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Abstract
Survey research aims to collect robust and reliable data from respondents. However, despite
researchers’ efforts in designing questionnaires, survey instruments may be imperfect, and question
structure not as clear as could be, thus creating a burden for respondents. If it were possible to
detect such problems, this knowledge could be used to predict problems in a questionnaire during
pretesting, inform real-time interventions through responsive questionnaire design, or to indicate
and correct measurement error after the fact. Previous research has used paradata, specifically
response times, to detect difficulties and help improve user experience and data quality. Today,
richer data sources are available, for example, movements respondents make with their mouse, as
an additional detailed indicator for the respondent–survey interaction. This article uses machine
learning techniques to explore the predictive value of mouse-tracking data regarding a question’s
difficulty. We use data from a survey on respondents’ employment history and demographic
information, in which we experimentally manipulate the difficulty of several questions. Using mea-
sures derived from mouse movements, we predict whether respondents have answered the easy or
difficult version of a question, using and comparing several state-of-the-art supervised learning
methods. We have also developed a personalization method that adjusts for respondents’ baseline
mouse behavior and evaluate its performance. For all three manipulated survey questions, we find
that including the full set of mouse movement measures and accounting for individual differences in
these measures improve prediction performance over response-time-only models.
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Two decades ago, Mick Couper coined the term paradata at the Joint Statistical Meetings (1998) to

describe data that are an automated by-product of data collection. He encouraged data collectors to

make systematic use of such by-products to learn about the collection process and ideally improve it.

The message took hold, and survey organizations have since vastly increased their use of paradata

(Kreuter, 2013; McClain et al., 2019). Most collections and applications of paradata are to monitor

fieldwork efficiency (Vandenplas et al., 2017), monitor interviewer behavior (Sharma, 2019), or

improve nonresponse adjustment (Olson, 2012). Increasingly, we see applications in adaptive survey

designs (Chun et al., 2017), though these affect mostly the allocation of fieldwork resources, and not

a paradata-driven adaptation of questionnaires (Callegaro, 2013; Early, 2017). Here, we focused on a

particular type of paradata—participants’ mouse movements—to examine its power to predict

question difficulty in online surveys.

In the light of increasing survey costs and decreasing response rates, online surveys have become

prominent across many fields and data collection settings (Couper, 2011), with massive govern-

mental data collection efforts moving onto the web (U.S. Census Bureau, 2017). This shift in

medium poses some unique challenges, though it shares with other survey modes the risk that—

despite the careful design and testing of questionnaires (Presser et al., 2004)—some problems may

slip through the cracks, causing additional burdens to respondents who may experience difficulty in

understanding what a question is asking (Tourangeau et al., 2000) or how the question’s concepts

apply to the respondents’ circumstances (Conrad & Schober, 2000; Ehlen et al., 2007; Schober et al.,

2004) and may result in incorrect responses. Unlike web surveys, other modes provide ways of

mitigating the risk of misunderstandings: In face-to-face and telephone interviews, interviewers can

give and pick up paralinguistic information (de Leeuw, 2005; Schober et al., 2012; Tourangeau

et al., 2013) and help respondents accordingly. Self-administered web surveys provide no such

interaction, leaving respondents to their own devices.

One hope, expressed by survey methodologists (Callegaro, 2013), is that paradata might be used

to detect items worth revisiting, and respondents facing difficulties: If paradata could pick up signals

from struggling participants, web surveys could “react” and offer help or, in the analysis, respon-

dents’ answers could be treated with caution when strong indications of misunderstandings are

present.

This article aims to ascertain whether, and to which degree, question difficulty can be inferred

from paradata. We build on an experiment conducted by Horwitz, Brockhaus et al. (2017) and

Horwitz et al. (2019). Their experimental manipulations introduced questionnaire design issues to

make individual items more difficult to process, thereby inducing respondent burden: For example,

they shuffled response options, creating an unintuitive order, or by using obtuse wording to create

needlessly complex items. We apply several machine learning methods to this data set and evaluate

whether they can predict the presence of a design problem on a given item. If so, this would provide

a significant step toward the goal of identifying items requiring revision as part of questionnaire

pretesting, participants in need of assistance during data collection, or problematic data sets after

the fact.

Background

Paradata denote pieces of information that are collected as part of a survey deployment, beyond the

responses themselves (Kreuter, 2013; McClain et al., 2019). For example, field workers might
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record additional information at the doorstep, and phone surveys might monitor how many attempts

it took to reach a response. Computer-assisted and online surveys provide the technical means of

collecting the information largely automatically.

So far, response times have received the most attention in paradata research, with a focus on the

notion that response latency—and particularly long idle times—is indicative of question difficulty.

Website design already makes use of information on idle periods, automatically triggering virtual

assistance (Conrad et al., 2007). Mittereder (2019) used response times to predict break-offs in web

surveys and design interventions. Response times have also been examined in their relationship to

measurement error (Heerwegh, 2003). Most work so far has focused on the time between reading

questions and answering, some also combined with changes in the response (Heerwegh, 2003; Stern,

2008; Yan & Tourangeau, 2008; Zhang & Conrad, 2014). Small and large response times are often

used as indication of bad data quality (Conrad et al., 2006, 2007; Yan & Olson, 2013; Yan et al.,

2015). However, there are several limitations to using response times outside of a laboratory

environment. First, response time is a relatively coarse measure that does not specify what might

have caused an observed latency: Respondents who take a long time to answer may not even be

engaged in the survey task, but checking emails, talking on the phone, and so on (Höhne &

Schlosser, 2018; Sendelbah et al., 2016). Also, direct comparisons of absolute response times

between participants may be problematic because each person has their own speed (Mayerl et al.,

2005), and models for response times that include task characteristics and respondent features are

still in their infancy (Couper & Kreuter, 2013).

