
ilable at ScienceDirect

Digital Investigation 14 (2015) S127eS136
Contents lists ava
Digital Investigation

journal homepage: www.elsevier .com/locate/d i in
DFRWS 2015 USA
Privacy-preserving email forensics

Frederik Armknecht a, *, Andreas Dewald b

a Universit€at Mannheim, Germany
b Friedrich-Alexander-Universit€at Erlangen-Nürnberg, Germany
Keywords:
Forensics
Privacy
Keywords
Non-interactive searchable encryption
Dictionary attack
* Corresponding author.
E-mail address: armknecht@uni-mannheim.de (

http://dx.doi.org/10.1016/j.diin.2015.05.003
1742-2876/© 2015 The Authors. Published by Else
creativecommons.org/licenses/by-nc-nd/4.0/).
a b s t r a c t

In many digital forensic investigations, email data needs to be analyzed. However, this
poses a threat to the privacy of the individual whose emails are being examined and in
particular becomes a problem if the investigation clashes with privacy laws. This is
commonly addressed by allowing the investigator to run keyword searches and to reveal
only those emails that contain at least some of the keywords. While this could be realized
with standard cryptographic techniques, further requirements are present that call for
novel solutions: (i) for investigation-tactical reasons the investigator should be able to
keep the search terms secret and (ii) for efficiency reasons no regular interaction should be
required between the investigator and the data owner. We close this gap by introducing a
novel cryptographic scheme that allows to encrypt entire email boxes before handing
them over for investigation. The key feature is that the investigator can non-interactively
run keyword searches on the encrypted data and decrypt those emails (and only those) for
which a configurable number of matches occurred. Our implementation as a plug-in for a
standard forensic framework confirms the practical applicability of the approach.
© 2015 The Authors. Published by Elsevier Ltd on behalf of DFRWS. This is an open access

article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Introduction

Digital forensics denotes the application of scientific
methods from the field of computer science to support
answering questions of law (Carrier, 2005; Casey, 2011),
which usually includes the acquisition, analysis and pre-
sentation of digital evidence. In such investigations, pri-
vacy is protected by individual domestic laws prohibiting
unreasonable searches and seizures, such as the Fourth
Amendment to the United States Constitution. Formally,
privacy is a human right, which means e following the
definition of the U.N. universal declaration of human
rights e that “[n]o one shall be subjected to arbitrary
interference with his privacy, […] or correspondence […]
[and] [e]veryone has the right to the protection of the law
against such interference or attacks” (International
Community and U. N, 1948, Article 12). In many nations,
F. Armknecht).

vier Ltd on behalf of DFRW
domestic laws are very stringent and regarding in-
vestigations within a company further require companies
to haveworks councils and data protection commissioners
to protect the privacy of employees and customers.
Especially the analysis of email data is subject to contro-
versial discussions, especially when the private use of the
corporate email account is allowed. It is in this duality
between forensics and privacy where special re-
quirements to forensic tools arised (Adams, 2008).
Motivation

Whenever a company becomes victim of accounting
fraud or is involved in cartel-like agreements, this usually
prompts large-scale investigations. In such investigations,
mostly management documents and emails are reviewed,
because especially communication data often provides
valuable pieces of evidence. However, it also contains very
sensitive and private information. As stated above, the
company may be legally obligated by domestic law to
S. This is an open access article under the CC BY-NC-ND license (http://

http://creativecommons.org/licenses/by-nc-nd/4.�0/
mailto:armknecht@uni-mannheim.de
http://crossmark.crossref.org/dialog/?doi=10.1016/j.diin.2015.05.003&domain=pdf
www.sciencedirect.com/science/journal/17422876
http://www.elsevier.com/locate/diin
http://dx.doi.org/10.1016/j.diin.2015.05.003
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://creativecommons.org/licenses/by-nc-nd/4.�0/
http://dx.doi.org/10.1016/j.diin.2015.05.003
http://dx.doi.org/10.1016/j.diin.2015.05.003

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136S128
protect the privacy of the employees during the investi-
gation as far as possible.

Current methods that are applied to this end usually
make use of filtering to prevent all emails from being read:
The investigator is allowed to run keyword searches and
only those emails that contain at least some of the key-
words are displayed. In this way, the investigator shall find
such emails that are relevant to the case, but as few unre-
lated emails as possible to preserve privacy. The concep-
tually most simple realization is that the data remains at
the company and that the investigator sends the search
queries to the company who returns the search results.
However, this comes with two problems. First, the com-
pany would learn all search queries while for investigation-
tactical reasons, it may be necessary to keep them secret.
Second, the need for constantly contacting the company's
IT puts further burden on both sides. Therefore, common
practice is that the investigator is granted access to the
entire data and conducts the search. There, other privacy
problems arise: Because of the risk to overlook the so-
called smoking gun when not reading every email, in-
vestigators may be tempted to sidestep the filter mecha-
nism. A prominent example of such deviation from the
search order is the case United States v. Carey (1999), even
though in this case no filtering was actually used at all.
Contributions

Our contribution is a novel approach for privacy-
preserving email forensics, which allows for non-interactive
threshold keyword search on encrypted emails (or generally
text). That is a user holding the encrypted text can autono-
mously search the text for selected keywords. The search
process reveals thecontentof anemail if andonly if it contains
at least t keywords that the investigator is searching for.
Otherwise, the investigator learns nothing e neither about
the content of the email nor whether any of the selected
keywords are contained. Our scheme allows for privacy-
preserving email forensics using the following process:

1. Company's IT extracts requested email boxes.
2. Company (IT or data protection officer) encrypts the

emails by applying our scheme.
3. Encrypted data is extradited to third party investigators.
4. Investigators are able to run keyword searches on the

encrypted data and can decrypt those (and only those)
emails that contain at least t of the keywords that they
are looking for.

