field, with many new approaches being proposed at a very high pace [22]. Despite
the high number of approaches that have been proposed, little light has been
shed on assigning a weight or importance measure to edges when constructing
the embedding space.

One such approach is the extension of RDF2vec already discussed [4] above,
which replaces random by biased walks, where the bias comes from property
frequencies or PageRank of target nodes.

In [10], an information theoretic approach is taken to assign weights to edges.
The authors argue that the importance of an edge in the graph can be determined
by the likelihood that it can be reconstructed by inference. The more easily it
gets reconstructed, the more redundant it is. Consequently, the authors propose
an extension of translational embeddings which focus more on the less redundant
edges.

Both approaches use graph-internal sources to generate the weights, i.e., the
weights are derived directly from the graph without any additional use of external
data. In contrast, we propose an approach for using external data for deriving
such weights, thereby adding a truly fresh signal to the embedding approach.

3 Approach

Our approach is a direct extension of RDF2vec. As discussed above, RDF2vec
uses random walks to generate sequences of nodes and edges, and then applies
word2vec on top of those sequences for generating feature vectors. Both variants

Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings 3

of word2vec – CBOW and SkipGram1 – have been implemented for RDF2vec,
with the latter often showing superior results [19].

In [4], edge weights have been introduced as an extension to RDF2vec. The
adaptation of the RDF2vec is shown in Algorithm 1. When generating weighted
random walks, the next edge to follow is selected in the function selectEdge
(line 11) using a probability distribution computed from the edge weights of all
connecting edges of a node, i.e., the probability of each edge eij from node i
to node j being followed is the weight of that edge, divided by the sum of the
weights of all outgoing edges of i :

Pr [eij] =
weight(eij)∑
eik

weight(eik)
(1)

Note that the classic RDF2vec implementation of RDF2vec is equivalent to using
uniform weights, i.e., all weights being set to 1.

In this paper, we generate RDF2vec embeddings for DBpedia [2], a knowl-
edge graph extracted from Wikipedia. In DBpedia, each entity corresponds to a
Wikipedia page. Hence, we can utilize information generated for Wikipedia also
for computations on DBpedia.

For assigning weights to edges, we collect implicit human feedback. To that
end, we utilize transition likelihoods in user navigation, generated from Wiki-
pedia’s usage logs2. Those represent the number of link transitions (i.e., clicks)
from a Wikipedia page to another one. This transitional probability is used as
implicit user feedback, serving as a proxy for a human rating for the importance
of an edge in the knowledge graph.

Figure 1 shows an example excerpt of the clickstream data for the Wikipedia
page London. On the left hand side, the top pages from which a user gets to the
Wikipedia page for London are depicted: the top five are Google and Bing, as
well as other Web pages, the most likely Wikipedia pages are United Kingdom,
main Page, Europe, England, and City of London. On the right hand side, the
top 10 pages to which a user navigates from the London pages are depicted.
Each transition has a probability, indicated by the strength of the connecting
line.

Note that not every link in Wikipedia corresponds to a statement in DBpedia;
numbers not referring to Wikipedia pages (e.g., links from/to non-Wikipedia
pages) are ignored in the formula above generating the random walks. This means
that the transition probabilities are normalized so that the sum of probabilities
of a transition from one Wikipedia page to all Wikipedia pages linked from this
page is 1. Fig. 2 shows an excerpt of DBpedia, with weights extracted from the
Wikipedia Clickstream dataset. In this case, the sequence

Pretty_Hate_Machine artist Nine_Inch_Nails bandMember Trent_Reznor

1 CBOW (Context Bag of Words) tries to predict a token in a sequence given its sur-
rounding tokens, while SkipGram tries the opposite, i.e., predicting the surroundings
of a token in a sequence given that token.