Mouse movements are a promising source of information regarding the cognitive processes

underlying choices. In the cognitive and behavioral sciences, mouse-tracking measures are fre-

quently applied to investigate cognitive processes, particularly to assess how the commitment to

choose alternatives develops over time and to quantify the amount of conflict participants experi-

ence while making their decisions (Freeman, 2018; Stillman et al., 2018). The mouse-tracking data

are then used to make inferences concerning the underlying mental processes, and the nature of

social cognition, judgments, and decision-making more generally. Most mouse-tracking studies

have focused on experimental manipulations to test theoretical predictions regarding how charac-

teristics of the decision situation—and the respondent—influence decision conflict (Freeman &

Ambady, 2011). More recent studies have used mouse-tracking measures to predict decisions and

have demonstrated that they can supply additional information beyond response times. For example,

in an intertemporal choice task, measures extracted from early mouse movements predicted the

subjective value of participants’ later choices—independently of participants’ response times

(O’Hora et al., 2016). In another study, participants’ average conflict in a self-control task (as

assessed through their mouse movements’ curvature), but not their response time, predicted their

decision between healthy or unhealthy food at the end of the experiment (Stillman et al., 2017).

Given that these findings were obtained in laboratory tasks with a vastly simplified, artificial screen

layout, it remains to be seen if they generalize to survey research.

Previous research also indicates that mouse-tracking could provide useful information in a

questionnaire context: Stieger and Reips (2010) showed that excessive mouse movements (as

defined by distance) identify respondents with low data quality. In a laboratory study, Horwitz,

Kreuter, and Conrad (2017) classified specific mouse movement patterns through manual coding

and demonstrated that they are useful additions to response time when predicting response difficul-

ties. Specifically, they identified periods where the cursor rested above the question text (hovers) or

a response option (markers) for two or more seconds, and regressive movements between different

areas of the page. However, any larger scale application in online surveys should automate the

processing of mouse-tracking data and the computation of mouse movement measures (or just

measures). Concerning the automatic computation of measures, the cognitive sciences literature

provides a wealth of quantitative mouse-tracking measures that capture different aspects of the
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response process such as the speed of the mouse movement, the number of changes in direction, and

periods without movement (Horwitz, Brockhaus et al., 2017; Horwitz et al., 2019; Kieslich et al.,

2019). Together, these measures provide a comprehensive picture of the response process, while

being efficient to collect and compute, even in real-time, making them applicable even in large

surveys outside of a laboratory setting.

Here, we went beyond the prior literature in multiple ways: Compared to Horwitz, Kreuter, and

Conrad (2017), we automatically extracted a set of commonly used quantitative measures rather than

coding them manually. We also left the controlled environment of the laboratory and used a

large-scale data set collected in an online survey. Therein, we experimentally manipulated

“difficulty” in a set of target questions that we describe below in more detail. Horwitz, Brockhaus

et al. (2017) and Horwitz et al. (2019) previously analyzed this data set and shown that many

measures, when analyzed separately, were affected by the difficulty manipulations (e.g., the median

number of hovers was generally significantly different in easy, compared to difficult settings, among

all studied target questions). In contrast, our focus here was not on comparing measures between

experimental conditions but on the predictive power of these measures to detect the presence of

issues, which is a critical prerequisite for their practical use. Thus, we examined not only whether

measures change in the presence of problems with any particular item, but whether they provided

sufficient predictive performance to recover the experimental group, and which characteristics were

most predictive.

Like Horwitz, Brockhaus et al. (2017) and Horwitz et al. (2019), we conceptualize the difficulty

of a survey question1 as structural, denoting the presence of design problems in a questionnaire,

creating undue burden that might have been avoided by more careful survey design, or would be

easily resolved in the presence of an interviewer; we denote items as “easy” in the absence of such

issues, where items followed standard practices for survey design (e.g., Groves et al., 2009). The

questions in our data set are constant in content across experimental manipulations and concern

basic demographic facts so as not to require large amounts of further deliberation.

Building on Horwitz, Brockhaus et al.’s (2017) and Horwitz et al.’s (2019) data, we further

investigated whether using multiple measures jointly could further improve predictive accuracy

(i.e., proportion of correctly classified observations). Notably, the presence of a significant differ-

ence of certain mouse movements between easy and difficult scenarios is, while an indicator, no

guarantee for the predictive power of a specific measure (Lo et al., 2015; Shmueli, 2010). In other

words, although Horwitz, Brockhaus et al. (2017) and Horwitz et al. (2019) found significant

differences in specific measures between easy and difficult settings, this does not necessarily mean

that these measures will be good predictors of this characteristic. Possible reasons include that

significance does not necessarily imply large effect sizes (i.e., index distributions are still largely

overlapping between settings), goodness-of-fit in sample does not guarantee predictive accuracy

out-of-sample (Yarkoni & Westfall, 2017) and that significant variables may show an association

with the outcome only in a small subgroup, leading to poor population-wide prediction (Lo et al.,

2015). Therefore, after the comparative analysis by Horwitz, Brockhaus et al. (2017) and Horwitz

et al. (2019), we investigated here whether the added predictive power of measures was sufficiently

large for their use in informing real-time, responsive questionnaire design or, in measurement, error

correction.