This way, the investigators are able to conduct their
inquiry in the usual way, while not threatening privacy
more than necessary. We want to emphasize that the
investigator holds the entire data and can search within the
data without further interaction with the company. In
particular, the company learns nothing about the search
queries executed by the investigators. For the investigator,
nothing changes and keyword search can be performed as
usual, because the decryption is handled transparently in
the background after a successful keyword search, as
demonstrated later in Section Practical implementation.
The only overhead introduced for the company is to
determine the threshold t, i.e. decide how many relevant
keywords must be matched for decryption, and to encrypt
the email data. Besides choosing the threshold t, the com-
pany may further decide, which keywords should be rele-
vant for the case (i.e. whitelisting keywords for which the
investigator might obtain a match), or in the contrary
decide which words shall not allow the investigator to
decrypt emails, such as pronouns, the company's name and
address, salutations or other simple words (i.e. blacklisting
keywords). Note that both approaches can be applied in our
scheme, however, we further refer to the blacklisting
approach, as we assume it to be more practical in most
cases, because a blacklist can easily be adopted from case to
case once it has been built. Awhitelist has to be determined
strongly depending on the case, but there might be cases
where it is worthwhile to apply the whitelist approach.
After configuring the threshold t and the white-/blacklist
(once), the company can just invoke the encryption algo-
rithm on the email data and hand it over for investigation.

The proposed scheme uses only established crypto-
graphic building blocks: a symmetric key encryption
scheme, a hash function, and a secret sharing scheme. The
facts that for each of these allegedly secure implementa-
tions do exist and that the security of the overall scheme
solely relies on the security of these building blocks allow
for concrete realizations with high confidence in the
security.

Last but not least, we present an implementation of our
scheme as a plug-in for the forensic framework Autopsy
(Carrier, 2009). Experiments and performance measure-
ments conducted on real email folders demonstrate the
practical applicability of our approach.

Outline

The remainder of the paper is structured as follows: We
introduce our solution and give a high level description of
the scheme and algorithms in Section The proposed
scheme. In Section Detailed description of the
components, we provide an in-depth explanation of the
scheme and Section Practical implementation shows our
prototype implementation and evaluates the practical
applicability. In Section Related work, we give an overview
of related work and conclude our paper in Section Related
work.

The proposed scheme

This section provides a description of our scheme,
focusing on explaining the motivation behind the design,
the overall structure and work flow. For readability, we
omit several details on the concrete realization of the
components. These will be delivered in Section Detailed
description of the components.

Because an investigator should only be able to decrypt
and read such emails that match his search terms, the
investigator should not be able to learn anything about the
encryption key of other emails when successfully
decrypting one email. Thus, we use a cryptographic scheme
that protects each email individually. The overall situation

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136 S129
with respect to one email can be described as follows: A
plaintext P is given together with a list of keywords
w :¼ {w1,…,wn}. In our context, P would be the email that
needs to be protected and w denotes the set of words
within this email. For security reasons, this list excludes
trivial words like “the”, or other general words that can be
configured using the already mentioned blacklist. The
scheme provides two functionalities: a protection algo-
rithm Protect and an extraction algorithm Extract. The task
of the protection algorithm is to encrypt the given plaintext
P to a ciphertext C to prevent an outsider to extract any
information about the plaintext. In addition the protection
algorithm outputs some helper data. The helper data en-
ables a user who knows at least t keywords to extract the
plaintext P from the ciphertext C by applying the extraction
algorithm.

The scheme uses three established cryptographic
primitives: a symmetric key encryption scheme, a hash
function, and a secret sharing scheme.We explain these ‘on
the go’ when needed in our description.

The protection mechanism

The protection algorithm (see Algorithm 1) has the task
to encrypt an email in a way that allows for a keyword
search on the encrypted data. In a nutshell, it can be divided
into the following three different steps:

Step P.1: Encrypt Message. To protect the content of P, it is
encrypted to C using an appropriate encryption scheme
(line 2). To this end, a secret key K is used which is
randomly sampled (line 1). If the encryption scheme is
secure, the plaintext becomes accessible if and only if the
secret key can be determined. The two remaining steps
ensure that if a user knows t keywords in w, he can
reconstruct K and thus decrypt the plaintext P from C.
Step P.2: Split Secret Key into Shares. Recall that we want
only users who know at least t correct keywords from w
(i.e. keywords that occur in the email and that are not
blacklisted), to be able to extract P. This threshold-condition
is integrated in this step, while in the subsequent (and last)
step, the connection to the keywords in w is established.
More precisely, in this step a secret sharing scheme (as
proposed by Shamir (1979), for example) is used to re-
encode the secret key K into n shares s1,…,sn (line 3). This
operation, referred to as Split, ensures that (i) the secret key
K can be recovered (using an algorithm Recover) from any t
pairwise distinct shares si1,…,sit but (ii) if less than t shares
are available, no information about K can be deduced at all.
Observe that the number of shares is equal to the number n
of keywords in w, that is the keywords within the email
except those in the blacklist.

So far, only standard cryptographic techniques have
been used in a straightforward manner. It remains now to
chain the shares derived in this step to the keywords in w.
This can be seen as one of the main novel contributions of
the proposed scheme.

Step P.3: Connect Keywords to Shares. In this final step, a
mapping F is constructed which maps each keyword wi to
one share si. That is F(wi) ¼ si for all i ¼ 1,…,n. This ensures
that a user who knows t distinct keywords wi1 ;…;wit2W
can derive the corresponding shares
si1 ¼ Fðwi1 Þ;…; sit ¼ Fðwit Þ using F. Given these, the secret
key K is recovered by K :¼ Recoverðsi1 ;…; sit Þ that allows to
decrypt P :¼ DecK(C). The calculation of this mapping F is
more complicated and is explained in the details in Section
Detailed description of the components.

The output of the protection mechanism is the cipher-
text C¼ EncK(P) and information that uniquely specifies the
mapping F. Observe that F actually represents the helper
data mentioned before. For efficiency reasons, it is neces-
sary that F has a compact representation. In the next sec-
tion, we now explain how a forensic investigator might
reconstruct the plaintext of an email P from (C,F), if and
only if this email contains the t keywords he is searching
for.
The extraction mechanism

The task of the extraction mechanism (see Alg. 2)) is to
allow an investigator to decrypt the encrypted email, if this
email contains the terms he is searching for. Formally
speaking, the mechanism allows a user who has knowledge
of t correct keywords to extract the original plaintext P
from (C,F). Like for the protection mechanism, the extrac-
tion mechanism is divided into three steps. Each step is
more or less responsible for reverting one of the steps of
Protect. This needs to be done in reversed order (i.e., the
first step E.1 reverts P.3, and so on). Assume now that the
ciphertext C and helper data F is given and the user aims to

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136S130
recover the original plaintext using t keywords w0
1;…;w0

t ,
which are the words he is searching. The three steps are the
following:

Step E.1: Compute Possible Shares From the keywords
w0

1;…;w0
t , we compute t possible shares by applying the

mapping F (line 2). That is s0i :¼ Fðw0
iÞ for i ¼ 1,…,t.

