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Abstract. Multi-Agent Systems (MAS) are widely used as a succinct model for distributed

systems with (partly or fully) autonomous components. Whenever these components do not

intrinsically cooperate, but pursue their individual goals in a purely selfish way (Competitive
MAS), there is a natural challenge to prevent undesirable and destructive system behaviour and

to achieve system-level objectives.

While agent autonomy is an essential characteristic of an MAS and can therefore not simply

be replaced with full control or centralised management without losing its core functionality, it

is still possible to achieve a certain level of control by applying a suitable governance approach.

I am proposing a new solution for this challenge. My approach adds to the usual

agent/environment structure of an MAS a Governance component which can observe publicly

available information about agents and environment, and, in turn, has the right to restrict the

action spaces of agents and thus prevent certain environmental transitions.

As opposed to most existing methods, this approach does not rely on any assumptions about

agent utilities, strategies or preferences. It therefore takes into consideration the fundamental

fact that actions are not always directly linked to genuine agent preferences, but can also reflect

anticipated competitor behaviour, be a concession to a superior adversary or simply be intended

to mislead other agents.

The present paper motivates and describes the approach, defines the scope of the PhD

project and shows its current status and challenges.

Keywords: Multi-Agent System, Competition, Governance, Restriction.

4.1 Introduction

4.1.1 Motivation

An essential feature of Multi-Agent Systems is the fact that agents depend on each

other: The way the system behaves is not defined by the actions of one individual

agent, but rather by the combination of all actions [18]. Therefore, a single agent can

never be certain about the result of a chosen action. This mutual influence leads to
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strategic behaviour and sometimes even seemingly erratic actions—especially when

an agent is human—, and at the same time decouples intended and observed system

behaviour.

Example 1. Consider an MAS consisting of two agents X and Y , two environmental

states A (initial state) and B, and two actions 0 and 1 for each agent, resulting in

the joint action set {00,01,10,11} (the joint action 10 means that the first agent, X ,

chooses action 1, while the second agent, Y , takes action 0). The transition function

of the MAS is shown in Figure 4.1. Imagine now an observer who sees the following

sequence of actions and transitions:

A 10−→ A 01−→ A 00−→ B

The observer, as is does not know the preferences of X and Y , cannot tell from the

observed facts if X wanted to stay at state A and changed its action from 1 in the first

step to 0 in the second step because it anticipated Y ’s second action, or if X observed

the uselessness of its first action and then tried another strategy to reach state B (and

failed again). This shows that intentions are not immediately linked to observable

behaviour, and, in particular, no preference order over the environmental states can be

concluded.

A B

00,11

00,010
1
,1

0
1
0,1

1

Fig. 4.1. Transition graph of a simple MAS

On the one hand, this is a challenge for a participating agent which needs to

derive a strategy to counter its opponents’ actions based on what it can see, but on

the other hand, it makes it inherently hard to control or steer such a system using an

external governing entity. I am specifically interested in the latter case, where there

is a system-level objective (or “global desirable properties” [34]) to be achieved in

addition to the individual goals of the agents.

It follows that preference elicitation (the process of deriving preferences over

states from observed behaviour) is not feasible without additional assumptions about

the link between actions and preferences. In general, the resulting preference order

might be wrong, and relying on it could therefore lead to false conclusions about

target conflicts and controlling decisions.

Nevertheless, the task of governing such an MAS requires some sort of plan-

ning and prediction of behaviour: In order to achieve a system-level objective, the

Governance needs to prevent transitions which lead to violations of this objective.

Therefore, it relies on collecting observable information and deriving knowledge

about the future system behaviour. The two fundamental questions that it needs to
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answer based on this knowledge are: “What will agents do next?” and “Which actions
need to be forbidden in order to prevent undesirable transitions?”

This online learning mechanism guarantees that the system can self-adapt to both

changes in the setup–such as number of agents and system objective–and unforeseen

strategic behaviour of the agents. It therefore ensures that the overall MAS is at the

same time robust and flexible, without requiring manual intervention at run-time.

