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Abstract
Complaints about finished products are a major challenge for companies in the medical technology industry, where product
quality is directly related to public health and therefore strictly regulated. In this paper, we examine how available data
can be used to provide automated support to the complaint handling processes in the medical technology companies. We
identify the automation potentials in the 8D reference process for complaint management and discuss their organizational
and technical challenges. Using data from a large manufacturer of medical products, we show how partial process automation
can be achieved in practice by designing, implementing, and evaluating a deep learning-based prototype for automatically
suggesting a likely error code for future complaints, given their textual description. Our approach is able to assign the correct
error code for more than 75% of all cases and outperforms the conventional classification approaches used as a baseline
comparison. Our results show that partial automation of a complaint management process by means of deep learning can be
achieved in practice.

Keywords Complaint management · Quality management · Process prediction · Machine learning · Deep learning

1 Introduction

For manufacturing companies, complaints about finished
products are a major challenge [8]. They not only reduce
profits, but also generate additional costs for, e.g., repair-
ing products or handling returns. Complaint management
requires time and personnel resources, both for designing
and implementing the processes and for executing them. In
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addition, regular complaints about quality defects have a last-
ing negative effect on the perceived process quality, which
may lead to a reduced customer loyalty and therefore dam-
age a company’s reputation among its customers and in the
public eye.

Defective products can be particularly damaging for man-
ufacturers of medical technology, which must meet special
quality requirements in the regulated environment [26]. The
new EU regulation on medical devices has further increased
the requirements on quality and safety of medical technol-
ogy [12]. In this industry, lawmakers consider product quality
as directly related to public health. Quality defects therefore
pose a risk to the company’s success in twoways. They could
lead to a decline in sales, but also could be the cause for offi-
cial interventions that may lead to a forced closure of entire
manufacturing plants in the worst case. To avoid that and
catch potential health threats at an early stage, complaint
processes in the medical technology industry are subject to
specific legal requirements. Manufacturers must establish a
prompt and consistent approach to the acceptance, assess-
ment, and investigation of complaints and the decision on
follow-up measures.

At the same time that requirements toward complaint han-
dling processes are becoming stricter, there is a strong shift
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toward digitizing and automating processes, for example,
with technologies like Robotic Process Automation [1]. This
shift is in part causedby the increasingmaturity of technology
like machine learning and process mining and the increasing
availability of data. In the context of the ongoing digitiza-
tion of manufacturing companies (“Industry 4.0”), more and
more process and production data are recorded and stored
[23]. The considerable amount of real-time sensor, machine,
and process data from product lifecycle (PLC), manufactur-
ing execution (MES), and enterprise resource planning (ERP)
systems can be further enriched with data from the systems
used for complaint and error handling processes as well as
customer-related data. These data hold great potential for
improved complaint management [15].

In this paper, we investigate the potentials of using these
data for automating activities in complaint handling pro-
cesses in themedical technology industry. This is particularly
interesting due to the nature of complaint handling processes.
On the one side, they are highly standardized, typically fol-
lowing a reference process that is established in multiple
industries. On the other side, they are highly individual-
ized, as complaints vary greatly with regard to the product
and customer. By definition, complaints are caused by erro-
neous products, which are most likely the cause of erroneous
and therefore exceptional production processes, requiring
each complaint to be handled separately and individually.
Therefore, our goal is to further examine the potentials for
automation or at least automated support of complaint pro-
cesses.

One key element in the strive toward process automa-
tion is machine learning (ML). Particularly, approaches of
supervised ML (SML) have the potential to automate pro-
cess steps that were previously conducted by human experts,
because they can independently learn how to conduct those
tasks from observing data collected during manual execution
[28]. Classification of natural texts is an example for such a
task. Traditionally, a human domain expert would have to
read any message that a company received and, based on
the available domain knowledge, decide on the next steps.
Nowadays, ML-based text mining approaches can recognize
the relevant phrases in a message and automatically assign
or execute the appropriate next steps. Such an approach has
already been successfully applied to complaint messages in
the telecommunications industry [41] or to patient messages
in medical portals [38].

In this paper, we illustrate the automation potentials of
using ML in complaint handling by automatically classify-
ing textual complaint descriptions by means of a deep neural
network. The first version of this approach was published
at the 2019 AI4BPM workshop [16], located at the interna-
tional conference on Business Process Management (BPM)
in Vienna. This paper focuses more on the general perspec-
tive of automated support of complaint handling processes. In

addition, it describes a redesigned evaluation of our approach
with focus on practical adoption.

For this purpose, the paper is organized as follows. In
Sect. 2, we report on the foundations of medical technology
quality management to explain the organizational context of
complaint processes. Moreover, we analyze the automation
potentials of complaint handling according to the 8D refer-
ence process. Section 3 describes a prototype for supporting
a complaint process in a medical technology company that
we implemented in a research project. The prototype’s real-
ization and evaluation are described in Sect. 4. Section 5
addresses the challenges of ML-based automation services
in complaint handling processes. Section 6 contains related
work on automated process support in complaint handling,
before we conclude the paper in Sect. 7.

2 Toward Automated Support of Complaint
Handling Processes

2.1 Quality Management in theMedical Technology
Industry

Although process automation is relevant for all business and
organizations, complaint processes in the medical technol-
ogy have some unique characteristics that make automation
and the application of ML both interesting and challenging.
In this subsection, we give some background on those char-
acteristics that help understand the automation potentials that
we describe in the following subsection.

The medical technology industry is part of the so-called
regulated environment, i.e., companies that are specifically
monitored and controlled by public authorities due to their
direct influence on public health. Both processes and prod-
ucts in the regulated environment are subject to high quality
requirements, summarized by the term GMP (Good Man-
ufacturing Practice). These binding quality requirements
result from national and international regulations (such as
laws and standards) and must be considered during pro-
duction [11]. GMP regulations affect central sectors of
the economy, such as the pharmaceutical industry, biotech-
nology, medical technology, chemical industry, and food
industry. Compliance with GMP regulations is of funda-
mental importance to companies in these industries, as they
influence their manufacturing authorization. Core processes
of GMP compliance and quality management include pro-
cess management and document management, improvement
management, corrective and preventive actions and con-
trols, risk management, change management, deviations,
employee training, as well as internal and external audits
for GMP-relevant processes.
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A central part of quality management in the regulated
environment is complaint management. This is partially
regulated by law. For medical device manufacturers, ISO
standard 13485 (which largely conformswith ISO 9001) pre-
scribes the use of a quality management system designed
to demonstrate consistent compliance with quality standards
[2]. Typically, the systems follow the 8D problem-solving
process (see Fig. 1) [4]. Originally developed by automotive
companies and used across many different industries, this
process describes a structured approach to the identification
and long-term elimination of problems and their causes and
is therefore an integral part of complaint management.

