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Abstract

Argumentation is an essential feature and, arguably, one of the most exciting phenomena

of natural language use. Accordingly, it has fascinated scholars and researchers in various

�elds, such as linguistics and philosophy, for long. Its computational analysis, falling

under the notion of computational argumentation, is useful in a variety of domains of

text for a range of applications. For instance, it can help to understand users’ stances

in online discussion forums towards certain controversies, to provide targeted feedback

to users for argumentative writing support, and to automatically summarize scienti�c

publications. As in all natural language processing pipelines, the text we would like to

analyze has to be introduced to computational argumentation models in the form of

numeric features. Choosing such suitable semantic representations is considered a core

challenge in natural language processing. In this context, research employing static and

contextualized pretrained text embedding models has recently shown to reach state-of-

the-art performances for a range of natural language processing tasks. However, previous

work has noted the speci�c di�culty of computational argumentation scenarios with

language representations as one of the main bottlenecks and called for targeted research

on the intersection of the two �elds. Still, the e�orts focusing on the interplay between

computational argumentation and representation learning have been few and far apart.

This is despite (a) the fast-growing body of work in both computational argumentation

and representation learning in general and (b) the fact that some of the open challenges

are well known in the natural language processing community.

In this thesis, we address this research gap and acknowledge the speci�c importance of

research on the intersection of representation learning and computational argumentation.

To this end, we (1) identify a series of challenges driven by inherent characteristics of

argumentation in natural language and (2) present new analyses, corpora, and methods

to address and mitigate each of the identi�ed issues. Concretely, we focus on �ve main

challenges pertaining to the current state-of-the-art in computational argumentation:

(C1) External knowledge: static and contextualized language representations encode

distributional knowledge only. We propose two approaches to complement this knowl-

edge with knowledge from external resources. First, we inject lexico-semantic knowledge

through an additional prediction objective in the pretraining stage. In a second study,

we demonstrate how to inject conceptual knowledge post hoc employing the adapter

framework. We show the e�ectiveness of these approaches on general natural language

understanding and argumentative reasoning tasks.

(C2) Domain knowledge: pretrained language representations are typically trained
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on big and general-domain corpora. We study the trade-o� between employing such

large and general-domain corpora versus smaller and domain-speci�c corpora for training

static word embeddings which we evaluate in the analysis of scienti�c arguments.

(C3) Complementarity of knowledge across tasks: many computational argumen-

tation tasks are interrelated but are typically studied in isolation. In two case studies,

we show the e�ectiveness of sharing knowledge across tasks. First, based on a corpus

of scienti�c texts, which we extend with a new annotation layer re�ecting �ne-grained

argumentative structures, we show that coupling the argumentative analysis with other

rhetorical analysis tasks leads to performance improvements for the higher-level tasks.

In the second case study, we focus on assessing the argumentative quality of texts. To

this end, we present a new multi-domain corpus annotated with ratings re�ecting di�er-

ent dimensions of argument quality. We then demonstrate the e�ectiveness of sharing

knowledge across the di�erent quality dimensions in multi-task learning setups.

(C4) Multilinguality: argumentation arguably exists in all cultures and languages

around the globe. To foster inclusive computational argumentation technologies, we

dissect the current state-of-the-art in zero-shot cross-lingual transfer. We show big drops

in performance when it comes to resource-lean and typologically distant target languages.

Based on this �nding, we analyze the reasons for these losses and propose to move to

inexpensive few-shot target-language transfer, leading to consistent performance improve-

ments in higher-level semantic tasks, e.g., argumentative reasoning.

(C5) Ethical considerations: envisioned computational argumentation applications,

e.g., systems for self-determined opinion formation, are highly sensitive. We �rst dis-

cuss which ethical aspects should be considered when representing natural language for

computational argumentation tasks. Focusing on the issue of unfair stereotypical bias,

we then conduct a multi-dimensional analysis of the amount of bias in monolingual

and cross-lingual embedding spaces. In the next step, we devise a general framework for

implicit and explicit bias evaluation and debiasing. Employing intrinsic bias measures

and benchmarks re�ecting the semantic quality of the embeddings, we demonstrate the

e�ectiveness of new debiasing methods, which we propose. Finally, we complement

this analysis by testing the original as well as the debiased language representations for

stereotypically unfair bias in argumentative inferences.

We hope that our contributions in language representations for computational argu-

mentation fuel more research on the intersection of the two �elds and contribute to fair,

e�cient, and e�ective natural language processing technologies.
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Zusammenfassung

Argumentation ist eine essentielle Eigenschaft und eines der wohl aufregendsten Phäno-

mene in der Benutzung natürlicher Sprache. Entsprechend sind Forscher*innen ver-

schiedenster Disziplinen, wie beispielsweise der Linguistik oder der Philosophie, seit

langer Zeit fasziniert von ihrem Studium. Die computergestütze Analyse von Argumen-

tation, die unter den Begri� Computational Argumentation fällt, ist in einer Vielfalt von

Textdomänen und Anwendungen nützlich. So kann sie z.B. dabei helfen, Haltungen

von Benutzern von Online-Foren in Bezug auf unterschiedlichste Kontroversen zu ver-

stehen, gezieltes Feedback zur Qualität argumentativer Texte zu geben und automatisch

wissenschaftliche Publikationen zusammenzufassen. Wie in allen Pipelines in Natural

Language Processing, muss der Text, der analysiert werden soll, den Computational

Argumentation-Modellen in Form numerischer Features eingegeben werden. Repräsen-

tationen zu �nden, die die Semantik eines Texts adäquat re�ektieren, wird als eine der

Kernfragestellungen in Natural Language Processing betrachtet. In diesem Kontext

erzielte kürzlich Forschung, die vortrainierte statische und kontextualisierte Embedding-

Methoden einsetzt, state-of-the-art Ergebnisse in einer Reihe von Textverstehensaufgaben.

Vorhergegangene Arbeit hat jedoch bereits die spezi�sche Schwierigkeit von Szenarien

in Computational Argumentation erkannt und dabei Sprachrepräsentationen als einen

Hauptengpass identi�ziert. Dennoch gibt es nur wenige Anstrengungen, die sich gezielt

auf die Schnittstelle von Sprachrepräsentationen und Computational Argumentation

beziehen und das trotz (a) einer schnell wachsenden Anzahl von Arbeiten in beiden

Forschungsbereichen und (b) des Fakts, dass manche der Probleme der Natural Language

Processing-Gemeinschaft wohlbekannt sind.

In der vorliegenden Thesis adressieren wir diese Forschungslücke und erkennen die

spezi�sche Wichtigkeit von Forschung am Zusammenspiel zwischen Computational

Argumentation und Repräsentationslernen an. Dazu (1) identi�zieren wir zunächst eine

Serie von Herausforderungen basierend auf inhärenten Charakteristika von Argumen-

tation und (2) präsentieren neue Analysen, Maßzahlen, Textkorpora und Methoden,

um jedes der zuvor identi�zierten Probleme zu adressieren. Konkret fokussieren wir uns

dabei auf die folgenden fünf Herausforderungen:

(C1) Externes Wissen: Aktuelle Sprachrepräsentationen kodieren ausschließlich

distributionelles Wissen. Wir schlagen zwei neue Ansätze vor, um dieses mit Wissen

aus externen Ressourcen zu komplementieren. Als erstes fügen wir lexiko-semantisches

Wissen in der Vortrainingsphase über ein zusätzliches Vorhersageziel hinzu. In einer

zweiten Studie demonstrieren wir wie konzeptuelles Wissen post hoc über das Adapter-
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Framework injeziert werden kann. Wir zeigen die E�ektivität dieser Ansätze in generellen

Textverstehensaufgaben und im argumentativen Schlussfolgern.

(C2) Domänen-spezi�sches Wissen: Vortrainierte Sprachrepräsentationen werden

typischerweise auf großen und allgemeinen Textkorpora trainiert. Wir studieren den

Trade-o� zwischen dem Einsatz großer und allgemeiner vs. kleiner und domänen-spezi�-

scher Korpora, welche wir in der Analyse wissenschaftlicher Argumente evaluieren.

(C3) Geteiltes Wissen zwischen Aufgaben: Viele der Natural Language Processing-

Aufgaben in Computational Argumentation sind miteinander verknüpft, werden aber

oft in Isolation betrachtet. In zwei Fallstudien demonstrieren wir die E�ektivität dessen,

Wissen zwischen solchen Aufgaben zu teilen. Zuerst zeigen wir, dass es zu Performanz-

verbesserungen führt, die feingranulare argumentative Strukturanalyse mit anderen Auf-

gaben in der rhetorischen Analyse wissenschaftlicher Texte zu verknüpfen. Dazu erstellen

wir außerdem neue Annotationen, welche diese argumentative Struktur in einem Korpus

wissenschaftlicher Texte ausweisen. In der zweiten Fallstudie fokussieren wir uns auf

das Bewerten von Argumentationsqualität. Hierzu präsentieren wir ein neues multi-

domänen Korpus, welches mit Bewertungen verschiedener Dimensionen von Argumen-

tationsqualität annotiert ist. Wir demonstrieren dann, dass es zu Verbesserungen führt,

wenn Wissen zwischen diesen verschiedenen Dimensionen geteilt wird.

(C4) Multilingualität: Um inklusive Computational Argumentation-Technologien

zu gewährleisten, sezieren wir den aktuellen State-of-the-Art in Zero-Shot Cross-Lingual

Transfer. Wir zeigen hier, dass große Performanzverluste für ressourcenarme und ty-

pologisch weit von der Quellsprache entfernte Zielsprachen entstehen. Basierend da-

rauf analysieren wir die Gründe dafür und schlagen im Anschluss alternativ dazu den

e�zienten Few-Shot Target-Language Transfer vor, welcher zu konsistenten Perfor-

manzverbesserungen in z.B. argumentativem Schlussfolgern führt.

(C5) Ethische Überlegungen: Manche der angestrebten Computational Argumenta-

tion-Anwendungen sind hochgradig sensitiv. Daher diskutieren wir zunächst, welche

ethischen Aspekte berücksichtigt werden müssen. Im Anschluss fokussieren wir uns auf

das Problem unfairer stereotypischer Verzerrungen in statischen Sprachrepräsentationen.

Hierzu analysieren wir zunächst das Ausmaß dieser Verzerrungen. Im nächsten Schritt

entwickeln wir ein generelles Framework für implizite und explizite Verzerrungsevalua-

tion und zum Entzerren solcher Repräsentationsräume. In einer intrinsischen Evaluation

demonstrieren wir die E�ektivität neuer Entzerrungsmethoden, die wir vorschlagen.

Zuletzt vervollständigen wir diese Analyse extrinsisch, in dem wir die Sprachrepräsenta-

tionen auf unfaire Verzerrung in argumentativem Schlussfolgern testen.

Wir ho�en, dass unsere Forschung zu Sprachrepräsentationen für Computational Ar-

gumentation weitere Forschung zu diesem Thema antreibt und wir zu fairen, e�zienten

und e�ektiven Sprachverarbeitungstechnologien beitragen.
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Chapter 1

Introduction

1.1 Motivation and Problem Statement

Rien n’est stupide comme vaincre; la vraie gloire est convaincre.

(Nothing is so stupid as to vanquish; the real glory is to convince.)

VictorHugo, LesMisérables

Argumentation, as a direct re�ection of human reasoning in natural language, has fas-

cinated scholars and researchers in various disciplines, such as philosophy, logic, and

linguistics, for long. Being tied to the development of democracy and public discourse in

Europe, argumentation-theoretic literature teaching the art to convince the other can

be traced back to the origins of the city-states in ancient Greece. But argumentation

does not only occur in the political and public discourse – it plays an important role in

solving internal controversies with ourselves as well as in any “social arena” (Atkinson

et al., 2017). Accordingly, the theory of argumentation has been studied in a variety

of textual domains, such as web debates (e.g., Habernal and Gurevych, 2016), business

reviews (e.g., Wachsmuth et al., 2015), and scienti�c writing (e.g., Green, 2015b).

Computational argumentation (CA), which covers the computational (a) mining

of arguments, (b) assessment of arguments, and (c) reasoning over arguments, requires

deep language understanding capabilities (Moens, 2018). Much like other semantically

challenging natural language processing (NLP) tasks, such as question answering (QA;

Rajpurkar et al., 2016) and reading comprehension (Saha et al., 2018), CA tasks have

received more and more attention with the growing amount of publicly available textual

data and the increased amount of computational processing power. Atkinson et al. (2017)

acknowledge the importance of the �eld as follows: “[...] argumentation pervades our in-

telligent behavior and the challenge of developing artificial argumentation systems appears

to be as diverse and exciting as the challenge of artificial intelligence itself.” But there is

not only this inherent interest, which is tied to the fundamental challenges of arti�cial

intelligence research with the “holy grail” of creating a general arti�cial intelligence – the

output of CA systems and especially of argumentative understanding models applied

to natural language texts are useful in many practical scenarios and have an impact on

1
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other NLP tasks. For instance, given a debate thread on vaccination on social media, a

CA system can enable us to extract and understand not only the stances people have

but also their particular premises and conclusions they base their positions on, includ-

ing the underlying reasoning processes. All this information can next be employed in

downstream applications, for instance, for e�ciently and e�ectively summarizing the

whole controversy and for automatically retrieving good arguments for a particular topic

and stance (Wachsmuth et al., 2017c). Similarly, based on the output of automatically

analyzing citations, which are argumentative tools in scienti�c writing (Gilbert, 1977),

and assigning sentential argument roles, i.e., argumentative zoning (Teufel et al., 1999),

we can anticipate future trends in scienti�c research (e.g., McKeown et al., 2016).

Here, like in any other NLP task, the input, i.e., the text, has to be provided in

a numeric format to allow for computational processing. How to optimally represent

textual data numerically is, however, an ongoing research topic which has been focused on

in NLP since the genesis of the �eld (see, e.g., Luhn, 1957). While researchers �rst adhered

to sparse lexical document representations, such as the term frequency–inverse document

frequency (TF–IDF) vectors (Sparck Jones, 1972), dense semantic representations are

employed in most state-of-the-art natural language understanding (NLU) models in the

�eld (see Wang et al., 2019b,a). Here, we can distinguish between static and contextualized

embedding models. While the former provide a single vector representation for a span of

text, such as a word or a subword, the latter consist of multi-layered architectures and

dynamically compute the representations of spans of text based on the context provided.

However, when employing those representations in CA scenarios, a series of chal-

lenges tied to inherent characteristics of argumentation arises. Consequently, previous

work indicated language representations as one of the main bottlenecks in argumentative

understanding models (Moens, 2018). For instance, though static and contextualized

embedding models operate fundamentally di�erently from each other, they are both

grounded in the distributional hypothesis (Harris, 1954), and as such have the tendency to

con�ate together true lexical similarity with broader topical relatedness (Hill et al., 2015;

Schwartz et al., 2015). This poses a problem, as distinguishing between similarity and relat-

edness can be crucial in many argumentative reasoning scenarios, such as natural language

inference (NLI; Wang et al., 2019b). As a second example, previous research has shown

that dense semantic representations encode biases, which re�ect many human stereotypes.

This is not particularly surprising as humans exhibit (a) a series of cognitive biases and (b)

are socialized in certain cultural and institutional contexts, which often leads to unfair

decisions, stereotypes, and prejudices about individuals in minoritized groups, e.g., due

to their gender, sexuality, nationality, or religion. These prejudices, in turn, are re�ected

in language and consequently projected in human-produced texts. For instance, the term

man typically occurs more often in the context of career-related terms, while the term

woman occurs more often in the context of family terms. As these texts serve as input

for inducing semantic embedding models, the numeric representation of the term man

will be more similar to the induced representations of career-related terms than to family

terms. Vice versa, the embedding of woman will be less similar to career-related terms

and more similar to family-related terms. Employing such biased representations in NLP

systems is stereotyping, a representational harm (Blodgett et al., 2020), and depending

2



1. INTRODUCTION

on the socio-technical scenario, it might lead to bias ampli�cation, systematically unfair

system decisions, and decreased performance for minoritized classes (Sun et al., 2016).

Recently, the issue of bias has been identi�ed as a critical concern for CA (Spliethöver and

Wachsmuth, 2020), given the high sensitivity of envisioned CA systems, as in the case of

support systems for self-determined opinion formation (Wachsmuth et al., 2017c). As a

�nal example, given that argumentation is supposed to exist in all of the world’s 7,000

languages (Eberhard et al., 2020), we need to ensure truly multilingual CA systems to

foster inclusion and democratization of language technology. However, at the moment,

this is only ensured for resource-rich languages, e.g., English. Moreover, those languages

are currently supported with ever-larger language representations (Bender et al., 2021),

with training costs for single models, which are exceeding the ecological damage produced

by taking a trans-American �ight (Strubell et al., 2019). In the long run, this trend is

clearly not sustainable. As those models are speci�cally employed in tasks requiring deep

semantic understanding, as it is the case for most CA tasks, this is an additional issue with

current language representations for CA. Given these three examples alone, it is evident

that further research on semantic language representations for CA is required in order to

ensure e�ective, e�cient, inclusive, sustainable, and fair CA systems.

While (1) the �elds of CA and representation learning are both active research �elds

and (2) the speci�c need for advanced language representations for CA has been recog-

nized in previous research, it is surprising that to date, no work has systematically studied

the ties and interrelations between those two �elds.

In this work, we aim towards closing this research gap by identifying and system-

atically addressing a set of �ve prominent challenges when employing dense semantic

language representations in CA research. In particular, we study the following challenges:

(C1) External knowledge: static and contextualized language representations encode dis-

tributional knowledge only. How can we complement this knowledge by injecting

external knowledge into language representation models?

(C2) Domain knowledge: pretrained language representations are typically trained on

big and general-domain corpora. How can we adapt language representations to

encode knowledge relevant to speci�c domains?

(C3) Complementarity of knowledge across tasks: many CA tasks are interrelated, but are

most often studied in isolation. How can we improve our language representations

by sharing knowledge across multiple tasks?

(C4) Mulilinguality: argumentation arguably exists in all cultures. How can we foster

inclusion in CA by accounting for multilinguality in language representations?

(C5) Ethical considerations: envisioned CA applications are highly sensitive. Which

ethical aspects should be considered when representing natural language for CA

and how can we adjust to those? How can we ensure fairness?

For each of these challenges, which we derive from inherent characteristics of argumenta-

tion and from envisioned CA systems, we conduct one or two case studies relating to the

3
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problem. In those case studies, we provide either an extensive analysis on certain aspects

of the challenge and/or propose new measures and/or approaches for mitigating the issue.

1.2 Contributions

After identifying issues with commonly employed language representations used in CA,

we build on top of these insights and present contributions that can be attributed to the

�eld of CA as well as to the representation learning area. We demonstrate the e�ectiveness

of newly proposed techniques in representation learning by evaluating them on CA

problems and general NLU tasks, which are, in turn, fundamental for mastering the area

of CA. We present new approaches and resources as well as analytical insights into the

challenges identi�ed in these areas. Concretely, we make the following contributions:

Corpora. We create new annotation layers and textual resources for training and eval-

uating computational CA and language representation models.

1. Argument-augmented Dr. Inventor Corpus: in order to advance research on sci-

enti�c argumentation and to allow for a better understanding of the role of �ne-

grained argumentative structures within the multi-layered argumentative nature

of scienti�c writing, we present an additional annotation layer for the Dr. Inven-

tor corpus (Fisas et al., 2016) capturing �ne-grained argumentative components

and relationships. This e�ort results in the �rst corpus of English scienti�c texts

annotated with �ne-grained argumentative structures and enables us to study the

complementarity of knowledge (C3) in language representations employed for

the rhetorical analysis of scienti�c text (see Section 6.1). We hereby also introduce

the notion of scitorics, the rhetorical aspects of scienti�c argumentation, which

correspond to a domain-speci�c group of argumentative analysis tasks (C2).

2. GAQCorpus: secondly, aiming to advance theory-based argument quality (AQ)

assessment (Wachsmuth et al., 2017b), which treats overall AQ as being composed

of rhetorical, logical, and dialectical aspects, we present the largest English multi-

domain corpus annotated with theory-based AQ scores. This corpus enables us

to study the complementarity of knowledge (C3) across these theory-based AQ

dimensions (see Section 6.2). In this context, we also present initial results on

domain-speci�cic aspects of language representations for AQ assessment (C2).

3. XWEAT: furthermore, to be able to measure potentially problematic stereotypical

biases (C5) in multilingual and cross-lingual language representations (C4), we

present cross-lingual WEAT, a translation of the Word Embedding Association

Test term sets (WEAT; Caliskan et al., 2017) from English to six languages.
1

To

date, XWEAT is the bias resource covering most languages. We employ the test sets

in, what is to date, the largest study on bias in distributional word vector spaces (see

Section 8.1) and as speci�cations supporting our proposed framework for implicit

and explicit bias evaluation and debiasing (see Section 8.2).

1
In addition to those six, in a recent study, we presented AraWEAT, an Arabic extension to XWEAT.

4



1. INTRODUCTION

Measures. Related to measures, we present the following two contributions.

1. To take a more holistic perspective on biases in static language representations (C5),

in this work, we assemble a framework for the implicit and explicit evaluation

of stereotypical biases in distributional word vector spaces, dubbed DebIE (see

Section 8.2). The framework is based on bias test speci�cations consisting of sets of

stimuli among which the bias is expected to exist and integrates XWEAT, thereby

allowing to measure bias in multilingual and cross-lingual scenarios. We then adapt

existing measures to operate within the uni�ed notion of these speci�cations, such

as the Embedding Coherence Test (ECT; Dev and Phillips, 2019).

2. In addition to unifying and adapting existing bias tests, in Section 8.2, we introduce

the Bias Analogy Test (BAT). BAT is a new measure testing for the existence of an

explicit bias in static word embedding spaces based on the idea of biased analogies

as originally introduced by Bolukbasi et al. (2016).

Analyses. Based on the newly introduced resources and measures outlined above, we

conduct a series of analyses towards obtaining a better understanding of the individual

challenges of language representations for CA identi�ed.

1. We are the �rst to quantify unfair stereotypical bias (C5) in distributional word

vector spaces across a variety of languages and in cross-lingual embedding spaces,

including other relevant factors, such as the domain of the text corpus and embed-

ding models in our study. This e�ort results in the most extensive analysis of bias

in static language representations to date (see Section 8.1).