From an Organic Computing perspective, moving the Governance logic and the

selection of restrictions into the system makes the system “organic” in the sense that

it can handle human agents in the same way as it handles agents based on experts

systems, simple heuristics or sophisticated AI methods, and it therefore serves as a

means for flexibly balancing the influences of otherwise uncontrolled agents.

4.1.2 Setting and Contribution

My PhD project is situated in the broader field of Organic Computing [27] and targets

the problem of providing governance for competitive Multi-Agent Systems, purely

based on the observation of public behaviour, i.e., actions and transitions. In contrast

to most existing approaches for Governed MAS or Normative MAS, I argue that

it is not reasonable to assume a-priori knowledge of agent utilities, preferences or

strategies.

The contribution will consist of a new model for Governed MAS, proof of its feas-

ibility and applicability, thorough analysis with respect to capabilities and complexity,

and an evaluation which shows the performance of the framework in a real-world

use case. Thereby, the research questions listed in Section 4.3.1 will be answered

concisely and in depth.

4.1.3 Structure of the Paper

The remainder of this paper is organised as follows:

Section 4.2 defines the system model and the governing instance. Section 4.3 lists

the research questions, shows what has already been accomplished and describes

the necessary future work to complete the intended contribution. Section 4.4 recaps

relevant existing work and places this project within the context of these approaches,

while Section 4.5 outlines a real-world evaluation use case. Finally, Section 4.6 sums

the paper up.

A more formal treatment of the multi-attribute case, including a governance

algorithm and its evaluation, has recently been submitted [30]. Part of this submission

is being included here in shortened form to show motivation, general system model,

preliminary results and existing work.

4.2 Model

4.2.1 Agents and Environment

The general MAS model is based on [35]: Consider a finite set P = {p1, ..., pn} of

agents (or players). An agent pi perceives, at every time step t ∈ N0, the current state
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st ∈ S of a temporally discretised environment and then acts within this environment

by performing an action ai ∈ Ai, following a confidential (and not necessarily determ-

inistic) action policy πi : S → Ai. The environmental state then changes from time step

t to t+1 according to the combination of actions (the joint action a = (a1, ...,an)∈ A)

taken by the agents, as expressed by a transition function δ : S ×A → S .

Definition 1. A Multi-Agent System is the 6-tuple

M = (P ,S ,A ,π,δ,s0) .

4.2.2 Governance

In the basic MAS model of Section 4.2.1, the evolution of an MAS from t to t +1

follows the formula

st+1 = δ(st ,π(st)) .

Since the action policies πi are at the agents’ sole discretion, one can see immedi-

ately that this progression can be influenced by an external authority via two levers

only: Either by changing what agents can do (altering their action sets) or by changing

what consequences actions have (altering the transition function).

The proposed governance model of this paper follows a strict separation of con-

cerns: The transition function represents the unalterable evolution of the environment

according to the actions taken by all agents, while the restriction of actions is per-

formed by the Governance and therefore artificial. To use an analogy, the transition

function accounts for the laws of nature in the system, whereas the Governance plays

the role of the legislature.

4.2.2.1 Observation and Intervention

At the beginning of each cycle t, the Governance defines allowed actions before the

agents choose their respective actions from this restricted action set:

At = Γ
s(t)G

(st) ,

where At ⊆ A is a “rectangular” subset of a fundamental action set A = ∏i A i, i.e.,

A = ∏i A(t)
i with A(t)

I ⊆ A i ∀i. The subscript in Γ
s(t)G

(st) hints to the fact that Γ

implicitly uses as an input not only the current environmental state st , but also the

internal state s(t)G ∈ SG of the Governance, which includes the knowledge acquired

so far. Since this is always the case, the subscript will henceforth be omitted for

brevity. The shape of At needs to be rectangular for the simple reason that agents act

independently in each step, which means that it is not possible to make conditional

restrictions such as At = {(a,x),(b,x),(a,y)} since the Governance cannot, in this

example, force p1 to choose action a whenever p2 chooses action y.

For each agent pi, there is a neutral action ∅i ∈ A i which cannot be deleted from

the set of allowed actions. The resulting joint action ∅ is therefore always allowed.
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As soon as all agents have made and communicated their choice of action a =
(ai)i ∈ At , the Governance can use the information gathered by observing the actions

and the subsequent transition to learn about the agents and the effectiveness of Γ. This

learning step is expressed as an update of the Governance’s internal state which, in

turn, will be used by Γ in the next step, i.e.,

s(t+1)
G = λ

(
s(t)G ,s(t),a

)
.