Finally, we examined whether accounting for individual differences could aid the prediction of

difficulty: Whether due to habit or preference, differences in hardware or system settings, the

interaction with the survey, and, as a result, mouse movements, may vary systematically between

respondents (Henninger & Kieslich, 2020). It is thus likely that focusing on deviations relative to a

previously observed baseline (e.g., “unusual for this subject” behavior) rather than an absolute value,

will reduce interindividual variation present in the data, and further strengthen predictive
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performance. However, this remains to be shown empirically, and thus, we examined the effect of

personalized predictive models in our analysis.

Data and Methods

Survey Data Description

Our analyses were based on a survey conducted for the Institute for Employment Research in

Nuremberg, Germany, from September to October 2016 (Horwitz, Brockhaus et al., 2017;

Horwitz et al., 2019). The survey contained questions on a range of topics, with a focus on the

respondents’ employment history and demographic information. Recruitment was based on a non-

probability sample of 1,627 respondents who had participated in a previous wave2 and agreed to

future contact; 1,527 individuals were also given a 5€ incentive (while the first 100 individuals

recruited via email did not receive any incentive for participation). Data collection took place online

through a web survey (constructed in SoSciSurvey; Leiner, 2014). In total, 1,250 participants

responded, and 1,213 completed the questionnaire. Of these, 886 (73%) reported using a mouse

as an input device; our analysis is limited to these participants.

The average age of these participants was 51 years (SD ¼ 10.8 years), and there were 454 female

and 425 male participants (two selected the “other” category, and five did not answer). We applied

several additional question-specific exclusions discussed below.

Our analyses focus on questions all based on a multiple-choice format (screenshots of all relevant

questions are in the Supplementary Material). Three questions were the focus here (target ques-

tions): One assessed respondents’ type of employment (employment detail; see Table S1 in the

Supplementary Material); another the employees’ position in the company hierarchy (employee

level; see Table S1); the remaining target question assessed participants’ highest attained level of

education in the German school system (education level; see Table S1). For education level,

open-text inputs allowed further specification of the chosen option. Eight additional questions

provided a baseline for participants’ interaction behavior with the survey, using a similar format

to the target questions but excluding any difficulty manipulation. They covered participants’ eva-

luations of the general and personal current economic situation, their employment contract type,

current job position, satisfaction with their employee representatives, if they were working in

marginal employment, received unemployment compensation in the last year, and whether their

salary increased enough to make up for inflation.

For the three target questions, participants were randomly assigned to one of two difficulty levels

designed to make the response more or less difficult (Horwitz, Brockhaus et al., 2017; Horwitz et al.,

2019). The survey literature has discussed a number of factors that influence how easily participants

understand and can answer a question. These include aspects of the question wording and the

response format (Holbrook et al., 2006; Lenzner et al., 2010). For employment detail, we manipu-

lated the wording of the response options, which was either straightforward with concise and simple

vocabulary and grammar or involved longer and more complex descriptions and sentence structure,

which should make understanding and answering the question more difficult. For the employee- and

education-level questions, we manipulated the order of the response options. We considered the

version with ordered response options as the easy scenario (i.e., increasing from low to high levels)

because this is the standard and logical way these questions are displayed. Conversely, unordered

options are considered more challenging (difficult scenario) as the unnatural order adds burden. We

implemented a balanced assignment independently for each question, and their ability to recover the

experimental condition based on mouse movements will serve as the criterion of the predictive

models in the following (see Horwitz, Brockhaus et al., 2017; Horwitz et al., 2019, for further

details).
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Mouse Movement Trajectories

Throughout the survey, paradata were gathered using a client-side collection script (Henninger &

Kieslich, 2020) and transferred to the server in 10-s increments. As a preprocessing step, we

extracted the trajectories from the paradata and applied a number of filtering operations to ensure

a consistent data set for each target question. First, participants who did not answer (either because

the question was not presented to them, e.g., if they were not an employee for the employee-level

question or because participants did not select an answer) were excluded. Next, we excluded

questions for which mouse movements were not recorded or incomplete (e.g., because of intermit-

tent connection problems) and those for which paradata indicated that participants might have

reloaded the survey page. For the education question, we also excluded participants who responded

using the free-form text input. As all models control for participants’ gender and age, we excluded

participants with missing values on these questions (and participants who selected the “other”

category for gender, since there were too few observations to include it as a third category). As a

final criterion, we removed instances in which participants took unrealistically long to answer a

particular question (response time > 7 min). Applying all filter criteria resulted in a final data set of

551, 501, and 548 participants for employment detail, employee, and education levels, respectively.