2. Relating to C2, domain-speci�c knowledge, we examine the trade-o� between

larger and noisier vs. smaller and more homogeneous pretraining corpora for static

word embeddings. We study this trade-o� within the task of semantically classify-

ing citations as main argumentative tools in scienti�c writing (see Chapter 5).

3. In the context of multilinguality (C4), we dissect the current state-of-the-art

zero-shot cross-lingual transfer approach based on massively multilingual trans-

former (MMT) models by quantifying the loss in performance in the transfer.

To this end, we employ two tasks requiring deep semantic knowledge, includ-

ing argumentative reasoning. We analyze the factors contributing to the transfer

performance, such as the size of the monolingual corpora employed in pretrain-

ing (see Chapter 7). Note that ensuring multilinguality is also vital for enabling

democratization of CA technologies (C5).

Methods. We explore and propose several new approaches with respect to the chal-

lenges identi�ed by exploiting state-of-the-art transfer learning paradigms.

1. We are the �rst to employ convolutional neural networks and domain-speci�c

word embeddings for the semantic classi�cation of citations (C2, see Chapter 5).
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2. Concerning the identi�ed limitations of zero-shot cross-lingual transfer with MMT

models (C4), we propose to move to inexpensive annotation cycles and few-shot

target-language �ne-tuning. We demonstrate consistent performance improve-

ments in argumentative reasoning (see Chapter 7).

3. For tackling the issue of underrepresented external knowledge in language repre-

sentations (C1), a bottleneck for argumentative understanding, we present two

new methods: (a) the injection of lexico-semantic knowledge leading to a special-

ization for true semantic similarity of large language models via an extension to the

pretraining procedure (see Section 4.1); and (b) the e�cient injection of conceptual

knowledge post hoc via adapter layers (see Section 4.2).

4. Further, we investigate (a) the role of argumentation in scienti�c writing and

(b) the complementarity of knowledge across theory-based AQ dimensions with

neural multi-task learning (MTL) models. In the case of (a), we are also the �rst to

employ a joint loss function based on homoscedastic uncertainty in the MTL setup.

For (b), we also propose a hierarchical combination of the di�erent objectives as

well as a sequential task transfer setup (C3, see Sections 6.1 and 6.2).

5. Last, we propose two new techniques for mitigating unfair stereotypical bias in

static language representations: (1) Bias Alignment Method (BAM), which is in-

spired by projection-based cross-lingual word embedding spaces, and (2) Explicit

Neural Debiasing (DebiasNet), inspired by previous work on semantic special-

ization of distributional word vector spaces (C5, see Section 8.2).

An overview of all resources published in the context of this thesis can be found in Part A

of the supplementary material. We hope that our work fuels future research on the

intersection between language representations and CA and beyond.

1.3 Outline

We �rst discuss this thesis’s theoretical background (Chapter 2), consisting of funda-

mental knowledge relating to computational argumentation and representation learning.

Based on inherent characteristics of argumentation and �ndings of previous research, we

then identify shortcomings and challenges when representing text for CA applications

(Chapter 3). The subsequent Chapters describe our e�orts to systematically address the

previously identi�ed challenges starting with (C1) external knowledge (Chapter 4) to

(C5) ethical considerations (Chapter 8). In each of those Chapters, we deal with one or

two case studies related to CA, for which we provide motivation and brie�y survey the

related work before the actual discussion of the methodology and the results. Finally, in

Chapter 9, we conclude our work and provide directions for future research.
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Chapter 2

Theoretical Background

In this Chapter, we introduce fundamental concepts pertaining to the two main topics

of this thesis: (1) computational argumentation, and (2) representation learning (i.e.,

machine learning methods for acquiring semantic representations of text).

2.1 Computational Argumentation

Acknowledging argumentation as a direct re�ection of human reasoning manifested in

natural language, we start by outlining the history of argumentative studies from the

ancient Greeks to computational argumentation (CA). Building upon this, we then

introduce argumentation-theoretic concepts, such as argument models and the notion

of argument quality (AQ). As a highly stylized, domain-speci�c example, we discuss the

special case of scienti�c argumentation. Finally, we investigate the link between general

NLU and CA and discuss prominent CA tasks.

2.1.1 From Ancient Greeks to Computational Argumentation

The study of argumentation has a long-lasting tradition. In the western world, it can be

traced back to the �fth century b.c.e. with the emerging concept of democracy in Athens

and the emergence of the city-state, the polis (πόλις), as a political space (Vernant, 1965).

Based on the idea that (male!) citizens
1

could participate in governing the polis, it became

more important to be able to speak in public and convince the audience of a certain

idea or policy, and, consequently, actively shape the future of the polis. Accordingly,

a culture around the art of publicly speaking emerged and so-called sophists (σοϕιστής)

o�ered their services in teaching, among other skills, how to choose and combine the right

structures and words into compelling arguments. As such, the study of argumentation

has always been goal-oriented. One of the most in�uential works from ancient Greece

is Aristotle’s On Rhetoric (Aristotle, ca. 350 B.C.E./ translated 2006), which was later

not only referred to by other members of the peripatetic school
2

but also by famous

1
We use the term “citizen” to refer to individuals with full political and judicial rights. In this sense,

women were not considered to be citizens in Athens (Loraux, 1994).
2
The school of philosophy founded by Aristotle himself.
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Argumentative Components

Argument

Argumention

Debate

Controversy

Figure 2.1: The hierarchical relationship between controversies, debates, argumentation,

arguments, and their argumentative components.

Roman rhetoricians such as Cicero (Fortenbaugh, 2005). In his work, Aristotle (384–

322 b.c.e.) focuses on rhetoric, which – according to him – is the art of speaking in

public as opposed to dialectic as de�ned by his teacher Plato, which concerns academic or

private matters, and is, moreover, characterized by a sequence of questions and answers.

Aristotle further de�nes two types of speeches, which are highly argumentative in nature:
3

(1) the deliberative speech, which advises on a course of future action, e.g., a new policy

in the polis, and (2) the judicial speech, which accuses or defends someone, thereby

corresponding to legal argumentation, an argumentation over conclusions of past events.

Both of these situations have in common that they start from some controversy: while

in (1) the controversy is about a course of future action, and the audience, who needs to

be convinced, is the public, in (2) the controversy lies in the judicial question, and the

audience corresponds to a judge (Kennedy, 2009). The idea of a controversy as starting

point for argumentation is even more explicitly expressed by other authors: “[c]ontroversy

is an essential prerequisite of debate. Where there is no clash of ideas, proposals, interests,

or expressed positions on issues, there is no debate” (Freeley and Steinberg, 2013). This

clash of ideas likely results in di�erent standpoints on the issue, may it be relating to a

past event, or a course of future action, or certain beliefs, which then encourage people to

argue for their stance in the form of a debate. In debates, two or more arguers present their

argumentation with regard to a certain issue related to which the controversy occurred.

This can be highly formalized, as in a British Union-style debate situation, in which two

“houses” argue for their stance (see Haapala, 2012), and, similarly, in a very informal context

among friends or relatives. Accordingly, debates are dialogical, while argumentation itself

can also occur in a monological or hybrid way, for instance, in the case of scienti�c

publications: here, scientists present their argumentation predominantly as a monologue,

but link their arguments to the overall scienti�c discourse by using references to previous

work, thereby adding a dialogical component. But what exactly is argumentation? Stede

and Schneider (2018) who recently reviewed the �eld adopt the prominent de�nition of

van Eemeren and Grootendorst (2010). We follow Stede and Schneider (2018) and adopt

3
The third type, epideictic rhetoric, corresponds to ceremonial discourse and does not aim at persuasion

directly (Lockwood, 1996), which is why we consider it non-argumentative.
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this de�nition throughout this thesis, as the authors beautifully managed to incorporate

the most relevant aspects of argumentation in a single concise sentence:

De�nition 1 (Argumentation). “Argumentation is a verbal, social, and rational activity

aimed at convincing a reasonable critic of the acceptability of a standpoint by putting

forward a constellation of propositions justifying or refuting the proposition expressed in the

standpoint.”

Stede and Schneider (2018) dissect this de�nition into its eight essential characteristics,

which we discuss next. As a running example, we employ the case of scienti�c publications

as we will later discuss and experiment with arguments from the scienti�c domain in

more detail (see Section 2.1.3, Chapter 5, and Section 6.1).

Verbal Activity. Argumentation is and always has been an “(...) inherently linguistic

activity” and can be either expressed in writing or in speech (Stede and Schneider, 2018).

Whether it is textually or orally expressed depends on the debate situation. For instance,

in the case of a scienti�c publication, the argumentation is mostly expressed in textual

form. However, we also want to remind the reader that there are, ultimately, more forms

argumentation can take, e.g., when we consider scienti�c publications as more complex

multi-modal documents, in which information is also conveyed in visual form, helping

the reader to better understand the scienti�c argument (Nelson et al., 1976). Still, in

its core, we agree with argumentation as a “verbal activity” as highlighted by Stede and

Schneider (2018), because even in such a multi-modal document, the main part of the

argumentation is expressed verbally while visual parts act rather supportively. Accordingly,

the present thesis focuses on argumentation expressed in natural language only.

Social Activity. According to Stede and Schneider (2018), argumentation is an inter-

action, usually performed between two or more people. There always has to be someone

to argue with, even in monological argumentation. Here, the authors also mention the

possibility of mentally arguing with one-self, but they conclude that for a real argument,

there always has to be the other, i.e., someone to argue with. We do not necessarily agree

with the authors’ opinion, as for solving internal controversies, individuals can build

proper arguments for each of the possible stances (even in textual form) to �nally arrive

at a well-founded opinion. However, in most cases, there clearly is the other. In scienti�c

writing, they usually correspond to members of the scienti�c community, for instance,

peer reviewers, or researchers working on the same or similar topics.

Rational Activity. As Stede and Schneider (2018) point out “[...] argumentation

targets speci�cally the dimension of reason.” While this is de�nitely an important aspect

and has already been expressed by Aristotle in terms of the concept of logos (Aristotle,

ca. 350 B.C.E./ translated 2006), it is interesting to note that this rationality, i.e., logic,

corresponds to a single qualitative dimension of argumentation (see also Section 2.1.2).

As a consequence, we also have to be aware that the rationality of an argument can be

expressed in varying degrees, and other aspects, e.g., the emotional appeal of an argument,
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can be similarly important in order to convince. In a scienti�c publication, however, the

rational aspects should be predominant, as science is, per se, considered a rational activity.

Standpoint. Argumentation relates to a particular stance regarding a topic of discus-

sion. Often, the set of possible standpoints in a debate is expressed in dichotomies, for

instance, pro vs. contra gay marriage. In scienti�c publications, the set of stances is often

not clear in advance. For instance, in NLP, a publication can argue for the superiority of

a certain method, the superiority of a certain method in certain cases only, or the reason

why a certain method works or does not work. What all these cases have in common is

that the authors argue for the validity of their work and, consequently, for the validity of

their opinions, ultimately aiming to be accepted by the respective scienti�c community.
4

Convincement of Acceptability. On the one hand, the general idea of argumentation

is to convince the other of the arguer’s own standpoint relating to a certain topic, which

typically amounts to changing the beliefs of the audience. On the other hand, in addition

to changing the stance of the opponent as mentioned by Stede and Schneider (2018),

argumention can also be successful if it does not change the stance of the audience as also

pointed out by Al-Khatib et al. (2016): depending on one’s prior belief, an argument is also

successful if it empowers the audience and enables one to better defend one’s standpoint.

Tindale (2007) further provides �ve main intentions associated with argumentation:

(i) persuasion of an audience, (ii) resolution of a dispute, (iii) achieving agreement in a

negotiation, (iv) recommending, and (v) completing and inquiry. In scienti�c writing, it

is typically the �rst intent, the persuasion of the scienti�c community of the described

work as a valid contribution to science (Teufel, 2014).

Constellation of Propositions. Sometimes, an argument can consist of a single propo-

sition only and can, accordingly, be expressed as a simple single sentence. However, often

it is more complex and corresponds to a constellation of propositions, which, in sum,

support one’s overall stance. For instance, as outlined by Teufel (2014) the overall in-

tent to persuade the scienti�c community of the work as a valid contribution to science

(see above) is, in turn, divisible in subintents related to scienti�c argumentation, e.g.,

convincing the audience of the novelty and soundness of the work.

Justi�cation of the Proposition(s). In an ideal argument, a speaker does not convince

due to the fact that they are louder or funnier, but because they provide justi�cations

for their propositions, which they link to their stance in the debate. This aspect clearly

relates to the notion of rationality discussed above. However, we want to remind the

reader that there might be a varying amount of justi�cations provided and that in the

wilderness of real-world arguments, justi�cations might sometimes be rare. Furthermore,

the importance of particular properties of the arguer, e.g., their estimated credibility,

plays a non-negligible role in terms of convincingness (see Subsection 2.1.2). In scienti�c

argumentation, the justi�cation of a proposition is often tied to experiments. In case those

4
This holds even for surveys, opinion works, etc.
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experiments were properly conducted according to standards of the speci�c scienti�c

community, the results obtained are believed to be facts. Based on these facts, certain

conclusions can be drawn, which, in turn, are considered tentative knowledge. Another

popular way of providing justi�cations in science is mathematical proofs. Based on certain

theorems or axioms, proofs are logical arguments, which show that a certain conclusion

is entailed by the assumptions and a (scienti�cally accepted) set of inference rules. The

complexity of providing justi�cations for claims is also illustrated by di�erent models of

argumentation discussed in Subsection 2.1.2.

Reasonable Critic. Stede and Schneider (2018) further highlight the aspect of “a

reasonable critic”, which relates to two aspects already mentioned before: argumentation

is (1) a rational, and (2) a social activity, relating to the other. They further highlight the

fact that the notion of the reasonable critic is very much dependent on the context of the

argumentative situation, e.g., in scienti�c argumentation, there is typically a scienti�c

audience involved, which, ideally, has speci�c prior scienti�c knowledge in the �eld.

All of these eight aspects highlight the complexity of argumentation, and accordingly,

the di�culty of composing and selecting the “right” arguments in a debate. Tindale

(2007) characterizes arguments by the fact that they have a “[...] particular structure,

where one or more statements (premises) are given in support of a conclusion [...].” This

micro-structure of an argument is also re�ected more globally: a controversy can be

seen as the starting point for a debate, in which opponents present their argumentation,

which itself is composed of individual arguments, and �nally, argumentative compo-

nents. The hierarchical relationship between controversies, debates, argumentation, and

argumentative components is illustrated in Figure 2.1.

As discussed, controversies can appear in many situations, and as a result, argumen-

tation seems to be almost omnipresent: it occurs from the more formalized Oxford

Union-style debates and legal argumentation over political debates broadcast via TV

and scienti�c publications to daily situations in which we like to convince our romantic

partners of which place to choose for vacation. Particularly the rise of the Web 2.0 with

its online social media platforms leads to an increase of readily available argumentative

text: there exist platforms speci�cally targeted to debating, e.g., the Reddit subforum

Change My View,
5

and CreateDebate,
6

and other platforms more generally designed for

exchanging opinions about products and businesses, i.e., online review forums,
7

such

as Yelp,
8

which all allow users to exchange arguments (we deal with data from three

di�erent domains of online argumentative writing in Section 6.2). In consequence, the

rising amount of textual argumentative data increases the need for e�ective and e�cient

computational analysis of argumentative text, aligned with the overall goal of e�cient

computational processing in data science. The collection of techniques, which can be

applied to this end, fall under the notion of argument mining (Lawrence and Reed, 2019).

5https://www.reddit.com/r/changemyview/
6https://www.createdebate.com/
7
Note that Tindale (2007)’s �ve intentions associated with argumentation include “recommending”.

8https://www.yelp.com
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In line with other de�nitions of the �eld (e.g., Peldszus and Stede, 2013; Cabrio and

Villata, 2018, inter alia), Lawrence and Reed (2019) de�ne argument mining (sometimes

also referred to as argumentation mining) as follows:

De�nition 2 (Argument Mining). “Argument mining is the automatic identification

and extraction of the structure of inference and reasoning expressed as arguments presented

in natural language.”

Argument mining (AM) can, therefore, be seen as an analysis task, which can help

to understand (a) the stance of the natural language text, and (b) the reason(s) for this

particular stance, with the reason(s) being argumentative components combined with an

argumentative structure to form an overall argument. Accordingly, AM relates to the

�eld of opinion mining, which deals, more generally, with understanding opinions, i.e.,

stances. However, as Habernal et al. (2014) point out, “[t]he key question which brings

argumentation on the scene is why do they think so?”, with which the authors highlight

the additional dimension that distinguished AM from more general opinion mining or

sentiment analysis. This added dimension, however, yields an increase in complexity,

requiring advanced language representation techniques.
9

Even more complex, while all

of the �elds mentioned, i.e., AM, opinion mining, and sentiment analysis, focus on the

analytical process of dissecting a stance and its associated justi�cations, they are part of

the more general �eld of computational argumentation (CA). We de�ne CA as follows:

De�nition 3 (Computational Argumentation). The computational analysis and synthe-

sis of natural language argumentation, based on argumentative reasoning.

Accordingly, CA includes not only aspects of the pure computational analysis as in

“classic” AM, but reaches beyond this sub�eld by additionally covering other sub�elds,

such as argumentative reasoning as well as argument generation. Next, we introduce

argumentation-theoretic aspects dealing with argument structure and AQ. Afterward,

the sub�elds of CA we already touched upon here will be discussed in detail.

2.1.2 The Theory of Arguments

The �eld of CA is largely based on theoretical studies of argumentation. For this reason,

we will now discuss theories related to structural and qualitative aspects, which underpin

the computational tasks and models we will later present and evaluate our approaches on

(speci�cally Section 2.1.4, and Chapters 5–7).

Argument Models

Models of argumentation re�ect the internal or external structure of arguments, depend-

ing on the perspective or granularity (as illustrated in Figure 2.1) applied. Originally

described by Aristotle (ca. 350 B.C.E./ translated 1989), the so-called syllogism (συλλογισ-

µός) can be seen as the “classic” form of logical arguments in natural language and the

prototype of deductive reasoning. It is de�ned by a major premise, which corresponds to a

9
We will discuss the challenges in more detail in Chapter 3.

12



2. THEORETICAL BACKGROUND

more general statement, a minor premise, which is a speci�c statement, and a conclusion,

which can be deduced from the combination of the major premise and the minor premise.

As an example, consider the following famous syllogism:

All men are mortal (major premise)

Socrates is a man (minor premise).

Therefore, Socrates is mortal (conclusion) ∴

The syllogism, as a traditional argument model, consists of exactly three argumen-

tative components, which have to be composed in a certain scheme in order to form a

logical argument. As Corcoran (2003) points out, Aristotle presented the “world’s �rst

extant logical system”, in which he, crucially, assumes a limited domain of propositions.

In combination with a method of deduction, the limited domain of propositions allows

him to gaplessly deduce conclusions and assess their validity. While this relates to a closed

assumption about the world, its states, its actors, and events, modern theories of argu-

mentation extend upon the idea of formal logic by taking an open world assumption,

thereby emphasizing the uncertainty of real-life situations. Here, arguments are framed

as tentative proofs: at any given point in time, an argument can turn out to be invalid

in case new information relevant to the argument comes up. For instance, in a scienti�c

argument, it is generally valid to build hypotheses based on observations (inductive rea-

soning), and new observations can lead to new hypotheses and invalidate former ones.
10

Generally, natural language argumentation is considered to be fuzzy and imprecise: often,

the arguments presented are highly dependent on the context, the speaker, the audience,

and their relationship. They do not adhere to a clear structure, and certain parts of an

argument (compared to the perfect syllogism) are left implicit.
11

As Blair and Johnson

(1987) point out, “[...] in most cases, arguments as products of communication in such

natural language practices as rational persuasion or rational inquiry are simply not chains

of deductive inferences.” As a consequence, formal frameworks are di�cult to apply to

natural language argumentation, which led to the study of informal logic. Informal logic

“[...] seeks to develop standards, criteria and procedures for the interpretation, evalua-

tion and construction of arguments and argumentation used in natural language” (Blair

and Johnson, 1987). Within this �eld, new models of argumentation emerged. Tak-

ing a practical perspective, we highlight that all of the aforementioned points make the

computational understanding of natural language arguments extremely challenging.

Bentahar et al. (2010) surveyed and classi�ed existing argument models according to

their (a) structure, (b) foundation, and (c) linkage properties and distinguish between

(1) rhetorical, (2) dialogical, and (3) monological models. Their conceptual framework

is characterized in Table 2.1. Rhetorical models deal with the perception of the argu-

ments by the audience. They therefore focus on how to connect arguments to an overall

10
This relates to the principle of falsifiability in science (Popper, 1935, edition 2002), which we brie�y

discuss in Section 2.1.3 when we introduce the special case of scienti�c argumentation.
11

Arguments with implicit premises fall under the notion of the enthymeme, forms of the syllogism ini-

tially described by Aristotle (Aristotle, ca. 350 B.C.E./ translated 1989,c).
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Type Structure Foundation Linkage

Rhetorical
Rhetorical structure Audience’s perception Connecting arguments

of arguments of arguments in a persuasion structure

Dialogical
Macro-structure

Defeasible reasoning
Connecting a set of arguments

of arguments in a dialogical structure

Monological
Micro-structure Arguments Connecting a set of premises to a

of arguments as tentative proofs claim at the level of each argument

Table 2.1: Conceptual framework of argumentation models, consisting of (1) rhetorical,

(2) dialogical, and (3) monological models according to Bentahar et al. (2010).

argumentative structure and highlight persuasive aspects. Dialogical models focus on

the interactive aspect of argumentation, i.e., the macro-structure of arguments in the

context of debates. In contrast, monological models work on the level of argumentative

components to understand and model the micro-structure of arguments.

The Toulmin Model. The Toulmin model of argumentation (Toulmin, 1958, 2003

edition), originally developed for the legal domain, focuses on the notion of practical

arguments and the process of justi�cation in contrast to a theoretical and formal view

on argumentation. As a monological model of argumentation (Bentahar et al., 2010), it

dissects the micro-structure of arguments and de�nes an argument to consist of six parts:

(1) claim, (2) data, (3) warrant, (4) quali�er, (5) rebuttal, and (6) backing (see Figure 2.2).