The 8D is a major factor of why process automation by
means of machine learning is particularly interesting for
the medical technology industry. First, it is officially man-
dated, such that many companies use it. Second, it prescribes
the collection of large amounts of complaint-specific data.
Because of those two factors, there are standardized IT sys-
tems that support it and that enable the collection of large
amounts of process-specific data. For the companies, these
data are an important source for internal complaint handling
and identifying errors in the production process. However,
they can also be used for automating steps in the 8D process
itself.

2.2 Automation Potentials of the 8D Process

As explained, the execution of the 8D process is supported
by specific systems, which companies use as a part of their
quality management system. Those systems typically sup-
port the complete 8D process, with one process instance for
each single complaint. However, they are usually restricted to
collecting data, which the employees have to enter manually.
Automation of at least some process steps would therefore
relieve employees from the repetitive and error-prone task of
manual data entry and save time by reducing the processes’
dependency on manual process execution (which can be cru-
cial in the regulated environment). In order to realistically
estimate those automation potentials in the 8D process, we
are inspecting each stage individually, considering the data
available to train potential support services.

The first stage of the 8D process is team assembly, where
quality managers put together a team of experts that will

investigate the complaint at hand. In this stage, automation
would be targeted to externalize the knowledge about the
expertise of individual employees. A potential support ser-
vice could, for example, analyze past assignments and the
quality of their identified solutions to suggest employees for
the team, who have successfully worked together in the past
and are therefore more likely to handle a complaint quickly
and efficiently. Also during this initialization stage of the 8D
process, an ML-based classification trained on attributes of
past complaints can assist to determine the complaint’s sever-
ity and therefore the priority and speed with which it must
be addressed.

The second stage of the 8D process (problem description)
potentially has the most potential for automation, because it
involves many classifications of the complaint. For instance,
based on its textual description, a complaint can be forwarded
to an employee in the team, who is more experienced in deal-
ing with this type of mistakes. Another interesting attribute
is the criticality assessment, i.e., whether or not the com-
plaint describes a problem that is so important that it has
to be reported to the authorities. This is a more challeng-
ing classification problem, as critical incidents are typically
very rare, such that only very little training data for machine
learning approaches exist. The assignment of a pre-defined
error code, which we describe in detail in Sect. 3, also falls
into this stage. Techniques for generating more (artificial)
training data or hybrid approaches, which combineML tech-
niques with a priori domain knowledge, could be applied to
achieve automation here.

After the complaint has beendescribed in the second stage,
automated support services could identify those containment
actions that were successfully implemented in similar cases
in the past and suggest them as input for the third stage.
These actions could theoretically be implemented in an auto-
mated fashion if they only required software-related changes.
However, such changes would require a high degree of inter-
dependence between different systems and could only be
executed after being confirmed by an employee. Since con-
tainment actions happen only rarely, automating them is
probably not worth the cost and effort.

The fourth stage (identify root causes) may be the most
interestingwith regard to automated support. On the one side,
finding the source of an error might require analyzing large

Fig. 1 8D reference process for
complaint management
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amounts of process, sensor, or machine execution data, for
which methods frommachine learning or data mining can be
very helpful. On the other side, thosemethods are only able to
identify correlations, but not causation. This means that they
are able to find recurring patterns in the data that coincide
with a higher probability for an erroneous product, but they
cannot determine the cause of the pattern or the error. Imple-
menting a notion of causality to ML remains a big challenge
in AI research today [33]. To address this problem, causality-
relatedmethods like causal forests or IV regressions could be
employed to identify potential causes for the error. Another
option would be a hybrid approach, where an ML approach
finds correlations in the data and provides a human employee
with an interesting starting point for determining the root
cause of the given complaint.

In the remaining stages of the 8D process, there is less
potential for automation. For stages 5 (determine correc-
tions), 6 (implement corrections) and 7 (define preventive
actions), it is very difficult to assess, as corrections and
preventive actions are first and foremost dependent on the
identified error cause from the previous stage. Furthermore,
we cannot expect to have much training data available in
those stages, as known errors either do not reoccur or, if they
do, previous corrections apparently were not as effective as
expected, so they should not be repeated. However, depend-
ing on the organizational environment, it might make sense
to support certain individual tasks within the stages. On the
contrary, the last stage (recognize team efforts) has a fore-
most social function, so introducing automation here might
be counterproductive.

3 A Prototype for the Automated Support of
Complaint Handling Processes

3.1 Background

Against the backdrop of the automation potentials in com-
plaint handling processes, an ongoing need to optimize
those processes, and increased data availability, the research
project “Reklamation 4.0”was set out to find new approaches
to use these data in order to improve the complaint handling
process inmedical technology companies. Following the lead
of twoapplication partners, a large- and amedium-sized com-
pany from the medical technology industry, we examined
which complaint-related data are currently available in com-
panies and how we could use it to gain additional insights,
with the help of machine learning and data mining.

For the larger application partner, we took a first step
toward automating the complaint process. The goal was to
train a machine learning approach that provides automated
support for repetitive, but time-critical process steps. One of
these steps is the error code assignment. Medical technology

companies usually receive textual descriptions of customers’
complaints, which the employees then categorize according
to an internal catalog of potential error codes. In addition to
structuring the externally generated complaints, this is a nec-
essary prerequisite for the ensuing analysis of the erroneous
product.

The application partner provided uswith a dataset contain-
ing around 15,000 textual descriptions and assigned error
sources for past complaints. We use this dataset to design,
implement, and evaluate a novel approach for automatically
suggesting a likely error source for future complaints based
on the customer-provided textual description. The approach
makes use of a deep learning technology, which has already
been used for natural language processing (NLP) in other
application domains.

In this and the following section, we present a revised
and extended version of the previous workshop paper [16],
where we improved the selection of evaluation data, the
performance measurements, and the evaluated models. The
approaches are evaluated using a test dataset allowing us to
estimate the performance in a practical adoption. Moreover,
we took steps to further prevent our models from overfitting
by introducing early stopping and a variation in different reg-
ularizing parameters.While our first evaluation only included
a downsampled dataset, we now evaluate our approach on the
initial imbalanced dataset as well. Besides a naïve classifier
which we used as a baseline comparison, we compare our
approach to a random forest classifier.