2 https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstream

4 Ahmad Al Taweel and Heiko Paulheim

Algorithm 1: Algorithm for generating weighted RDF graph walks [19]

Data: G = (V,E): RDF Graph, d: walk depth, n: number of walks
Result: PG: Set of sequences

1 PG := ∅
2 foreach vertex v ∈ V do
3 nv = n
4 while nv > 0 do
5 w = initialize walk
6 add v to w
7 currentV ertex = v
8 dv = d
9 while dv > 0 do

10 Ec = currentV ertex.outEdges()
11 e = selectEdge(Ec)
12 dv = dv - 1
13 add e to w
14 if dv > 0 then
15 ve = e.endV ertex()
16 add ve to w
17 currentV ertex = ve
18 dv = dv - 1

19 end

20 end
21 add w to PG

22 nv = nv - 1

23 end

24 end

would have a much higher probability to be generated than the sequence

Bad_Witch artist Nine_Inch_Nails genre Industrial_Rock

4 Experiments

For evaluating the impact of weights in the RDF2vec embeddings, we conduct
two series of experiments. First, we follow the setup in [13], solving a couple of
entity classification and regression tasks based on a set of benchmarks for ma-
chine learning on the semantic web [16]. For those datasets, three sets of entities
– cities, movies, and albums – have been augmented with an external variable to
be predicted, i.e., the quality of living index for cities, and the metacritic score
for movies and albums.

Second, we perform a set of experiments with a content-based recommender
system based on RDF2vec embeddings [19]. Here, we use a variant of the Movie-
Lens dataset, which collects user ratings for movies, which has been linked to
DBpedia.

Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings 5

Fig. 1. Clickstream data example, showing the top 10 click sources and targets for the
Wikipedia page for London. Source: https://meta.wikimedia.org/wiki/Research:

Wikipedia_clickstream

In both sets of experiments, we compare the results achieved using our
weighted RDF2vec embeddings generated on DBpedia against the standard im-
plementation of RDF2vec, as well as the three best performing variants using
graph internal weighting schemes, as reported in [4], i.e.,

Predicate Frequency uses the global frequency of a predicate as an edge
weight. Consequently, edges with frequent properties are followed more fre-
quently than edges with infrequent properties.

PageRank uses the PageRank of the target node of an edge as the edge weight.
Hence, nodes which are more central in the graph are more likely to be part
of walks.

Inverse PageRank does the opposite, as it uses the inverse of the PageRank
of an object as the edge weight. Here, walks are more likely to contain nodes
which are less central in the graph.

In particular, the latter two strategies are very different: PageRank creates walks
which mainly contain central nodes, i.e., it creates a very uneven distribution
reflecting the popularity of nodes, whereas inverse PageRank tries to favor less
central nodes and create a more even distribution in which central nodes are not
treated with preference, i.e., long tail entities are covered better.

The code used for the experiments, including all the variants that were con-
sidered for comparison, is available online.3

3 https://github.com/ataweel55/RDF2VEC

6 Ahmad Al Taweel and Heiko Paulheim

Nine Inch Nails

Trent Reznor

band Member
(8,989)

Pretty Hate
Machine artist

(4,529)

The Downward
Spiral

artist
(4,491)

Atticus Ross
band Member

(4,439)

Bad Witch

artist
(3,998)

The Fragile

artist
(2,494)

Industrial Rock

genre
(979)

Fig. 2. Excerpt from DBpedia, using transition likelihoods from the Clickstream
dataset

4.1 Results on Machine Learning Benchmark Datasets

In the three benchmark datasets used, the goal is to predict the quality of living
in cities, and the metacritic score of movies and albums. For classification, those
are discretized (into high and low), for regression, the goal is to predict the actual
number. In those experiments, we follow the setup in the original RDF2vec paper
[18], utilizing four standard out of the box classification algorithms (Naive Bayes,
nearest neighbors, Support Vector Machines, and C4.5 decision trees) and three
regression algorithms (linear regression, nearest neighbors, and M5 regression
trees).4

Tables 1 and 2 depict the results for the classification and regression tasks. It
can be observed that for the classification tasks, the embeddings incorporating
clickstream data outperform the default RDF2vec embeddings in one out of
three tasks, while for the regression, they outperform those in all three cases.
Moreover, we can observe that the embeddings utilizing the external signal for
the weighting schemes are superior to all three techniques utilizing graph internal
signals.