(1) Claim. A claim corresponds to an argumentative statement in question – an assertion

which is put in front of the audience for establishing its merit. It re�ects therefore the

author’s opinion to a controversy. Example: (So,) Harry is a British subject.

(2) Data. Data is a fact or evidence, which can serve as a foundation for the claim. It is

often also called premise or ground. Example: Harry was born in Bermuda.

(3) Warrant. A warrant is a statement that provides the justi�cation for the inference

procedure from the data to the claim component. Example: (Since,) A man born in

Bermuda will generally be a British subject.

(4) Backing. Backing provides additional support for the warrant, for instance, in terms

of a reference to a legal document. Example: (On account of) The following statutes: ... .

(5) Rebuttal. The rebuttal presents restrictions to the claim, e.g., exceptions in which the

argumentative statement does not hold. Example: (Unless) Both his parents were aliens.

(6) Qualifier. The quali�er corresponds to the degree to which the arguer believes that

the claim holds, e.g., certainly, presumably, or most probably.

We employ an adapted version of the Toulmin Model when studying �ne-grained

argumentative structures in scienti�c publications in the context of the complementarity

of knowledge across rhetorical analysis tasks in Section 6.1.
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Harry was born
in Bermuda (D) Presumably (Q)

Harry is
a British
subject (C)

A man born
in Bermuda
will generally
be a British
subject (W)

Both his parents
are aliens (R)

The following
statues and

provisions: .. (B)

Figure 2.2: The Toulmin model of argumentation with the six argument components

(1) claim (C), (2) data (D), (3) warrant (W), (4) quali�er (Q), (5) rebuttal (R), and (6)

backing (B), illustrated with Toulmin’s original argument example concerning the British

citizenship of a human subject (Toulmin, 1958, 2003 edition).

Dung’s Model. Contrary to Toulmin’s Model (Toulmin, 1958, 2003 edition), Dung’s

Model (Dung, 1995) belongs to the class of dialogical argumentation models (Bentahar

et al., 2010) and focuses on the logical acceptability of arguments, which is, as he outlines,

dependent on whether the arguments can be successfully defended against attacking

arguments. As such, it is based on the relationship between an agent’s own arguments

and external arguments, in particular, their attack structure. His model allows for the

evaluation of the acceptability of arguments based on the notion of defeasible reasoning.

The framework is a pair consisting of a set of argumentsAR and a binary relation, attacks,

onAR, i.e.,

AF = (AR, attacks) , (2.1)

with attacks ⊂ AR × AR. Given two arguments A and B, attacks(A,B) means

thatA attacksB. For a set of arguments S, if there are no two argumentsA andB such

that attacks(A,B), S is called conflict-free. And �nally, based on this notion, Dung

(1995) de�nes an acceptable argument A ∈ AR with respect to S as acceptable i� for

each B ∈ AR: if attacks(B,A) then attacks(S,B). In other words, an argument

A is acceptable if it can be defended against all attacks. Later, in Section 6.1, we draw
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Overall
Argument Quality

Cogency

Effectiveness

Reasonableness

Local acceptability

Local relevance

Local sufficiency

Arrangement

Appropriateness

Clarity

Credibility

Emotional appeal

Global acceptability

Global relevance

Global sufficiency

Figure 2.3: Taxonomy of theory-based argument quality (Wachsmuth et al., 2017b).

some inspiration from Dung’s model in order to re�ect the hybrid nature of scienti�c

publications: being monological documents, they still exhibit dialogical aspects as they

engage with the overall scienti�c discourse. As such, they might restate, and attack

arguments from other authors (linked via citations). We account for this by adding

relationships between individual claims in our adapted Toulmin model when studying

�ne-grained argumentative structures in scienti�c literature.

Argument Quality

The quality of argumentation can be assessed according to di�erent perspectives. For

instance, in his On Rhetoric, Aristotle (ca. 350 B.C.E./ translated 2006) describes three

technical means of persuasion, which characterize the quality of an argument:

Logos (λόγος). The argument itself has to be logical in order to be reasonable. A

logical argument can, according to Aristotle, take two forms: it can either be deductive or

inductive, which still builds the basis for scienti�c reasoning.

Ethos (ἦθος). In contrast, ethos is grounded in the arguer: the speaker, as a person, has

to display (a) practical intelligence, (b) a virtuous character, and (c) goodwill in order to

appear credible to the audience, especially when there is room for doubt.

Pathos (πάθος). Pathos deals with the emotional state of the audience in relation to

the argument. The argument should be presented in a way that evokes emotions in the

audience, which are bene�cial for making it judged in the desired way.
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In CA, researchers have often focused on speci�c practical conceptualizations of ar-

gumentative quality, for instance on clarity (Persing and Ng, 2015). Later on, Wachsmuth

et al. (2017a) proposed a taxonomy of argumentation quality (AQ) by synthesizing AQ

theories and mapping those to approaches discussed in computational argumentation.

The taxonomy is depicted in Figure 2.3. It de�nes overall AQ as being composed of three

sub-dimensions (Cogency, E�ectiveness, and Reasonableness), each of which is, in turn,

composed of a series of quality-related subaspects:

Cogency. Cogency relates to the logical aspects of argument quality. High cogency

indicates that an argument’s premises are acceptable, as well as relevant, and su�cient

with respect to the argument’s conclusion.

E�ectiveness. E�ectiveness re�ects the persuasive power of how an argument is stated

and is thereby tied to the rhetorical aspects of argumentative quality. Important aspects of

an e�ective argument include its arrangement, clarity, appropriateness in a given context,

emotional appeal, and the author’s credibility.

Reasonableness. Reasonableness indicates the quality of an argument in the context

of a debate and thereby relates to dialectical AQ, i.e., its relevance, its acceptability, and

the way it is stated as a whole, and its su�ciency toward the resolution of the issue.

Mapping this taxonomy to the technical means of persuasion de�ned by Aristotle,

Cogency represents logos, and the E�ectiveness, as the rhetorical dimension, re�ects

aspects of ethos and pathos. While each of the dimensions represents a separate series of

aspects of the argumentative quality of texts, they are interrelated, and all contribute to

overall AQ. We employ the taxonomy in Section 6.2 when we study how to exploit the

complementarity of knowledge across CA tasks within language representations.

The outlined qualitative dimensions are generally present in and can be assessed

across all argumentative domains of text, but they can be pronounced with a varying

degree depending on the argumentative context. For instance, an argument presented in

a business review forum might describe rather subjective experiences and put an emphasis

on the emotional appeal of the argument (see Section 6.2). Similarly, some structural

argument models are more directly applicable in speci�c domains of text than in others.

For instance, recall that Toulmin’s model was speci�cally developed for legal arguments.

As an interesting case of argumentation, we next discuss the special case of scienti�c

arguments. We choose this domain in order to study domain-speci�city of language

representations for CA (see Section 3.2 and Chapter 5), and in the context of the comple-

mentarity of knowledge across tasks (given that scienti�c argumentation can be seen as

being composed of multiple interrelated rhetorical layers, see Sections 3.3 and 6.1).
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2.1.3 The Special Case of Scienti�c Argumentation

As already discussed, argumentation is nearly ubiquitous in our lives and can be found

in many domains of text, such as news editorials, student essays, and online debate fo-

rums. In particular, in signi�cant portions of this thesis, we will be focusing on scienti�c

argumentation. According to Weinstein (1990) “[...] almost all in science includes ar-

gumentation [...]”, with which he is referring to the epistemological nature of scienti�c

work and the central role of the falsi�ability of scienti�c claims (Popper, 1935, edition

2002), which is, in turn, in line with the idea of defeasible reasoning as a central notion

in modern argumentation theories (see also Section 2.1.2). Popper argues that scienti�c

knowledge is provisional: scienti�c hypotheses can be seen as tentative proofs at a cer-

tain point in time and with a certain amount of information available, which should be

testable, and, ultimately, falsi�able. Consequently, this allows for controversies to arise in

the scienti�c community, the starting point for debates (as discussed in Section 2.1.1). We-

instein acknowledges that “[...] much in science includes explicit argumentation”. This

means, instead of only being tacitly inherent to scienti�c reasoning processes, in order to

resolve arising controversies, part of the epistemic process is to externalize, i.e., verbalize,

scienti�c argumentation. Here, the, arguably, most prominent externalization form is the

scienti�c paper. In these publications, we try to convince the scienti�c audience of the

validity and merit of our work, of accepting our �ndings, and, ultimately, of our work as

a valid contribution to science (Teufel, 2014). Accordingly, argumentation can be seen

as a key feature in scienti�c writing (Green, 2015a). In Section 6.1, we analyze the role of

�ne-grained argumentative structures in the rhetorical analysis of scienti�c literature, and

in Chapter 5, we analyze citations as a central argumentative tool in scienti�c writing.

The motivation for focusing on scienti�c writing as one particular domain of ar-

gumentation in this thesis is twofold: (1) e�cient computational analysis of scienti�c

publications is needed for ensuring e�cient access to scienti�c knowledge, and (2) scien-

ti�c argumentation is particularly challenging to analyze.

(1) First, the exponential growth in the number of scienti�c publications (Bornmann

and Mutz, 2015) raises the need for e�ective and e�cient computational analysis tools of

the large body of research work. As we are experiencing now in the face of the COVID-19

pandemic, scienti�c information access is, especially in situations which require fast

governmental decisions, crucial to crisis response and societal welfare.
12

Here, as outlined

by Green (2015a), it is important to understand argumentation for three main reasons:

(a) argumentation provides the critical context within which we should interpret the text,

(b) it can be bene�cial for downstream applications, as shown for summarization (Cohan

and Goharian, 2015; Abu-Jbara and Radev, 2011, inter alia), and (c) arguments within

scienti�c literature are tied to the scienti�c discourse; therefore, the global relationship

of scienti�c claims which re�ects the state of knowledge in a �eld of research can be

understood via the analysis of argumentation in scienti�c writing.

(2) Secondly, the challenging nature (Green, 2017) and the unique features of sci-

enti�c in contrast to “ordinary” argumentation make the task particularly interesting:

12
This is re�ected within the scienti�c community: in the �rst 4 months after the �rst con�rmed

COVID-19 case, 16,000 related scienti�c papers were published (Fraser et al., 2021).
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scienti�c reasoning and scienti�c argumentation are generally recognized as complex

processes (Kuhn et al., 2000), which require demanding epistemic reasoning, such as

hypothesizing and evaluating evidence, and is therefore acknowledged to be di�cult to

acquire (Klahr and Dunbar, 1988; Osborne, 2010). Furthermore, scienti�c argumentation

is framed within a complex network of previous results and commitments, such as already

accepted claims in the �eld, as well as stylized practices (Weinstein, 1990), and is highly rit-

ualized (Latour and Woolgar, 1987). The conditions upon which scienti�c argumentation

is placed are therefore more convoluted than in other �elds of argumentation (Weinstein,

1990). These conditions manifest as well in scienti�c writing: for instance, scienti�c

publications typically follow a community-established structure and use a certain termi-

nology, as well as certain rhetorical moves, which underpin the higher-level argumentative

intentions (Teufel, 2014). Further, in order to get their work accepted within a peer review

process, researchers need to show that they are aware of the latest developments in their

�eld with su�cient and up-to-date citations, and each scienti�c �eld has certain accepted

ways of referring to those works, for instance, by providing a “related work” section

and adhering to a certain citation style. As Gilbert (1977) notes, referencing can be seen

as persuasion. By referencing other works and, afterward, being referenced by others,

researchers respond to previous scienti�c claims and thereby also connect their own work

to and position it within the overall scienti�c discourse (see Chapter 5). Due to the use of

citations, scienti�c publications exhibit a hybrid nature: they are monological arguments,

which are placed within and connected to a dialogical debate. As a result, in order to

be able to present a scienti�c argument su�ciently and position it with respect to previ-

ous works and concerning a certain research �eld and problem, scienti�c publications

are typically long and complex documents, which makes understanding argumentation

di�cult (Kirschner et al., 2015). Looking at the micro-level, i.e., the level of individual

arguments within the course of the document, we note that argumentative components

are not necessarily expressed in adjacent phrasal units (Green, 2017) and the content of

several arguments may be interleaved at the text level (Green, 2016). Furthermore, some

of the argumentative components may be left implicit, resulting in enthymemes, i.e.,

arguments with implicit components (Green, 2017). Finally, all the aspects mentioned

above, e.g., adhering to overall community-established styles, such as the structure, refer-

encing others, and positioning the work within the discourse, as well as building up a

�ner-grained argumentative structure work together in forming a convincing argument

and persuade other members of the scienti�c community of the proposed contribution

to science. This makes CA for scienti�c documents extremely challenging. Due to all

these reasons, this thesis focuses on the computational understanding of scienti�c text as

a challenging and interesting case study of argumentation.

In the next Subsection, we introduce argumentation from the perspective of NLU,

and, accordingly, highlight the most prominent CA tasks. We hereby also discuss speci�c

tasks related to the argumentative analysis of scienti�c text.

19



2. THEORETICAL BACKGROUND

General Natural Language Understanding

Computational Argumentation

Argument
Assessment

Argument
Mining

Argument
Reasoning

Argument
Generation

Argument Component
Identification,
Argument Relation
Identification, ...

Argument Quality
Assessment,
Sentiment Analysis,
...

Natural Language
Inference,
Warrant Reconstruction,
...

...

Figure 2.4: Computational Argumentation with its four sub�elds (1) Argument Mining,

(2) Argument Assessment, (3) Argument Reasoning, and (4) Argument Generation and

its relation to General Natural Language Understanding.

2.1.4 Argumentation and Natural Language Understanding

The �eld of computational argumentation can be subdivided into four sub�elds, each

of which corresponds to a collection of concrete NLP tasks: (1) argument mining, (2)

argument assessment, (3) argument reasoning, and (4) argument generation. While the

�rst three groups of tasks cover the analysis and understanding of argumentation, the

last sub�eld, argument generation, relates to the synthesis of arguments. As the present

thesis focuses on the understanding of arguments, we will not further cover argument

generation and instead discuss the other three aspects, which are grounded within general

natural language understanding (GNLU). Interestingly, GNLU, a model’s general ability

to understand natural language, can be seen as a necessary prerequisite for, arguably,

most of the CA tasks. For some, there is even a direct correspondence, with, for instance,

natural language inference directly re�ecting argumentative reasoning capabilities (Moens,

2018).
13

But, as Moens (2018) states, argumentative understanding “[...] puts an extra

dimension to the language understanding process.” While some of the tasks are domain-

independent in the sense that they are relevant and similarly formulated tasks for many

domains of argumentative text, some relate to certain domains only. Here, speci�cally the

tasks relating to scienti�c argumentation stand out (as explained before, see Section 2.1.3),

which we will cover at the end of this Subsection.

Argument Mining (AM). As discussed before (see De�nition 2), AM deals with the

identi�cation and extraction of structural aspects of arguments with, as Lippi and Torroni

13
An overview of correspondences between argumentative understanding tasks and more established

NLP tasks is also given by Lippi and Torroni (2016b).
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(2016b) argue, the main goal to provide structured input data for other systems, such as

reasoning engines. As discussed in Section 2.1.2, there exist a range of theoretical argumen-

tation models in the literature, e.g., Toulmin’s Model (Toulmin, 1958, 2003 edition), and

depending on the model chosen, the structure of an argument is considered to consist

of a di�erent set of argumentative components and relationships. In consequence, the

prediction space of the task is de�ned according to the argument model chosen. For

instance, we can simply distinguish between claims and premises with premises supporting

the claims, and those component and relation types then correspond to the labels we can

assign to extracted portions of text and their relationships. The full structural analysis,

i.e., the AM pipeline, can be broken down into the following subtasks (Lippi and Torroni,

2015): (1) argument detection (e.g., Moens et al., 2007), (2) argument component identi�-

cation (e.g., Morio and Fujita, 2019), and (3) argument structure prediction (e.g., Galassi

et al., 2018). We will now explain each subtask by means of the example: “Our method is

superior to previously proposed ones, because it requires less data to perform similarly well.”

(1) Argument Detection. The idea is to identify argumentative portions of text, which is typ-

ically handled as a text classi�cation task. Given a span of text x, the task is then to assign

one of the labels y(i)
out of the set of labels Y = {argumentative, non-argumentative}.

“Our method is superior to previously proposed ones, because it requires less data to perform

similarly well.” −→ argumentative

The granularity of the text can di�er, e.g., Lippi and Torroni (2016b) describe a sentence-

level variant, but it can also be cast as a classi�cation of larger or smaller text portions.

(2) Argument Component Identification. In argument component identi�cation, which is

also known as argument component boundary detection (Lippi and Torroni, 2016a), the

task is to identify the di�erent argumentative components according to the argument

model chosen, e.g., claims and premises, in an argumentative text.

“Our method is superior to previously proposed ones [claim], because
::
it

:::::::
requires

:::
less

::::
data

::
to

:::::::
perform

::::::::
similarly

:::
well [premise].”

The task is typically cast as a sequence labeling task. More formally, given a sequence

of tokens t1, ..., tn assign to each token a label y(i)
out of the set of argumentative

component labels Y usually based on a begin–inside–outside (B–I–O) labeling scheme,

e.g., Y = {begin_claim, inside_claim, ...}. The B–I–O format is also common in other

sequence labeling tasks, such as named entity recognition (NER).

(3) Argument Structure Prediction. In argument structure prediction, the task is to predict

the overall argument structure, which typically amounts to predicting the relationships

between two or more (1) arguments or (2) argument components (as discussed before).

The set of possible relations is again grounded in the argument model applied. For

instance, it can consist of supports and contradicts/ attacks relationships.

“Our method is superior to previously proposed ones [claim]”

supports←−−−−− “
:
it

:::::::
requires

:::
less

::::
data

:
to
::::::::

perform
::::::::
similarly

:::
well [premise].”

We will now turn our attention to the next sub�eld, argument assessment.
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Argument Assessment. Argument assessment refers to the assessment of certain prop-

erties of an argument, such as its stance (Wojatzki and Zesch, 2016), sentiment (Wachsmuth

et al., 2015), and quality (Wachsmuth et al., 2017b). The range of possible properties one

might be interested in is large and depends, naturally, on the goal of the �nal application.

Here, we focus on AQ prediction, as (a) it encompasses a big pool of concrete argu-

ment assessment tasks that have been tackled in the CA community (e.g., Wachsmuth

et al., 2017a,b; Habernal and Gurevych, 2016, inter alia), and (b) later on, we study the

complementarity of knowledge across argumentative quality dimensions (see Section 6.2).

Argument Quality Assessment. The task of scoring an argument according to its quality

was tackled in many di�erent conceptualizations, e.g., as clarity (e.g., Persing and Ng,

2013), and prompt adherence (Persing and Ng, 2014). Most often, it is casted as a regression

task (e.g., Persing and Ng, 2015; Persing et al., 2010), in which given an argumentative

text x(i)
, the task is to predict a score y ∈ R, which re�ects the quality of the argument

according to some quality aspect chosen. Sometimes, it has also been casted as a pairwise

classi�cation task: given a pair of arguments (x1, x2)(i)
, decide whether x1 is preferrable

over x2 or vice versa (e.g., Gretz et al., 2020). Similar to the argument mining tasks, the

prediction of the argumentative quality of a text can be based on an underlying theoretical

framework, for instance, the taxonomy of AQ presented by Wachsmuth et al. (2017b). In

this case, the underlying theory determines the dimensions and concrete properties for the

manual or computational annotation of the texts, e.g., the assessment of an argumentative

text according to logical, rhetorical, and dialectical aspects (see Section 2.1.2).

Argument Reasoning. Argument reasoning is the task of reasoning over arguments.

In NLP, there are currently two popular �avors of this task: (1) natural language inference

and (2) argument reasoning comprehension.

(1) Natural Language Inference (NLI). Also known as recognizing textual entailment (Gi-

ampiccolo et al., 2007), NLI re�ects general argumentative reasoning capabilities (Moens,

2018). Given a premise p and a hypothesis h, the task is to identify whether p entails h, i.e.,

whether h can be inferred from p. The set of possible labels depends on the data set. In

many cases there are three classes: entailment, contradiction, and neutral. Example:

Premise A man in an orange vest leans over a pickup truck.

Hypothesis A man is touching a truck.

Label Entailment

This example, which we have drawn from the Stanford Natural Language Inference (SNLI;

Bowman et al., 2015) corpus, illustrates that though plain NLI does not deal with canoni-

cal arguments, the task is designed for testing precise reasoning capabilities and advanced

knowledge as required in argumentation. For instance, the models have to know that

“leaning over a truck” implies “touching the truck”. We explain and address this challenge

in Sections 3.1 and 4, and further employ the task for our evaluation in the context of

multilinguality (see Chapter 7). As a more challenging extension of the plain NLI task,

Camburu et al. (2018) proposed the e-SNLI task based on the SNLI corpus, in which the

models additionally have to argue for their inference decision by providing explanations.
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(2) Argument Reasoning Comprehension. Proposed by Habernal et al. (2018), argument

reasoning comprehension can be seen as another variant of NLI, in which the task is to

explain why a claim follows from its premises, similar to e-SNLI (Camburu et al., 2018)

discussed above. However, in contrast to e-SNLI, argument reasoning comprehension

relates speci�cally to the Toulmin Model (Toulmin, 1958, 2003 edition): the task is to

reconstruct and analyze warrants, which are often left implicit (see Section 2.1.2).

Relations between CA Sub�elds. The four CA �elds are related and may depend

on each other depending on the application scenario. As a simple example, consider the

task of identifying “good” arguments given a topic and a stance. The �rst step could

consist of extracting arguments in a collection of argumentative texts relating to this

topic (argument mining). As a next step, one could assess the stance of these arguments

as well as their quality (argument assessment). And as a �nal step, one could �lter the

arguments according to the given stance and retrieve the top k arguments ranked based

on the quality score assigned. The �nal result is then dependent on the output of each

of the pipelined models. This example falls under argument retrieval (e.g., Wachsmuth

et al., 2017c) an adaptation of standard information retrieval for the case of arguments.

In this Subsection, we have so far focused on the most important “standard” CA tasks,

but as in the example above, we also note that there are more, rather application-speci�c

variants, which we do not explicitly cover. We now turn our attention to domain-speci�c

tasks dealing with the argumentative analysis of scienti�c text.