3.2 Challenge and Solution Design

Employees usually file 8D reports after they receive either
an internal or external complaint about product quality. First
and foremost, filing such a report entails recording a lot of
potentially relevant data, but in a second step, the employee
also has to assess the claim in terms of its criticality and the
potential error source. Both determine the actions to be taken
next. The criticality denotes the risk of another customer’s
health. If, for example, the bacterial load is too high on a pre-
viously sterilized product, it must be reported immediately
to the responsible authorities in order to avoid public health
risks. The potential error source is an internal assessment
and the first step toward identifying and fixing the production
problem that has caused the quality complaint. Companies
usually have an internal set of predefined error codes, which
represent potential error sources. These codes vary in terms
of specificity, going from a generic (e.g., “packaging error”)
to a more precise (e.g., “lack of maintenance on machine 5”)
classification, depending on the information available at the
time.

Correctly assessing each filed incident is a difficult
and time-consuming task, especially for less experienced
employees, who might not have the necessary knowledge.
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Using amachine learning approach,which is able to automat-
ically analyze all past complaints in order to assist employees
in correctly assessing their incidents, may not only reduce
the number of wrong assessments, but also accelerate the
process, such that the issue can be fixed more quickly. For
this purpose, we develop a new approach based on a deep
neural network to automatically assign a likely error code
to a complaint. As input, the network receives free text as
recorded in the 8D report and the error code as assigned
by an employee. During training, the network learns which
complaint characteristics are decisive for the classification.
The trained network can then automatically submit propos-
als for an assessment of a newly arriving complaint to the
responsible employee.

3.3 Solution Architecture

In order to classify textual descriptions of complaints accord-
ing to their likely error source, we use a recurrent neural
network (RNN) with long short-term memory (LSTM) cells
[18]. RNN layer cells feed information back into themselves,
evolving their state by “forgetting” or “remembering” previ-
ous inputs. Our network consists of one input layer, one or
more hidden LSTM layers, and one output layer. The input
layer is responsible for generating a numerical representation
of the input text, a so-called embedding. We use a pretrained
embedding layer of English words [29] and allow the archi-
tecture to adapt the word embeddings to the specific context
during training. For the hidden layers, we use LSTM cells,
because they have been found to be particularly well-suited
to handle datawith long-term dependencies, such as the natu-
ral language in our textual descriptions. The output layer is a
fully connected dense layer with a softmax activation, which
transforms the activations of the last LSTM layer to the num-
ber of potential classes to obtain the probability distribution
ŷ over the classes.

Overall, our network architecture is a standard one for text
classification problems. Our loss function L (Eq. 1), which
we use for computing the gradient during training, is given by
the categorical cross-entropy for the expected output y and
the predicted output ŷ as well as an additional regularization
loss. Given I the number of layers, Ci the number of cells in
layer i and Ac the activation of cell c, the regularization loss
L1 is defined as the sum over all activations Ac of the hidden
layers (Eq. 2). By regularizing the layer activations,we intend
to prevent our model from overfitting. Furthermore, we use
a dropout probability for the activations of each hidden layer
to approach the problem of overfitting [37].

L(y, ŷ) = −
c

∑

i=0

yi ∗ log(ŷi ) + λ ∗ L1 (1)

L1 =
I−1
∑

i=1

Ci
∑

c=1

|Ac| (2)

3.4 Data Characteristics and Data Preparation

To realize our solution design and train the neural net-
work, we use the complaint management data of a globally
operating medical technology company. It contains 15,817
customer complaints about products, including both mass
products and products manufactured according to the cus-
tomer’s requirements. The individual complaints contain
sensitive information about the business processes and prod-
ucts of the manufacturer. Therefore, we cannot make the
dataset publicly available. Resolving this issuewould require
semantically altering the data, resulting in an artificial
dataset, which would counteract our goal to provide insights
about the performance of machine learning in a real word
scenario.

Each complaint in our dataset consists of a textual descrip-
tion and an error code, which ismanually set by the employee
handling the complaint. The error code is a numerical rep-
resentation of the assessment result. In contrast with our
earlier approach [16], we filter complaints that contain mul-
tiple complaint texts and multiple error codes. In these cases,
we are not able to establish amapping from text to error code.
Cleaning the initial dataset leaves us with 14,634 complaints
and respective error codes.

The dataset exhibits 186 different error codes. Table 1
compares the characteristics of the codes that occur in at least
500 cases with the remaining codes. The overview reveals
that less than 5% of the codes account for more than 50%
(7,371) of the cases. Because a customer may either file a
complaint by phone or by letter, the responsible employee

Table 1 Dataset characteristics

Class Cases Distinct words Distinct
words com-
pared to other
classes

All codes 14,634 11,748

Class 1 Code 1 2286 6631 2152

Class 2 Code 2 965 3756 849

Class 3 Code 3 717 4682 1380

Class 4 Code 4 623 3336 632

Class 5 Code 5 590 4463 1009

Class 6 Code 6 581 4273 1202

Class 7 Code 7 566 3162 621

Class 8 Code 8 527 3731 760

Class 9 Code 9 516 3563 620

Class 0 Code 10–186 7263 26,671 17, 713
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summarizes the complaint and submits it to the information
system handling the complaint process. The textual descrip-
tion of a complaint exhibits an average length of 102 words
with a standard deviation of 110. The following description
is an example for a complaint: “customer bought the product
on 27 May 2019, he claims that the Velcro does not adhere
anymore, he also claims that the problem did not occur in
previous orders.” The dataset contains 1,498,330 tokens, of
which 36,598 distinct words.

Table 1 depicts the number of distinct words that are con-
tained in the textual description of the cases labeled with
the same code. In addition, we provide insights on the num-
ber of distinct words that occur in cases exhibiting the same
code but are not contained in any other case. Since machine
learning-based classification approaches require sufficient
data per class to perform well, we require a class to con-
tain at least 500 samples to be considered for evaluation.
Thus, we obtain nine classes that can be directly mapped to
error codes and one additional class (class 0) containing the
samples of the remaining classes. Cases classified with code
1 to 9 are mapped to the respective classes 1 to 9, while the
remaining cases exhibiting the codes 10 to 186 aremapped to
class 0. Based on this selection, we subtract 5% of the cases
(732) for testing the model performance retaining the initial
distribution of the selection. The resulting data which are
used for training and validation contain 13,902 cases. Since
the distribution of the selection shows a class imbalance,
we generate another balanced dataset based on these cases
to examine the effect of data imbalance. We derive the bal-
anced dataset using a downsampling strategy. We randomly
sample x complaints of each class where x is the number of
complaints contained in the minority class (class 9). Since
we removed 5% of the samples for testing, the minority class
remains with 490 samples. Thus, the other classes are also
represented by 490 samples resulting in a balanced dataset
with 4900 samples for training and validation. In our eval-
uation, we assess the performance of our approach on the
imbalanced and the balanced dataset.