4.2 Results on Recommendation Datasets

In this experiment, we use the RDF2vec graph embedding method in the frame-
work of content-based recommender systems for feature generation and rely on
a comparatively easy suggestion algorithm, i.e., the items are recommended us-
ing the K-Nearest Neighbors technique with cosine similarity in the RDF2vec

4 We are aware that there might be better performing state of the art algorithms,
e.g., deep neural networks or XGboost. However, for our goal of comparing different
RDF2vec variants, we tried to follow the original evaluation protocol of RDF2vec as
closely as possible.

Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings 7

Table 1. Classification results (accuracy)

Strategy/Dataset
Cities Metacritic Movies Metacritic Albums

NB KNN SVM C4.5 NB KNN SVM C4.5 NB KNN SVM C4.5

Uniform SG 200w 200v 4d 73.25 72.90 76.32 50.26 72.29 75.81 75.94 67.28 71.46 72.87 68.66 63.45

Uniform SG 500w 200v 4d 59.25 67.51 73.01 61.27 65.25 79.62 81.19 74.52 69.25 72.85 75.80 64.92

Uniform SG 500w 200v 8d 71.65 75.52 72.82 59.48 76.41 72.35 83.51 76.83 76.36 75.96 81.72 67.25

Uniform SG 500w 500v 8d 87.63 70.15 82.70 68.72 81.35 76.24 83.35 71.52 75.64 75.92 78.63 67.18

Predicate frequency weight SG 200w 200v 4d 72.15 70.77 73.37 51.25 74.60 75.21 76.13 72.42 69.82 71.90 73.53 62.22

Page-Rank weight SG 200w 200v 4d 74.16 72.73 67.21 62.83 71.32 69.19 79.70 74.43 69.61 71.98 74.47 68.11

Inverse Page-Rank Weight SG 200w 200v 4d 73.98 69.37 74.60 57.38 68.68 71.25 72.71 64.93 67.39 73.57 64.27 58.66

Click-Stream weight CBOW 200w 200v 4d 60.25 64.90 74.32 65.26 67.29 75.81 77.94 69.20 71.15 72.38 74.47 63.48

Click-Stream weight SG 200w 200v 4d 74.68 71.20 77.94 53.45 71.11 77.31 79.52 67.78 70.46 72.20 67.18 62.88

Click-Stream weight SG 500w 200v 4d 61.22 73.90 78.39 62.45 65.14 80.49 81.44 79.65 71.19 69.78 74.15 69.37

Click-Stream weight SG 500w 500v 8d 88.63 69.70 81.62 71.93 82.44 74.69 82.27 69.12 77.63 72.84 79.48 66.81

Table 2. Regression results (Root Mean Squared Error)

Strategy/Dataset
Cities Metacritic Movies Metacritic Albums

LR KNN M5 LR KNN M5 LR KNN M5

Uniform SG 200w 200v 4d 16.64 15.92 16.87 17.16 19.33 17.79 12.38 14.42 12.97

Uniform SG 500w 200v 4d 14.74 12.78 14.52 16.95 18.62 17.28 13.56 14.33 13.65

Uniform SG 500w 200v 8d 13.68 14.93 13.45 16.79 18.40 16.97 13.17 14.36 13.22

Uniform SG 500w 500v 8d 12.23 13.81 10.86 16.42 18.03 16.68 12.48 13.63 11.96

Predicate frequency weight SG 200w 200v 4d 16.54 17.83 17.56 18.28 20.90 19.72 14.31 16.88 13.44

Page-Rank weight SG 200w 200v 4d 14.74 14.57 16.14 17.63 20.81 16.86 12.57 15.72 12.56