As opposed to some authors [4], I make no distinction between legal and physical

power: An agent can choose only from the set of currently allowed actions (which

might change from one step to the next), and it is not possible to disobey this rule.

Nevertheless, the neutral action ensures that the system can operate with missing or

invalid input coming from the agents—it simply uses ∅i as a fallback.

4.2.2.2 System Objective

As mentioned in Section 4.1.1, I assume that there is a certain system objective which

is to be fulfilled, in addition to the agent-specific goals (and maybe conflicting with

those agent goals). This way, the restriction mechanism of the Governance has the

clear purpose of fulfilling this objective. Since the Governance has only probabilistic

information about the agents’ future actions, its objective needs to be compatible with

probabilistic reasoning and therefore quantifiable.

While the system objective can be an arbitrary function from S to R, there are

two common types: Either minimising (or maximising) a numerical parameter, which

can directly be expressed by cG , or dividing the state space into obeying states S+ and

violating states S− := S \S+. In the latter case, the function

cG (s) := �S−(s) (4.1)

describes a system objective which prefers all obeying states to all violating states by

minimising cG . Therefore, the Governance will pursue an obeying state with minimal

restriction of the agents.

Definition 2. The system objective of an MAS M is defined as a cost function cG :

S → R such that the Governance tries to reach and maintain a state of minimal cost.

This cost function simply defines the preference of the Governance over the states of

the environment; it does not necessarily correspond to a “real” cost.

The definition of a Governed Multi-Agent System is now that of an MAS, together

with a specification of the Governance’s behavior:

Definition 3. A Governed Multi-Agent System (GMAS) is the 10-tuple

MG =
(

P ,S ,A ,π,δ,s0,s
(0)
G ,cG ,Γ,λ

)

with Γ : S → 2A and λ : SG ×S ×A → SG .
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4.2.3 Run-time Process

The sequence of actions taken by the different components in one time step is shown

in Figure 4.2. At each step, the Governance can define allowed actions via Γ (before

the agents act) and learn from the observed actions via λ (after the agents have acted).

The environment itself is not affected at all by the existence of the Governance.
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Fig. 4.2. Run-time Process

The performance of the Governance can now be measured by looking at two

key parameters: (a) How high is the cost incurred at each state? and (b) How many

restrictions were applied to achieve this cost? The second question naturally gives

rise to the following notion:

Definition 4. The degree of restriction of G at time t is the ratio of forbidden actions
and fundamental actions:

rG (t) := 1− |At |
|A | ∈ [0,1]

Taking this value as an indicator for Governance performance implies that all

actions are equally important. Since this is not always the case, a more elaborate

measure (e.g. comparing the size—with respect to some environment-specific metric—

of the state set following from taking all actions in At and A) might be useful to better

capture the “real” magnitude of the Governance-induced restrictions. This is a topic

to be examined in future work.
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Example 2. Consider a smart home environment consisting of 7 binary variables:

S = T ×O×W ×B×H ×L×A ∼= B
7, where the variables denote Time (day/night),

Occupancy (occupied/empty), Window (open/closed), Blinds (open/closed), Heating

(on/off), Lights (on/off) and Alarm (on/off), respectively. n agents, who each have

their individual preferences over the state, can now choose to change at most one of

the variables W,B,H,L or A (the corresponding actions start at 1) at each step (they

cannot, however, influence the Time or the Occupancy of the house). A variable is

changed regardless of how many agents have chosen to change it at a single time step.

An exemplary progression of this system could be

s0 = 1100101
37∅−−→ 1110100

464−−→ 1111110

∅∅5−−−→ 1111010
564−−→ 1110100

436−−→ 1101110 ,

where states are written as binary numbers and there are three agents acting upon the

environment with the action sets

A i = {∅,3,4,5,6,7} ∀i .

Time and Occupancy would of course need to be controlled by non-controllable

environmental forces, but this is omitted here for simplicity.