Step E.2: Determine Possible Secret Key In this step, the
user aims to recover the secret key K from the shares
s01;…; s0t . To this end, he invokes the corresponding algo-
rithm Recover from the secret sharing scheme on s01;…; st
and receives a value K0 (line 4). Observe that by assumption
on Recover, it holds that only if those t keywords really
occurred in the email and were not blacklisted, the output
of F will be t correct shares of the secret key. Otherwise
(when there were less than t or no matches in this email) K0

is a random value and the user does not learn which of the
used search terms were correct, if any. More formally, it
holds that K0 ¼ K if and only if fs01;…; s0tg3fs1;…; sng.
Step E.3: Decrypting the Encrypted Plaintext In the final
step, the user aims to extract P from C. That is he computes
P0 ¼ DecK 0 ðCÞ. According to the common requirements on
secure encryption algorithms, it holds that P0 ¼ P if K0 ¼ K.
Otherwise P0 should be some meaningless data that is not
obviously related to P. We assume an efficient algorithm
that can reject false plaintexts (explained later) and outputs
⊥ in such cases. Otherwise the final output is P. This means,
in the last step the algorithm is able to determine if K0 was
valid and otherwise does not display the useless data to the
investigator.

Detailed description of the components

In this section, we provide both, a generic description
based on appropriate cryptographic primitives, but also
suggest a concrete choice of algorithms and parameters. In
principle the following three mechanisms need to be
realized:

� An encryption/decryption scheme that allows to effi-
ciently identify wrongly decrypted plaintexts (steps P.1,
E.3)

� A secret sharing scheme (steps P.2, E.2)
� A method to create mapping F (steps P.3, E.1)

In the course of this section, we explain those three
building blocks in the given order.
Encryption/decryption scheme

Reasonable choices are encryption schemes that (i) have
been thoroughly analyzed over a significant time period
and (ii) are sufficiently efficient. A good candidate is AES
(Daemen and Rijmen, 2002), being the current encryption
standard.

Although AES has been designed to encrypt 128 bit
blocks only, it can encrypt larger chunks of data if used in
an appropriate mode of operation like the Cipher Block
Chaining (CBC) Mode (Bellare et al., 2000). That is a plain-
text P is divided into several 128-bit blocks P ¼ (p1,…,p[)
with pi2{0,1}128 for each i (if the bit size of P is not a
multiple of 128, some padding is used at the end). With
respect to the key size, the AES standard supports 128 bit,
192 bit, and 256 bit. As according to the current state of
knowledge, 128 bit security is still sufficient, we propose to
use AES-128. That is in the following the keylength is
[K ¼ 128 and Enc refers to AES-128 in CBC-mode; other
choices are possible.

Given a plaintext P, it is first transformed into a
sequence (p1,…,p[) of 128-bit blocks. To allow for identi-
fying wrongly decrypted plaintexts (line 6), we prepend a
128-bit block p0 which consists of a characteristic padding
pad, e.g., the all-zero bitstring pad ¼ 〈0,…,0〉. Then, given a
128-bit key K2{0,1}128, the sequence of 128-bit blocks
(p0,p1,…,p[) is encrypted to (c0,…,c[). More precisely, the
CBC-mode involves a randomly chosen initial value IV that
will be chosen at the beginning. Then, the ciphertext blocks
ci are computed as follows:

c0 :¼ EncKðpad4IVÞ (1)

ci :¼ EncKðpi4ci�1Þ; i ¼ 2;…; [(2)

The output of the encryption process is (IV,c0,…,c[).
With respect to the decryption procedure, it holds that

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136 S131
pad :¼ DecKðc0Þ4IV (3)

pi :¼ DecKðciÞ4ci�1; i ¼ 2;…; [(4)

Observe that also a legitimate usermaybe forced to re-try
several selections of keywords until he is able to access the
plaintext.Hence, it is desirable that thedecryptionprocedure
can be aborted as soon as possible if awrong key is tried. This
is the reason for the introduction of the characteristic
padding pad. Given the encrypted blocks (c0,…,c[) and a key
candidateK0, a user canfindout ifK0 ¼Kbychecking (3). Only
if this is fulfilled, the decryption process is continued.
Otherwise, it is aborted and the next email in the data set is
tested for a valid match of all the t search terms.

Secret sharing scheme

The concept of secret sharing is well known in cryp-
tography since long. In our proposal, we adopt the secret
sharing scheme (SSS) proposed by Shamir (1979). As its
concrete form has impact on the realization of the mapping
construction, we recall its basic ideas here:

Let K2{0,1}128 denote the secret key. In the following,
we treat K as an element of the finite field GF(2128). Next, let
the threshold value t be given and an integer n which
should represent the number of shares (equally to the
number of different, non-blacklisted keywords in the
email). We aim to derive n shares s1,…,sn such that any
choice of t shares allows for reconstructing K. To this end,
let n þ 1 pairwise different values x0,…,xn2GF(2128) be
given. More precisely, the values x1,…,xnwill be the result of
computations explained in Section Creating the mapping.
Then, x0 is chosen randomly in GF(2128)n{x1,…,xn}. These
values will later play the role of x-coordinates.

Next, a polynomial p(x) of degree t � 1 is chosen such
that p(x0) ¼ K. Finally, the n shares are computed by
si :¼ (xi,yi)2GF(2128) � GF(2128) with yi ¼ p(xi). We denote
this overall procedure as

ðs1;…; snÞ :¼ SplitðK; x1;…; xn; tÞ (5)

Observe that each share represents one evaluation of
the polynomial p at a different point. It is well known that a
polynomial of degree t � 1 can be interpolated from any t
evaluations. Hence, recovery is straightforward: Given t
distinct shares sij ¼ ðxij ; pðxij Þ, the first step is to interpolate
the polynomial p(x). Once this is accomplished, the secret is
determined by evaluating p(x) at x0, that is K :¼ p(x0).
However, if less shares are known or if at least one of them
is incorrect (that is has the form (x,y0) with y0 s p(x)), the
derived value is independent of K. Hence, this realization
fulfills the requirements mentioned above. This procedure
is denoted by

K :¼ Recover
�
si1 ;…; sit

�
: (6)