Inverse Page-Rank weight SG 200w 200v 4d 14.87 16.59 14.93 16.10 18.44 16.16 11.56 12.93 11.51

Click-Stream weight CBOW 200w 200v 4d 15.13 13.64 16.13 19.76 20.91 19.48 13.52 14.29 13.58

Click-Stream weight SG 200w 200v 4d 15.48 16.16 15.24 17.31 19.27 16.78 12.28 13.75 12.21

Click-Stream weight SG 500w 200v 4d 13.96 16.53 14.82 15.66 16.15 15.86 11.70 12.50 11.77

Click-Stream weight SG 500w 500v 8d 12.25 12.57 10.11 15.72 16.89 15.80 10.79 11.67 11.14

embedding space. Formally, this technique evaluates the proximity of objects
by means of cosine similarity between the respective RDF2vec vectors and then
selects a subset of those – the neighbors – for each object, which will be used to
predict the user u a rating for a fresh item I as follows:

r∗ (u, i) =

∑
j∈ratedItems(u) cosineSim(j, i).ru,j)∑

j∈ratedItems(u) |cosineSim(j, i)|
(2)

Where ratedItems(u) is a collection of products already assessed by the user
u, ru,j suggests the user u use j rating and cosineSim(j, i) shows the cosine sim-
ilarity score between j and i products. The size of the considered neighborhood
is restricted to 5 in our experiments.

Table 3 depicts the results of the recommender system experiments. It can
be observed that the results incorporating human feedback outperform both the

8 Ahmad Al Taweel and Heiko Paulheim

Table 3. Results of the ItemKNN approach on Movielens dataset

Strategy Precision Recall F1

Uniform SG 200w 200v 4d 0.05128 0.02466 0.03330
Uniform SG 500w 200v 4d 0.04852 0.03024 0.03725
Uniform SG 500w 200v 8d 0.04279 0.02612 0.03243
Uniform SG 500w 500v 8d 0.02692 0.01624 0.02025

Predicate frequency weight SG 200w 200v 4d 0.01946 0.0960 0.03236
Page-Rank weight SG 200w 200v 4d 0.03251 0.01828 0.02340

Inverse Page-Rank weight SG 200w 200v 4d 0.03924 0.02369 0.02954

Click-Stream weight CBOW 200w 200v 4d 0.03162 0.01348 0.01890
Click-Stream weight SG 200w 200v 4d 0.05261 0.03625 0.04292
Click-Stream weight SG 500w 200v 4d 0.04622 0.02573 0.03305
Click-Stream weight SG 500w 500v 8d 0.02489 0.01925 0.02170

default RDF2vec approach as well as the three variants using graph-internal
weights.

5 Conclusion and Outlook

In this paper, we have introduced an approach for incorporating an external
signal – in our case: page transition probabilities in Wikipedia – for creating
knowledge graph embeddings. We have shown that the performance of RDF2vec
models can be increased by exploiting such a signal for edge weights.

So far, we have carried out experiments on DBpedia, and used edge weights
derived from Wikipedia. The same technique would be applicable for knowledge
graphs based on Wikipedia, such as YAGO [20] and CaLiGraph [6], as well as
knowledge graphs based on other Wikis [7] for which log files are available. For
other knowlede graphs and datasets, other methods of obtaining edge weights
need to be investigated. Moreover, for Wikipedia-based knowledge graphs, other
measures of weights than interaction histories might be feasible (e.g., assessing
the importance of a link based on the text of a Wikipedia page, or analyzing
the edit history of a page to find out how early the link to the other page was
added).

RDF2vec is not the only knowledge graph embedding technique in which edge
weights can be exploited. In [10], the authors argue that translational embedding
techniques such as TransE [3] and its descendants can also be adapted in a way
that they use edge weights. So far, this has only done by using graph internal
weights. Hence, given our observations that external weights work better for
RDF2vec than graph internal weights, we want to investigate the usage of graph
external weights in such embedding techniques as well.