Analyzing Scienti�c Argumentation: Scitorics. As outlined in Section 2.1.3, scien-

ti�c argumentation is interesting but also challenging to analyze. While, theoretically,

all tasks discussed before can be transferred to the case of scienti�c text, directly trans-

ferring standard task formulations is di�cult due to the convoluted and highly stylized

nature of scienti�c argumentation. Accordingly, tasks tailored to analyzing the rhetorical

aspects of scienti�c writing, dubbed scitorics, emerged. Here, we brie�y overview the most

traditional analysis tasks: (1) argumentative zoning and (2) citation context analysis.

(1) Argumentative Zoning. As the �rst task in NLP, which relates to the argumentative

structure of scienti�c publications, Teufel et al. (1999) proposed argumentative zoning.

Based on the idea that a scienti�c paper follows a certain, community-established discourse

structure, the task is, given a sentence x(i)
, to assign a discourse role out the set of possible

sentential discourse roles to it, such as motivation, method, and result. Example:

“Our work results in a new corpus for argumentative discourse analysis.” −→ result

The sentence clearly states the outcome of the authors’ work, and is labeled as result, ac-

cordingly. The set of argumentative discourse roles, i.e., labels, varies across the works (e.g.,

Teufel et al., 1999; Ronzano and Saggion, 2015).

(2) Citation Context Analysis. Based on the role of citations as “tools of persuasion” (Gilbert,

1977), the analysis of citation contexts, which are, in the case of sentential contexts, known

as citances (Nakov et al., 2004), is seen as an important task in the argumentative analysis

of scienti�c texts. Accordingly, di�erent notions of the task have been proposed. For
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instance, previous research deals with the extraction of citation contexts (Jha et al., 2016),

with predicting the citation polarity or sentiment (Athar, 2011; Abu-Jbara et al., 2013),

and with classifying the citation purpose or citation intent (Cohan et al., 2019). All these

notions relate to the idea of understanding the citer’s motivation. Example:

“We use the tool of Author (Year), as it has shown to perform best in our prestudy.” −→
Polarity: positive, Intent: use

In this example sentence, the citation marker Author (Year) references a previous work,

which is cited in a positive way, and the citing publication uses an artifact of this research.

As with the task of argumentative zoning, di�erent labeling schemes have been proposed.

We deal with citation polarity and citation purpose classi�cation in Chapter 5.

After having discussed the �eld of Computational Argumentation, we now introduce

the second main topic of this thesis: representation learning.

2.2 Representation Learning

The second main topic of this work, representation learning, is a fundamental area in NLP.

After providing a brief introduction to machine learning basics (Subsection 2.2.1), we

outline methods for inducing semantic representations of text. Next, we discuss transfer

learning (Subsection 2.2.3), a learning paradigm underlying the introduced representation

models. We exploit several types of transfer learning, e.g., cross-lingual learning, in the

course of this thesis. Finally, we look at the topic of bias, a fundamental concept in

both human and machine learning, with a focus on the ethical issue of encoding unfair

stereotypical bias in language representations (Subsection 2.2.4).

2.2.1 Machine Learning

In machine learning, the general idea is to learn a computational model from data. Ac-

cording to Mitchell (1997), learning in this context means that for given a task T with

an associated performance measure P , the performance of a machine on T measured by

P improves with experience, i.e., with the number of examples it has seen.

We broadly distinguish unsupervised, supervised, and self-supervised machine learning.

In (1) unsupervised machine learning, no supervision signal is given. For example, the

task T can be to cluster a set of text documents, and the performance measure P can

be some measure of the intra-cluster similarity. In (2) supervised machine learning,

human supervision is part of the training process. This means that during the training

process, for each input example x ∈ X , where X is the set of training examples, a

label y is given. For instance, in AQ assessment (see Subsection 2.1.4), the task can be

to associate a real number y ∈ R with a vectorized input text x indicating the overall

AQ and the performance measure P can be the squared di�erence (ŷ − y)2
between

the predicted scores ŷ and the true scores y. More precisely, the goal of supervised

machine learning is the following: given an input domain D, consisting of a feature

space X and a marginal probability distribution P (X) with x = {x1, ..., xn} ∈ X ,

as well as a task T with a label space Y , prior distribution over the labels P (Y ), and a
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conditional probability distribution P (Y |X), learn a function f(·), which mapsX to

Y approximating P (Y |X), i.e., f(·) : X → Y . We search for f(·) in the search space

Ω. Related to this, the notion of a domain is discussed in Subsections 2.2.3 and 3.2 in

more detail. In this thesis, we evaluate our approaches on many supervised CA tasks.

Finally, in (3) self-supervised learning, the model is exploiting supervision signals that are

not explicitly given by humans but are inherently part of the input data. For instance, in

some of the language representation models which we will introduce next, the models’

goal is to learn to predict a word given its context words.

2.2.2 Language Representation Methods

As for all tasks in NLP, also for CA, the textual input has to be represented numerically

in order to be processed by computational models. This Section introduces dense repre-

sentations of words or subwords, i.e., embeddings, which are used in the research work

covered in this thesis. Generally, the techniques can be broken down into (1) static word

embeddings and (2) contextualized word embeddings. Both embedding techniques are

based on the so-called distributional hypothesis (Harris, 1954), which underpins the �eld

of distributional semantics and was captured by Firth (1957) in the popular quote: “You

shall know a word by the company it keeps”. The general idea is that the meaning of a term

can be explained by other terms it typically appears with, i.e., its typical context. This idea

can then be exploited in unsupervised or self-supervised learning scenarios (as discussed in

the previous Section) to obtain numeric representations. Most often, the representations

are induced on large collections of text, e.g., Wikipedia, and afterward adjusted to speci�c

tasks. This procedure is referred to as pretrain then fine-tune paradigm, an example of

transfer learning (see Subsection 2.2.3). The intuition behind this is that the models can

acquire general language understanding capabilities before being �ne-tuned to accentuate

speci�c phenomena that are important features for a particular downstream task.

Static Word Embeddings

Static embeddings assign to each token t, which in most cases corresponds to a single

word, a static numerical representation, i.e., a vector of real numbers e, which repre-

sents its meaning. In static embedding spaces, often also referred to as distributional

word vector spaces, the vector representation does not change depending on the con-

text in which the token appears. Popular algorithms for inducing these representations

inlcude Word2Vec (Mikolov et al., 2013c), GloVe (Pennington et al., 2014), and fast-

Text (Bojanowski et al., 2017), which will be discussed in the following paragraphs.

Word2Vec. With Word2Vec, Mikolov et al. (2013a) presented two word embed-

ding methods, which are both based on a simple single-layer feed-forward neural network

(see Figures 2.5a and 2.5b): skipGram, and continuous bag of words (CBOW), which

can be distinguished by their model architectures and respective training objectives.
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Figure 2.5: The di�erence between the skipGram and CBOW model architectures

(upper parts from (Mikolov et al., 2013a)).

skipGram. Given a sequence of words wt−n, ..., wt, ...wt+n, with a center word wt,
the task of the model is to predict its surrounding tokens, i.e., the context wordsWt =
{wt−n, ..., wt, ...wt+n} \ {wt}. This can be expressed by maximizing the average log

probability:

1

T

T∑
t=1

∑
−n<j<n;j!=0

logP (wt+j |wt) , (2.2)

with T as the total number of terms in the sequence and n as the context size before and

after the center word. While the probability P (wt+j |wt) was originally de�ned using

the softmax function, i.e.,

P (wt+j |wt) =
exp(x′t+1

>xt)∑|V |
i=1 exp(x′i

>xt)
, (2.3)

with the vocabulary V , and xi, and x′i, as the word and context embeddings, i.e., rows

and columns of weight matrices W and W′
, respectively (see Figure 2.5a), Mikolov et al.

(2013c) proposed a more e�cient softmax approximation based on negative sampling, a

simpli�cation of noise contrastive estimation (Gutmann and Hyvärinen, 2012). Instead

26



2. THEORETICAL BACKGROUND

of predicting the probabilities over the whole vocabulary, we only predict over a subset

of the vocabulary, which includes the true context word, as well as randomly sampled

negative examples. This approximation reduces the computational complexity originally

arising from computing the probabilities over the whole vocabulary.

CBOW. In contrast to skipGram, given a sequence of words wt−n, ..., wt, ...wt+n,

with a center wordwt and its set of context wordsWt = {wt−n, ..., wt, ...wt+n}\{wt},

the goal of the CBOW architecture is to learn representations, which are optimized for

predicting the center word wt based on its context Wt. This can be expressed via the

following loss function:

LCBOW = − logP (wt|Wt) , (2.4)

with P (wt|Wt) as the probabability ofwt being the center word, conditioned onWt.

GloVe. While the algorithms inWord2Vec induce dense word representations based

on local contexts and backpropagation, Pennington et al. (2014) proposed an analytical

approach to obtain word vectors based on global corpus statistics, similar to simpler

co-occurence-based representations. However, instead of resorting to direct co-occurence

probabilities, given two words wi and wj , the main intuition is that their ratio of co-

occurrence probabilities with a third term, the probe wordwk, expressed as
P (wi,wk)
P (wj ,wk) is

for their semantic relationship more indicative than the direct co-occurence probability.

fastText. Based on the observation that word embedding models, which associate

each word with a single vector, ignore the internal (morphological) structure of words,

Bojanowski et al. (2017) proposed fastText. The method is based on the original

skipGram architecture but designed to capture subword information by representing

words as bags of character n-grams. Each character n-gram is linked to a distinct vector

representation, and a word vector, in turn, is de�ned as the sum of its character n-gram

vectors. As a result, even for rare words, a reliable representation can be learned.

We employ static word embedding spaces for the semantic characterization of cita-

tions in Chapter 5, and for the rhetorical analysis of scienti�c argumentation in Section 6.1.

Furthermore, we analyze unfair stereotypical biases encoded in those representations in

Chapter 8. We next discuss their successors: contextualized word embeddings.

Contextualized Word Embeddings

While static word embeddings associate each token with a single vector, i.e., a static

representation, contextualized embedding models assign a representation to a token

based on its context. The state-of-the-art in nowadays pretrained language models is

based on the so-called transformer architecture, in particular, on its encoder, proposed

by Vaswani et al. (2017). The transformer encoder consists of n identical layers, which

each consist of a self-attention and feed-forward network sublayer. The self-attention

typically corresponds to the scaled dot product-attention. Here, given a matrix of input

representations, three attention matrices are created, in which each row corresponds to
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Figure 2.6: The BERT model architecture with its two pretraining objectives: (1) Next

sentence prediction, and (2) Masked language modeling.

an input token: the query matrix Q, the key matrix K, and the value matrix V. The

self-attention is then computed as follows:

Attention(Q,K,V) = softmax(
QK>√
dk

V) , (2.5)

with the scaling factor
1√
dk

, which impedes gradient under�ow. To allow to jointly attend

to information from di�erent representation subspaces the model employs multi-head

attention, i.e., h attention layers (= heads) are run in parallel. The outputs of each of the

heads are concatenated and projected using the output weight matrix WO
:

MultiHead(Q,K,V) = Concat(head1, ..., headh)WO , (2.6)

with headi = Attention(QWQ
i ,KWK

i ,VWV
i ).

Pretrained language models based on this encoder architecture are, among others,

BERT (Devlin et al., 2019), and RoBERTa (Liu et al., 2019).

Bidirectional Encoder Representations from Transformers (BERT). The core

of the BERT model (Devlin et al., 2019) is a multi-layer bidirectional transformer en-

coder (Vaswani et al., 2017) as explained above. It is pretrained using two objectives:

masked language modeling (MLM) and next sentence prediction (NSP). (1) MLM is a

token-level prediction task, also referred to as Cloze task (Taylor, 1953): among the input
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data, a certain percentage of tokens is masked out and needs to be recovered. (2) In

contrast, NSP operates on the sentence-level and can be seen as a higher-level sequence

modeling task that captures information across sentences. NSP predicts if two given sen-

tences are adjacent in text (negative examples are created by randomly pairing sentences).

For representing the input, BERT uses WordPiece embeddings (Wu et al., 2016) with

a 30,000 token vocabulary, as well as position and segment embeddings. As di�erent

sentences are concatenated together to a single input sequence (e.g., for the NSP task in

the pretraining), the segment embeddings help the model to di�erentiate the di�erent

parts of the input. For each token, the input representation in the �rst layer of the model

corresponds to the sum over its token, segment, and position embeddings. Furthermore,

BERT uses two types of special tokens: the separator token ([SEP]) and the sequence

start token ([CLS]). The separator tokens are an additional way of indicating di�erent

parts of the input sequence. The sequence start token is used as a representation of the

whole input sequence and, accordingly, its �nal hidden state is used as input for sequence

classi�cation tasks, e.g., NSP. The input data used to pretrain the original model consists

of a concatenation of the BooksCorpus (800M words; Zhu et al., 2015) and the English

Wikipedia (2,500M words). Figure 2.6 illustrates BERT’s pretraining framework.

In contrast to static word embeddings, where only a single matrix consisting of word

vectors needs to be transferred in order to �ne-tune these representations on a downstream

task, the authors propose to �ne-tune all of BERT’s encoder layers. To this end, the input

needs to be prepared in a “BERT-compatible” format and a prediction head, which is

appropriate for the particular �ne-tuning task at hand, needs to be placed on top of the

encoder. For example, for NLI (see Subsection 2.1.4), the premise and the hypothesis are

�rst tokenized. Then, the tokens are concatenated, and the special separator and sequence

start tokens are added in between and in front of the sequence, respectively. After piping

the input through the model, the transformed representation of the sequence start token

can then be fed into a simple softmax classi�er for predicting the entailment relationship.

Robustly Optimized BERT Approach (RoBERTa). RoBERTa (Liu et al., 2019)

is a robustly optimized BERT model, for which the authors reevaluated di�erent con-

�gurations and design choices. In particular, two main �ndings are incorporated in

RoBERTa: dynamic masking, and removal of the NSP loss. (1) In contrast to masking

a certain percentage of tokens of the input data for the Cloze task in a preprocessing

stage only once, thereby producing a single static mask across all training epochs, for

each input sequence, a mask is dynamically generated. This is especially e�ective when

pretraining on larger data sets or for more epochs. (2) Furthermore, the model does not

rely on the NSP loss, i.e., it does not explicitly model relationships between sentences.

For both changes, i.e., using dynamic instead of static masking, and removing the NSP

objective, the authors empirically demonstrate performance improvements. Additionally,

RoBERTa is trained in larger batches and with a larger vocabulary on more data.

We employ contextualized embeddings in Chapters 4, and 7, and in Section 6.2.
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Figure 2.7: The di�erence between (a) the traditional machine learning setup and (b)

the transfer learning scenario: in transfer learning, a portion of knowledge from source

domain or source task A is reused for the target domain or target task B.

2.2.3 Transfer Learning

In an ideal supervised machine learning setup (discussed in Subsection 2.2.1), the training

data and the test data originate from the same feature space and the same distribution.

Similarly, the prediction task, de�ned by its label space and its objective predictive func-

tion, stays the same between the training and test scenario. However, in reality, across

all NLP and CA tasks, this is often not the case: not for all of the world’s around 7, 000
languages (Eberhard et al., 2020), such as Urdu or Swahili, not for all possible domains of

text, such as scienti�c writing or online debates, and not for all imaginable tasks annotated

data is available. In fact, it seems impossible to ever reach complete coverage. To alleviate

this problem termed data scarcity or framed as low-resource scenario, researchers in NLP

have been working on making e�ective use of the data that is already available, even in

the case of mismatches in data distribution and mismatches in the nature of the task

between training and inference time. The general idea is to provide mechanisms, which

allow for transferring previously acquired knowledge such that new problems can be

solved faster or better. This is aligned with the human way of problem-solving: someone,

who learns to play the guitar from scratch, typically also acquires knowledge about music

theory, which then can be transferred to learning a new instrument, e.g., piano, in which

they then might exhibit a steeper learning curve. This is because there is a portion of

shared knowledge involved, which does not need to be learned from scratch but can be

transferred. Before, we have already discussed examples of this paradigm, which we call

transfer learning: the semantic language representations introduced in Subsection 2.2.2

acquire general knowledge on large corpora in the pretraining stage, which is then reused

on a particular task in the �ne-tuning stage. The di�erence between traditional machine

learning scenarios and transfer learning is depicted in Figure 2.7.

Transfer learning has been researched in arti�cial intelligence since the 70s (Bozi-
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Figure 2.8: Taxonomy of transfer learning for NLP (Ruder, 2019).

novski, 2020). Given a domainD, consisting of a feature spaceX and a marginal prob-

ability distribution P (X) with X = {x(1), ..., x(n)} ∈ X , as well as a task, de�ned

by its label spaceY , a prior distribution over the labels P (Y ), a conditional probability

distribution P (Y |X), and its objective predictive function f(·), it can be de�ned as

follows (Pan and Yang, 2010):

De�nition 4 (Transfer Learning). “Given a source domainDS and a learning task TS ,

a target domain DT and learning task TT , transfer learning aims to help improve the

learning of the target predictive function fT (·) inDT using the knoweldge inDS and TS ,

whereDS 6= DT , or TS 6= TT .”

In NLP, three di�erent types of transfer are common: language transfer, domain

transfer, and task transfer. In (1) language transfer, the source and target domains are

di�erent in that the source feature spaceXS and the target feature spaceXT di�er. Here, a

common line of research includes aligning the di�erent representation spaces, for instance,

in cross-lingual embedding spaces (e.g., Smith et al., 2017). In (2) domain transfer, feature

spaces might correspond to each other, but the marginal probability distributions di�er,

i.e., P (XS) 6= P (XT ), for instance, when the distribution of topics changes. In (3), the

target task TT is di�erent from the source task TS , while domains can di�er or not, for

instance, because the source and target label spaces di�er, i.e.,YS 6= YT .

In order to categorize the �eld of transfer learning, Pan and Yang (2010) proposed

a taxonomy, which was then later adapted and updated to the case of NLP by Ruder

(2019). The taxonomy is depicted in Figure 2.8.
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Inductive Transfer Learning

In inductive transfer learning, there is labeled data in the target domain DT , but the

source and target tasks di�er, i.e., TS 6= TT . Consequently, the idea is to transfer shared

knowledge from one task to the other. When it comes to the actual learning process, the

question is whether the two or more tasks are learned (a) sequentially, i.e., �rst learn TS ,

then learn TT , or (b) simultaneously, i.e., TS and TT are learned at the same point in time.

Sequential Transfer Learning. Here, two or more tasks are learned in sequence with

the intuition that useful knowledge should be transferred from the task(s) which are

learned �rst to the task(s) which are learned last. In NLP, this approach became especially

known as the so-called pretrain then fine-tune paradigm, which we have discussed before

(see Section 2.2.2). Examples are static word embedding spaces (e.g., Mikolov et al.,

2013c; Bojanowski et al., 2017), in which only one layer of parameters, i.e., the token or

word representations, is transferred, as well as large pretrained language models, such as

BERT (Devlin et al., 2019), for which the whole encoder with multiple layers is used to

initialize the language representation parameters of a target task-speci�c model. When

training this model on the target task, the parameters will be �ne-tuned. This general

paradigm can also be extended to more complex setups, in which intermediate training on

labeled data is performed, called Supplementary Training on Intermediate Labeled-Data

Tasks (STILT; Phang et al., 2018; Pruksachatkun et al., 2020). We experiment with a

STILT approach for computational AQ assessment in Section 6.2.

Multi-Task Learning (MTL). In contrast to sequential transfer learning, in MTL

(Caruana, 1993), the tasks are learned simultaneously. This also implicates that there

might not be a single dedicated source task TS , and target task TT , respectively, but that,

in general, the transfer can occur in both directions. We employ multi-task learning setups

in Chapter 6. Ruder (2019) extends upon (Caruana, 1998) and lists �ve reasons why the

inductive bias obtained via MTL is in many cases bene�cial for the task:

(1) Implicit data augmentation. The model e�ectively sees more training data: even

though for a particular target task TT the amount of task-speci�c training data stays

constant, the signal from the additional data used to train the source taskTS is propagated

back to the shared parameters. This helps to learn language representations, which are

ideally less prone to data- and task-speci�c noise.

(2) Attention focusing. In case of noisy high-dimensional input data for a target task TT ,

the model obtains additional evidence for the potential relevance of certain input features

via learning the source task TS .

(3) Eavesdropping. Certain features might be more di�cult to learn for a model through

the target task TT itself than through the source task TS .

(4) Representation bias. Through the learning of other tasks, the model gets biased towards

representations, which are bene�cial for more tasks.

(5) Regularization. The source task TS acts as a regularizer for the target task TT .
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Transductive Transfer Learning

In transductive transfer learning, the source and target tasks are the same, i.e., TS = TT ,

but the domains di�er, i.e., DS 6= DT . This can be due to the fact that the language

di�ers or that the domain of text is di�erent, which requires applying techniques from

the �elds of (a) cross-lingual learning or (b) domain adaptation.

Cross-lingual Learning. Much of the NLP research focuses on English, as a resource-

rich language. However, for many tasks, annotated data, which is needed for most machine

learning setups in NLP, might not be available for a particular language of interest. This

holds especially for resource-lean languages, such as Cebuano and Quechua. In such cases,

approaches for cross-lingual transfer can be leveraged. Cross-lingual learning aims to

enable the transfer of knowledge across di�erent languages. Typically, the idea is to align

text representation spaces between two or more di�erent languages. This alignment can

then, in a later stage, be exploited to transfer task-speci�c knowledge acquired in a resource-

rich language, e.g., English, to the low-resource scenario. To achieve an alignment of

the representation spaces, unsupervised methods or methods employing some type of

cross-lingual supervision signal have been proposed. Ruder et al. (2019) survey techniques

relating to cross-lingual word embedding spaces. They distinguish the surveyed methods

regarding two aspects relating to the data employed: (1) the type of alignment, e.g., whether

the cross-lingual supervision is provided at the level of words or larger portions of text,

and (2) comparability, i.e., whether the method requires truly parallel corpora with exact

translations, or whether the supervision can be weaker in the form of comparable corpora.