Creating the mapping

It remains to discuss how a mapping F can be con-
structed that maps the keywords wi2{0,1}* to the secret
shares si2{0,1}256. We propose a mapping F that is
composed of two steps as follows: The first step uses a
cryptographically secure hash function H:{0,1}*/{0,1}256.
For example, one might instantiate H with SHA-256
(National Institute of Standards and Technology, 2002) or
the variant of SHA-3 (Bertoni et al., 2011) that produces 256
bit outputs. In addition, a random value salt2{0,1}* is
chosen. Then, the first step is to compute the hash values hi
of the concatenated bitstring saltjjwi, that is

hi ¼ HðsaltjjwiÞ ci ¼ 1;…;n: (7)

Observe that hi2{0,1}256. In the following, we parse
these values as (xi,zi)2GF(2128) � GF(2128). The values
(x1,…,xn) will be the x-coordinates as explained in Section
Secret sharing scheme. This requires that they are pairwise
distinct. As each xi is 128 bits long, it holds for any pair (xi,xj)
with i s j that the probability of a collision is 2�128 if the
hash function is secure. Due to the birthday paradox, the
overall probability for a collision is roughly n2/2128. This
probability can be neglected in practice as n is usually by
several magnitudes smaller than 264. In case of the
improbable event that two values collide, this step is
repeated with another value for salt.

Next, we assume that the secret sharing scheme has
been executed (see eq. (5)) based on the values x1,…,xn
determined by the results from (7). That is we have now the
situation that n hash values hi ¼ (xi,zi)2GF(2128) � GF(2128)
are given and likewise n shares si ¼ (xi,yi)
2GF(2128) � GF(2128). We complete now the construction
of F. First, a function g is constructed which fulfills

gðxiÞ ¼ yi4zi ci ¼ 1;…;n: (8)

We elaborate below how g can be efficiently realized.
Given such a function g allows to realize a bijective
mapping

G : GF
�
2128

�� GF
�
2128

�
/GF

�
2128

�� GF
�
2128

�
ðx; yÞ1ðx; gðxÞ4yÞ

This mapping G can be easily inverted and hence is
bijective. Moreover, it maps a hash value hi ¼ (xi,zi) to

GðhiÞ ¼ Gðxi; ziÞ ¼ ðxi; gðxiÞ4ziÞ (9)

GðhiÞ¼ð8Þ ðxi; ðyi4ziÞ4ziÞ (10)

GðhiÞ ¼ ðxi; yiÞ ¼ si: (11)

Now F is defined as the composition of H and G, that is

F ¼ G+H: (12)

Algorithm 3 summarizes the steps of F. As we suggest
the use of a known and widely analyzed hash function H,
we can omit its specification in the output of Protect. In fact,
the only information that is necessary for evaluating F is the
function g(x). The realization that we propose below re-
quires only n field elements which is optimal in the general
case. As we suggest the use of GF(2128), this translates to a

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136S132
representation using 128,n bits. The bijectivity of F ensures
that only correct hash values map to valid shares.

It remains to explain how g:GF(2128)/GF(2128) can be
efficiently realized. Observe that any mapping from a finite
field to itself can be represented by a polynomial. Hence, an
obvious approach would be to use the tuples (xi,yi4zi) to
interpolate a polynomial p(x) of degree w such that
p(xi) ¼ yi4zi for i ¼ 1,…,n. However, the asymptotical effort
for interpolation is cubic in the degree (here n) and our
implementations revealed that this approach is too slow
even for the average case. Therefore, we derived another
approach: The core idea is to split the input space (here:
GF(2128)) into several distinct sets and to define for each set
an individual ‘sub-function’. That is given an input x, the
function g is evaluated on x by first identifying the subset of
GF(2128) that contains x and then to apply the corre-
sponding sub-function to x. This approach requires to
derive the corresponding sub-functions which we accom-
plish by plain interpolation. However, as each set now
contains significantly less values xi thanw, the overall effort
is significantly reduced. To see why, let [denote the num-
ber of sets and assume for simplicity that each set contains
n/[values xi. Then the overall effort to interpolate these [

subfunctions of degree n/[each is [,(n/[)3 ¼ n3/[2. That is
compared to the straightforward approach of interpolating
g directly, our approach is faster by a factor of roughly [2.

For the splitting of GF(2128), i.e., the set of all 128-bit
strings, we suggest to use the k least significant bits
where k � 1 is some positive integer.1 More precisely, for a
value x2GF(2128), we denote by x[1…k] the first k least
significant bits (LSBs). This gives a natural splitting of
GF(2128) into 2k pairwise disjunct subsets. Two elements
x,x02GF(2128) belong to the same subset if and only if their
k LSBs are equal, that is x[1…k]¼ x0[1…k]. Let X :¼ {x1,…,xn}
denote the n values determined by (7). For I2{0,1}k, we
define

XI :¼ fx2Xjx½1…k� ¼ Ig: (13)

This yields a separation of X into 2k pairwise distinct
subsets: X ¼ ∪

,

I2f0;1gkXI . For each set XI, a corresponding
sub-function gI is determined which fulfills

gIðxiÞ ¼ yi4zi for all xi2XI: (14)

As already stated, this is accomplished by simple inter-
polation. That is if nI :¼ jXIj denotes the size of XI, the
1 In our realization, k ranges from 1 to 8.
function gI can be realized by a polynomial of degree nI
which will be close to n/2k on average.

This completes the construction of g and hence of G as
well. The description of g requires only to specify the sub-
functions gI, that is

g b¼�
gð0…00Þ; gð0…01Þ;…; gð1…11Þ

�
(15)

where each index represents a k-bit string. As each gI is of
degree nI, it can be described by nI coefficients in GF(2128).
Because of

P
I2f0;1gk

nI ¼ n it follows that g can be fully spec-

ified by n field elements.
The evaluation of g is as explained above. Given an input

x2GF(2128), first I :¼ x[1…n] is determined, and then gI(x)
is computed which represents the final output. That is
g(x) :¼ gI(x) where I :¼ x[1…n].

Practical implementation

In this section, we show the prototype implementation
of the encryption tool and the integration of the search and
decryption routines in the standard forensic framework
Autopsy (Carrier, 2009) (Version 3) exemplarily. We further
evaluate the performance of the approach on sample cases.

Realization

We want to sketch how our prototype implementation
works. For brevity, we omit implementation details, as all
the important algorithms are already explained in Sections
The proposed scheme and Detailed description of the
components and the implementation is straightforward.