4 Evaluation

4.1 Evaluation Setup

To evaluate the robustness of our model, we perform a strat-
ified 10-fold cross-validation on both datasets. The stratified
cross-validation preserves the percentage of samples for each
class in the training and validation split. Table 2 depicts the
number of samples for each dataset and each split. Table 3
shows the hyperparameters of our initial model described in
Sect. 3.3 and the respective search space,whose permutations
yield 648 models to evaluate. Moreover, we evaluate differ-
ent learning rates in an additional search space presented

Table 2 Dataset Overview

Dataset Train Validation Test

Imbalanced 12,512 1390 732

Balanced 4410 490 732

Table 3 Hyperparameter search space

Hyperparameter Search Space

LSTM Layers 1, 2, 4

Hidden Units 16, 32, 64

L1 regularization (λ) 0.005, 0.05, 0.5

Sequence Padding 200

Training Epochs 200

Dropout 0.1, 0.3, 0.5

Batch Size 32, 64, 128, 256

Learning Rate 0.01

Early Stopping 0, 20

Table 4 Additional learning rate search space

Hyperparameter Search Space

LSTM Layers 2, 4

Hidden Units 64

L1 regularization (λ) 0.005, 0.05, 0.5

Sequence Padding 200

Training Epochs 3000

Dropout 0.1, 0.3, 0.5

Batch Size 256

Learning Rate 0.001, 0.0001

Early Stopping 0, 100

in 4 yielding in a total of 720 models. We use the training
splits to optimize the loss function of the models. The model
optimization is conducted using a stochastic strategy called
Adam [19].

We perform the incremental optimization on training
batches of different sizes. Beside the L1 regularization, we
introduce early stopping as a hyperparameter. Early stopping
is a common approach to reduce the generalization error and
has been proved to have similar effects as weight decay regu-
larization [5]. If the validation loss stops decreasing within a
predefinedwindowof epochs,we stop the training anduse the
model exhibiting the lowest validation loss across all epochs
for further evaluation. The size of this window can be freely
chosen; in our case, we set its value to 20. This means that
after each training epoch j , the losses from the following ten
epochs j + k, k = 1, . . . , 10 are inspected. If the validation
loss in epoch j + k is higher than the validation loss in j ,
we continue in epoch j + k. If none of the losses exceeds
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the validation loss in j , we select the model with the lowest
validation loss over all evaluated epochs to become the final
one.

Eachmodel is trained separately on all 10-fold of the train-
ing split and evaluated by measuring the performance on the
respective validation split. We measure the performance of a
validation split using accuracy. For further investigation on
the test set, we use precision, recall, and f-measure for the
individual classes. The used evaluation measures are defined
in the following Eqs. 3 to 9. The number of classes is denoted
by n and for each class i = 0, . . . , n − 1, T Pi is the number
of samples that are correctly assigned to class i , FPi is the
number of samples that are incorrectly assigned to class i ,
and FNi is the number of samples that should be assigned to
i , but are assigned to another class. Moreover, k denotes the
number of samples used in an evaluation set while ki denotes
the number of samples of class i in the respective evaluation
set.

accuracy =
∑

i T Pi
∑

i T Pi + FPi
(3)

precisioni = T Pi
T Pi + FPi

(4)

recalli = T Pi
T Pi + FNi

(5)

f -measurei = 2 ∗ precisioni ∗ recalli
precisioni + recalli

(6)

precisionavg = 1

k
∗

∑

i

ki ∗ precisioni (7)

recallavg = 1

k
∗

∑

i

ki ∗ recalli (8)

f -measureavg = 1

k
∗

∑

i

ki ∗ f -measurei (9)

Finally, we measure the model using the average valida-
tion performances across the 10-fold. We select the model
with the best validation performance for evaluation on the
previously unseen test split. Furthermore, we compare our
LSTM classifier (LSTMC) to a naïve classifier (NC) and a
random forest classifier (RFC). The naïve classifier is con-
sidered a baseline. It is built up on the assumption that a
complaint’s class can be identified by certain words that are
unique to this class. Therefore, when classifying complaints,
it attaches more importance to words that appear in this class
and none other. The NC uses a bag of words approach and
the Jaccard similarity coefficient (Eq. 10) to map a sample
input s to a class i ∈ 0, . . . , 9. Given a training set, the clas-
sifier generates a bag of words bi for each class based on the
words contained in the training samples labeled with class
i . A sample s is assigned a class according to the maximum
similarity coefficient between bi and the Bag of Words sbow

derived from s (Eq. 11). Outperforming the naïve classifier
justifies using an ML-based approach, because the task at
hand cannot be solved with an easier method, i.e., keyword
matching.

J (A, B) = |A ∩ B|
|A ∪ B| (10)

NC(s) = min(i |J (bi , sbow) = max
10
⋃

i=0

{J (bi , sbow)})

(11)

We use the random forest classifier implemented in scikit-
learn version 0.22.1 [34] and the default parametrization.
After removing the stop words from the complaint texts, we
vectorize the texts using the term frequency-inverse docu-
ment frequency of the words and bigrams contained in the
training data. The balanced dataset contains 87,968 features,
and the imbalanced dataset contains 210,586 features.

In the following,we report themean training,mean valida-
tion, andmean test accuracy, as well as the standard deviation
for the top LSTMC across the 10-fold. Moreover, we com-
pare it to performance achieved by the naïve classifier and
the random forest classifier. Furthermore, we present preci-
sion, recall, and f-measure for each individual class. Finally,
we report a normalized confusion matrix of the top LSTMC
and the RFC.

4.2 Implementation and Results

Thepresented classifier is implemented in Python 3.7.6 and is
online available on GitHub1. The LSTM model was imple-
mented, trained, and evaluated using TensorFlow2 version
2.3 and the integrated Keras API. The training of the mod-
els was conducted on a machine with a Intel Xeon W-2175
CPU 2,50 GHz (28 threads), 128 GB RAM, and an Nvidia
GeForce GTX Titan GPU.