Since RDF2vec has been used in quite a few downstream applications, we
want to investigate the effect of graph external edge weights in such application
as well. Besides recommender systems, possible fields are the use of RDF2vec for
ontology alignment [15], for analyzing changes in ontologies [8], or reconciling
information extracted from different texts [1]. Moreover, given a specific task,
it would be interesting to investigate to which extent task-specific weighting
schemes might be utilized.

Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings 9

References

1. Alam, M., Recupero, D.R., Mongiovi, M., Gangemi, A., Ristoski, P.: Reconciling
event-based knowledge through rdf2vec. In: HybridSemStats@ ISWC (2017)

2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: Dbpedia:
A nucleus for a web of open data. In: The semantic web, pp. 722–735. Springer
(2007)

3. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating
embeddings for modeling multi-relational data. In: Advances in neural information
processing systems. pp. 2787–2795 (2013)

4. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Biased graph walks for rdf
graph embeddings. In: Proceedings of the 7th International Conference on Web
Intelligence, Mining and Semantics. pp. 1–12 (2017)

5. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864 (2016)

6. Heist, N., Paulheim, H.: Uncovering the semantics of wikipedia categories. In:
International semantic web conference. pp. 219–236. Springer (2019)

7. Hertling, S., Paulheim, H.: Dbkwik: A consolidated knowledge graph from thou-
sands of wikis. In: 2018 IEEE International Conference on Big Knowledge (ICBK).
pp. 17–24. IEEE (2018)

8. Jurisch, M., Igler, B.: Rdf2vec-based classification of ontology alignment changes.
arXiv preprint arXiv:1805.09145 (2018)

9. Lösch, U., Bloehdorn, S., Rettinger, A.: Graph kernels for rdf data. In: Extended
Semantic Web Conference. pp. 134–148. Springer (2012)

10. Mai, G., Janowicz, K., Yan, B.: Support and centrality: Learning weights for knowl-
edge graph embedding models. In: European Knowledge Acquisition Workshop. pp.
212–227. Springer (2018)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

12. Nielsen, F.Å.: Wembedder: Wikidata entity embedding web service. arXiv preprint
arXiv:1710.04099 (2017)

13. Pellegrino, M.A., Cochez, M., Garofalo, M., Ristoski, P.: A configurable evaluation
framework for node embedding techniques. In: European Semantic Web Confer-
ence. pp. 156–160. Springer (2019)

14. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710 (2014)

15. Portisch, J., Paulheim, H.: Alod2vec matcher. OM@ ISWC 2288, 132–137 (2018)

16. Ristoski, P., De Vries, G.K.D., Paulheim, H.: A collection of benchmark datasets for
systematic evaluations of machine learning on the semantic web. In: International
Semantic Web Conference. pp. 186–194. Springer (2016)

17. Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for cre-
ating features from linked open data. Linked Data for Knowledge Discovery 6
(2014)

18. Ristoski, P., Paulheim, H.: Rdf2vec: Rdf graph embeddings for data mining. In:
International Semantic Web Conference. pp. 498–514. Springer (2016)

19. Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., Paulheim, H.: Rdf2vec: Rdf
graph embeddings and their applications. Semantic Web 10(4), 721–752 (2019)

10 Ahmad Al Taweel and Heiko Paulheim

20. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A large ontology from wikipedia
and wordnet. Journal of Web Semantics 6(3), 203–217 (2008)

21. de Vries, G.K.: A fast approximation of the weisfeiler-lehman graph kernel for
rdf data. In: Joint European Conference on Machine Learning and Knowledge
Discovery in Databases. pp. 606–621. Springer (2013)

22. Wang, Q., Mao, Z., Wang, B., Guo, L.: Knowledge graph embedding: A survey
of approaches and applications. IEEE Transactions on Knowledge and Data Engi-
neering 29(12), 2724–2743 (2017)