The encryption Software is implemented platform in-
dependent as a Python script. The command syntax is as
follows:

python ppef gen:py<pstjmh
��mbox

��rmbox> <in>

<out> <thr> <blist>

We support different inbox formats, like the mbox
format which is amongst others used by Mozilla Thunder-
bird, the pst format that is used by Microsoft Outlook, the
MH (RFC822) format and Maildir format as used by many
UNIX tools. For encryption, the threshold parameter t needs
to be specified and the blacklist can be provided as a simple
text-file.

As for the encryption tool, the decryption software is
implemented as a platform independent Python script. For
better usability in real world cases, we also integrated it
into Autopsy by implementing an Autopsy-plugin called
PPEF (Privacy Preserving Email Forensics). To perform his
analysis on the resulting encrypted ppef file, the investi-
gator can just add an encrypted ppef file to a case in Au-
topsy as a logical file and in step 3 of the import process,
select the PPEF ingest module in order to handle the
encrypted data. After successfully importing a ppef file, the
file is added to the data sources tree. When selecting the
file, Autopsy first shows the random-looking encrypted
data in the hexdump. The investigator can then use the
PPEF search form to run keyword searches on the encryp-
ted data using our previously explained extract algorithm.

Fig. 1. Viewing the successfully decrypted email matches.

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136 S133
The search bar is shown in Fig. 1. Note that the number of
keywords that have to be entered is obtained from the ppef
file automatically. When clicking on the PPEF Search but-
ton, the searching algorithm is run transparently in the
background and successfully decrypted emails (i.e. emails
that match the entered keywords) are automatically im-
ported to Autopsy. The emails are parsed using Autopsy's
standard mbox parser, so that emails are added within the
EMail Messages tree and can be filtered, sorted, and viewed
using the standard mechanisms of the tool, as also dis-
played in Fig. 1 (the contents of the emails have been
sanitized for privacy reasons). After shortly demonstrating
the practical realization, we next use those prototypes to
evaluate the performance of our solution.
Table 1
Practical evaluation

In order to evaluate the practical usage of our scheme
using the developed prototype, we use a data set of
different real world email boxes. We evaluate the perfor-
mance of the prototype for encryption, search and
decryption. All measurements where performed on one
core of a laptop with Intel® Core™ i5-3320M CPU at
2.60 GHz and 16 GB RAM.

The data set
Our data set consists of the following 5 mailboxes:

� The Apache httpd user mailing list from 2001 to today
consisting of 75,724 emails (labeled Apache)

� One mailbox of 1590 work emails (Work)
� Threemailboxes of private persons with 511, 349, and 83

emails (A, B, C)

Encryption performance of prototype.

Apache [s] Work A B C

Min 0.004 0.005 0.005 0.005 0.005
Max 31.745 1.403 1.932 1.117 0.460
Avg 0.082 0.136 0.122 0.110 0.173
Med 0.072 0.115 0.101 0.074 0.150
s 0.133 0.120 0.132 0.153 0.071
S 6243.511 217.242 62.842 38.535 14.367
Blacklist
As example blacklist, the 10,000most commonwords of

English, German, Dutch and French (University Leipzip,
2001) are used. In a real case, the blacklist may of course
be choosen less restrictive, but this is a generic choice used
for our performance evaluation. The keyword threshold t
was set to 3. In real cases, a more case specific blacklist
must be created. It must consider words such as the com-
pany name, which likely can be found in every email, email
signatures, and generally terms often used in emails, as
long as they are not especially relevant to the case. We
focus on the encryption scheme itself and consider building
an appropriate blacklist to be a separate problem that is
highly dependant on the specific case and can not be solved
in general.

Encryption performance
Table 1 shows statistics about the time it takes to

encrypt the sample emails. It also lists the total time it takes
to encrypt each sample mailbox. The rate to encrypt the
mailboxes is on average only around 13.5 emails per sec-
ond. This value is still acceptable because the encryption
needs to be done only once during an investigation since
our approach is non-interactive.

Encryption storage overhead
Because the sole encryption of the emails does not add

much on the size of the data, the main factor of storage
overhead is the storage for the coefficients of our poly-
nomials used to map hashes to shares. Their number is
determined directly from the keywords, with a slight
overhead introduced by padding the coefficients of the sub-
functions to degree t. This introduces a total average over-
head of 582.4 bytes for the polynomial coefficients, plus 16
byte salt per email. The overhead introduced by the AES
encryption is between 33 and 48 bytes consisting of 16
bytes each for the IV and padding prepended to the
plaintext to determine correct decryption and between 1
and 16 bytes PKCS#7 padding to the AES 128 blocksize.
Altogether, the size increase in kilobytes of the raw emails
within the mailboxes compared to our ppef format can be
seen in Table 2. This leads to an average storage overhead of
5.2%.

Search and decryption performance
As the prototype always tries to decrypts each email, the

search and decryption is not dependent on a keyword hit
and hence the times listed for search in Table 3 include the
decryption time of successful keyword hits. Because the
rate the mailboxes are searched is on average only around
98 emails per second, searches take a while, but searches
are still feasible.

Attack performance
We now discuss the effort needed by an attacker to

execute a dictionary attack on an entire email box, such
that on average, a fraction of p of all emails are decrypted

Table 2
Search/decryption performance.

Apache Work A B C

Size raw [KB] 376,551 418,680 16,386 47,486 6,676
Size PPEF [KB] 418,870 420,418 16,885 47,821 6,806
Overhead 11.2% 0.4% 3.0% 0.7% 1.9%

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136S134
where 0 � p < 1. We provide a detailed security analysis
and a security proof in a technical report (Armknecht and
Dewald, 2015) due to space limitations. This analysis
shows that a higher level of security can only be achieved
by restricting the possibilities of the investigator and that
the strongest possible attack is a brute-force dictionary
attack, as long as the underlying ciphers are secure. The
effort of such an attack is expressed in the number q of
trials an attacker needs to make. To this end, we use the
following sufficient condition to decrypt a single email with
probability �p:

q � log2ð1� pÞ=log2

0
BB@1�

�
n
t

�
�
N
t

�
1
CCA (16)

This involves several highly context-dependent param-
eters, making a general statement impossible. But to give
an intuition nonetheless, we estimate the attack effort in
the cases considered in our evaluation. For each of the
cases, Table 4 displays the effort for different scenarios: We
considered the cases that each email contains the
measured navg keywords for each mailbox. With respect to
the dictionary size, we take as orientation the Second
Edition of the 20-volume Oxford English Dictionary. It
contains full entries for 171,476 words in current use
(Oxford University Press). So, we first choose N :¼ 171,476.
For the success rate p, we chosen the value 0.99 as this
ensures for an attacker with a high probability that almost
all emails are decrypted. Using this parameters, we can
calculate the number of tries q an attacker has to perform
for the respective mailboxes. For example for the Apache
mailbox, this results in q¼ 4.17,1012 queries to brute force a
single mail. We multiply this by the number of mails in the
mailbox and in order to give a better intuition, calculate the
time needed for the attack based on the measured average
query speed as presented in Section Search and decryption
performance before. This leads to a time of 1.15,108 years
needed for this attack on the Apache mailbox, as shown in
Table 4. Of course, an attacker might reach some speedup
Table 3
Search/decryption performance.