4.2.1 Training Evaluation

Table 5 shows the hyperparameter configurations of the top
4 LSTMC regarding validation performance on the balanced
dataset. The best model achieved a mean training accuracy
of 0.99 with a standard deviation of 0.005 across the 10-fold
and amean validation accuracy of 0.67with a standard devia-
tion of 0.02. The RFCmodel yields a mean training accuracy
of 0.99 with a standard deviation of 0.0001 and a validation
accuracy of 0.65 with a standard deviation of 0.02. Training
the naïve classifier achieved amean training accuracy of 0.45

1 https://github.com/phakeai/aicomplaint.
2 https://www.tensorflow.org.
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Table 5 Hyperparameter configuration for the top 4 models regarding
validation accuracy (balanced dataset)

Hyperparameter 1 2 3 4

Validation accuracy 0.674 0.673 0.672 0.67

LSTM layers 1 2 1 1

Hidden units 64 64 32 64

L1 regularization (λ) 0.005 0.005 0.005 0.005

Sequence padding 200 200 200 200

Training epochs 100 100 100 100

Dropout 0.2 0.3 0.3 0.1

Batch size 128 128 128 128

Learning rate 0.01 0.01 0.01 0.01

Early stopping 20 20 20 20

and a standard deviation of 0.027 on the training folds. Con-
trary to the other models, the naïve classifier was not able to
fit the dataset. Its performance disproves the assumption that
certain keywords are responsible for a complaint to belong
to a certain class.

Table 6 shows the hyperparameter configuration of the
LSTM model that achieved the best validation accuracy on
the imbalanced dataset. This model exhibits a mean training
accuracy of 0.97 with a standard deviation of 0.002 across
the 10-fold and a mean validation accuracy of 0.78 with a
standard deviation of 0.009. The RFC model yields a mean
training accuracy of 0.99 with a standard deviation of 0.0001
and a validation accuracy of 0.69 with a standard deviation of
0.007. Training the naïve classifier achieved a mean training
accuracy of 0.60 with a standard deviation of 0.04 on the
training folds. Again, NC underfits the training data.

Figure 3 shows the impact that different hyperparameter
values have on the validation accuracy. For the hyperparam-
eters layers, dropout, units, and batch size, we selected all
models with a certain value (e.g., one, two, or four layers)

Table 6 Hyperparameter configuration for the top 4 models regarding
validation accuracy (imbalanced dataset)

Hyperparameter 1 2 3 4

Validation accuracy 0.775 0.773 0.771 0.77

LSTM layers 1 1 1 1

Hidden units 32 64 64 32

L1 regularization (λ) 0.005 0.005 0.005 0.005

Sequence padding 200 200 200 200

Training epochs 100 100 100 100

Dropout 0.5 0.3 0.5 0.5

Batch size 128 256 128 256

Learning rate 0.01 0.01 0.01 0.01

Early stopping 20 20 20 20

and plotted the distribution of their validation accuracy. This
allows us some insights about the impact of these hyperpa-
rameters on the overall model quality. For example, we can
see that the accuracy drops significantly for models that have
four layers. An increase in the dropout ratio improves the val-
idation accuracy, both in terms of a slightly higher median
value and in terms of a higher quantile values. An increase in
the unit size, however, does not generally lead to an increased
accuracy; 32 units appear to be the best choice. For 64 units,
we can see a number of low-accuracy outliers, which can be
attributed to an interconnection between the unit size, a high
number of layers, and a low dropout value.

The low standard deviations show the robustness of
LSTMCandRFC regarding our datasets. Figure 2 depicts the
training history of LSTMC on the balanced and imbalanced
dataset. The left curves show themean training and validation
accuracy, while the curves on the right side present the mean
training and validation loss. While the training loss contin-
uously decreases, the validation loss starts increasing from
epoch 15 on. Moreover, we observe that although the val-
idation loss increases, the validation accuracy only slightly
decreases. This effect is caused by different methods of mea-
surement in combination with overfitting. While the loss is
computed using probabilities, accuracy only relies on the
highest probability observed for a probability distribution
over the classes. Thus, the overall certainty of the model con-
cerning the validation split decreases (loss increases), but the
validation accuracy only changes slightly.

The steep training loss curve shows the capacity of the
model to fit the training data. Although we apply means
of regularization, the validation loss increases over time
(epochs). Increasing the degree of regularization by adding
L1 activity regularization and increasing the dropout proba-
bility resulted in a decreased training and validation accuracy
on both datasets, while the training loss and validation loss
keep diverging. Without the application of early stopping,
the model yields a slightly lower training accuracy of 0.66 on
the balanced and 0.74 on the imbalanced dataset. Although
the LSTMC with early stopping exhibits a validation loss
that is closer to the training loss, the validation performances
differ only slightly from the standard LSTMCs. Finally, the
variation in the learning rate did not result in an increased val-
idation performance. The best model on the balanced dataset
achieved a validation accuracy of 0.63. The best model on the
imbalanced dataset achieved a validation accuracy of 0.70.

4.2.2 Test Evaluation

The evaluation of the naïve classifier yields a mean test f-
measure of 0.19 on the balanced and 0.12 on the imbalanced
dataset across the 10-fold. Although there are unique words
within each class, the naïve bag of words approach appears
to be unsuitable for the classification task on our evalua-
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Fig. 2 Accuracy and loss for training and validation on both datasets

Fig. 3 Impact of different hyperparameter configurations (x-axis) on
validation accuracy (y-axis)

tion dataset. One explanation could be the wide range of
possible words that can be used to describe a certain error
code. Another is the fact that a certain error can have many
different manifestations. In addition, critical but frequent or
non-specific words, such as negations, are not included in the
set of distinct words for a class, altering its semantics. There-
fore, in the following, we focus our analysis on the random
forest aswell as the twoLSTMCs,whereLSTMCdenotes the

standard training and LSTMCes the model generated using
early stopping.

Tables 7 and 8 report on the performance of those three
models, measuring the precision, recall, and f-measure for
each of the ten classes as well as the weighted average (Eqs.
7 to 9) across all classes based on the test distribution. For
the models trained on the balanced dataset (Table 7), we
observe that all three models achieve an average f-measure
of more than 0.44. The LSTMC with 0.56 and the LSTM-
Ces with 0.55 slightly outperform the random forest with
0.44. While the LSTMC and LSTMCes only slightly differ
regarding precision, RFC yields a lower recall. Furthermore,
there are differences on how the models perform for differ-
ent classes. Class 5 is a challenge for all models, resulting in
f-measures lower than 0.25. In contrast with RFC, LSTMC
and LSTMCes recognize class 0 fairly well. This is an unex-
pected behavior since class 0 is in fact the synthetic class
containing several error codes.