From the recorded trajectories, we calculated a variety of mouse-tracking measures (described in

Table 1) common in and adapted from the psychological process-tracing literature (Freeman &

Ambady, 2011; Kieslich et al., 2019) and the survey literature (Horwitz, Kreuter, & Conrad, 2017) to

capture distinct features of mouse trajectories on every page. The processing of the collected

mouse-tracking data and the calculation of the described measures were automated through the

mousetrap package in R (Kieslich et al., 2019).

Based on the survey literature summarized above, we hypothesized that several paradata

measures could indicate question difficulty, including prolonged response times (Conrad et al.,

2007; Mittereder, 2019), longer distances traveled (Stieger & Reips, 2010), and a greater number

of hovers and changes in movement direction along the vertical axis (called y flips in Table 1;

Horwitz, Kreuter, & Conrad, 2017). We similarly interpret x flips in Table 1 as the number of

changes in movement direction along the horizontal axis. However, mouse-tracking applications

in the cognitive sciences suggest that multiple measures, including initiation times, velocity, and

Table 1. Computed Mouse-Tracking Measures With the Mousetrap Package in R.

Type Measure Definition

Time Response time (RT)
Initiation time

Time from page load until response submission
The duration from page load until the first recorded mouse movement
occurred

Hovers Number of hovers Number of periods without movement exceeding a minimum duration
threshold

Overall duration
of hovers

Total time of all periods without movement exceeding a minimum
duration threshold

Distance Total distance Euclidean distance traveled by the mouse
Derivatives Maximum velocity

Maximum
acceleration

Maximum movement velocity
Maximum movement acceleration

Flips x flips (horizontal flips)
y flips (vertical flips)

Number of changes in movement direction along horizontal axis
Number of changes in movement direction along vertical axis

Note. All hover measures exclude a potential initial phase without mouse movement (reflected in the initiation time).
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acceleration, are related to response competition and hence play a role in detecting question

difficulty as well (Hehman et al., 2015; Stillman et al., 2018). However, it remains an open

question how well all measures together can detect question difficulty, and which are especially

useful in a joint analysis.

Classification Supervised Learning Methods

To predict difficulty from mouse movements, we used several common supervised classification

methods (Hastie et al., 2009; James et al., 2013). These map a categorical response variable (output

or target) to explanatory variables of any type (inputs or predictors) through a specific function (e.g.,

logit). Our target variable was binary (easy vs. difficult), and we had eleven explanatory variables

(mouse-tracking measures as described in Table 1, and age and gender) for each target question. Age

and gender were included in all models as predictors because we potentially expected interactions

between them and some of the measures (e.g., larger response times may be plausibly associated

with older people and thus less indicative for difficulty in this case). These interactions are easily

handled by most of the learning methods described below.

Each model is fitted onto a training sample, and its predictive performance evaluated on the

remainder of the data set (Hastie et al., 2009; James et al., 2013). To cover different relationships

between the outcome and inputs, we considered the following predictive models: logistic regression,

tree-based models (classification trees, random forest, and gradient boosting), support vector

machines, and single hidden layer back-propagation networks (a kind of neural network).

Logistic regressionmodels linearly relate the log odds of the binary outcome Y (here: Y ¼ 0 easy,

and Y ¼ 1 difficult), and the vector of predictors X ¼ ðX1 ;X2; . . . ;Xp Þ with the equation:

logðoddsðY ¼ 1j XÞÞ ¼ log
PðY ¼ 1j XÞ

1� PðY ¼ 1jXÞ
� �

¼ b0 þ b1 X1 þ b2 X2 þ : : : þ bp Xp; ð1Þ

where log
PðY¼1j XÞ

1�PðY¼1jXÞ
� �

is the logistic function of PðY ¼ 1Þ and acts to linearize the relationship

between the output and inputs. The model parameters b1; : : : ;bp estimate the relationship between

the output and the corresponding input (Hosmer et al., 2013).

Classification trees partition the space of the vector of predictors into a set of different subspaces.

This division process is recursive and consists of splitting each predictor at a collection of possible

cut points and selecting the partition that most reduces the impurity (e.g., Gini index) within nodes

(regions defined by the splits). To control overfitting and reduce tree complexity, these can be

pruned, trading a small increase in bias for a larger reduction in variance of predictions. These

methods can be unstable in that small variations in the training sample can change the tree structure

dramatically (Breiman et al., 1984; Loh, 2014).

Tree-based random forests: Bootstrap aggregating (bagging; Efron & Tibshirani, 1994) draws

bootstrap samples from the training data, fitting an unpruned tree to each to ensure minimum

bias. Bootstrap trees are then aggregated for a more stable overall prediction (e.g., using the

majority vote for class membership). As a high correlation between bootstrap trees diminishes

the possible variance reduction in bagging, random forests consider a new random subsample of

m predictors (tuning parameter) for each bootstrap tree. This includes weaker predictors in

some of the bootstrap trees, increasing variability and decreasing correlation, reducing the

variance of the overall prediction. The number of bootstrap trees is also a tuning parameter

(see Breiman, 2001; Sutton, 2005).

Tree-based gradient boosting methods were also designed to reduce the trees’ variance and

improve the models’ performance. Here, trees are grown sequentially by iteratively fitting a new

tree based on the information that was not explained in the previously grown trees (so-called
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pseudo-residuals, serving as responses in the next iteration). The main tuning parameters are the

number of trees and splits in each tree, and a shrinkage parameter that controls how the model learns

(see Breiman, 1998; Friedman, 2001).