Most recently, massively multilingual transformer (MMT) models, such as multilingual

BERT (mBERT; Devlin et al., 2019), which is trained on the concatenation of the 104

largest Wikipedias, or XLM-RoBERTa (XLM-R, Conneau et al., 2020a), which is trained

on the large multilingual CommonCrawl-100 (CC-100) corpus (Wenzek et al., 2020), are

used for state-of-the-art cross-lingual transfer. Both mBERT and XLM-R are based on

BERT, a deep transformer neural network (Vaswani et al., 2017) whose parameters are

pretrained on large corpora using language modeling objective (see Section 2.2.2). We

analyze the drops in performance arising in transfer with MMTs in Chapter 7.

Domain Adaptation. In contrast to cross-lingual learning, in domain adaptation,

while the task stays the same, the source and the target domains di�er, i.e., the data is

not sampled from the same underlying distribution. An example of such a scenario is

the transfer of a model trained on Wikipedia text to scienti�c publications. A recent

overview of unsupervised domain adaptation approaches is given by Ramponi and Plank

(2020). They describe model centric, e.g., using an adversarial loss (Ganin and Lempitsky,

2015), data centric, e.g., via domain-adaptive pretraining (Han and Eisenstein, 2019), and

hybrid approaches. An alternative to transferring the model is to pretrain the model on in-

domain data from scratch, which can result in a trade-o� between large and heterogeneous

vs. small and homogeneous training data. We analyze this trade-o� in the context of the

semantic classi�cation of citations in scienti�c argumentation in Chapter 5.
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As we have seen, mismatches between source and target domains and tasks represent

a fundamental problem in machine learning. In these cases, transfer learning approaches

can be employed. We now turn our attention to another fundamental problem of both

human and machine learning, which we have already touched upon in the context of

MTL: bias. In particular, we discuss its necessity and its harmful implications.

2.2.4 From Human to Machine Bias (and back)

Considering the high sensitivity of future CA applications, e.g., self-determined opinion

formation (Wachsmuth et al., 2017c), unfair bias has been pointed out as one of the

key issues for CA research (Spliethöver and Wachsmuth, 2020). Here, we start with the

notion of cognitive biases from cognitive psychology due to its relevance to the �eld of

argumentative reasoning. We then establish the connection between the cognitive human

biases and biases in language representations, their sources, and implications for CA.

The Bias Dilemma

The notion of cognitive bias was originally introduced by Tversky and Kahneman (1971).

The authors demonstrated in a study that naive subjects, as well as trained researchers,

exhibit strong but, according to the normative laws of probabilistic reasoning, fundamen-

tally wrong intuitions about probabilities in random sampling. More speci�cally, they

studied the belief in the law of small numbers, the fallacy according to which a smaller

sample has to represent the larger population. This relates to the so-called gamblers fallacy,

which corresponds to the (wrong) belief that, in a random sequence game, after a series

of unlucky events, a corrective bias is expected, and the gambler will, eventually, win.

Haselton et al. (2015) de�ne cognitive biases as follows:

De�nition 5 (Cognitive Bias). “[...] cases in which human cognition reliably produces rep-

resentations that are systematically distorted compared to some aspect of objective reality.”
14

Haselton et al. (2015) further categorize cognitive biases according to three reasons

why they arise: (1) heuristics, as useful shortcuts working in most circumstances, e.g.,

the well-known Occam’s razor, (2) artifacts, which relate to the idea that some tasks are

not designed for the human mind, and (3) error management biases, which are biased

patterns in the human response, leading (in the long run) to lower costs. In (3) within

the framework of error management theory, there are, analogous to machine learning

predictions, two types of errors a human subject can make: acting when it would have

been better not to (false positive), and not acting when it would have been better to do so

(false negative). The error management theory takes a Darwinian perspective, assuming

that, depending on the domain and particular bias category, either a false positive or a

false negative can be seen as more costly, and that therefore cognitive biases towards one

of the error categories evolved. Error management biases include biases in interpersonal

perception, e.g., negative out-group stereotypes. Here, members of a certain group, the

in-group, tend to perceive members of another group, the out-group, more negatively.

14
In this thesis, we will not discuss whether an objective reality exists.
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The authors further argue that the costs of the false positive action within this bias,

avoid friendly members of the out-group, can be seen as rather low, while the cost of a

potential false negative action, be injured by out-group member, are high. In other terms,

stereotyping can be seen as an evolutionary feature. Other researchers argue that implicit

stereotyping is not a cognitive bias of the individual but rather culturally acquired, i.e.,

“culture in mind” (Hinton, 2017), which, when building a machine learning analogy,

corresponds to the learning system, i.e., the human subject, being exposed to biased data.

While the origin of human biases seems not clari�ed in the literature, many have in

common that they are often, for decisions under uncertainty, economical and e�ective,

e.g., heuristics, such as Occam’s razor, reduce the cognitive load. But biases can similarly

lead to systematic errors (Tversky and Kahneman, 1974): when, as proposed by Occam’s

razor, we always decide for the simplest explanation, we cannot always be right. As a

result, human biases, e.g., negative out-group stereotypes, can lead to discrimination and

unfairness, for instance, due to people’s sex, gender, sexual orientation, ethnicity, or age.

This “bias dilemma” is similarly present in machine learning. Traditionally, as de-

scribed originally by Mitchell (1980), biases can be seen as useful and necessary elements in

machine learning. For instance, useful classes of biases relate to limiting the search space

for generalizations based on factual knowledge of the domain or biasing it towards simpler

solutions (again, Occam’s razor). In the previous Subsection, we have similarly seen that

the representation bias obtained by combining tasks in inductive transfer learning can be

bene�cial. These biases correspond to the, arguably, most popular notion of machine

learning bias (Mitchell, 1980): inductive bias. It can be de�ned as follows:

De�nition 6 (Inductive Bias). “[...] any basis for choosing one generalization over another,

other than strict consistency with the observed training instances.” (Mitchell, 1980)

While machine learning researchers agree on the necessity of the inductive bias, like

cognitive biases, it can lead to errors, e.g., when a simpler but wrong explanation is pre-

ferred over a more complex but correct explanation. Additionally, with being data-driven

and data being produced in a socio-technical context, machine learning systems are ex-

posed to cultural biases. As they are learning from this data, they are prone to embedding

the “culture in mind”. However, when it comes to machine learning bias, the issues

observed with human biases, which can result in unfairness and discrimination, are more

severe, as pre-existing biases can be ampli�ed and even result in new bias types (Ntoutsi

et al., 2020). A more issue-oriented de�nition of bias in machine learning relating to

(un)fairness in arti�cial intelligence (AI) systems is given by Ntoutsi et al. (2020):

De�nition 7 (Unfair Arti�cial Intelligence Bias). “[...] the inclination or prejudice of a

decision made by an AI system which is for or against one person or group, especially in a

way considered to be unfair.” (Ntoutsi et al., 2020)

While Weizenbaum (1976) already discussed social issues and unfairness arising from

the deployment of AI systems, this notion of unfair bias in arti�cial intelligence became

more popular in the last years with machine learning systems becoming more and more

pervasive. Cases of AI systems behaving ethically questionable due to unfair biases have
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Figure 2.9: Sources and types of bias across the learning pipeline with the bias feedback

loop in a cultural and institutional context.

been reported in the media. As such, the media agency Reuters reported in 2018 that the

technology company Amazon Inc. had been using a new AI recruiting engine, which was

not assessing applicants for technical positions in a gender-neutral way. The reason for this

was that the system had been trained on historical data, covering 10 years of recruitment

at Amazon dominated by male applicants and employees (Dastin, 2018). This example

illustrates that if an AI system, which makes systematically unfair decisions, is deployed in

a certain cultural or institutional context, it can unfairly in�uence its socio-technical envi-

ronment. Even worse: relating back to the example, if more males than actually quali�ed,

given the overall pool of applicants are hired, an even more gender-unequal environment

is produced. If this data is then fed back into the AI system, the bias gets systematically

ampli�ed. This situation is known as the feedback loop phenomenon (Mehrabi et al.,

2019; Chouldechova and Roth, 2018). In sum, biases – in human subjects as well as in

machines – can, on the one hand, be seen as features, either present by design or acquired

by being exposed to certain data, produced in a certain cultural or institutional context;

they are often useful and even necessary. On the other hand, they can lead to suboptimal

and unfair decisions as well as discrimination. This raises the question whether these

biases should be mitigated. Accordingly, recent research works discuss the sources and

implications of unfair machine learning bias and how to attenuate those biases in the

context of ethical AI. Concretely, in this thesis, we focus on analyzing and mitigating

unfair stereotypical biases in language representations (see Chapter 8).

Sources and Types of Bias in NLP

Mehrabi et al. (2019) surveyed and categorized bias types in machine learning by revisiting

and extending the categorizations of Olteanu et al. (2019) and Suresh and Guttag (2019).

They suggest 23 types of biases, which they then categorize according to their position in

the data, algorithm, and user interaction feedback loop. Hellström et al. (2020) propose a

bias taxonomy based on the relevancy of biases in the machine learning pipeline: (1) biased
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world, (2) data generation, (3) learning, (4) prediction, and (5) evaluation. In the following,

we will combine the two views for the case of NLP: throughout all machine learning

pipeline steps in NLP, bias may propagate and potentially be ampli�ed. Furthermore,

the model’s predictions may feedback into the socio-technical system. We start with the

notion of “a biased world” (Hellström et al., 2020).

Biased World. The world, as it is or was, is already biased. This is typically referred to

as historical bias. Types of historical bias in text include, for instance, co-occurrence bias

or epistemological bias. For instance, if the term man appears more often in the context

of the term computer programmer, than the latter appears together with woman, there

is a co-occurence bias in the direction of the pair (man, computer programmer) present.

Hellström et al. (2020) propose to measure this type of bias as follows:

b(t, g) =
c(t, g)∑

g′∈G c(t, g
′)
, (2.7)

with with c(a, b) as the function returning the number of co-occurences of terms a and b,

Gbeing a set of terms, g(i)
re�ecting demographic attributes, e.g.,G = {man,woman},

and t as a term that potentially occurs in correlation witht the elements ofG. In contrast,

epistemological bias refers to the certainty, i.e., degree of belief, with which certain claims

are expressed in text, which is especially relevant in controversial, and consequently

argumentative situations, e.g., scienti�c writing.

Biased Data Generation. Labeled or unlabeled textual data is the basis for learning in

NLP models. Given the biased world, there are �ve main bias sources: input and output

speci�cation, measurement, sampling, annotation, and inheritance.

(a) Specification bias. When specifying the concrete prediction task, e.g., input and output

of a system, biases can arise, especially when sensitive attributes are included in the data

or can be easily inferred, such as a person’s gender or age.

(b) Measurement bias. Measurement bias refers to the fact that systematic errors can

occur when making observations. An example is the well-known expectation bias.

(c) Sampling bias. In sampling, a bias can occur when a certain part of the population is

over- or underrepresented in the sample. This is also known as selection bias.

(d) Annotation bias. In NLP tasks, we typically rely on annotated data. However, annota-

tors are, as humans, cognitively and culturally biased in their decisions.

(e) Inheritance bias. If the output of a machine learning system A serves as input for a

machine learning system B, then B might again re�ect and amplify the biases from A,

thereby “inheriting” the biases. As a result, biases can be ampli�ed.
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Biased Learning. As discussed before, inductive bias is seen as a necessary element in

machine learning, and, accordingly, the learning process itself is biased: given an annotated

data setX = {(x(i), y(i))}ni=1 consisting of n feature vectors x(i)
with associated labels

y(i)
, e.g., for a text classi�cation task, the task is to �nd a good approximation of the

function that maps x(i)
to y(i)

, i.e. f : X −→ Y in a search or hypothesis space Ω. We

brie�y discussed this in Subsection 2.2.1. Inductive bias refers here to any decision that

limits Ω, i.e., makes certain generalizations more likely than others. As in all steps of the

machine learning pipeline, the developer’s decisions play a crucial role. For instance, they

have to decide which model type and architecture to choose, which hyperparameters to

try, and which optimization procedure to use. As a result, the learning process is highly

biased and dependent on its socio-technical context.

Biased Prediction and Evaluation. Finally, given all the biases inherent to the ma-

chine learning pipeline, the �nal model output will also most likely re�ect and potentially

even amplify those biases. This can then, in turn, be re�ected in traditional machine

learning evaluation metrics, such as class-wise error rates. Hellström et al. (2020) refer to

this as model bias. This scenario can become even more problematic when the system’s

output is used to inform decisions in the real world and can feedback to humans’ and

machines’ behaviors. In addition to the problems outlined by the authors, we also high-

light three further problems arising in the evaluation: (1) for quantitative evaluations, it is

well-known in the NLP community that performance measures can only re�ect certain

perspectives and that some measures are even not well-suited for their purpose, e.g., ma-

chine translation evaluation measures such as ROUGE (Zhao et al., 2020). (2) Typical

NLP evaluations do not include an ethical perspective, so biases, even the ones which

might be ethically problematic, might stay hidden. (3) When it comes to qualitative

aspects, the assessment is performed by testers or researchers, who are, obviously, biased.

Unfair Language Representations in Computational Argumentation

The general sources and types of bias discussed play a role in all NLP areas. In this thesis,

we focus on the issue of unfair stereotypical bias in language representations and its

implications for CA due to the high sensitivity of some of the potential CA applications.

Bias in Language Representations. The biased pipeline discussed above (Subsec-

tion 2.2.4) provides an abstract framework for the origins and di�erent types of biases that

manifest themselves and get ampli�ed in machine learning. An important instance of this

is the learning of numeric representations of natural language text, one of the main topics

of this thesis, which we already discussed in more detail from a methodological point

of view in Section 2.2.2. Consider again the example of gender bias: as discussed above,

already the data, which we feed into our system for inducing language representations, is

(potentially) biased. For instance, many of the existing popular semantic language repre-

sentations, i.e., publicly available word embedding spaces, e.g., fastText (Bojanowski

et al., 2017), GloVe (Pennington et al., 2014), and Word2Vec (Mikolov et al., 2013c),
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are trained on Wikipedia data.
15

With regard to gender, Wikipedia is biased. This is, on

the one hand, due to the fact that the world which is described in Wikipedia was (and is)

already historically biased,
16

and, on the other hand, because the data was produced in

a biased way – by humans being biased themselves. For instance, most of Wikipedia’s

contributors are reported to identify as male, which leads to a gender-biased perspective.
17

Consequently, due to the combination of historical biases and contributor biases, also

Wikipedia’s content is biased with regard to gender (Wagner et al., 2015; Dinan et al., 2020).

On the one hand, terms relating to female concepts, e.g., woman, her, she, as well as female

names, occur less often with terms describing scienti�c concepts, e.g., science, experiment,

and computer, than terms describing artistic concepts, such as poetry, and literature. Vice

versa, the opposite statistics are observed for terms describing male concepts, such as male,

man, etc. Next, the learning algorithms of popular semantic language representations are

biased in that they rely on the distributional hypothesis (Harris, 1954): they are designed

to consider terms as semantically similar if they appear in similar contexts. While this

is a general design choice and results in language representations, which have shown to

perform well on a variety of tasks (Wang et al., 2019b), it leads to encoding such unwanted

biases present in the data. As a result, semantic representations induced from Wikipedia

(and from other text corpora) exhibit cases of stereotyping, which represents in itself a

representational harm (Blodgett et al., 2020), and can, depending on the �nal CA appli-

cation and the concrete deployment scenario, result in unfair and unwanted decisions.

Even worse, these might get ampli�ed within the feedback loop discussed above. For

research on language representations for CA, this represents a major issue.

Implications for Computational Argumentation. As brie�y mentioned, the issue

of unfair arti�cial intelligence bias in CA models has recently been pointed out as a

key challenge for future CA research (Spliethöver and Wachsmuth, 2020). The authors

argue that envisioned CA applications, e.g., systems supporting self-determined opin-

ion formation, exhibit a particularly high sensitivity as they directly in�uence people’s

opinions on controversial topics. Consequently, systematic bias towards unfair preju-

dices in arguments presented by CA systems can be particularly harmful. Spliethöver

and Wachsmuth (2020) further demonstrate that popular argumentative corpora, e.g.,

Debates.org, contain measurable stereotypical biases. The authors further suggest that

training models on such corpora might lead to unfair argumentation machines. Generally,

the encoded societal biases can a�ect all CA tasks. For instance, in argument quality

assessment, a model might systematically prefer arguments containing biased premises,

e.g., “gay marriage should not be allowed, because gays are promiscuous”. Another concrete

example of unfair bias in CA has been discussed in the context of NLI (see Section 2.1.4):

Dev et al. (2020) construct biased premise/hypothesis-pairs to obtain a synthetic evalu-

ation set by creating templates, which they then �ll with terms representing dominant

and minoritized social groups. They employ this data set for measuring the number of

15https://en.wikipedia.org
16http://www.ilo.org/washington/areas/gender-equality-in-the-workplace/

WCMS_159496/lang--en/index.htm
17https://meta.wikimedia.org/wiki/Community_Insights/2018_Report/Contributors
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stereotypical associations in inference predictions and point to language representations

as a source of unfair inferences. As an example, consider the following NLI instance:

Premise The rude person visited the bishop.

Hypothesis The Uzbekistani person visited the bishop.

Label Neutral

This premise/hypothesis pair represents an instance of a racial prejudice, concretely, that

the phrase rude person entails the phrase Uzbekistani person. Clearly, the models should

not imply anything and therefore predict the gold label neutral. However, the authors

demonstrate through their experiments that because of representational biases in lan-

guage representations, models often predict an entailment relationship. Thus, addressing

stereotypical bias in language representations is crucial for ensuring fair CA systems. We

describe more ethical challenges with a focus on bias in language representations (C5) in

Section 3.5 and describe our e�orts for understanding and mitigating bias in word vector

spaces in Chapter 8. In this context, we employ the data set of Dev et al. (2020).

After having introduced the fundamentals underlying this thesis, we now identify and

discuss prominent challenges in language representations for CA.
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Chapter 3

Language Representations

for Argumentation:

Challenges

The question of how to numerically represent natural language is one of the fundamental

problems in NLP and computational linguistics (CL) and has been researched since

the early days of the genesis of the �eld (e.g., Luhn, 1957). While for many NLP tasks

models employing simpler language representations already reach results close to human

performance (Wang et al., 2019b), preceding work has recognized the speci�cally high

complexity of computational argumentation, with language representations being one

of the main bottlenecks (Moens, 2018). Based on the fundamentals of CA discussed in

Section 2.1, we acknowledge the following characteristics of the �eld:

(1) Understanding argumentation requires precise NLU capabilities, logical reasoning,

and clear lexico-semantic knowledge, but also knowledge that is seldom explicated

in text, e.g., common sense and world knowledge (see Section 2.1.4);

(2) Argumentation exists across a variety of domains of text with some being specif-

ically challenging. For instance, scienti�c argumentation is typically presented

in the form of scienti�c publications, which are long and complex documents

exhibiting speci�c features such as the use of citations as argumentative tools and

a community-established argumentative discourse structure (see Section 2.1.3). For

understanding these special cases, domain-speci�c knowledge is required;

(3) The complex nature of argumentation yields an “arti�cial” variety of computa-

tional understanding tasks, which are de�ned to make the problem tractable, e.g.,

�ne-grained argumentative analysis and sentential discourse analysis of scienti�c

publications. These are, however, interrelated and, consequently, share some

portions of the required knowledge (see Section 2.1.4);

(4) Argumentation is assumed to be inherent to human behavior (see Section 2.1.1),

and, therefore, exists in all cultures and languages;
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(5) Due to the fundamental importance of argumentation in human behavior, CA

systems, such as debate machines, can have a speci�cally high impact in socio-

technical environments, which implies the speci�c importance of considering

ethical aspects when developing CA systems.

Out of these �ve characteristics tied to the �eld of computational argumentation,

the following fundamental challenges (Cs) for language representations for CA arise:

(C1) External Knowledge: how can we inject external knowledge into text representation

models? As CA tasks require knowledge beyond the purely distributional knowl-

edge encoded in language representations, we investigate methods for injecting

lexico-semantic and conceptual knowledge in contextualized embedding models;

(C2) Domain Knowledge: how can we adapt language representations to specific domains?

We seek to understand which degree of domain-speci�city compared to the size of

the pretraining corpora is bene�cial for inducing static language representations,

which we employ for semantically characterizing citations in scienti�c arguments;

(C3) Complementarity of Knowledge across Tasks: how can we improve our language

representations to reflect the complementarity of knowledge across tasks? We aim to

exploit the fact that CA tasks are interrelated. To this end, we investigate inductive

transfer learning strategies for scitorics and in computational AQ assessment;

(C4) Multilinguality: how can we provide accurate representations for multiple, poten-

tially resource-lean, languages? In order to foster inclusion in CA technologies, we

analyze cross-lingual transfer learning approaches for argumentative reasoning;

(C5) Ethical Considerations: which ethical aspects should be considered when representing

natural language, and how can we adjust to those? We acknowledge the sensitiv-

ity of CA applications and discuss relevant ethical aspects relating to language

representations. Focusing on the issue of representational harm, we analyze and

mitigate stereotypes encoded in static word embedding spaces.

In the following, we describe the nature of the problem for each of these challenges,

brie�y survey existing work, and anticipate potential solutions.

3.1 External Knowledge

The purely distributional nature of state-of-the-art language representations does not

take advantage of already existing (and partly manually curated) external knowledge,

which could be bene�cial for semantically challenging CA tasks, e.g., NLI. How can we

inject external knowledge into our language representation models?

Problem De�nition. State-of-the-art language representations, i.e., pretrained lan-

guage models, such as BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019), have

been shown to reach superior performance in many NLU tasks and benchmarks (Wang
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et al., 2019b,a). However, much like their predecessors, static word embeddings (Mikolov

et al., 2013c; Bojanowski et al., 2017) they are based on the distributional hypothesis (Harris,

1954), and they still consume the distributional knowledge from large textual pretraining

corpora, such as Wikipedia, only. Such corpora contain only the knowledge which is

made explicit in human-generated texts and, consequently, underrepresent information

that is seldom explicated, e.g., latent common sense knowledge. Furthermore, during the

process of inducing language representations, the knowledge available in such corpora

is often con�ated. As a result, language representation models have two main short-

comings: (1) they lack a clear encoding of lexico-semantic relationships, (2) they lack

underrepresented knowledge, e.g., conceptual, common sense, and world knowledge.