Apache [s] Work A B C

Min 0.0090 0.0096 0.0098 0.0097 0.0098
Max 0.0598 0.1645 0.0139 0.1508 0.0148
Avg 0.0115 0.0137 0.0114 0.0123 0.0117
Med 0.0115 0.0117 0.0113 0.0113 0.0116
s 0.0007 0.0103 0.0007 0.0086 0.0009
S 876.8591 21.7977 5.8650 4.2982 0.9750
by implementing the decryption software using the C lan-
guage instead of python, as we did for our prototype. The
fastest attack in our setting is the one on mailbox C, as this
is the smallest mailbox in our data set and the attack would
take 5,373.15 years.

As one might argue that not all those words in current
use might really be used within a particular company and
the attacker might have some kind of auxiliary information
about which words are commonly used, for example from a
sample set of already decrypted emails, we also calculate
the effort for aworse scenario, where only 50% of thewords
in current use from the Oxford English Dictionary are used
and the attacker exactly knows which words belong to this
50% so he can run an optimized attack with N :¼ 85,738.
The effort needed for this attack is obviously lower than
before, as shown in the second line of Table 4. From those
figures, we can see that in this case, the attack takes 808.74
years for our smallest mailbox C and even longer for the
other ones.

Next, we consider an attacker that wants to decrypt a
random half of the email corpus (i.e. he does not care,
which emails are decrypted and which are not, just the
number of successfully decrypted emails is important). If
the attacker wants do decrypt a specific half of all the mails
(those that contain some important information), the
attack performance was identical to that of full attack from
our first scenario, because due to our scheme, the attacker
does not know which encrypted data belongs to which
portion of the corpus prior to decryption. This means, the
mails decrypted after this attack might not reveal the in-
formation an attacker is looking for, but it may be sufficient
and obviously takes far less time, as shown in Table 4 in the
third line for p ¼ 0.99. We further consider a very strong
attacker, who combines both previously mentioned attack
scenarios: On the one hand, he has prior knowledge about
the vocabulary used within the company, so he ran reduce
his wordlist by 50%, and on the other hand, it is sufficient
for him, if only half of the emails can be decrypted
(N :¼ 85,738 and p¼ 0.5). The respective figures are shown
in the fourth line of Table 4.

Finally, we also want to evaluate what happens, if the
attacker possesses even more prior knowledge about the
words usedwithin the emails. Thereforewe set the number
N of words needed for a successful brute force attack to
20.000, which corresponds to the vocabulary in daily
speech of an educated person and 10.000words, beeing the
number of words used in the vocabulary of an uneducated
person. If we combine this with the restrictions before, we
see that the worst case drops to 0.16 years (1.92 months) to
decrypt half of the mails of mailbox C that contains only 83
emails with a probability of 50% if the attacker exactly
known which restricted vocabulary is used within the
emails and none of those words has been blacklisted. For
the larger mailboxes it still takes more than 3 years even in
this worst case scenario. We consider this case to be rather
unrealistic, because besides the high prior knowledge of
the attacker, mailboxes in companies usually contain far
more than 83 emails and we see that even for mailbox B
with only 349 emails the attack is rather costly (3.5 years).
Thus we feel that our solution provides good privacy pro-
tection even in very bad scenarios.

Table 4
Attack time in years to decrypt the entire mailbox with a probability of p using a wordlist with N words.

p N Apache Work A B C

0.99 171,476 1.15$108 3.26$105 1.23$105 1.17$105 5373.15
0.50 171,476 1.73$107 49,072.84 18,565.34 17,638.94 808.74
0.99 85,738 1.44$107 40,753.36 15,418.00 14,648.51 671.63
0.50 85,738 2.17$106 6133.99 2320.64 2204.82 101.09
0.99 20,000 1.83$105 517.23 195.68 185.91 8.52
0.50 20,000 27,510.37 77.85 29.45 27.98 1.28
0.99 10,000 22,843.44 64.64 24.46 23.24 1.07
0.50 10,000 3438.28 9.73 3.68 3.50 0.16

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136 S135
Related work

There is some related work regarding forensic analysis
of emails, which describe the analysis of email data using
data mining techniques (Stolfo and Hershkop, 2005; Stolfo
et al., 2006). Others perform similar techniques on mail
collections to identify common origins for spam (Wei et al.,
2008). However, those works have in common that they
work solely on the raw email data and do not consider
privacy. Regarding privacy issues, there are some papers
that argue broadly on different aspects of privacy protec-
tion in forensic investigations in general (Stahlberg et al.,
2007; Aminnezhad et al., 2012; Caloyannides, 2004).
Agarwal and Rodhain (2002) give a very good overview of
privacy expectations especially with email in work envi-
ronments. Hou et al. (2011a, 2011b) address a related area
to our work when proposing a solution for privacy pre-
serving forensics for shared remote servers. However, the
techniques are very different to our work. First, they deploy
public-key encryption schemes for encrypting the data
which incurs a higher computational overhead and larger
storage requirements compared to our scheme that uses
secret-key schemes only. Second, the proposed solutions
require frequent interaction between the investigator and
the data holder while our solution is non-interactive.
Similarly, Olivier (2005) introduces a system to preserve
privacy of employees when surfing theweb, while allowing
to track the source of malicious requests for forensics. To
the best of our knowledge, there has been no solution to
ensure privacy in forensic email investigations by crypto-
graphic means so far.