Support vector machines are used to construct nonlinear decision boundaries to discriminate

between different categories. A linear boundary is defined as the hyperplane in the covariate space

that gives the largest margin (distance) to the nearest observations (support vectors) in the two

classes on both sides of the plane (support vector classifier), while allowing for some misclassifica-

tions. As samples are usually not linearly separable into two classes, kernel functions (we considered

here the radial kernel) enlarge the predictors’ vector space and ensure that the decision boundary is

no longer linear in the original predictors’ vector space. The two tuning parameters are a regular-

ization and a kernel-related (see Cortes & Vapnik, 1995; Steinwart & Christmann, 2008).

Single hidden layer back-propagation networks (a kind of neural networks) consist of inputs, a

single hidden layer with h nodes, and outputs that can be represented as a graph. Each node of the

hidden layer corresponds to an activation function evaluated at a linear combination of the inputs,

where parameters act as weights. The outputs are also nonlinear transformations (e.g., logistic

transformations) of linear combinations of these nodes in the hidden layer. The tuning parameters

are a regularization and the size of the hidden layer (see Ripley, 1994a, 1994b).

Model Tuning of Parameters, Performance, and Importance Measures

For all models, we assessed predictive performance as the proportion of correct assignments to the

two experimental groups (accuracy). We used cross-validation methods for both tuning parameters

and evaluating a model’s predictive performance. In cross-validation, the sample is divided into

K parts with each part left out in turn as a testing set for the model fitted onto the training set (the

remaining K � 1 parts). Parameters are chosen to optimize the average prediction error over

the left-out parts. As the parameters are tuned to a given data set, and to get an honest assessment

of the out-of-sample prediction error, we used nested cross-validation. Here, for each left-out part of

the data (validation set) in the outer loop, cross-validation with further splits of the remaining data

into training and test sets is performed (inner loop). While the tuning parameters for each outer fold

are chosen using the inner loop, the out-of-sample prediction error of the tuned models is evaluated

on the validation sets in the outer loop. This avoids overoptimistic performance evaluation when

tuning and validating on the same samples (Varma & Simon, 2006; see also Efron & Tibshirani,

1997; Hastie et al., 2009; James et al., 2013).

We used nested cross-validation for all tuning parameters with 10-fold cross-validation for the

outer split and subsampling (500 repetitions) with weights of 75% and 25% for the subtraining and

test sets in the inner splits. Since the outcomes are balanced (Wei & Dunbrack, 2013), we used

accuracies to evaluate predictive performance in both the inner and outer loops.

All learning models were computed with the mlr package in R 3.6.1 (Bischl et al., 2020) using

parallelization with 32 CPUs. Equal training and testing samples were used across the different

models for each question to ensure comparability. Results in Tables 2 and 3 are reproducible if the

same seeds and number of CPUs are used.

We computed permutational feature importance measures (Strobl et al., 2008) to extract the

influence of each predictor in the best-performing models. To do so, we compared the accuracy

of the model with a randomly permuted version of the measure (postpermutational accuracy) to the

accuracy of the same model with the original measure (prepermutational accuracy). A significant

(negative) difference between postpermutational and prepermutational accuracies indicates that the

associated measure is important for difficulty prediction. In practice, we averaged the postpermuta-

tional accuracy of each measure over 500 models fitted to independently permuted data.
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Personalization

We investigated personalization of the measures to reduce variability unrelated to the classi-

fication task and correct for different baseline behaviors. Measures may also be influenced by

the response, for example, response time or total distance traveled may be larger if the position

of the answer is further away from the submit button, but this is unrelated to the question

difficulty.

We proposed two methods of personalization: One that only corrects for the baseline behavior of

the respondents using the eight nonmanipulated baseline questions, and a second that corrects for the

baseline behavior and the position of the chosen answer. This second approach is especially impor-

tant for manipulations requiring changes in the response choice positions, for example, ordered

versus unordered settings, as part of the variability of the measures is only due to the locations of the

response choices rather than the difficulty itself, for example, the difficulty locating the correct

response choice in the unordered setting. We regressed every measure onto its values in all baseline

questions, and on a position indicator for the second correction method, and performed our analyses

using the residual values.

To correct for the baseline behavior of the respondents, denote by Bijr the jth measure (e.g.,

response time) of the ith individual in the rth baseline question (e.g., general economy). Let Yijk be

the jth measure of the ith individual in the kth target question (e.g., employment detail). Consider the

following linear regression model:

Yijk ¼ aj0 þ
X8
r¼1

ajr Bijr þ Eijk ; ð2Þ

Table 3. Models’ Performance Results for the Best Models and Other Full Model Candidates Who Used the
Same Personalization Methods and Thresholds for Hovers as the Corresponding Best Models for Each Target
Question.