Define now a Governance with cost function cG as in Definition 2 where

S+ =
{

s ∈ S :
(
w(s)∨h(s)

)∧ (a(s)∨o(s))∧ (
l(s)∨o(s)

)}
,

meaning that the system wants to make sure that (a) the window is not open while the

heating is turned on, (b) the alarm is on when the house is empty, and (c) the lights are

off when there’s nobody home. It is therefore the task of the Governance to impose

minimal restrictions on the agents while keeping st ∈ S+.

One can now see that s1 = 1110100 incurs cost cG (s1) = 1 since s1 /∈ S+. While

the Governance probably cannot anticipate and prevent this transition between t = 0

and t = 1 due to lack of knowledge, it might be able to do so at a later time when

enough information has been gathered. For example, at t = 3, the Governance could

forbid action 5 ∈ A1 such that the joint action 564 cannot happen. If p1 now chooses

action 3 instead, s4 = δ(s3,364) = 1100000 ∈ S+, and the Governance has therefore

successfully prevented an undesirable transition.

4.3 Scope

4.3.1 Research Questions

The goal of this PhD project is the theoretical foundation, development, analysis and

application of a GMAS platform which can be used to govern real-world Multi-Agent

Systems with arbitrary agents. Therefore, the following research questions describe

the gaps and open challenges in the current state of the art:
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RQ1 Is the observation of actions and transitions, together with hard restriction

of action spaces, sufficient and suitable for effective governance with respect

to a given system objective? If not, which further assumptions, limitations or

relaxations are necessary?

RQ2 Which data structures and algorithms can be used to create a scalable com-

putation framework which can be used for online (real-time) governance? How

does this framework perform in both benchmark and real-world applications?

RQ3 How can an agent (or a group of agents) manipulate the mechanism, and how

can the Governance effectively identify and prevent manipulation?

4.3.2 Current Status

A widely accepted environmental limitation in MAS research is to assume a multivari-

ate binary environment, i.e., S = ∏m
j=1 S j for fixed m ∈ N and S j = {s j,s j}, such that

S ∼= B
m. This has the advantage of a compact representation; states can be written

as Boolean arrays or encoded as natural numbers. I adopt this restriction for now,

but keep in mind that my governance approach should, if possible, not be limited to

this setting, but apply to (at least) arbitrary finite domains. I expect the permission of

infinite or continuous domains or even irregular environmental “shapes” to pose new

challenges, and will comment on this problem in Section 4.3.4.

Regarding actions and transitions, first assume that Ai ⊆ {∅,1, ...,m} and

δ(s,a) = s′ where s′j =

{
s j if ∃i : ai = j
s j else

which means that agents can choose to change one attribute per time step (or to do

nothing, by choosing the neutral action ∅), and each attribute is toggled if at least one

agent chooses to change it. As above, allowing more general environmental structures

and more complex actions and transitions would cause additional challenges and

require some additional assumptions. For example, aggregating agent actions with

respect to a non-binary attribute [23] can be complex in itself: Does an agent request

a certain value for a numerical attribute, or does it request a certain offset? Is the new

value simply the mean of all requested values? Does it maybe only change when the

agents can agree on a new value?

Theorem 1. Let M be a GMAS with n agents, m binary attributes and q fundamental
actions per agent. Then, for a given cost threshold α ≥ cG (δ(st ,∅), a Pareto-minimal

restriction At ⊆ A can be computed in time O
(

n2 ·q(n+2)
)

.

Proof. See [30].

Note that the complexity of this algorithm does not depend on the size of the

environment, as long as the past observed actions per state are readily available.

Therefore, it is suitable for MAS with large state spaces, but few actions—a typical
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scenario would be a video game where each player can take a constant (low) number

of actions.

As shown in a first prototypical setup, it turns out that the smart home case (Ex-

ample 2) can indeed be successfully governed by an algorithm built from Theorem 1.