(1) Lexico-Semantic Knowledge. Distributional language representations do not encode

clear lexico-semantic knowledge and consequently do not distinguish between semantic

relatedness of terms (e.g., driver – car) and true similarity (e.g., car – vehicle, see Budanit-

sky and Hirst (2006)). However, such knowledge is sometimes crucial in argumentative

understanding tasks. Entailment decisions in NLI, for example, are often highly depen-

dent on synonymy or antonymy relations. As an example, consider the following NLI

premise/hypothesis pair, taken from a diagnostic data set (Wang et al., 2019b):

Premise Relation extraction systems populate knowledge bases with facts

from unstructured text corpora.

Hypothesis Relation extraction systems populate knowledge bases with

assertions from unstructured text corpora.

Label Entailment

This inference pair requires lexical entailment knowledge: more speci�cally, in order to

successfully solve the inference task, the model has to understand that the terms fact and

assertion serve as synonyms in the given context. Furthermore, apart from NLI, clearly

distinguishing relatedness and similarity has been shown to bene�t a range of other NLU

tasks such as dialog state tracking (Mrkšić et al., 2017), text simpli�cation (Glavaš and

Vulić, 2018), and spoken language understanding (Kim et al., 2016). While clear-cut

linguistic KBs, such as WordNet (Miller, 1995) exist, their knowledge remains unused.

(2) Common Sense and World Knowledge. Much of the conceptual knowledge, i.e.,

common sense and world knowledge, is seldom expressed and is underrepresented in

textual corpora. Consider the following example: though bananas typically tend to be

yellow when we use them for preparing food or when we see them lying on shelves in a

supermarket, people more often state explicitly when they are green than when they are

yellow. The reason for this is that the green color corresponds to an exception of the norm

people are used to. In contrast, yellow is the prototypical color for bananas (Misra et al.,

2016). This phenomenon is referred to as human reporting bias (Gordon and Van Durme,

2013), a human bias, which leads to a co-occurrence bias in the data employed to pretrain

language representations (see Subsection 2.2.4). Consequently, common sense and world

knowledge are underrepresented in state-of-the-art language representations. However,

exactly these types of knowledge play a crucial role in argumentative understanding

tasks. This is also discussed by Habernal et al. (2018): to truly comprehend an argument,
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one must understand its logic, which often depends on common sense and requires

knowledge about named entities. Underrepresented knowledge is therefore one of the

main bottlenecks in current text embedding models (Moens, 2018). The importance of

such knowledge in NLI is exempli�ed by following instance (Wang et al., 2019b):

Premise Musk decided to o�er up his personal Tesla roadster.

Hypothesis Musk decided to o�er up his personal car.

Label Entailment

In this particular example, it is crucial to understand that Tesla roadster is a speci�c car

model. While this type of knowledge exists in structured knowledge sources, e.g., in

ConceptNet (Tesla roadster
isA−−→ car), this knowledge remains unused.

As we have seen, due to their distributional nature, standard language representations

underrepresent big portions of knowledge. Yet, these types of knowledge are often

available in automatically induced or manually curated structured knowledge sources.

A challenge for language representations for CA and general NLU is, therefore, to �nd

e�ective and e�cient ways to make use of these sources.

Existing Approaches. There exists a plethora of work relating to the semantic spe-

cialization of static word embedding models. The approaches can be classi�ed as (a)

Joint specialization models (Yu and Dredze, 2014; Kiela et al., 2015; Liu et al., 2015; Os-

borne et al., 2016; Nguyen et al., 2017, inter alia), which specialize the representations

via an additional pretraining objective from scratch, and (b) retrofitting models, which

steer the representations towards true semantic similarity post hoc (Faruqui et al., 2015;

Wieting et al., 2015; Mrkšić et al., 2016, 2017; Jo and Choi, 2018). For contextualized

embedding models, however, the existing methods are not directly applicable. There are

two main reasons for this: on the one hand, joint pretraining models rely on the speci�c

architectural properties of a static word embedding model. On the other hand, post

hoc specialization relies on easily accessible word representations, as in the case of static

word vectors. As an additional obstacle, post hoc re�nement might lead to catastrophic

forgetting of the distributional knowledge acquired in the pretraining if the amount of

data added is substantial (Goodfellow et al., 2014; Kirkpatrick et al., 2017).

Contribution(s). In this thesis, we propose two solutions for the injection of external

knowledge into pretrained language models, each relating to one of the problem classes

outlined above: (1) we are the �rst to propose an additional pretraining objective for

the injection of external linguistic constraints and demonstrate the e�ectiveness of our

semantic similarity specialization in argumentative reasoning, thereby addressing the issue

of missing lexico-semantic knowledge; (2) to provide a more resource-e�cient solution,

we propose to use adapter-based training (Houlsby et al., 2019) for injecting world and

common sense knowledge from ConceptNet (Liu and Singh, 2004; Speer et al., 2017).
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3.2 Domain Knowledge

As mentioned in Section 2.1.1, the nearly omnipresent nature of argumentation yields the

need for CA approaches in a variety of domains of text, such as essays, review forums, and

– as an example of a special case – scienti�c publications (see Section 2.1.3). Similar to how

argumentation competence of students is assumed to be signi�cantly in�uenced by their

domain-speci�c knowledge (Valero Haro et al., 2020), domain-speci�city of language

representations can be seen as a critical challenge in CA (Moens, 2018).

Problem De�nition. While the notion of a domain and of in-domain data in NLP is

often vague (Aharoni and Goldberg, 2020) and not unambiguously de�ned (van der Wees

et al., 2015) a series of varying and overlapping linguistic properties that characterize a

domain can be named. For instance, its topics, genres (van der Wees et al., 2015), and, related

to the latter, the degree of formality, author-speci�c features, and the vocabulary found

within the texts (Kay, 1982). In the following, we discuss topic, genre, and vocabulary, as

three basic notions relevant in argumentative understanding tasks.

Topic. The general subjects of a text correspond to its topics (van der Wees et al., 2015).

They can be determined along a hierarchy of subjects ranging from more broad (e.g.,

computer science) to more �ne-grained (e.g., NLP).

Genre. Starting from the rough notion of genre as a “categorical concept” employed for

classifying documents according to their type, Santini (2004) surveys a series of works,

which aim to provide a de�nition (e.g., Biber, 1989; Swales, 1990/ edition 2008). The

author points out that the terminology is confusing and overlapping. Their main �nding

within the search for a de�nition is that most works use genre as an umbrella term to de�ne

“what in a text is not topic”. Consequently, genre can be seen as complementary and

orthogonal to the notion of a topic. Similar to topics, genres can be analyzed according

to a hierarchy, from broader (e.g., formal text) to �ner-grained genres (e.g., letter).

Vocabulary. Across di�erent domains, the vocabulary might di�er in terms of two main

aspects: (1) which terms are used, and (2) how terms are used. First, in a speci�c domain,

a speci�c terminology might exist, e.g., in biomedical documents, one can �nd speci�c

terms describing speci�c biomedical concepts, such as polygene. Secondly, some terms

have di�erent or more speci�c meanings across domains, e.g., the polyseme “bank”, as

a classic example, can refer to the �nancial institution in a text discussing the topic of

finance, and it can refer to the furniture when discussing parks. Accordingly, approaches

to domain-speci�c terminology extraction exist (e.g., Kim et al., 2009).

Instead of focusing on the notion of a domain, Ramponi and Plank (2020) suggest

the more general notion of a variety, which is characterized by underlying linguistic

di�erences and their implications, as well as by the fact that each corpus is, for instance,

due to the choices in sampling and annotation, biased (see Section 2.2.4). The problem of

domain-speci�city has been acknowledged and researched under di�erent notions. Most

commonly, it has been researched under the notion of domain-shift (e.g., Sun et al., 2016;

Blitzer et al., 2007). Here, the idea of domain transfer is driving the techniques, i.e., trans-
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ferring from a source domainDS to a target domainDT . We introduced this problem

when discussing transfer learning (see Section 2.2.3). Often, we deal with a speci�c case

of such a domain transfer, where the source domainDS consists of a higher-level rather

unspecialized domain, in which general topics are discussed, and general knowledge is

suspected to be present. When creating general reusable language representations, such

as pretrained Word2Vec embeddings or pretrained BERT, the focus has often been

to include large textual corpora, such as Wikipedia or CommonCrawl. While both of

those can be seen as domain-speci�c, i.e., Wikipedia as encyclopedic text and Common-

Crawl more generally as web text, due to their sizes, a variety of topics is expected to exist.

When employing language representations trained on such big but rather general and

noisy resources for a speci�c task, they are (usually) adapted to the target domain. We

revisit the de�nition of domain transfer from Section 2.2.3 to further distinguish di�er-

ent arising challenges: formally, given a domain speci�ed as a tupleD = (X , P (X)),

with the feature space X , and its marginal probability distribution P (X), and a task

T = (Y, P (Y ), P (Y |X)), with the label spaceY , a prior distribution over the labels

P (Y ), and a conditional probability distribution P (Y |X), the domain shift is most

commonly de�ned as a change in the marginal probability distribution between the

source and the target domain, i.e., P (X)S 6= P (X)T (Ruder, 2019). However, as we

have seen before, even with the language, e.g., English, staying constant, the vocabulary

itself might di�er (i.e.,XS 6= XT ), as well as the task-speci�c prior and conditional proba-

bility distributionsP (Y ), andP (Y |X). For completeness, we also want to acknowledge

that task formulations themselves can be highly domain-speci�c, as in the case of the

analysis of scitorics, which relate to the rhetorical analysis of scienti�c publications only.

What does all of this mean for numeric language representations? Being an essential

part of NLP models, language representations should re�ect all of these three cases:

(1) XS 6= XT . In contrast to the case of pure language shift, i.e., di�erent natural

languages, such as English vs. German, in domain shift, usually most of the terms from

DS andDT are present in both domains. However, we should still account for potential

out-of-vocabulary terms or meaning shift. A potential solution is to employ techniques

that account for the problem by embedding subwords.

(2) P (X)S 6= P (X)T . In the most common domain shift setting, the assumption is

that with a �xed feature spaceX , the marginal probability distribution over the feature

space between the source and the target domain di�ers. Concretely, this implies that

word occurrences and co-occurrences change. As a result, given that language representa-

tions are based on the distributional hypothesis (Harris, 1954), language representations

pretrained on a source domain do not adequately represent the target domain.

(3) P (Y )S 6= P (Y )T , and/ or P (Y |X)S 6= P (Y |X)T . The prior distribution over

the label space and the posterior distributions over the labels given the features di�ers

between the source and the target domains. Depending on the way of using language

representations, this might pose an additional challenge: if we employ language represen-

tations in a task-agnostic way, for instance, when “freezing” the encoder of a model, as it

has been shown bene�cial for certain task/model combinations (Peters et al., 2019b), we
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can ignore this challenge, as even without the domain-shift, the language representations

are not speci�cally adapted to re�ect those distributions. However, when we �ne-tune

the representations speci�cally for a certain task, thereby specializing them to particularly

re�ect P (Y ) and P (Y |X), then we should also account for this in domain transfer.

Existing Approaches. Generally, domain adaptation approaches can be broken down

into supervised vs. unsupervised domain adaptation (Daumé III, 2007). They operate

either on static or contextualized embeddings (see Section 2.2.2). While in (1) additional

annotated training data for supervised learning of the target task in the target domain

DT is available (e.g., Daumé III, 2007), in (2) we have only unannotated text in DT ,

which can be leveraged. Combinations of (1) and (2) have been proposed (e.g., Han and

Eisenstein, 2019). An overview of existing approaches is given by Ramponi and Plank

(2020). For contextualized word embeddings, methods typically employ an additional

self-supervised language modeling stage on unlabeled domain-speci�c data in addition to

target task-speci�c �ne-tuning in the target domain (Han and Eisenstein, 2019; Gururan-

gan et al., 2020). Demonstrated successfully for static word embeddings, a popular class

of approaches relates to domain adversaries, in which the domain-independent represen-

tations are learned using adversarial discriminators (Ganin and Lempitsky, 2015; Ganin

et al., 2017). An alternative to adapting already induced representations for a speci�c

target domain is creating language representations on in-domain data from scratch. In

this case, domain specialization is aiming for a trade-o� between employing (a) big and

noisy and (b) smaller and more homogeneous resources.

Contribution(s). Under the umbrella notion of domain-speci�c knowledge for lan-

guage representations for CA, we study this trade-o�. We demonstrate small performance

improvements for the task of semantically classifying citations in scienti�c argumentation

when employing in-domain data for training static word embeddings.

3.3 Complementarity of Knowledge across Tasks

As outlined in Section 2.1.4, the �eld of CA is composed of four sub�elds (argument

mining, argument assessment, argument reasoning, and argument generation), which

each cover a multitude of tasks and speci�c task formulations. However, this corresponds

to an “arti�cial” decomposition of the overall goal of computational argumentation

to make the problem tractable. How can language representations adequately re�ect

knowledge which is considered to be complementary across those tasks?

Problem De�nition. As an example, consider argument assessment, with the task of

AQ prediction: argumentative quality itself is a very complex notion, which has been

discussed since Aristotle (Aristotle, ca. 350 B.C.E./ translated 2006), and, accordingly,

many di�erent formulations for computational AQ assessment have been proposed (e.g.,

clarity (Persing and Ng, 2013) or argument strength (Persing and Ng, 2015)). All these

quality formulations can be seen (and can be addressed) as isolated NLP tasks. However,
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this does not adequately re�ect the nature of those tasks, as they are often interrelated. For

instance, this has been shown by Wachsmuth et al. (2017a) in a preliminary correlation

analysis on theory-based argument quality annotations. Similarly, many di�erent tasks

and task formulations have been proposed under the umbrella of analyzing scienti�c

argumentation: rhetorical analysis tasks, such as argumentative zoning (Teufel et al.,

1999) and discourse role labeling (Fisas et al., 2015) essentially re�ect the same idea of

understanding the role of a particular portion of text concerning the argumentative

discourse within a publication; citation purpose and citation polarity analysis (e.g., Athar,

2011; Jha et al., 2016, inter alia) both aim for understanding the citer’s motivation. In

sum, all those rhetorical aspects of scienti�c writing, dubbed scitorics, work together in

establishing a persuasive argumentation throughout a scienti�c publication. Nevertheless,

typically, they are tackled in isolation only. As a result, language representations used in

these CA tasks do not adequately re�ect the interrelated nature of the tasks in the �eld.

While it is known that knowledge transfer across di�erent tasks can yield positive learning

e�ects (see Section 2.2.3) and, accordingly, performance improvements on the individual

tasks can be expected, there are only a few works on inductive transfer learning in CA.

Existing Approaches. As already outlined in Section 2.2.3, the area of inductive trans-

fer learning can be broken down into (a) sequential knowledge transfer across tasks, and

(b) simultaneous knowledge transfer, i.e., MTL. For (a) a standard paradigm which we

apply throughout this work is the pretrain and fine-tune paradigm, in which we employ

language representations pretrained in a self-supervised manner before they are �ne-tuned

on task-speci�c labeled data. An extension to this is exploiting additional labeled data as

an intermediate step, which is called STILT (explained in Section 2.2.3), and has been

shown to be e�ective for general NLU (Phang et al., 2018). However, in the context of

speci�c CA tasks, such as AQ assessment, the interactions between the tasks and the e�ect

on the employed language representations are understudied. With respect to (b) MTL,

various architectures for sharing di�erent amounts of parameters have been proposed.

In the simplest case, all lower layers of a multi-task learning architecture, including the

language representations, are shared. Ruder (2019) refers to this as hard parameter sharing.

In contrast, one can also assign speci�c parameter sets as task-speci�c parts of the model’s

architecture and then control for the amount of sharing between the tasks (soft parameter

sharing (e.g., Duong et al., 2015; Yang and Hospedales, 2016)). For CA, there are only a

few works on the topic: Eger et al. (2017) investigated a simple hard parameter sharing

setup for di�erent argument mining tasks and demonstrated performance improvements

resulting from combining the training signals. Similarly, Schulz et al. (2018) demonstrated

the e�ectiveness of the approach in resource-lean setups for argument mining. However,

other ways of how CA tasks can be combined to enrich language representations with

knowledge that is shared across di�erent interrelated tasks remain underexplored.

Contribution(s). Our contributions with respect to this challenge are two-fold: (1) we

examine the role of argumentation in the rhetorical analysis of scienti�c publications

via neural MTL models and demonstrate improvements for the higher-level rhetorical

analysis tasks by employing a loss function based on the task-speci�c homoscedastic
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uncertainty. This loss function controls the amount of in�uence each task has on the

shared parameters. (2) For the case of computational AQ assessment, we explore the

interrelations between overall AQ and the three theory-based AQ dimensions in a �at

and a hierarchical MTL setting, as well as in a STILT experiment.

3.4 Multilinguality

Humans argue,
1

and as we have discussed before (Section 2.1.1), argumentation is an

essential re�ection of human cognition and reasoning in language and inherent to human

behavior (Moens, 2018). However, this implies a key challenge for language representa-

tions in computational argumentation: multilinguality.

Problem De�nition. Given that we can assume that argumentation exists in all soci-

eties and cultures, argumentation is supposed to exist in all of the world’s around 7,000

languages (Eberhard et al., 2020). Those languages can be very diverse regarding their typo-

logical features. For instance, Maricopa, a language spoken in Arizona, lacks the conjunc-

tion “and” (Gil, 1991) and Ayoreo, spoken in Paraguay and Bolivia, lacks tense (Bertinetto,

2009). Given the high disparity of resources between languages (Joshi et al., 2020), this is

an essential challenge for CA: most NLP systems are not truly language-agnostic (Bender,

2011), and most linguistic phenomena are never seen by an NLP system (Ponti et al.,

2019a). This is highly problematic, as CA systems will perform badly or not perform at

all on input data from certain languages, which, in turn, systematically excludes certain

ethnical groups (Hovy and Spruit, 2016). When it comes to the amount of resources

available, the problem can be broken down into (a) annotated and (b) unannotated

data. (a) For English, as a resource-rich language, many data sets annotated with labels

for argumentative understanding tasks are available, covering all areas of argumentative

understanding tasks, i.e., argument mining (e.g., Stab and Gurevych, 2017a), argument

assessment (e.g., Persing and Ng, 2014), and argument reasoning (e.g., Habernal et al.,

2018) in varying domains, e.g., news editorials (El Ba� et al., 2018). For many of these tasks

and domains, however, no annotated data set exists in a multitude of languages (Toledo-

Ronen et al., 2020), which are, therefore, typically considered to be resource-lean, such

as Swahili. (b) Unannotated data can be exploited for unsupervised and self-supervised

learning scenarios. It is cheaper to acquire and exists for many languages. However,

also here we have a highly skewed distribution of resources: comparing the sizes of the

language-speci�c Wikipedias, which are commonly employed as comparable corpora for

training multilingual language representations, English, as the largest Wikipedia, counts

6,184,229 articles, in contrast to Muscogee, one of the smallest ones, with only a single

article.
2

In total, articles have been created in 314 languages only. From the perspective of

NLP this poses a challenge: when trying to obtain high-quality language representations

for providing high e�cacy models, data scarcity is a real obstacle.

1
This is a truism: either the reader believes it or they have to argue against it (Atkinson et al., 2017).

2https://en.wikipedia.org/wiki/List_of_Wikipedias (4th of November, 2020)
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Existing Approaches. To deal with the problem, researchers are, on the one hand,

creating resources covering more languages (e.g., Nivre et al., 2017), and, on the other

hand, investigating e�ective cross-lingual transfer techniques (see Ruder et al., 2019).

(1) Scaling resources across languages. Apart from the direct bene�t of having (annotated)

training data in a speci�c language of interest, scaling resources to cover more languages

o�ers the advantage of allowing for comparative studies across languages, for instance,

related to language-typological features (e.g., Bjerva et al., 2019). An example is here the

Universal Dependencies project (Nivre et al., 2017), which currently covers 90 languages.
3

However, the e�ciency of scaling resources across languages is limited because acquiring

the annotations needed for training neural networks in a supervised way can sometimes

be impractical. This is especially the case when it comes to languages with only a handful

of speakers, as well as domains and tasks, which require expert knowledge to successfully

complete the annotations, as it is the case for scienti�c annotations.

(2) Cross-lingual transfer. Cross-lingual transfer is an active research topic because it

alleviates the need for annotating large corpora in every language of interest. Instead, as

explained in Section 2.2.3, the idea is to transfer already acquired knowledge (general lan-

guage understanding knowledge and knowledge about a task) from a resource-rich source

language LS , e.g., English, to a resource-lean target language LT , e.g., Swahili. More

formally, given a domain de�ned as a tupleD = {X , P (X)}, with the feature spaceX ,

and its marginal probability distribution P (X), and a task T = {Y, P (Y ), P (Y |X)},

with the label spaceY , a prior distribution over the labels P (Y ), and a conditional prob-

ability distribution P (Y |X), in cross-lingual transfer, the feature spaces between the

source and the target language do not match, i.e.,XS 6= XT .

Cross-lingual transfer strategies for language repesentations can be classi�ed into

(a) strategies for static word embedding models (e.g., Mikolov et al., 2013b; Faruqui and

Dyer, 2014), and (b) strategies for contextualized word embedding models (e.g., Conneau

and Lample, 2019; Conneau et al., 2020a). (a) Ruder et al. (2019) propose a typology of

cross-lingual word embedding models according to the choice of the bilingual supervision

signal, i.e., their data requirements, which, in turn, can be categorized according to two

main dimensions: (1) the level of alignment, i.e., whether the alignment is required at

the word, sentence, or document level, and (2) the comparability, i.e., whether the data

sources providing the bilingual supervision signal have to be exact translations, that is,

parallel, or comparable data, which only requires some level of similarity, e.g., regarding the

topics discussed. As an example, the plethora of Wikipedia articles in di�erent languages

belongs to the class of comparable document-aligned data. The most popular class of

approaches consists of mapping-based methods, which rely on parallel world-level data.

Those methods seek to learn a transformation matrix W
S→T ∈ Rd×d, which maps a

monolingual word vector space trained in a source languageLS to one trained in a target

languageLT post hoc. For cross-lingual transfer with contextualized embedding models,

the current state-of-the-art relies on MMT models, such as mBERT (Devlin et al., 2019),

and XLM-R (Conneau et al., 2020a), which where multilingually pretrained at scale.