Question Manipulation Personalization Supervised learner Accuracya Specificityb Sensitivityc

Employment
detail

Concise vs.
complex
language

Baseline Logit regression .6298 .6448 .6169
Classification Tree .6189 .5836 .6569
Random forest .6134 .5516 .6664
Gradient boosting .6587 .5629 .7416
Support vector machines .6153 .5755 .6498
Neural network .5628 .6866 .4513

Employee
level

Ordered vs.
unordered
layout

Baseline and
position

Logit regression .4751 .3062 .6680
Classification Tree .5709 .5275 .6184
Random forest .5748 .5286 .6078
Gradient boosting .5909 .5258 .6527
Support vector machines .5709 .2823 .8435
Neural network .5190 .6677 .3780

Education
level

Baseline and
position

Logit regression .4820 .5666 .4259
Classification Tree .5765 .7013 .4673
Random forest .5895 .6233 .5512
Gradient boosting .5748 .6683 .4851
Support vector machines .4634 .4145 .5644
Neural network .5222 .5927 .4249

aProportion of observations correctly classified. bProportion of observations in easy scenarios correctly classified.
cProportion of observations in difficult scenarios correctly classified.
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where ajr quantifies the association between the jth measure in the rth baseline and kth target

questions, respectively, and Eijk is the part of Yijk not explained by baseline behaviors. We used the

model residuals Êijk as baseline-corrected measures.

To additionally remove the effect of the position of the responses, we used a two-step method. In

the first step, each measure of each target question is corrected for the corresponding positions with

the linear regression:

Yijk ¼ gjk0 þ
Xmk�1

m¼1

gjkm PikðmÞ þ wijk ; ð3Þ

where PikðmÞ is an indicator whether the ith individual’s answer in the kth target question was at the
mth position (out of mk options). The residuals from Equation 3, ŵijk , correspond to the variability of

the jth measure in the kth target variable not explained by the response position. Corrected measures

ŵijr for the baseline questions are constructed in the same way.

The second step additionally corrects for the individual characteristics using the linear regression:

dwijk ¼ fj0 þ fj1 cwij þ vijk ; ð4Þ
where ŵij ¼ 1

8

P8
r¼1ŵijr averages over the residuals from Equation 3within the same individual and

the same measure over the eight baseline questions. Finally, the residuals v̂ijk are the position- and

baseline-corrected measures.

Results

Target Questions

Employment detail, employee, and education levels had nine, four, and 11 potential response

options, respectively. However, only five of the nine response options of employment detail were

chosen in our data set. For employee level, all four response alternatives were selected, while, for

education level, only eight of the 11 response options were chosen.3

Mouse Movements Measures and Predictive Learning Models

Each of the measures in Table 1 may capture different features of the response process, which might

differ between easy and difficult settings. Figure 1 shows the empirical distribution of these mea-

sures for both easy and difficult settings for the three target questions. The same figures for

baseline-corrected, and baseline and position-corrected measures can be found in the Supplementary

Material. These graphs can help identify measures for which the empirical distributions of easy and

difficult scenarios are different, and thus, which measures could potentially work best for difficulty

prediction. However, differences between distributions (e.g., median) of a particular measure for

easy and difficult scenarios do not directly guarantee that this specific measure will predict difficulty

well.

For each target question, each predictive model described above was considered as a potential

classifier using the experimental condition (easy or difficult) as a target variable, and the measures in

Table 1, and age and gender as predictors. When personalization was also considered, the measures

in Table 1 were corrected before being included as predictors.

Table 2 shows the best learning models among all candidates, in terms of accuracy, for each

target question and personalization approach. This table compares the best model found when using

nonpersonalized and personalized measures and considering either response-time-only or response

time and other measures as predictors to investigate the gain in accuracy or added value of the

extracted mouse-tracking measures over just response time for different kinds of difficulty. Both the
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Figure 1. Empirical distribution of the uncorrected measures separately for each target question (education
and employee levels, and employment detail from left to right) and difficulty condition (blue ¼ easy,
red ¼ difficult). Note. The smoothed kernel density estimates are presented. Axis limits are set, so that for
each question and measure, >95% of the values are displayed.
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full model with all nine measures and the response-time-only version also included age and gender

as predictors, as we potentially expected interactions between some measures and these demo-

graphic covariates. More details on the full results for each model and question, and the correspond-

ing R codes, are in the Supplementary Material (Tables S2, S3, and S4).

Hover-type measures are computed depending on a threshold that is usually chosen empirically.

Horwitz, Kreuter, and Conrad (2017) considered 2,000 ms as a threshold for hovers. To investigate

dependence on this parameter, we conducted an extensive study considering the following thresh-

olds: 250 ms, 500 ms, 2,000 ms, and 3,000 ms. As shown in Table 2, no threshold was uniquely

optimal for all questions, and results were similar across thresholds in many cases.

For employment detail, gradient boosting with age, gender, and nine baseline-corrected measures

(full model) performed best among the predictive models. On average, this model correctly classi-

fied 65.9% of the observations (accuracy); in particular, the proportions of easy and difficult

scenarios correctly classified (i.e., specificity and sensitivity) were 56.3% and 74.2%, respectively.

The best full model with uncorrected measures only provided an accuracy of 61.0%, indicating the

necessity for personalization. The best response-time-only model showed an accuracy of 64.8%, a

bit lower than the accuracy of the best model, indicating a small gain of using all mouse-tracking

measures over the response-time-only model. All these three models give accuracies around

64%–65%, and thus over the 50% expected in a coin-toss experiment, although there is still room

for improvement.