Figure 4.3 shows a part of the evaluation of [30] using a variable number of agents (2

= dotted line, 3 = dashed, 5 = continuous) which were set up with random state-action

mappings and acted in this system for 0 ≤ t ≤ 100. The chart shows a comparison

between ungoverned and governed simulations, including the average cost for both

simulations and the degree of restriction in the governed simulation. To minimise

outliers, each line is the mean of 10 independent runs of the same simulation.
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Fig. 4.3. Simulation of the Smart Home Example

4.3.3 Implementation

A meaningful evaluation of the theoretical approach is an essential ingredient for a

PhD thesis which claims to provide a practical solution for governing competitive

MAS. Great attention must thus be paid to an evaluation framework which allows

for the testing of the approach as well as for a detailed comparison with competing

approaches. Although the Governance component is the core of research and develop-

ment, the overall performance and reliability also widely depend on realistic agents. If

those agents are not immediately controlled by human players, there is still a need for
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strategic and “intelligent” behaviour in order to validate (or invalidate) the capabilities

of the Governance.

In order to provide an optimal environment for development and testing, I am

developing a Python-based Multi-Agent framework, specifically designed to be fed

with different agent and governance functionalities. This framework provides measur-

ing, logging and analysis of performance as well as direct comparison of different

governance approaches (including no governance at all).

4.3.4 Challenges, Refinements and Extensions

While the general setting is very broad and applies to a wide range of MAS, I have

made some restrictions and neglected particular issues so far in order to reduce

complexity. Some of the topics which haven’t been considered but are crucial for a

deep understanding of Governed MAS are listed and explained in this section.

4.3.4.1 Fairness

In the current implementation (see Section 4.3.3), the Governance can effectively

reduce its cost by defining restrictions based on an expected cost matrix. This approach

forbids actions according to their expected cost impact, without taking into account

previous restrictions or balancing the degree of freedom between agents. In extreme

cases, the strategy can lead to some agents always being restricted to just one action,

while others are not affected at all.

A natural question regarding this issue is whether “fairness” should be part of

the Governance’s decision process or even part of the system-level objective. If so,

the concept of fairness needs to be well-defined in the context of MAS, and the

Governance must be given a means to distinguish restrictions with respect to their

evenness.

4.3.4.2 Derivation of Rules

The restriction function Γ is not required to provide any consistency, i.e., there is no

link between At and At+1 apart from the fact that both are subsets of A . Consequently,

agents cannot anticipate what restrictions will be posed on their action space in the

future. At the same time, the Governance does not justify its decisions or provide any

reasons for them, but merely states what it allowed at the current step.

It might be useful to derive explicit rules or criteria for restricted and allowed

actions, which could be expressed in a formal language. This would allow for better

analysis of a system, for example regarding the link between agent behaviour and rule

emergence. The field of Explainable AI deals with a similar issue of deriving abstract

knowledge from sub-symbolic data.
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4.3.4.3 Open agent sets

A typical problem with MAS is that agents, as they are autonomous entities, cannot

be forced to do something. This implies that an agent might not react at all when it

is asked to choose an action, or it might respond with incomprehensible or illegal

data. In Section 4.2.2, a neutral action was introduced to cater for this fact—simply

assume this action to be substituted for any invalid agent response. Nevertheless,

the problem of agents spontaneously entering or leaving the system raises another

question: Should the Governance treat all agents independently and individually? It

might be a good idea to have a model which can handle unknown agents and apply

some “general knowledge” to them, instead of assuming an empty knowledge base

for each new agent. Such an approach would on the one hand free the Governance

from having to identify and track each agent separately, and on the other hand allow

it to (partly) carry over its knowledge to new agents joining the system.

4.3.4.4 Dynamic Agent Goals

It cannot, in general, be expected that agents remain consistent in their goals over

the run-time of the system. In contrast, it is reasonable to assume that goals and

strategies change gradually (not abruptly) over time. Therefore, the Governance

should incorporate a mechanism which can deal with changing goals, for example

by discounting old observations, or by categorising former observations according

to consistency with the latest observed actions. This line of reasoning is closely

connected to the field of belief revision [13].

4.3.4.5 Structure of environments and actions

When the environment consists of binary attributes and actions are merely toggling

single attribute values, an MAS is fairly well-arranged. This, however, does not

always represent the reality: There can be continuous or entangled environmental

states, complex actions, non-trivial aggregation rules for different actions, and other

complications. While the concrete implementation of a governance algorithm most

likely depends on the choice of such properties, its general applicability should range

over as large a class of systems as possible, and thus be able to deal with the general

model from Section 4.2 instead of just binary multi-attribute MAS.