3
https://universaldependencies.org/
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Preceding work has demonstrated the e�ectiveness of the approach (e.g., Pires et al., 2019;

Wu and Dredze, 2019), which has, accordingly, become a de facto standard for cross-lingual

transfer. However, given that their ancestors, cross-lingual word embeddings, have been

shown to perform poorly on distant languages (e.g., Vulić et al., 2019) or languages with

smaller monolingual corpora (e.g., Vulić et al., 2020), it remains an open question how

good cross-lingual transfer with MMT models in challenging scenarios truly is, and by

which factors the transfer performance is determined.

Contribution(s). We start by quantifying the cross-lingual zero-shot gap when trans-

ferring from English to 21 other languages and examine the features which determine

the size of the resulting gap (e.g., for argumentative reasoning). We demonstrate huge

losses in performance. Next, we propose to move to e�cient few-shot target-language

�ne-tuning, which e�ectively mitigates the zero-shot transfer gap.

3.5 Ethical Considerations

The focus of the challenges outlined before lies on enriching or adapting language repre-

sentations to �nally reach better “classic” performance scores in CA tasks. However, in this

work, we acknowledge that, eventually, our systems will be deployed in a socio-technical

context, making us responsible for potential harms related to how we numerically repre-

sent text. As mentioned before (Subsection 2.2.4), especially for CA applications, this

has been identi�ed as a critical issue (Spliethöver and Wachsmuth, 2020).

Problem De�nition. Preceding work has identi�ed many ethical challenges in NLP (e.g.,

Hovy and Spruit, 2016). While some of the identi�ed challenges relate to technical sys-

tems as a whole, for instance, the idea that even technology designed for peaceful and

socially bene�cial use can be harmful (Jonas, 1984), others can be speci�cally attributed

to language representations. In the following, we list �ve main ethical challenges:

Privacy. Privacy research has shown that protected attributes, such as individuals’ gender,

can be inferred from language representations (e.g., Li et al., 2018; Coavoux et al., 2018).

Interpretability. A competing goal can be interpretability, e.g., by analyzing attention

weights (Serrano and Smith, 2019), which aims to increase users’ trust in system decisions

and to allow for increased human control by making predictions understandable.

Inclusion. Preceding work has shown that NLP systems often capture only the needs of a

certain group of people. As such, tagging performance correlates with author age (Hovy

and Søgaard, 2015), and for most of the world’s languages, NLP systems are not available.

Ecological Aspects. Recently, Strubell et al. (2019) showed that training the transformer-

based (Vaswani et al., 2017) BERT model on a GPU is equivalent to taking a trans-

American �ight. This �nding highlights the high energy consumption of NLP models

and warrants initiatives for more sustainable NLP, e.g., the SustainNLP Workshop.
4

4https://sites.google.com/view/sustainlp2020/home
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Bias. Outlined in Section 2.2.4, bias is a fundamental dilemma in machine learning. On

the one hand, preceding work has recognized the need for bias in learning (Mitchell,

1980), but, on the other hand, all steps involved in the machine learning pipeline, e.g.,

prioritizing certain solutions over others in the optimization process or selecting the

data needed for training, are biased. This can lead to systematic errors, which may result

in unfair systems. In NLP, this has speci�cally been shown for the case of language

representations: we, as humans, project our prejudices and stereotypes into the texts that

we produce, from which we then induce our language representations. As a result, they

will encode the same biases (Caliskan et al., 2017). In the following, we acknowledge this

issue’s speci�c importance and discuss preceding work on bias analysis and mitigation.

Existing Approaches. Preceding work addressed the problem of unfair stereotypical

bias in language representations by proposing measures and mitigation techniques.

Bias Measures. One of the earliest and most well-known bias tests designed for measur-

ing bias in static word embedding spaces is the so-called Word Embedding Association

Test (WEAT; Caliskan et al., 2017). It is derived from the Implicit Association Test from

psychology (Nosek et al., 2002), which measures implicit associations in terms of response

times of human subjects when exposed to certain sets of stimuli. WEAT models those re-

sponse times in terms of semantic similarity between the word vectors in the distributional

space. The idea of measuring biased associations in word representations via similarity of

word vectors has been similarly employed in other tests, e.g., in the Embedding Coherence

Test (Dev and Phillips, 2019) or in testing for biased analogies (Bolukbasi et al., 2016).

WEAT has also been extended to measure bias in contextualized embedding models via

sentence embeddings (May et al., 2019). Here, other authors also employ probabilities of

the language modeling objectives to measure whether sequences exhibiting stereotypes

are more likely than others (e.g., Bordia and Bowman, 2019).

Bias Mitigation Methods. Some techniques aim to debias the training data on which the

embeddings are induced. Known as counterfactual data augmentation (Lu et al., 2020),

the technique has the advantage that it is both applicable to static and contextualized

embedding models (Hall Maudslay et al., 2019; Webster et al., 2020; Zmigrod et al., 2019).

However, the obvious disadvantage of those techniques is that they require expensive

retraining of the models. Other authors have accordingly focused on post hoc debiasing

of the embedding spaces (e.g., Dev and Phillips, 2019). One of the �rst techniques in

this category is the so-called hard-debiasing of Bolukbasi et al. (2016), which relies on

identifying the bias subspace in the embedding space.

Contribution(s). As mentioned before, we mainly focus on addressing the issue of

stereotypical bias in language representations in order to pave the path towards fair CA

applications. To this end, we analyze biases in language representations and propose

a series of bias measures and bias mitigation techniques. In this context, we also test

models for stereotypically biased argumentative inferences. Besides, while addressing

other challenges, we also seek to account for some of the other ethical aspects mentioned

above: for instance, multilinguality is an inherently ethical problem. In order to make
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our systems inclusive and, thereby, to allow for truly democratic use of CA technology,

we need to make sure to provide consistent performance across a variety of languages.

This is especially challenging for those languages, which are considered to be resource-

lean. Related to multilinguality, we also present the most extensive analysis of biases in

language representations across multiple languages to date. Furthermore, we focus on

the computational analysis of scienti�c argumentation due to its potential for increased

knowledge access, which is, as it has been demonstrated in light of the ongoing COVID-19

pandemic, essential for societal welfare. Finally, we acknowledge the ecological impact of

training language representations. To this end, some of the techniques we propose are

explicitly designed to be resource-e�cient, e.g., the injection of external knowledge via

adapters layers and the few-shot target-language �ne-tuning approach.

We have now identi�ed �ve essential and diverse challenges in research on language

representation for CA. In the following Chapters, we dive into each of the outlined

challenges and present and discuss case studies on the anticipated solutions.
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Chapter 4

External Knowledge

As discussed (see Section 3.1), underrepresented external knowledge (C1) is one of the

main shortcomings of language representations for CA (Moens, 2018). In the following,

we address this issue by proposing two di�erent approaches for injecting two di�erent

types of external knowledge into contextualized embedding models: (1) we discuss how

to inject lexico-semantic knowledge via an additional pretraining objective, which leads

to a specialization of the language model for true semantic similarity. (2) Secondly, we

propose how to inject common sense and world knowledge post hoc into pretrained

language models by employing adapter-based training (Houlsby et al., 2019), which is

more parameter-e�cient and consequently, results in a smaller carbon footprint (C5).

We demonstrate the e�ectiveness of both approaches on CA and GNLU tasks, including

argumentative reasoning tasks, which speci�cally require the type of knowledge we inject.

4.1 Injecting Lexico-Semantic Knowledge in Pretraining

*Unsupervised pretraining models have been shown to facilitate a wide range of down-

stream NLP applications. These models, however, retain some of the limitations of

traditional static language representations. In particular, they encode only the distribu-

tional knowledge available in raw text corpora, incorporated through language modeling

objectives. This might lead to problems in higher-level NLU tasks, particularly in argu-

mentative reasoning tasks. In this Section, we complement such distributional knowledge

with external lexical knowledge from knowledge bases, that is, we integrate the discrete

knowledge on word-level semantic similarity into pretraining. To this end, we general-

ize the standard BERT model to a multi-task learning setting where we couple BERT’s

masked language modeling and next sentence prediction objectives with an auxiliary task

of binary word relation classi�cation. Our experiments suggest that our “Lexically In-

formed” BERT (LIBERT), specialized for the word-level semantic similarity, yields better

*
This Section is adapted from: Anne Lauscher, Ivan Vulić, Edoardo Maria Ponti, Anna Korhonen,

and Goran Glavaš. Specializing unsupervised pretraining models for word-level semantic similarity. In Pro-

ceedings of the 28th International Conference on Computational Linguistics (COLING), December 2020,

pages 1371–1383, Barcelona, Spain (Online), International Committee on Computational Linguistics.
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performance than the lexically blind “vanilla” BERT on several language understand-

ing tasks. Concretely, LIBERT outperforms BERT in 9 out of 10 tasks of the General

Language Understanding Evaluation (GLUE) benchmark and is on a par with BERT

in the remaining one. Moreover, we show consistent gains on 3 benchmarks for lexical

simpli�cation, a task where knowledge about word-level semantic similarity is paramount.

4.1.1 Introduction

Unsupervised pretraining models, such as GPT and GPT-2 (Radford et al., 2018, 2019),

ELMo (Peters et al., 2018), and BERT (Devlin et al., 2019) yield state-of-the-art perfor-

mance on a wide range of NLP tasks. All these models rely on language modeling (LM)

objectives that exploit the knowledge encoded in large text corpora. BERT (Devlin et al.,

2019), as one of the current state-of-the-art models, is, as explained in Section 2.2.2, pre-

trained on a joint objective consisting of two parts: (1) masked language modeling (MLM),

and (2) next sentence prediction (NSP). Through both of these objectives, BERT still

consumes only the distributional knowledge encoded by word co-occurrences.

While several concurrent research threads focus on makingBERT optimization more

robust (Liu et al., 2019) or on imprinting external world knowledge on its representa-

tions (Zhang et al., 2019; Sun et al., 2020; Liu et al., 2020; Peters et al., 2019a, inter alia),

no study yet has been dedicated to mitigating a severe limitation that contextualized

representations and unsupervised pretraining inherited from static embeddings: every

model that relies on distributional patterns has a tendency to con�ate together pure

lexico-semantic similarity with broad topic relatedness (Schwartz et al., 2015; Mrkšić et al.,

2017). However, as we demonstrated in Section 3.1, the di�erence between relatedness

and true similarity is often crucial for argumentative reasoning tasks (C1).

In the past, a plethora of models have been proposed for injecting linguistic con-

straints (i.e., lexical knowledge) from external resources to static language representa-

tions (Faruqui et al., 2015; Wieting et al., 2015; Mrkšić et al., 2017; Ponti et al., 2018, inter

alia) in order to emphasize a particular lexical relation in a specialized embedding space.

For instance, lexically informed word vectors specialized for pure semantic similarity

result in substantial gains in a number of downstream tasks where such similarity plays

an important role, for instance, in dialog state tracking (Mrkšić et al., 2017; Ren et al.,

2018) or for lexical simpli�cation (Glavaš and Vulić, 2018; Ponti et al., 2019b). Existing

specialization methods are, however, not directly applicable to unsupervised pretraining

models because they are either (1) tied to a particular training objective of a static word

embedding model or (2) predicated on the existence of a word-level embedding space

in which pairwise distances between static vectors can be modi�ed. As unsupervised

pretrained language models produce contextualized representations only, static word

representations do not exist in the encoder, and, consequently, it is not clear how to

modify such pairwise distances between word representations.

In this Section, we hypothesize that supplementing unsupervised LM-based pretrain-

ing with clean lexical information from structured external resources may also lead to

improved performance in language understanding tasks. We propose a novel method to in-

ject linguistic constraints, available from lexico-semantic resources like WordNet (Miller,
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1995) and BabelNet (Navigli and Ponzetto, 2012), into unsupervised pretraining mod-

els, and steer them towards capturing word-level semantic similarity. To train Lexically

Informed BERT (LIBERT), we (1) feed semantic similarity constraints to BERT as ad-

ditional training instances and (2) predict lexico-semantic relations from the constraint

embeddings produced by BERT’s encoder. In other words, LIBERT adds lexical relation

classi�cation (LRC) as the third pretraining task to BERT’s MTL framework.

We compare LIBERT to a lexically blind “vanilla” BERT on the GLUE benchmark

(Wang et al., 2019b), which includes several NLI benchmark data sets, and report their per-

formance on corresponding development and test portions. LIBERT yields performance

gains over BERT on 9/10 GLUE tasks (and is on a par with BERT on the remaining

one), with especially wide margins on tasks involving complex or rare linguistic structures

such as Diagnostic Natural Language Inference and Linguistic Acceptability. Moreover,

we assess the robustness and e�ectiveness of LIBERT on 3 di�erent data sets for lexical

simpli�cation (LS), a task proven to bene�t from word-level similarity specialization

(Ponti et al., 2019b). We report LS improvements of up to 8.2% when using LIBERT in

lieu of BERT. For direct comparability, we train both LIBERT and BERT from scratch,

and monitor the gains from specialization across iterations. Interestingly, these do not

vanish over time, which seems to suggest that our specialization approach is suitable also

for models trained on massive amounts of raw text data.

4.1.2 Related Work

Specialization for Semantic Similarity

The con�ation of disparate lexico-semantic relations in static word representations is an

extensively researched problem. For instance, clearly discerning between true semantic

similarity and broader conceptual relatedness in static embeddings bene�ts a range of

NLU tasks such as dialog state tracking (Mrkšić et al., 2017), text simpli�cation (Glavaš and

Vulić, 2018), and spoken language understanding (Kim et al., 2016). The most widespread

solution relies on the use of specialization algorithms to enrich word embeddings with

external lexical knowledge and steer them towards a desired lexical relation.

Joint specialization models (Yu and Dredze, 2014; Kiela et al., 2015; Liu et al., 2015;

Osborne et al., 2016; Nguyen et al., 2017, inter alia) jointly train word embedding models

from scratch and enforce the external constraints with an auxiliary objective. On the other

hand, retrofitting models are post-processors that �ne-tune pretrained word embeddings

by gauging pairwise distances according to the external constraints (Faruqui et al., 2015;

Wieting et al., 2015; Mrkšić et al., 2016, 2017; Jo and Choi, 2018).

More recently, retro�tting models have been extended to specialize not only words

found in the external constraints but rather the entire embedding space. In explicit

retrofitting models (Glavaš and Vulić, 2018, 2019), a (deep, non-linear) specialization

function is directly learned from external constraints. Post-specialization models (Vulić

et al., 2018; Ponti et al., 2018; Kamath et al., 2019), instead, propagate lexico-semantic

information to unseen words by imitating the transformation undergone by seen words

during the initial specialization. This family of models can also transfer specialization

across languages (Glavaš and Vulić, 2018; Ponti et al., 2019b).
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The goal of this work is to move beyond similarity-based specialization of static

word embeddings only. We present a novel methodology for enriching unsupervised

pretraining models such as BERT (Devlin et al., 2019) with readily available discrete

lexico-semantic knowledge and measure the bene�ts of such semantic specialization on

similarity-oriented downstream applications.

Injecting Knowledge into Unsupervised Pretraining Models

Unsupervised pretraining models do retain some of the limitations of static word em-

beddings. First, they still con�ate separate lexico-semantic relations as they learn from

distributional patterns. Second, they fail to fully capture the world knowledge necessary

for human reasoning: masked language models struggle to recover knowledge base (KB)

triples from raw texts (Petroni et al., 2019). Recent work has, for the most part, focused on

mitigating the latter limitation by injecting structured world knowledge into unsupervised

pretraining and contextualized representations.

In particular, these techniques fall into the following broad categories: i) masking

higher linguistic units of meanings, such as phrases or named entities, rather than in-

dividual WordPieces or BPE tokens (Zhang et al., 2019); ii) including an auxiliary task

in the objective, such as denoising auto-encoding of entities aligned with text (Zhang

et al., 2019), or continuous learning frameworks over a series of unsupervised or weakly

supervised tasks (e.g., capitalization prediction or sentence reordering) (Sun et al., 2020);

iii) hybridizing texts and graphs. Liu et al. (2020) proposed a special attention mask and

soft position embeddings to preserve their graph structure while preventing unwanted

entity-word interactions. Peters et al. (2019a) fuse language modeling with an end-to-end

entity linker, updating contextual word representations with word-to-entity attention.

As the main contributions of our work, we incorporate external lexico-semantic

knowledge, rather than world knowledge, in order to rectify the �rst limitation, namely

the distortions originating from the distributional signal. In fact, Liu et al. (2020) hy-

bridized texts also with linguistic triples relating words to sememes (minimal semantic

components); however, this incurs the opposite e�ect of reinforcing the distributional

signal based on co-occurrence. On the contrary, we propose a new technique to enable

the model to distinguish between purely similar and broadly related words.

4.1.3 LIBERT: Lexically Informed (Specialized) Pretraining

LIBERT, illustrated in Figure 4.1, is a joint specialization model. It augmentsBERT’s two

pretraining tasks – Masked Language Modeling (1. MLM) and Next Sentence Prediction

(2. NSP) – with an additional task of identifying (i.e., classifying) valid lexico-semantic

relations from an external resource (3. LRC). LIBERT is �rst pretrained jointly on all

three tasks. Similarly to BERT, after pretraining, LIBERT is �ne-tuned on training data

sets of downstream tasks. Based on the fundamentals of the BERT model described in

Section 2.2.2, we here provide the details of our lexically informed augmentation.

The base BERT model consumes only the distributional information. We aim to

steer the model towards capturing true semantic similarity (as opposed to conceptual

relatedness) by exposing it to clean external knowledge presented as the set of linguistic
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BERT
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[CLS] token representation

Next Sentence Prediction
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Masked Language Model

LLM

[CLS] token representation

Lexical Relation Classification
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Figure 4.1: Architecture of LIBERT – lexically informed BERT specialized with semantic

similarity constraints.

constraints C = {(w1, w2)(i)}Ni=1, i.e., pairs of words that stand in the desired rela-

tion, i.e., true semantic similarity, in some external lexico-semantic resource. Following

the successful work on semantic specialization of static word embeddings (see Subsec-

tion 4.1.2), in this work we select pairs of synonyms (e.g., car and automobile) and direct

hyponym-hypernym pairs (e.g., car and vehicle) as our semantic similarity constraints.
1

We transform the constraints fromC into a “BERT-compatible” input format and

feed them as additional training examples into the model in the pretraining stage. The

encoding of a constraint pair is then forwarded to the lexical relation classi�er, which

predicts whether the input word pair represents a valid lexical relation.

From Linguistic Constraints to Training Instances. We start from a set of linguistic

constraintsC = {(w1, w2)i}Ni=1 and an auxiliary static word embedding space Xaux ∈
Rd. The space Xaux can be obtained via any standard static word embedding model such

as skipGram (Mikolov et al., 2013c) or fastText (Bojanowski et al., 2017). We use the

latter in this work. Each constraint c = (w1, w2) corresponds to a true/positive relation

of semantic similarity, and thus represents a positive training example for the model. For

each positive example c, we create corresponding negative examples following prior work

on specialization of static embeddings (Wieting et al., 2015; Glavaš and Vulić, 2018; Ponti

et al., 2019b). We �rst group positive constraints from C into mini-batches Bp of size

k. For each positive example c = (w1, w2), we create two negatives ĉ1 = (ŵ1, w2)

1
As the goal is to inform the BERT model on the relation of true semantic similarity between words

(Hill et al., 2015), according to prior work on static word embeddings (Vulić, 2018), the sets of both synonym

pairs and direct hyponym-hypernym pairs are useful to boost the model’s ability to capture true semantic

similarity, which in turn has a positive e�ect on downstream language understanding applications.
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and ĉ2 = (w1, ŵ2) such that ŵ1 is the word from batchBp (other thanw1) closest to

w2 and ŵ2 the word (other thanw2) closest tow1, respectively, in terms of the cosine

similarity of their static vector representations in Xaux. This way we create a batchBn
of 2k negative training instances from a batchBp of k positive training instances.

Next, we transform each instance into a “BERT-compatible” format, i.e., into a

sequence of WordPiece (Johnson et al., 2017) tokens.
2

We split both w1 and w2 into

WordPiece tokens, insert the special separator token (with a randomly initialized embed-

ding) before and after the tokens ofw2 and prepend the whole sequence with BERT’s

sequence start token, as shown in this example for the constraint (mended, regenerated):
3

[CLS] men #ded [SEP] reg #ener #ated [SEP]
0 0 0 0 1 1 1 1

As in the original work (Devlin et al., 2019), we sum the WordPiece embedding of each

token with the embeddings of the segment and position of the token. We assign the

segment ID of 0 to the [CLS] token, allw1 tokens, and the �rst [SEP] token; segment

ID 1 is assigned to all tokens ofw2 and the �nal [SEP] token.

Lexical Relation Classi�er. Original BERT feeds transformer-encoded token repre-

sentations to two classi�ers: MLM classi�er (predicting the masked tokens), and the

NSP classi�er (predicting whether two sentences are adjacent). LIBERT introduces the

third pretraining classi�er: it predicts whether an encoded constraint pair represents a

desired lexico-semantic relation (i.e., a positive example where two words stand in the

relation of true semantic similarity – synonyms or hypernym-hyponym pairs) or not. Let

xCLS ∈ RH be the transformed vector representation of the sequence start token [CLS]
that encodes the whole constraint (w1, w2). Our lexical relation predictor (LRC) is a

simple softmax classi�er formulated as follows:

ŷ = softmax(xCLSW>
LRC + bLRC ) , (4.1)

with WLRC ∈ RH×2
and bLRC ∈ R2

as the classi�er’s trainable parameters. The

relation classi�cation lossLLRC is then simply the negative log-likelihood overk instances

in the training batch consisting of our lexical constraints:

LLRC = −
∑
k

ln ŷk · yk , (4.2)

where y ∈ {[0, 1], [1, 0]} is the true relation label for a word-pair training instance.