Figure 2 shows the impact of each measure on each target question’s best-performing learning

model’s predictive performance as measured by the “permutation feature importance” with the

reduction in accuracy when permuting a given feature for each target question and measure

(cf. description in Model Tuning of Parameters, Performance and Importance Measures section).

The larger the difference, the more impact the measure has in the model. For employment detail

(green points), the most important measures in this gradient boosting were response time, and the

number of y flips and x flips with an average decrease in the model’s accuracy of 0.142, 0.028, and

0.014, respectively.

For employee level, gradient boosting with all baseline- and position-corrected measures as

predictors again performed best in terms of accuracy. Overall, 59.1% of the observations (i.e.,

accuracy), and 52.6% and 65.3% (i.e., specificity and sensitivity) of the easy and difficult scenar-

ios were classified correctly. The best full model for the uncorrected measures and the best

response-time-only model showed accuracies of 55.5% and 55.7%, respectively, both again

smaller than that of the overall best model. The best learning model for this specific target question

showed an accuracy around 59%, which is above the threshold of 50% expected in a

coin-toss-based model. If we do not personalize measures and/or only use response time as a

predictor of difficulty in this question, the best accuracies, given the predictive models we use, are

usually around 55%, and thus closer to a coin-toss-based model. Figure 2 (blue points) shows that

the most important measures in the gradient boosting for employee level were initiation time, x

flips, and hovers with an average decrease in the model’s overall accuracy of 0.113, 0.041, and

0.033, respectively. However, for this particular question, permuting response time decreased the

overall accuracy by only 0.009, indicating the necessity of more measures to predict the difficulty

in the corresponding manipulation.

For education level, a random forest with 11 baseline- and position-corrected measures per-

formed best in terms of accuracy. This model correctly classified 58.9% (i.e., accuracy) of the

observations, with easy and difficult scenarios correctly classified with rates of 62.3% and 55.1%
(i.e., specificity and sensitivity), respectively. The best full model for the uncorrected measures and

the best response-time-only model only showed accuracies of 56.2% and 56.4%, respectively,

decreasing accuracy closer to the 50% of a coin flip compared to the best model based on all

personalized measures. Figure 2 (yellow points) shows that the most important measures in the
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random forest were maximum acceleration, initiation time, and hovers with an average accuracy

decrease when permuted of 0.224, 0.049, and 0.033, respectively. For this question again, randomly

permuting response time did not decrease the overall accuracy notably.

Overall, we found that for all three target questions, inclusion of all measures improved accuracy

compared to the response-time-only models, indicating that mouse movements contain more infor-

mation about the presence of a suboptimally phrased item than the response time alone. A stronger

gain in accuracy was evident when personalizing the measures, indicating the importance of

Figure 2. Measures’ importance based on permutation methods (cf. see Model Tuning of Parameters,
Performance, and Importance Measures section). Note. The best learning models for employment detail and
employee level (gradient boosting) and education level (random forest) are used to compute both the post-
permutational and prepermutational accuracies. Green (employment detail), blue (employee level), and yellow
(education level) points represent the differences between the respective postpermutational and prepermu-
tational accuracies based on these learning models. The more negative the change in accuracy, the more impact
has the measure in the respective model.
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considering different respondents’ habitual behaviors. Considering the position of the answer

category was additionally beneficial if the answers were differently ordered. We also found that

while there were significant differences in measures between easy and difficult settings, the manip-

ulations were not strong enough to allow for reliable prediction of difficulty from the measures

alone. Finally, it seemed that tree-based models generally work better than non-tree-based models in

our data, and their accuracies for all three target questions are roughly between 59% and 65%, well

above 50%. In particular, Table 3 compares the best model for each question (Table 2) to the other

considered predictive models within the personalization method that works best in each case. For

both employee and education levels, the best accuracies and the accuracies of the other tree-based

models differed by roughly 0.012 and 0.015, respectively. Bigger raw differences of 0.12, 0.02, and

0.07, and 0.11, 0.13, and 0.07 were observed between the best accuracies and the accuracies of the

logistic regression, support vector machine, and neural network models for employee and education

levels, respectively. For employment detail, raw differences between the best accuracies and the

accuracies of tree- and non-tree-based models were generally smaller, except for the worse perform-

ing neural networks. However, the performance of tree-based models was still satisfactory and

included the best model.

For our application, we used a relatively wide range of methods that differ in several aspects,

which may explain why some do better than others. For example, the logistic regression is less

flexible than other methods as it linearly relates the log odds of the response (e.g., difficulty) and the

predictors (e.g., measures). Thus, such a regression is not appropriate if the linearity is violated. The

comparatively worse performance of the logistic regression compared to machine learning methods

in our case seems to indicate that linearity does not hold here, and more complex models are

necessary. Tree-based models, however, are more versatile as they can accommodate more complex

relationships between the response and predictors and even consider multiple interactions between

different predictors (e.g., age and response time). Also, ensemble methods (gradient boosting and

random forest) often improve weaker learning models’ predictive capabilities (e.g., classification

trees) because they can reduce their variance and bias. For our data and types of difficulty, it seemed

that these models have captured the relationships between response and predictors in an improved

manner. Finally, both support vector machines and neural networks also fit more complex relation-

ships between response and predictors than logistic regression. We have here defined decision

boundaries based on radial kernels for support vector machines, and we have used the simplest

form of neural networks with only one hidden layer. It may be possible to improve their performance

by investigating additional kernels or additional hidden layers.