Regarding this work's cryptographic part, to the best of
our knowledge, no existing solution is adequate for what
we achieve. We, however, review directions that are the
most related. First, searchable encryption schemes, e.g.,
(Song et al., 2000; Chang et al., 2005; Curtmola et al., 2006),
encrypt files in such ways that they can be searched for
certain keywords. More precisely, the scenario is that one
party, the data owner, encrypts his data and outsources it to
another party, the data user. The data owner nowcan create
for keywords appropriate search tokens that allow the data
user to identify the encrypted files that contain these
keywords. The identified ciphertexts are given to the data
owner who can decrypt them. Such schemes differ in two
important aspects from the proposed scheme. First, most
schemes enable search for single keywords while only few
support conjunctive queries, e.g., see (Cash et al., 2013;
Golle et al., 2004; Ballard et al., 2005). Second, they
require interaction between the data owner and data user
while in our scenario the investigator needs to be able to
autonomously search and decrypt the encrypted files
without requiring the data owner (e.g., the company) to do
this.

Conclusion and future work

Summary

In the course of this paper, we described a modified
process of forensically analyzing email data in a corporate
environment. This process protects the privacy of the email
owners as far as possible while still supporting a forensic
investigation. In order to achieve this goal, the modified
process needs to make use of a novel cryptographic scheme
that is introduced in this paper. Our scheme encrypts a
given text in such a way, that an investigator can recon-
struct the encryption key and hence decrypt the text, if
(and only if) he guesses a specific number of words within
this text. This threshold t of the number of words that have
to be guessed can be chosenwhen applying our scheme. As
a further configuration of the scheme one can configure a
list of words that shall not provide the key reconstruction.
This kind of blacklist is meant to contain words that occur
in almost every text, such as pronouns or salutations.

As a proof of concept, we implemented a prototype
software that is able to encrypt email inboxes of different
formats to a container file. To show the feasibility of the
practical application of our approach, we further imple-
mented a plugin to the well-known open source forensic
framework Autopsy that enables the framework to handle
the encrypted containers. The plugin features a search
mask to enter keywords for search. The plugin then checks,
which of the encrypted emails contain thosewords and can
thus be decrypted and shows the matches within Autopsy.
Using this prototype implementation, we finally measured
both, runtime performance of encryption and searching/
decryption, and the storage overhead introduced by our
encryption scheme to show that it can be used in real cases.
Thus, we can conclude that we introduced a novel, secure,
and practical approach to enhance privacy in forensic in-
vestigations that can not only be applied to email analysis,
but also to other areas of digital forensics, as further elab-
orated in the next sections.

Limitations

Caused by the design of our cryptographic scheme,
there are some limitations, which we want to name here.

F. Armknecht, A. Dewald / Digital Investigation 14 (2015) S127eS136S136
First of all, our scheme allows for keyword searches on the
encrypted text, but hereby only reveals exact matches.
Thus, our approach is prone to spelling errors and does also
not allow to show partial matches or to use wildcards and
regular expressions for the search queries, which is sup-
ported by other tools.

The second limitation of our scheme is that it is possible
to run brute force/dictionary attacks against the encrypted
data. As explained, this is an inevitable consequence of the
scenario, i.e., of the fact that an investigator should be
allowed to run keyword searches. To maximize the effort of
an attacker, we ensured that the attacker has to try all
combinations of t keywords out of his dictionary, because
he is not able to learnwhich and if some of the already tried
keywords were correct, if not all the keywords were cor-
rect. We have argued that the effort of a successful attack is
sufficiently high in real cases. In order to render such at-
tacks even more ineffective, it is important to choose a
good blacklist when applying our method, or (depending
on the case) even switch to the whitelist approach, if
necessary.

Future work

As future work on this topic, we want to check the
expandability of our cryptographic scheme in a way that
supports the use of wildcards within the search keywords,
making our approach more comfortable for forensic in-
vestigators without weakening the security of the scheme
too much. Further, we want to apply our scheme to other
areas of digital forensics, such as logfile or network traffic
analysis.

Acknowledgments

We thank Michael Gruhn for his cooperation in this
project.

References

Adams CW. Legal issues pertaining to the development of digital forensic
tools. In: SADFE. IEEE computer society; 2008. p. 123e32. URL, http://
dblp.uni-trier.de/db/conf/sadfe/sadfe2008.html#Adams08.

Agarwal R, Rodhain F. Mine or ours: email privacy expectations, employee
attitudes, and perceived work environment characteristics. In: Sys-
tem sciences, 2002. HICSS. Proceedings of the 35th annual Hawaii
international conference on. IEEE; 2002. p. 2471e80.

Aminnezhad A, Dehghantanha A, Abdullah MT. A survey on privacy issues
in digital forensics. Int J Cyber-Secur Digital Forensics (IJCSDF) 2012;
1(4):311e23.

Armknecht F, Dewald A. Privacy-preserving email forensics. Tech. Rep. CS-
2015-03. Department of Computer Science, University of Erlangen-
Nuremberg; 2015.

Ballard L, Kamara S, Monrose F. Achieving efficient conjunctive keyword
searches over encrypted data. In: Qing S, Mao W, Lopez J, Wang G,
editors. ICICS. vol. 3783 of lecture notes in computer science.
Springer; 2005. p. 414e26.

Bellare M, Kilian J, Rogaway P. The security of the cipher block
chaining message authentication code. J Comput Syst Sci 2000;61(3):
362e99. URL, http://dblp.uni-trier.de/db/journals/jcss/jcss61.
html#BellareKR00.

Bertoni G, Daemen J, Peeters M, Assche GV. The Keccak SHA-3 submis-
sion. January 2011. http://keccak.noekeon.org/.
Caloyannides MA. Privacy protection and computer forensics. Artech
House; 2004.

Carrier B. File system forensic analysis. Boston, MA, USA: Addison-Wesley
Pub. Co. Inc.; 2005.

Carrier B. The sleuth kit and autopsy: forensics tools for Linux and other
Unixes, 2005. 2009. URL, http://www.sleuthkit.org.

Casey E. Digital evidence and computer crime: forensic science, com-
puters, and the Internet. 3rd ed. Academic Press/Auflage; 2011.

Cash D, Jarecki S, Jutla CS, Krawczyk H, Rosu MC, Steiner M. Highly-
scalable searchable symmetric encryption with support for boolean
queries. In: Canetti R, Garay JA, editors. CRYPTO (1). vol. 8042 of
lecture notes in computer science. Springer; 2013. p. 353e73.

Chang YC, Mitzenmacher M. Privacy preserving keyword searches on
remote encrypted data. In: Ioannidis J, Keromytis AD, Yung M, editors.
ACNS. vol. 3531 of lecture notes in computer science; 2005.
p. 442e55.