4.3.4.6 Distributed Governance

Multi-Agent Systems are one of the most common form of distributed systems, in

which the overall computation task is carried out by independent entities which do

not require central control and not even global information. Since this is a major asset

of such systems, it seems counterproductive to add a central Governance which needs

to aggregate and evaluate all agent actions at every step in order to do its job.

As a consequence, I will look at parallelising the Governance in order to ensure

scalability. It seems that much of its work can be executed in a map-and-reduce
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fashion, but the existing algorithms haven’t been designed according to this paradigm

yet.

4.4 Related Work

The bulk of Multi-Agent research deals with the task of teaching agents how to

act [17, 31], both in the cooperative case where there is a common goal and in

the competitive case where conflicts are inherent. In contrast, I take the viewpoint

of an outside entity wanting to “guarantee the successful coexistence of multiple

programs” [37], that is, to define a degree of success and then influence it via suitable

actions. Multi-Agent Systems can be classified with respect to this criterion as shown

in Figure 4.4:

Multi-Agent Systems

Unsupervised MAS Supervised MAS

Governed MAS Normative MAS

System Perspective Agent Perspective

Fig. 4.4. Classification of Multi-Agent Systems

An MAS can either have a supervising entity which interferes with the agents in

order to achieve a system objective, or this goal is achieved solely by the interaction

of the agents (self-organisation and/or emergence [41], [26]).

When there is a supervisor, its decisions can be either binding (which I will call

a governed MAS) or non-binding (normative). I follow here the reasoning of [4]

who state that norms are “a concept of social reality [which does] not physically

constrain the relations between individuals. Therefore it is possible to violate them.”

Note that this terminology is far from being unambiguous; for instance, [29] use the

term Normative Synthesis for the enforcement of equilibria.

There are two perspectives of a Governed MAS: The viewpoint of a participating

agent and that of the governing instance. In the latter case, the key points of interest

are the level of control (or level of satisfaction of the system objectives) that can be

achieved, and the necessary intervention.

There are many approaches developed from an agent perspective which can

partly be applied to the system point of view, e.g., opponent modelling and Multi-

Agent reinforcement learning. However, only few areas (e.g. Normative Multi-Agent
Systems [5]) have been thoroughly examined from an observer’s angle.

[17] and [16] identify two main research streams for competitive Multi-Agent

Learning: Game theoretic approaches including auctions and negotiations, and Multi-
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Agent Reinforcement Learning [36]. The latter add a layer of complexity to classical

reinforcement learning [9], since competitive agents all evolve at the same time and

therefore disturb the learning process of their opponents (moving-target problem) [28].

Both surveys, however, restrict their scope to learning agents, instead of external

entities learning about agents.

Game theory in this context oftentimes deals with small, well-defined (and mostly

contrived) scenarios [3, 15, 38] like two-player games with a fixed payoff matrix,

which can be formally examined and sometimes even completely solved in terms of

optimal responses and behavioural equilibria. What these solutions lack is widespread

applicability to real-world settings where information is incomplete, environments

are large and agents do not behave predictably. Therefore, the gap between academic

use cases on the one hand and industrial and societal applications on the other hand is

still large.

[37] realised that social laws can be used by designers of Multi-Agent Systems

to make agents cooperate without controlling the agents themselves. They describe

an approach to define such laws off-line and keep them fixed for the entire run-

time of the system, and they mention the possibility that their laws are not always

obeyed by the agents. From this reasoning, the two notions of hard norms and

soft norms [33, 34] have emerged—the two categories which I call Governed MAS

(GMAS) and Normative MAS (NMAS), respectively [19].

[34] argue that “achieving compliance by design can be very hard” due to various

reasons (e.g. norm consistency and complexity of enforcement). Therefore, they reach

the conclusion that NMAS are more suitable for open and distributed environments. In

turn, the lack of hard obligations leads to concepts like sanctions, norm revision, norm

conflict resolution, and others. NMAS have been researched from various perspectives

and with various theoretical frameworks, among them formal languages and logics

[7, 12, 29], Bayesian networks for the analysis of effectiveness [11], bottom-up norm

emergence [26], and online norm synthesis [25]. Many of these approaches are also

partially applicable to Governed MAS, but require adaptation and generalisation.