To summarize, we found here that tree-based models, particularly random forest and gradient

boosting, are the predictive models that best capture the relationships between the response and

measures. When personalization is further considered, both random forest and gradient boosting

improve considerably. Therefore, such models with between-individual adjusted measures seem to

be a promising method for detecting difficulty in survey questions with characteristics comparable to

those investigated in the current paper’s target questions.

Discussion

This work aimed to predict the presence of problems with particular items in a web survey based on

measures commonly used in cognitive science and, more recently, the survey literature. We found

that the use of several measures improved the prediction of question difficulty, above and beyond the

use of response times. We also saw that further improvements in prediction were achievable by

controlling for between-participant differences in the measures with baseline questions.

Question difficulty causes measurement error in web surveys and can lead to poor data quality

and potentially weaken or bias results and conclusions. The detection of such difficulty is an
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important step in identifying items with potential for improvement, developing corrections for

measurement error when analyzing survey responses and potentially even implementing real-time

interventions while participants fill out a survey. Real-time interventions could stretch from pop-up

help screens (Mittereder, 2019), reminders to respond carefully (Conrad et al., 2017), all the way to

chat assistance, either by a bot or a human. To both do not miss an unnecessarily difficult item while

at the same time not to bother a respondent unnecessarily with such interventions, the good perfor-

mance of any predictive model triggering the intervention is key. Because mouse-tracking is an

unobtrusive data collection mode, practitioners might consider gathering interaction data by default,

and sharing measures of difficulty derived from paradata alongside the collected responses so that

other users of the data can screen for difficulties, even if they do not analyze the paradata

themselves.

For our three target questions, we found that the best predictive models were tree-based models

(particularly random forest and gradient boosting) that use baseline- or, if the position differs by

experimental conditions within the same questions, position- and baseline-corrected measures and

that response time was not always the most important measure for predicting difficulty. Particularly,

response time was the most relevant measure in the best predictive model for employment detail

(easy vs. difficult language). However, measures such as initiation time, maximum acceleration,

x flips, and hovers improved difficulty prediction more than response time for both employee and

education levels (ordered vs. randomly ordered response options). This might indicate that different

manipulations produced different types of difficulty, which can be captured through different para-

data sources. Also, the most important features differed by question even if these were manipulated

in the same manner, and difficulty was potentially similar. For example, maximum acceleration was

the most important measure for education level but not useful for employee-level difficulty predic-

tion. This could be explained by the fact that the number of response options was larger for the

education-level question and that participants in the unordered condition for this question might

have more often and more strongly shown variations in their cursor speed.

The best learning models found here are based on a data set limited to mouse users who made up

the majority of respondents in our study. While similar predictive models as ours could in general

also be developed for other input devices, such extensions would need to develop corresponding

summary measures similarly to the measures used here, and their use remains to be tested

empirically.

Even when using a large set of mouse-tracking measures and accounting for individual varia-

bility, there is still room for improvements when predicting response difficulty, given that our best

learning models showed only moderately high accuracies (i.e., roughly between 59% and 65%).

Some explanations on why we cannot correctly classify in a higher range could be related to the

(low) intensity of the manipulations. Although questions were experimentally manipulated to create

two controlled difficulty levels, manipulations each changed only a very specific aspect of the item,

which may not have caused strong difficulties in answering for all respondents. As we did not collect

subjective difficulty ratings, we cannot quantify the level of difficulty participants perceived nor the

magnitude of difference between conditions. Hence, the average degree of response difficulty might

not have varied very strongly between conditions. Also, the strength of these manipulations may not

have been comparable for all participants and questions, and we might thus have observed a mixture

of behaviors, with some participants in the difficult setting not experiencing subjective difficulty.

Since the different difficulty manipulations were varied between questions, we cannot disentangle

effects of the specific question from effects of the type of difficulty, for example, on the most

relevant feature. These might be some of the reasons why our accuracies are only moderately high.

A complementary approach could measure participants’ subjective difficulty for a given question

and use it as the outcome for prediction (Horwitz, Kreuter, & Conrad, 2017). Also, future research

could include additional difficulty manipulations or manipulate different types of difficulty within
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the same question in a crossed design. Similarly, to further elucidate the cognitive processes that

might have led to any particular response and paradata trace, practitioners might consider using

cognitive interviewing or probing to elicit a subjective recollection of the response process (e.g.,

Beatty & Willis, 2007; Behr et al., 2012).

Another explanation for the limited classification performance might be that measures only use

summaries of the information in the mouse movements. Future research may consider the use of full

mouse movement trajectories, if suitable functional data methods are developed. Also, the infor-

mation from mouse movements could in a future study be enriched by additional information such as

respondents’ click data and changes in the response options. Finally, we also plan to use linked

administrative data that allow us to quantify measurement error in certain survey responses and

investigate an analogous prediction of measurement error.
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Notes

1. Note that this is distinct from the concept of item difficulty in psychometrics (e.g., Lord & Novick, 1968).

2. The preceding data collection is described in detail by Sakshaug et al. (2016).

3. See Table S1 in the Supplementary Material for the specific response options and distribution of responses

for each of the target questions.
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