On the imbalanced dataset, the RFC exhibits an average
f-measure of 0.61. The f-measures of LSTMCand LSTMCes
differ only slightly, but more than on the balanced dataset.
LSTMCes outperforms RFC by 0.15. The performance gap
between the LSTMCes and RFC in comparison with the bal-
anced dataset only slightly increases by 0.03. The precision
of class 0 decreases across all models, while the f-measure
significantly increases. However, the f-measure of class 5
almost decreases to 0 for RFC. The metrics that are insen-
sitive to class imbalance (Table 8) reveal that the LSTMCs
fairlywell handle the imbalanced dataset. In comparisonwith
the balanced dataset, especially the performance of class 9
increased significantly, although the number of samples used
for training remains the same for both datasets.
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Table 7 Precision, recall, and
f-measure of different models
on the balanced dataset

Class 0 1 2 3 4 5 6 7 8 9 Avg
Samples 363 114 48 36 31 30 29 28 27 26

RFC Precision 0.94 0.75 0.46 0.3 0.35 0.14 0.76 0.22 0.22 0.32 0.71

Recall 0.22 0.67 0.64 0.76 0.48 0.31 0.89 0.75 0.7 0.8 0.44

f-measure 0.35 0.71 0.54 0.43 0.41 0.2 0.82 0.34 0.33 0.46 0.44

LSTMC Precision 0.84 0.81 0.6 0.39 0.3 0.18 0.61 0.51 0.27 0.28 0.68

Recall 0.4 0.74 0.79 0.72 0.52 0.41 0.84 0.85 0.64 0.55 0.55

f-measure 0.54 0.77 0.68 0.51 0.38 0.25 0.71 0.64 0.38 0.37 0.56

LSTMCes Precision 0.86 0.83 0.71 0.4 0.31 0.17 0.71 0.53 0.27 0.27 0.71

Recall 0.36 0.76 0.81 0.71 0.55 0.46 0.78 0.78 0.7 0.71 0.54

f-measure 0.5 0.79 0.75 0.51 0.39 0.25 0.75 0.63 0.39 0.39 0.55

Table 8 Precision, recall, and
f-measure of different models
on the imbalanced dataset

Class 0 1 2 3 4 5 6 7 8 9 Avg
Samples 363 114 48 36 31 30 29 28 27 26

RFC Precision 0.64 0.72 0.82 0.72 0.49 0.1 1.0 0.88 0.52 0.71 0.66

Recall 0.95 0.78 0.25 0.21 0.05 0.0 0.47 0.4 0.04 0.45 0.67

f-measure 0.77 0.75 0.38 0.33 0.09 0.01 0.64 0.55 0.07 0.55 0.61

LSTMC Precision 0.78 0.87 0.73 0.61 0.41 0.33 0.87 0.81 0.43 0.49 0.73

Recall 0.84 0.81 0.77 0.51 0.33 0.28 0.72 0.74 0.46 0.42 0.73

f-measure 0.81 0.84 0.75 0.55 0.37 0.31 0.79 0.77 0.44 0.45 0.73

LSTMCes Precision 0.78 0.86 0.88 0.72 0.49 0.42 0.92 0.85 0.48 0.67 0.76

Recall 0.89 0.86 0.84 0.49 0.34 0.26 0.76 0.77 0.47 0.48 0.77

f-measure 0.83 0.86 0.86 0.58 0.39 0.32 0.83 0.81 0.47 0.56 0.76

Figures 4 and 5 show the confusionmatrices of the LSTM-
Ces (on the left) and the RFC (in the center) as well as the
differences between them (on the right) for both the bal-
anced and the imbalanced dataset. These matrices provide
more details on how the models performed with respect to
the individual classes. We are able to see which classes the
models most often confuse. Since LSTMC and LSTMCes
performed equally well, we only show the LSTMCes here.

For the balanced dataset (in Fig. 4), classes 0, 4, and 5
appear to be challenging for LSTMCes and RFC alike. The
most frequent misclassifications occur in class 0. The RFC
displays more pronounced difficulties to decipher classes.
Whereas it often misclassifies samples from class 5 as class
7 and 8, it also confuses classes 0 and 8. The LSTMCes more
often misclassifies samples of class 1 to 9 as class 0 than the
RFC.

The models trained on the imbalanced dataset (in Fig.
5) appear to be troubled by the correct classification of com-
plaints in classes 4 and5.We see that especially theRFCoften
wrongly assigns the code 0 to samples from other classes.
The LSTMCes suffers from the same problem, but to a much
lower extent. While RFC is barely able to correctly classify
samples of class 4 (0.05), 5 (0.00) and 8 (0,04), LSTMCes
correctly assignes 0.34 resp. 0.26 resp. 0.47 of the samples
to those three classes.

We can conclude that the LSTMCes generalizes much
better and distinguishes samples of classes 1–9 from class
0, giving it a clear advantage in supporting the employees in
correctly assigning error code in an automated way.

4.3 Limitations and Threats to Validity

The proposed LSTMCs achieve an average f-measure of 0.56
resp. 0.55 on the balanced and 0.73 and 0.76 on the imbal-
anced test dataset. Depending on the predicted classes, the
f-measures range from 0.25 to 0.86. We observed that early
stopping did not considerably influence the overall perfor-
mance of the LSTMC, but the sampling strategy did. Using
the complete and imbalanced dataset yielded a higher over-
all performance, but exhibited a tendency toward wrongly
assigning samples to class 0. This can be explained by the
size and the diversity of class 0, which represents 177 error
codes (10 to 186). During the training stage, the network
thus encounters many samples from this class. Since those
samples actually come from different error codes, they do
not have many similarities, for the network to recognize and
generalize.

The selection of the error codes for prediction is based
on the cutoff of 500 samples. A different selection of error
codes or a clustering of error codes is likely to influence
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Fig. 4 Normalized confusion matrices of the LSTMCes (left) and the RFC (right) (balanced dataset)

Fig. 5 Normalized confusion matrices of the LSTMCes (left) and the RFC (right) (imbalanced dataset)

the prediction performance. However, the optimal selection
of clusters is not only determined by the achieved accuracy,
but rather its usefulness in a concrete application scenarios.
Thus, further constraints, e.g., misclassification costs, need
to be considered.

The underlying problem here is that there are so many
error codes and their distribution is skewed among the incom-
ing complaints. The medical technology company, which
provided the data, has already acknowledged this problem.
Having many very rare error codes is not helpful for an
efficient quality management process either. Therefore, one
action point concluded from our research could be to analyze
the available data to suggest new, more evenly distributed
error codes.

As we see in the evaluation, the LSTMCs outperformed
the RFC in correctly classifying complaint descriptions
into error codes. However, this comparison needs to be
put into context. We used a fairly standard random for-
est configuration and did not tune the hyperparameters
to our problem. Besides that, a random forest will typi-
cally need much less training resources than an LSTM,
while still producing satisfactory results. Depending on the
objectives on the underlying business case (i.e., balanc-
ing resources and performances), a company might select

the random forest classifier for supporting their own 8D
process.