Another well-known problem of MAS is scalability [17, 40], especially for large

state spaces. While the number of states is obviously exponential in the number of

environmental variables, reasonable additional assumptions about the dependencies

between variables can lead to much more compact representations of knowledge

regarding preferences and utilities. Famously, this reasoning has been applied in the

development from Q-learning [39] to Deep Q-learning [24]. While Q-tables and the

corresponding Neural Networks describe the expected payoff of an action at a given

environmental state (from an agent perspective) and hence define the choice of the

next action, I need to describe the probability distribution of an action set, given an

environmental state (from an observer’s perspective).

Regarding preference orders over a set of alternatives, CP-nets [6] are among

the most common data structures for encoding partial orders and enriching given

knowledge with observations. They have been used extensively for preference aggreg-

ation [21, 32] and preference learning [8, 10, 14], both for general entities and in the

Multi-Agent context. Allen [1] has extended the framework to finite attribute domains
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and indifference, while others [2,22] have tackled the problem of deriving total orders

from a given CP-net.

Yet, those preference-based approaches represent orders over environmental states,

while I need to describe orders over action spaces, depending on the value of the envir-

onmental attributes. Although these approaches cannot (as illustrated in Section 4.1.1)

lead to accurate results in case of a discrepancy between observed and intended

behaviour, they still have some interesting implications for the present scenario: First,

they show how dependencies between attributes can be used to achieve a more com-

pact and exploitable data structure. Second, the process of deriving knowledge about

agent behaviour from observing them is similar (when preferences are not already

assumed to be known, as in [11]), such that the use of an analogous structure seems a

reasonable next step for my Governance approach.

The self-adaptivity and self-organisation properties of Multi-Agent Systems have

been seen as related to Organic Computing Systems by several researchers [20]. The

GMAS approach targets the conflicts stemming from differing agent goals and from

lack of cooperation by introducing a mediating Governance instance. A similar line of

thought was established in [41] in the context of self-organisation and the emergence

of cooperation.

4.5 Application for Evaluation

The domain chosen for Example 2 lends itself on several levels to examination as an

MAS with system objectives and subsequent need for governance: The agents can

have conflicting goals and only express them by acting within the system, there are

dependencies between agent actions, and there are undoubtedly undesirable states

which should be avoided even if this requires restricting the agents. However, it

lacks two more criteria which make an interesting case for an online self-learning

Governance, especially as a proof-of-concept for the contribution of the PhD project—

Safety-criticality and real-time requirements. Those criteria are satisfied by another

application domain: Autonomous vehicles.

The current baseline for designing autonomous cars is that they have to obey the

(static) local traffic rules, which includes the ability to detect anomalies and dangers

and react accordingly. These regulations are identical for all road users and do not, in

general, take into account any specific agent goals. As a consequence, avoiding traffic

jams or shortages of parking space can only be addressed globally or via explicit

human intervention.

I claim that a self-learning Governance which is given a set of objectives for an

autonomous traffic scenario can achieve this to a high extent in an ad-hoc fashion

while ensuring compliance with basic safety rules.

Since similar scenarios have been examined in related work, it should be possible

to establish a well-defined baseline against which the performance of the GMAS

approach can be measured.
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4.6 Conclusion

In Multi-Agent research, there is a large gap between agent-centric and system-

focused (or governance-focused) learning methods. While individual agents experi-

ence a lot of attention from the Game Theory, Logic and Machine Learning communit-

ies, governance (both centralised and distributed) leads more of a niche existence, and

oftentimes the prerequisites regarding agent behaviour are very specific.

I am aiming towards closing this gap and advancing the area of Governed Multi-

Agent Systems such that both effective and minimally restrictive governance becomes

available for large and currently uncontrollable systems. To achieve this, formal mod-

els and efficient data structures are just as important as governance algorithms which

can deal autonomously with incomplete information and unknown, ever-changing

agent strategies.
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