Curtmola R, Garay J, Kamara S, Ostrovsky R. Searchable symmetric
encryption: improved definitions and efficient constructions. In:
Proceedings of the 13th ACM conference on computer and commu-
nications security. CCS ’06. New York, NY, USA: ACM; 2006. p. 79e88.
URL, http://doi.acm.org/10.1145/1180405.1180417.

Daemen J, Rijmen V. The design of Rijndael: AES e the advanced
encryption standard. Berlin, Heidelberg, New York: Springer Verlag;
2002.

Golle P, Staddon J, Waters B. Secure conjunctive keyword search over
encrypted data. In: Jakobsson M, Yung M, Zhou J, editors. Proc.. of the
2004 applied cryptography and network security conference. LNCS
3089; 2004. p. 31e45.

Hou S, Uehara T, Yiu S, Hui LC, Chow K. Privacy preserving multiple
keyword search for confidential investigation of remote forensics. In:
2011 Third international conference on multimedia information
networking and security. Institute of Electrical & Electronics Engi-
neers (IEEE); 2011a. URL, http://dx.doi.org/10.1109/MINES.2011.90.

Hou S, Uehara T, Yiu SM, Hui LCK, Chow K. Privacy preserving confidential
forensic investigation for shared or remote servers. In: Intelligent
information hiding and multimedia signal processing (IIH-MSP), 2011
seventh international conference on. IEEE; 2011. p. 378e83.

International Community, U. N. The universal declaration of human
rights. 1948. URL, http://www.un.org/en/documents/udhr.

National Institute of Standards and Technology. FIPS 180e2, secure hash
standard, federal information processing standard (FIPS). Publication
180-2. Tech. rep. DEPARTMENT OF COMMERCE; Aug. 2002. URL
http://csrc.nist.gov/publications/fips/fips180-2/fips180-
2withchangenotice.pdf.

Olivier M. Forensics and privacy-enhancing technologies. In: Advances in
digital forensics. Springer; 2005. p. 17e31.

Oxford University Press, ???? The second edition of the 20-volume Ox-
ford English dictionary. URL http://www.oxforddictionaries.com/
words/how-many-words-are-there-in-the-english-language?q¼171%
2C476

Shamir A. How to share a secret. Commun ACM Nov. 1979;22(11):612e3.
URL, http://doi.acm.org/10.1145/359168.359176.

Song DX, Wagner D, Perrig A. Practical techniques for searches on
encrypted data. In: Proceedings of the 2000 IEEE symposium on se-
curity and privacy. SP ’00. Washington, DC, USA: IEEE Computer So-
ciety; 2000. p. 44. URL, http://dl.acm.org/citation.cfm?id¼882494.
884426.

Stahlberg P, Miklau G, Levine BN. Threats to privacy in the forensic
analysis of database systems. In: Proceedings of the 2007 ACM SIG-
MOD international conference on management of data. ACM; 2007.
p. 91e102.

Stolfo SJ, Creamer G, Hershkop S. A temporal based forensic analysis of
electronic communication. In: Proceedings of the 2006 international
conference on digital government research. Digital Government So-
ciety of North America; 2006. p. 23e4.

Stolfo SJ, Hershkop S. Email mining toolkit supporting law enforcement
forensic analyses. In: Proceedings of the 2005 national conference on
digital government research. Digital Government Society of North
America; 2005. p. 221e2.

United States v. Carey. United States v. Carey 172 F.3d 1268 (10th Cir.
1999). 1999.

University Leipzip. Wortlisten. 2001. visited on Feb. 26, 2014. URL, http://
wortschatz.uni-leipzig.de/html/wliste.html.

Wei C, Sprague A, Warner G, Skjellum A. Mining spam email to identify
common origins for forensic application. In: Proceedings of the 2008
ACM symposium on applied computing. ACM; 2008. p. 1433e7.

http://dblp.uni-trier.de/db/conf/sadfe/sadfe2008.html#Adams08
http://dblp.uni-trier.de/db/conf/sadfe/sadfe2008.html#Adams08
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref2
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref2
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref2
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref2
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref2
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref3
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref3
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref3
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref3
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref4
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref4
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref4
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref5
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref5
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref5
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref5
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref5
http://dblp.uni-trier.de/db/journals/jcss/jcss61.html#BellareKR00
http://dblp.uni-trier.de/db/journals/jcss/jcss61.html#BellareKR00
http://keccak.noekeon.org/
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref8
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref8
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref9
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref9
http://www.sleuthkit.org
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref11
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref11
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref12
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref12
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref12
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref12
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref12
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref13
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref13
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref13
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref13
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref13
http://doi.acm.org/10.1145/1180405.1180417
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref15
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref15
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref15
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref15
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref16
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref16
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref16
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref16
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref16
http://dx.doi.org/10.1109/MINES.2011.90
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref18
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref18
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref18
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref18
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref18
http://www.un.org/en/documents/udhr
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref21
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref21
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref21
http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-language?q=171%2C476
http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-language?q=171%2C476
http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-language?q=171%2C476
http://www.oxforddictionaries.com/words/how-many-words-are-there-in-the-english-language?q=171%2C476
http://doi.acm.org/10.1145/359168.359176
http://dl.acm.org/citation.cfm?id=882494.884426
http://dl.acm.org/citation.cfm?id=882494.884426
http://dl.acm.org/citation.cfm?id=882494.884426
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref24
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref24
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref24
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref24
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref24
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref25
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref25
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref25
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref25
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref25
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref26
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref26
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref26
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref26
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref26
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref27
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref27
http://wortschatz.uni-leipzig.de/html/wliste.html
http://wortschatz.uni-leipzig.de/html/wliste.html
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref29
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref29
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref29
http://refhub.elsevier.com/S1742-2876(15)00048-1/sref29

	Privacy-preserving email forensics
	Introduction
	Motivation
	Contributions
	Outline

	The proposed scheme
	The protection mechanism
	The extraction mechanism

	Detailed description of the components
	Encryption/decryption scheme
	Secret sharing scheme
	Creating the mapping

	Practical implementation
	Realization
	Practical evaluation
	The data set
	Blacklist
	Encryption performance
	Encryption storage overhead
	Search and decryption performance
	Attack performance

	Related work
	Conclusion and future work
	Summary
	Limitations
	Future work

	Acknowledgments
	References