The provided dataset represents a snapshot covering
incoming complaints of a predefined period of time. Since
frequencies of error codes vary over time, the snapshot is not
necessarily representative for the classification task. In our
opinion, using all of the provided data was the best option to
assess the practical applicability of automated support for the
complaint handling process, because a company that wanted
to realize such a support would face the same problem. In a
real-life scenario, we would recommend a regular re-training
of the models on more current data to account for a poten-
tial variation in problem causes and error codes. Moreover,
we would suggest to consider time as a potential confounder
variable.

Finally, we are aware that the work presented does
not enable the reader to replicate the evaluation results,
because the evaluation data are not publicly available. Nev-
ertheless, by providing the concept implementation and a
detailed description of the evaluation setup and experi-
ments conducted, we provide the reader with the necessary
information to reproduce the results in similar application
scenarios.
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4.4 Practical Adoption

Besides the scientific and technical limitations that we
discuss in the previous section, there are also practical con-
siderations to make before our prototype can be used in a
productive environment. The first one concerns the balancing
of the dataset, which we tested out above. As we found, bal-
ancing the dataset improved the classification performance
for some classes, it decreased the performance for others.
So, balancing the dataset does not produce a better predic-
tion model than keeping the (imbalanced) dataset as is. Thus,
choosing one model over another requires a business case
quantifying the impact of a misclassification in a particular
class.

We have seen that in its current state the best model still
misclassifies about a fourth of all incoming complaints. It is
unclear to us how much better the classification can become,
even if we optimize the network architecture or have access
to more training data. However, our approach was devel-
oped in close collaboration with the medical technology
company, which provided the application case and the data.
The responsible quality managers were closely involved in
our conceptual design and see much potential in its real-
ization. The complaint managers, who currently handle the
incoming complaints, were also interested in our solution.
They pointed out that even a small step like this one could
save them some time, which they can use for completing
the other steps of the 8D process. This is particularly rele-
vant for known and less critical error sources, which should
be handled quickly, such that the employees can focus on
finding the causes for new and potentially more severe com-
plaints.

After our initial results were published in the workshop
paper, a first prototype was implemented, which was able
to assign a likely error code to a given (previously unseen)
complaint description. It was qualitatively evaluated in a
workshop with the project partners. This prototype demon-
strates the general feasibility of our approach and the pipeline
to transport a pre-trained neural network into a software
architecture. For this contribution, we retrained the net-
work after cleaning the original dataset, removing duplicate
assignments. We also tested an early stopping strategy and
inspected the differences between balanced and imbalanced
training data.

In the meantime, “Reklamation 4.0” project, in which
we conducted the described research, was successfully com-
pleted. As part of its research dissemination strategy, our
application partner intends to integrate the developed proto-
type into the process-supporting IT system, giving end users
the opportunity to evaluate the approach directly in a produc-
tive environment.

5 Challenges to the Automated Support of
Complaint Handling Processes

The previous two sections described our prototype for
automating one small step within the 8D process as well
as the challenges that we encountered. In addition to this
rather practical discussion, we also need to consider the
more large-scale conceptual challenges that comewith apply-
ing ML-based automation in productive environments in the
medical technology industry. These will be discussed in this
section.

In comparison with other industries and application sce-
narios, awrongly classified complaint in themedical industry
could have severe legal and financial consequences. There-
fore, it is probably not feasibly to completely automate the
complaint handling process. Instead, we could consider the
inputs of, e.g., complaint classification models as recom-
mendations, which can support the employee handling the
complaint. This could significantly increase the employee’s
performance.Depending on user preferences and themodel’s
confidence on the predicted class, a certainty value or a rank-
ing of the k top error codes could be provided to the employee.
Both options would put the model’s recommendations into
perspective and foster their critical reflection.

On the other hand, it is not given that the employees that
currently handle the complaints perceive the prediction as a
helpful tool that supports their daily work. If recommenda-
tions are wrong, take too much time, or do not make sense,
the employees will be less likely to use the prediction, mak-
ing its potential benefits obsolete. Alleviating this risk takes
multiple steps. First, we have to ensure that the approach
produces high-quality recommendations sufficiently quickly.
Second, we have to examine how the tool performs in a prac-
tical setting and how the employees integrate it into their own
handling of the complaint processes. Third, if it turns out that
employees donot use the tool, because theydonot understand
why it makes a certain recommendation, we might consider
adding a tool that explains the decisions, using methods of
ExplainableAI [35]. Overall, a practical use of our developed
prototype requires us to walk the fine line between helping
an employee and ensuring that the employee herself makes
all final decisions regarding the complaint handling.

Another set of challenges concerns the transferability of
our prototype to other processes or other companies. The
first one relates to data availability and data quality. Like all
deep learning approaches, our model requires a compara-
tively large amount of data to deliver meaningful results. If a
company does not have the required amount of data, because
it sells fewer products and therefore has fewer complaints, it
might not be able to realize the approach as we describe it
here. This is especially true, if there are many different error
codes, which become harder to classify if less data are avail-
able. These problems also occur in companies or processes
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with limited data quality, such as incomplete descriptions or
incorrectly classified complaints. In this case, our model will
not be able to make reliable predictions, as it does not have
access to a sufficiently large sample of correct examples to
generalize from.

Furthermore, the handling of the complaint process in
medical technology depends on the nature of the individ-
ual product. The same legal regulations apply to inexpensive
commodity products and to complex medical devices, but
their complaint handling differs considerably. Consider the
differences between an erroneous adhesive patch and an
ultrasound machine. In the first case, the customer might not
even realize that there is a problem with the product itself
or might not bother to file a complaint about it. If there is a
complaint, the company can easily provide them with a new
package of patches at a very low cost. On the other hand, if an
ultrasoundmachine at a hospital breaks down, the employees
there will almost always file a complaint with the manufac-
turer. Replacing or repairing such a machine can become
very expensive very quickly, so if there is an error source in
the production process, the manufacturing company needs
to know about it in order to avoid the same error in other
machines.

In this respect, automated support of complaint handling
processes might not be applicable to every medical technol-
ogy company. Each individual company needs to investigate
whether partial automation is beneficial in their respective
processes. This is particularly important, because after the
initial training, the results of our model should regularly be
supervised and re-trained with the appropriate current data,
such that the quality of the result can be maintained or ide-
ally improved and changes in company policy are reflected
the model. Thus, the company requires an appropriate infras-
tructure consisting of computational power, hardware either
on premise or as a service, as well as experts maintaining
and developing the models. All of this requires a consid-
erable investment of financial resources, which only makes
sense economically if the number and/or the severity of com-
plaints is sufficiently high. However, companies could also
regard such an investment as a foray into artificial intelligence
and machine learning, which have many other applications,
therefore justifying higher research and development costs.

6 RelatedWork

6.1 Machine Learning for Quality Management

There are several approaches that apply other machine
learning techniques in quality management. Coussement et
al. introduce a binary classifier that is able to distinguish
complaint from non-complaint emails [8]. The approach
consists of a rule-based feature extraction and a boosting

algorithm for binary classification. Ko et al. deal with the
detection of anomalies in engine production [20]. Their
approach combines data from production across supply
chains with customer data and other quality data to clas-
sify the engines’ quality. The approach of Weiss et al.
is also concerned with the prediction of product quality
along a supply chain, but considering microprocessors [40].
In this context, the main challenge is the lengthy produc-
tion process and the availability of only little measurement
data.

In addition, there are several approaches that developmod-
els for quality forecasts across multiple production steps.
Lieber et al. describe a case of application from the steel
industry, inwhich the quality of interstage products is in focus
[24]. Techniques of supervised and unsupervised machine
learning, such as clustering or decision trees, are applied
to data recorded during production (e.g., by sensors) to
identify the most important factors influencing subsequent
product quality. The approach of Arif et al., on the other
hand, comes from the production of semiconductors, where
decision trees are also used to develop a predictive model
[3].

6.2 Deep Learning and NLP in BPM

Diverse applications for deep neural networks in BPM have
recently been presented. Process prediction, i.e., forecasting
the future behavior of running process instances, is arguably
the most prominent. Our own approach to process predic-
tion encodes the event log into a word embedding and uses
this embedding to train a neural network that is able to
predict the next steps in a process sequence [13,14]. Tax
et al. present a similar approach, but they employ feature
vectors and a one-hot encoding to represent the log [39].
Mehdiyev et al. refine those approaches with a more com-
plex network architecture [27]. All of thesemethods focus on
predicting the next process step, but there are also attempts
to predict other process attributes, such as cost, runtime or
process outcomes [25]. The paper by Di Francescomarino
et al. provides an overview over the current state of the art
in process prediction [10]. In very recent publications, neu-
ral networks are employed for simulating process logs[7]
and supporting resource allocation in business processes
[31].

While most of the deep learning-based process predic-
tions rely on long short-term memory (LSTM) cells, there
are also approaches that transform process event logs into
spatial data to take advantage of convolutional neural net-
works [32].

Besides process prediction, another important applica-
tion for machine learning in BPM is anomaly detection,
i.e., the identification of process instances that deviate from
the usual process behavior. Nolle et al. present an approach
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based on autoencoders, which is able to consider pro-
cess attributes in addition to sequences [30]. Lahann et
al. build on this research to identify compliance violations
in accounting data [22]. A previous approach by Böhmer
and Rinderle-Ma uses likelihood graphs to a similar avail
[6].

Regarding different types of representing process log
data for neural networks, De Koninck et al. use rep-
resentation learning to learn embeddings for activities,
traces, logs, and processes [9]. Besides those uses focus-
ing on instance log data and process monitoring, machine
learning can also be used to support process modeling
[17].

Similar to our approach, other researchers have used NLP
for process automation. Shing et al. present an approach
to extract workflow descriptions from written documents,
specifically unstructured e-mails [36]. In an application case
at an IT service provider, Koehler et al. automatically extract
problem descriptions from a multi-language ticket system
[21].

7 Conclusion and Outlook

In this contribution, we consider the potentials of automat-
ing complaint handling processes in the medical technology
industry. After examining those potentials in the 8D ref-
erence process, we use data from a large manufacturer
of medical products to design, implement, and evaluate
a prototype for providing automated support to the sec-
ond step of the 8D process (problem description). This
prototype consists of a deep neural network, which is
able to assign the correct error source to a textual com-
plaint description in more than 75% of all cases. We
evaluated numerous network configurations to identify the
network with the highest performance. The performance
of our approach was 3 times better than the keyword
based naïve classifier which we used as a baseline com-
parison. It overall performed better than a random for-
est classifier and could better distinguish different com-
plaint classes. In addition, we examined the organizational
and technical challenges of automating complaint handling
process.

Our results show the general potential ofmachine learning
for process automation in medical technology. Compared to
“classical” approaches for process automation, such as key-
word search, ML has several advantages. First, it relies on
only little domain knowledge (such as potential symptoms
of patients or malfunctioning products). This knowledge
is difficult to acquire and codify, requiring a high level
of engagement by domain experts. Second, ML is able to
deal with customer-specific vocabulary choices, consider-
ing semantic instead of syntactic matches with the given

categories. Third, it may identify patterns and draw conclu-
sions, which domain experts may have overlooked. So, ML
has the potential to support employees instead of burdening
them.

Partial automation of the complaint handling process sup-
ports employees in their work, leaving them with more time
to identify and remove the causes of occurring complaints.
This is particularly relevant for less experienced employ-
ees, since the necessary experience for quickly filing an 8D
report can be at least partially replaced by a trained neural
network. However, it is infeasible for the medical technol-
ogy industry to fully automate its complaint handling process
and remove the human employee from the decision process,
at least for the foreseeable future. The evaluation of, e.g.,
the complaint criticality is an extensive decision, which can
lead to official sanctions or expensive recalls, damaging a
company’s reputation and its revenue. In case of a critical
error, the final assessment will not be automated, but be car-
ried out by an employee, or rather a team of employees,
instead.

In addition, automation is also relevant for system val-
idation. All production-relevant IT systems in a controlled
production environment must be formally validated, docu-
mented, and tested, before the company is allowed to use
them. From this point on, the validated computer systemmay
only be changed within very strict boundaries. Inspectors
from public health agencies, such as the American Food and
Drug Administration (FDA), perform regular on-site audits
of those systems and ban companies from selling in their
respective markets if the systems are not properly validated.
If a neural networkmade independent decisions within a pro-
cess related to themanufacturing ofmedical products instead
of just supporting the employees in their decisions, it would
be regarded as a production-relevant system. This would be
problematic for two reasons. First, the training stage of a
neural network is a non-deterministic process, so a validated
network could not be retrained onnewdata, even if thatwould
improve its performance. Second, the auditor might require
an explanation of the decision that the system makes, which
is difficult to provide for black-box models like neural net-
works. On the other hand, the network’s decision may be
better than those of the human employee, so it would not
make sense not to use them. This is a fundamental dilemma
of the regulated environment, which the industry and public
authorities have to address in order to find the best approach
to promote public health in the future.
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