4.1.4 Language Understanding Evaluation

To isolate the e�ects of injecting external linguistic knowledge into BERT, we train base

BERT andLIBERT in the same setting: the only di�erence is that we additionally update

2
We use the same 30K WordPiece vocabulary as Devlin et al. (2019). Sharing WordPieces helps our word-

level task as lexico-semantic relationships are similar for words composed of the same morphemes.
3
The sign # denotes split WordPiece tokens.
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the parameters of LIBERT’s transformer encoder based on the gradients of the LRC loss

LLRC from Equation (4.2). In the �rst set of experiments, we probe the usefulness of

injecting semantic similarity knowledge on the well-known suite of GLUE tasks (Wang

et al., 2019b). Later, in Subsection 4.1.5, we additionally present an evaluation on lexical

simpli�cation, another task that has been shown to speci�cally bene�t from semantic

similarity specialization (Glavaš and Vulić, 2018).

Experimental Setup

Pretraining Data. We minimize BERT’s original objectiveLMLM +LNSP on training

examples that we obtain from the English Wikipedia.
4

We collect the set of constraints

C for the LLRC term from the body of previous work on semantic specialization of

static language representations (Zhang et al., 2014; Vulić et al., 2018; Ponti et al., 2018).

In particular, we collect 1,023,082 synonymy pairs from WordNet (Miller, 1995) and

from Roget’s Thesaurus (Kipfer, 2005) and combine them with 326,187 direct hyponym-

hypernym pairs (Vulić and Mrkšić, 2018) from WordNet.
5

Fine-Tuning (Downstream) Tasks. We evaluate BERT and LIBERT on the the fol-

lowing tasks from the GLUE benchmark (Wang et al., 2019b), where sizes of training,

development, and test data sets for each task are provided in Table 4.1:

Corpus of Linguistic Acceptability (CoLA). A binary sentence classi�cation task, in

which the model is asked to predict if sentences from linguistic publications are gram-

matically acceptable (Warstadt et al., 2019); note that grammaticality is related to to the

AQ quality aspect of clarity (see Subsection 2.1.2);

Stanford Sentiment Treebank v2 (SST-2). A binary sentence classi�cation, in which

the task is to predict sentiment (positive or negative) for movie review sentences (Socher

et al., 2013); note that movie reviews are argumentative texts with the argumentative intent

of recommending (Tindale, 2007) and that sentiment analysis in movies corresponds to

understanding users’ stances in argument assessment;

Microsoft Research Paraphrase Corpus (MRPC). A binary sentence-pair classi�ca-

tion, predicting whether two sentences are mutual paraphrases (Dolan and Brockett,

2005); being able to understand paraphrases, is bene�cial for argument recognition;

Semantic Textual Similarity Benchmark (STS-B). A sentence-pair regression task;

the task is predicting the degree of semantic similarity for a pair of sentences (Cer et al.,

2017); again, this relates to the ability of recognizing similar arguments;

Quora Question Pairs (QQP). A binary classi�cation task, in which the models are

tested for their ability to recognize question paraphrases (Chen et al., 2018); as before, we

need similar capabilities in argument recognition;

4
We acknowledge that training the models on larger corpora would likely lead to better absolute down-

stream scores; however, the main goal of this work is not to achieve state-of-the-art downstream perfor-

mance but to compare the base model against its lexically informed counterpart.
5
Note again that similar to the work of Vulić (2018), both WordNet synonyms and direct hyponym-

hypernym pairs are treated exactly the same: as positive examples for the relation of true semantic similarity.
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CoLA SST-2 MRPC STS-

B

QQP MNLI-

m

MNLI-

mm

QNLI RTE AX

# Train 8,551 67,349 3,668 5,749 363,870 392,702 392,702 104,743 2,490 –

# Dev 1,042 872 408 1,501 40,431 9,815 9,832 5,463 278 –

# Test 1,063 1,821 1,725 1,379 390,964 9,796 9,847 5,463 3,000 1,104

Table 4.1: Data set sizes for tasks in the GLUE benchmark (Wang et al., 2019b).

Multi-Genre Natural Language Inference (MNLI). Ternary NLI classi�cation of

sentence pairs (Williams et al., 2018). Two test sets are given: a matched version (MNLI-

matched (MNLI-m)) in which the test domains match with training data domains, and a

mismatched version (MNLI-mismatched (MNLI-mm)) with di�erent test domains;

Question NLI (QNLI). A binary classi�cation version of the Stanford question answer-

ing (QA) data set (Rajpurkar et al., 2016); inference capabilities are not only important in

argumentative reasoning but also relate to other semantically challenging tasks, e.g., QA;

Recognizing Textual Entailment (RTE). Another NLI data set, ternary entailment

classi�cation for sentence pairs (Giampiccolo et al., 2007);

Diagnostics (AX). A small, manually curated NLI data set (i.e., a ternary classi�cation

task), with examples encompassing di�erent linguistic phenomena relevant for entail-

ment (Wang et al., 2019b); we have already seen two example instances from this data set in

Section 3.1, when we discussed relevant types of knowledge in argumentative reasoning.
6

Training and Evaluation. We train both BERT and LIBERT from scratch, with the

con�guration of the BERTBASE model (Devlin et al., 2019): L = 12 transformer layers

with the hidden state size of H = 768, and A = 12 self-attention heads. We train

in batches of k = 16 instances;
7

the input sequence length is 128. The learning rate

for both models is 2 · 10−5
with a warm-up over the �rst 1, 000 training steps. Other

hyperparameters are set to the values reported by Devlin et al. (2019).

LIBERT combines BERT’s MLM and NSP objectives with our LRC objective in

a MTL setup. We update its parameters in a balanced alternating regime: (1) we �rst

minimize BERT’sLMLM + LNSP objective on one batch of masked sentence pairs and

then (2) minimize the LRC objectiveLLRC on one batch of linguistic constraints.

During �ne-tuning, for each task, we independently �nd the optimal hyperparameter

con�gurations of the downstream classi�ers for the pretrained BERT and LIBERT: this

implies that it is valid to compare their performances on the downstream development

sets. Finally, we evaluate �ne-tuned BERT and LIBERT on all 10 test sets.

6
Following Devlin et al. (2019), we do not evaluate on Winograd NLI, given its well-documented issues.

7
Due to hardware restrictions, we train in smaller batches than in the the original work (Devlin et al.,

2019) (k = 256). This means that for the same number of update steps, our models will have observed less

training data than the original BERT model of Devlin et al. (2019).
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CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE AX

MCC Acc F1/Acc Pears F1/Acc Acc Acc Acc Acc MCC

Dev

BERT 29.4 88.7 87.1/81.6 86.4 85.9/89.5 78.2 78.8 86.2 63.9 –

LIBERT 35.3 89.9 87.9/82.6 87.2 86.3/89.8 78.5 78.7 86.5 65.3 –

∆ +5.9 +1.2 +0.8/+1.0 +0.8 +0.4/+0.3 +0.3 -0.1 +0.3 +1.4 –
1M

Test

BERT 21.5 87.9 84.8/78.8 80.8 68.6/87.9 78.2 77.6 85.8 61.3 26.8

LIBERT 31.4 89.6 86.1/80.4 80.5 69.0/88.1 78.4 77.4 86.2 62.6 32.8

∆ +9.9 +1.7 +1.3/+1.6 -0.3 +0.4/+0.2 +0.2 -0.2 +0.4 +1.3 +6.0

Dev

BERT 30.0 88.5 86.4/81.1 87.0 86.3/89.8 78.8 79.3 86.6 64.3 –

LIBERT 37.2 89.3 88.7/84.1 88.3 86.5/90.0 79.6 80.0 87.7 66.4 –

∆ +7.2 +0.8 +2.3/+3.0 +1.3 +0.2/+0.2 +0.8 +0.7 +1.1 +2.1 –
2M

Test

BERT 28.8 89.7 84.9/79.1 81.1 69.0/88.0 78.6 78.1 87.2 63.4 30.8

LIBERT 35.3 90.8 86.6/81.7 82.6 69.3/88.2 79.8 78.8 87.2 63.6 33.3

∆ +6.5 +1.1 +1.7/+2.6 +1.5 +0.3/+0.2 +1.2 +0.7 +0.0 +0.2 +2.5

Table 4.2: Results on the 10 GLUE tasks after 1M and 2M MLM+NSP steps with BERT

and LIBERT, our lexically informed extension.
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Figure 4.2: Accuracy over time for BERT (blue) and LIBERT (green) on (a) SST-2 and

(b) MRPC on the corresponding development sets.

Results and Discussion

Main Results. The main results are summarized in Table 4.2: we report both develop-

ment set and test set performance. After 1M MLM+NSP steps, LIBERT outperforms

BERT on 8 out of 9 tasks (dev) and 8 out of 10 tasks (test). After 2M MLM+NSP steps,

LIBERT is superior in all 9 tasks (dev) and 9 out of 10 tasks (test). For the test set of the

tenth task (QNLI), LIBERT is on a par with BERT. While large gains are reported on

CoLA, AX, and visible gains appear on SST-2 and MRPC, it is encouraging to see that

slight and consistent gains are observed on almost all other tasks. These results suggest

that available external lexical knowledge can be used to supplement unsupervised pre-

training models with useful information which cannot be fully captured solely through

large text data and their distributional signal. The results indicate that LIBERT, our

lexically informed MTL method, successfully blends such curated linguistic knowledge

with distributional learning signals. It also further validates intuitions from relevant work

on specializing static word embeddings (Wieting et al., 2015; Mrkšić et al., 2017) that

steering distributional models towards capturing true semantic similarity (as also done

here) has a positive impact on language understanding applications in general.
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Coarse-grained Fine-grained

Model All LeS PAS Lo KCS LE MN Fa Re NE Qu

1M

BERT 26.8 24.5 38.8 19.6 12.8 17.5 29.3 04.9 22.5 15.6 57.2

LIBERT 32.8 35.2 39.7 25.3 19.4 28.5 51.4 18.7 59.2 18.0 56.9

∆ 6.0 10.7 0.9 5.7 6.6 11.0 22.2 13.8 36.7 2.4 -0.3

2M

BERT 30.8 31.3 40.0 21.7 19.7 21.2 51.3 09.1 59.2 21.0 60.5

LIBERT 33.3 40.6 39.9 24.5 18.3 33.2 72.0 21.0 59.2 18.3 68.4

∆ 2.5 9.3 -0.1 2.8 -1.4 12.0 20.7 11.9 0.0 -2.7 7.9

Table 4.3: Linguistic analysis of LIBERT’s and BERT’s predictions on the Diagnostic

data set. The scores areR3 coe�cients between gold and predicted labels, scaled by 100,

for sentences containing linguistic phenomena of interest. We report all the coarse-grained

categories: Lexical Semantics (LeS), Predicate-Argument Structure (PAS), Logic (Lo),

and Knowledge and Common Sense (KCS). Moreover, we report �ne-grained categories

for Lexical Semantics: Lexical Entailment (LE), Morphological Negation (MN), Factivity

(Fa), Redundancy (Re), Named Entities (NE), and Quantifiers (Qu).

Fine-grained Analysis. To understand how lexical information corroborates the model

predictions, we perform a �ne-grained analysis on the Diagnostic data set (Wang et al.,

2019b), measuring the performance of LIBERT on speci�c sets of NLI instances anno-

tated for the linguistic phenomena they contain. We report the results in Table 4.3. As

expected, Lexical Semantics is the category of phenomena that bene�ts the most (+43.7%

for 1M iterations, +29.7% for 2M), but with signi�cant gains also in phenomena related

to Logic (+29.1% for 1M and +29.1% for 2M) and Knowledge & Common Sense (+51.7% for

1M). Interestingly, these results seem to suggest that knowledge about semantic similarity

and lexical relations also partially encompasses factual knowledge about the world.

By inspecting even �ner-grained phenomena related to Lexical Semantics, LIBERT

outdistances its baseline by a large margin in: i) Lexical Entailment (+62.9% for 1M,

+56.6% for 2M), as expected from the guidance of hypernym-hyponym pairs; ii) Mor-

phological Negation (+75.8% for 1M, +40.4% for 2M). Crucially, the lower performance

of BERT cannot be explained by the low frequency of morphologically derived words

(prevented by the WordPiece tokenization), but exactly because of the distributional

bias and the resulting con�ation of lexico-semantic relationships. iii) Factivity (+281.7%

for 1M, +130.8% for 2M), which is a lexical entailment between a clause and the entire

sentence it is embedded in. Since it depends on speci�c lexical triggers (usually verbs

or adverbs), it is clear that lexico-semantic knowledge better characterizes the trigger

meanings. The improvement margin for Redundancy and Quantifiers �uctuate across

di�erent iterations; hence no conclusions can be drawn from the current evidence.

Performance over Time. Further, an analysis of the models’ performances over time

(in terms of MLM+NSP training steps for BERT and LIBERT) for one single-sentence

classi�cation task (SST-2) and one sentence-pair classi�cation task (MRPC) is reported in

Figures 4.2a and 4.2b. The scores clearly suggest that the impact of the external linguistic

knowledge does not vanish over time: the gains with the lexically informed LIBERT
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BenchLS LexMTurk NNSeval

# Steps P R F1 P R F1 P R F1

1M

BERT .2167 .1765 .1945 .3043 .1420 .1937 .1499 .1200 .1333

LIBERT .2348 .1912 .2108 .3253 .1518 .2072 .1646 .1318 .1464

∆ .0181 .0147 .0163 .0210 .0098 .0135 .0147 .0118 .0131

2M

BERT .2408 .1960 .2161 .3267 .1524 .2079 .1583 .1267 .1408

LIBERT .2766 .2252 .2483 .3700 .1727 .2354 .1925 .1541 .1712

∆ .0358 .0292 .0322 .0433 .0203 .0275 .0342 .0274 .0304

Table 4.4: Results on the lexical simpli�cation candidate generation task on three data sets:

BenchLS, LexMTurk, and NNSeval. For each data set we report the performance after

1M and 2M MLM+NSP steps (# Steps) with BERT and LIBERT in terms of Precision

(P), Recall (R), and F1-Measure (F1).

BenchLS LexMTurk NNSeval

# Steps Accuracy Accuracy Accuracy

1M

BERT .3854 .5260 .2469

LIBERT .4338 .6080 .2678

∆ .0484 .0820 .0209

2M

BERT .4241 .5920 .2594

LIBERT .4887 .6540 .2803

∆ .0646 .0620 .0209

Table 4.5: Results on the full lexical simpli�cation pipeline on three data sets: BenchLS,

LexMTurk, and NNSeval. For each data set we report the performance after 1M and 2M

MLM+NSP steps (# Steps) with BERT and LIBERT in terms of accuracy.

persist at di�erent time steps. This �nding again indicates the complementarity of useful

signals encoded in large text data versus lexical resources (Faruqui, 2016; Mrkšić et al.,

2017), which should be investigated more in future work.

4.1.5 Downstream Evaluation: Lexical Simpli�cation

Task Description. The goal of lexical simpli�cation is to replace a target word w in

a context sentence S with simpler alternatives of equivalent meaning. Generally, the

task can be divided into two main parts: (1) generation of substitute candidates and (2)

candidate ranking, in which the simplest candidate is selected (Paetzold and Specia, 2017).

Unsupervised approaches to candidate generation seem to be predominant lately (e.g.,

Glavaš and Štajner, 2015; Ponti et al., 2019b, inter alia). In this task, discerning between

pure semantic similarity and broad topical relatedness (as well as from other lexical rela-

tions such as antonymy) is crucial. Consider the example: Einstein unlocked the door to

the atomic age, where unlocked is the target word. In this context, the model should avoid

confusion both with related words (e.g., repaired) and opposite words (e.g., closed) that

�t in the context but alter the original meaning of the sentence.
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Experimental Setup. In order to evaluate the simpli�cation capabilities of LIBERT

versus BERT, we adopt a standard BERT-based approach to lexical simpli�cation (LS),

BERT-LS (Qiang et al., 2020). It exploits the BERT MLM pretraining task objective for

candidate generation. Given the complex word w and a context sentence S, we mask

w in a new sequence S′. Next, we concatenate S and S′ as a sentence pair and create

the BERT-style input by running WordPiece tokenization on the sentences, adding the

[CLS] and [SEP] tokens before, in-between, and after the sequence, and setting segment

IDs accordingly. We then feed the input either to BERT or LIBERT, and obtain the

probability distribution over the vocabulary outputted by the MLM predictor based on

the masked token p(·|S, S′\{w}). Based on this, we select the candidates as top k words

according to their probabilities, excluding morphological variations of the masked word.

For the substitution ranking component, we also follow Qiang et al. (2020). Given

the set of candidate tokensC , we compute for each ci inC a set of features: (1) BERT

prediction probability, (2) loss of the likelihood of the whole sequence according to

the MLM when choosing ci instead ofw, (3) semantic similarity between the fastText

vectors (Bojanowski et al., 2017) of the original wordw and the candidate ci, and (4) word

frequency of ci in the top 12 million texts of Wikipedia and in the Children’s Book Test

corpus.
8

Based on the individual features, we rank the candidates inC and consequently,

obtain a set of ranks for each ci. The best candidate is chosen according to its average

rank across all features. In our experiments, we �x the number of candidates k to 6.

Evaluation Data. We run the evaluation on three standard data sets for LS:

(1) LexMTurk (Horn et al., 2014). The data set consists of 500 English instances, which

are collected from Wikipedia. The complex word and the simpler substitutions were

annotated by 50 crowd workers on Amazon Mechanical Turk.

(2) BenchLS (Paetzold and Specia, 2016) is a merge of LexMTurk and LSeval (De Belder

and Moens, 2010) containing 929 sentences. The latter data set focuses on text simpli-

�cation for children. The authors of BenchLS applied additional corrections over the

instances of the two data set in order to provide a high-quality data set.

(3) NNSeval (Paetzold and Specia, 2017) is an English data set speci�cally focused on text

simpli�cation for non-native speakers and consists in total of 239 prediction instances.

Similar to BenchLS, the data set is based on LexMTurk, but �ltered for (a) instances

that contain a complex target word for non-native speakers and (b) lexical simpli�cation

candidates that were found to be non-complex by non-native speakers.

We report the scores on all three data sets in terms of Precision (P), Recall (R) and

F1-Measure (F1) for the candidate generation sub-task, and in terms of the standard lexical

simpli�cation metric of Accuracy (Horn et al., 2014; Glavaš and Štajner, 2015) for the

full simpli�cation pipeline. This metric computes the number of correct simpli�cations

(i.e., when the replacement made by the system is found in the list of gold standard

replacements) divided by the total number of target complex words.

8
A detailed description of these features can be found in the original work.
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Results and Discussion. The results for BERT and LIBERT for the simpli�cation

candidate generation task and for the full lexical simpli�cation pipeline evaluation are

provided in Table 4.4 and Table 4.5, respectively. We report the performance of both

models after 1M and 2M MLM+NSP pretraining steps. We observe that LIBERT consis-

tently outperforms BERT by at least 0.9 percentage points across all evaluation setups,

measures, and for all three evaluation sets. Same as in the GLUE evaluation, the gains do

not vanish as we train both models for a longer period of time (i.e., compare the di�er-

ences between the two models after 1M vs. 2M training steps). On the contrary, for the

candidate generation task, the gains of LIBERT over BERT are even more pronounced

after 2M steps. The gains achieved by LIBERT are also visible in the full simpli�cation

pipeline: for instance, on LexMTurk, replacing BERT with LIBERT yields a gain of 8.2

percentage points. In sum, these results con�rm the importance of specialization for true

semantic similarity for a similarity-oriented downstream task such as lexical simpli�cation.

4.1.6 Conclusion

Given the need for lexico-semantic knowledge in argumentative reasoning (see Section 3.1),

in this Section, we have presented LIBERT, a lexically informed extension of the state-of-

the-art unsupervised pretraining model BERT. Our model is based on a MTL framework

that allows us to steer (i.e., specialize) the purely distributionalBERTmodel to accentuate

a lexico-semantic relation of true semantic similarity (as opposed to broader semantic

relatedness), which is crucial in many argumentative reasoning tasks. The framework

combines standard BERT objectives with a third pretraining objective formulated as a

lexical relation classi�cation task. We evaluated the approach on CA tasks, e.g., NLI, and

other NLP tasks. The gains stemming from such explicit injection of lexical knowledge

from external knowledge sources into pretraining were observed for 9 out of 10 language

understanding tasks from the GLUE benchmark, as well as for 3 LS benchmarks.

As shown, injecting knowledge in the pretraining stage is e�ective, but pretraining

large transformer-based architectures is computationally expensive and therefore poses

the jeopardy of ecological damage (Strubell et al., 2019). This is why, in the next Section,

we focus on the injection of knowledge using an e�cient adapter-based approach.

4.2 Injecting Conceptual Knowledge via Adapters

*Following the major success of neural language models, such as BERT or GPT-2 on a

variety of language understanding tasks, recent work focused on injecting (structured)

knowledge from external resources into these models, which is crucial for argumentative

reasoning tasks (see Section 3.1). While on the one hand, joint pre-training (i.e., training

from scratch, adding objectives based on external knowledge to the primary LM objective)

*
This Section is adapted from: Anne Lauscher, Olga Majewska, Leonardo FR Ribeiro, Iryna

Gurevych, Nikolai Rozanov, and Goran Glavaš. Common Sense or World Knowledge? Investigating

adapter-based knowledge injection into pretrained transformers. In Proceedings of Deep Learning Inside

Out (DeeLIO): The First Workshop on Knowledge Extraction and Integration for Deep Learning Architec-

tures, pages 43–49, Online, November 2020, Association for Computational Linguistics.
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as presented in the previous Section may be prohibitively computationally expensive,

post hoc �ne-tuning on external knowledge, on the other hand, may lead to the catas-

trophic forgetting of distributional knowledge. In this Section, we investigate models for

complementing the distributional knowledge of BERTwith conceptual knowledge from

ConceptNet and its corresponding Open Mind Common Sense (OMCS) corpus using

adapter training. While overall results on the GLUE benchmark paint an inconclusive

picture, a deeper analysis reveals that our adapter-based models substantially outperform

BERT (up to 15–20 performance points) on argumentative inference tasks that require

the type of conceptual knowledge explicitly present in ConceptNet and OMCS.

4.2.1 Introduction

Self-supervised neural models like ELMo (Peters et al., 2018), BERT (Devlin et al., 2019;

Liu et al., 2019), GPT (Radford et al., 2018, 2019), or XLNet (Yang et al., 2019) have

rendered language modeling a very suitable pretraining task for learning language repre-

sentations that are useful for a wide range of language understanding tasks (Wang et al.,

2019b,a). Although shown versatile w.r.t. the types of knowledge (Rogers et al., 2020)

they encode, much like their predecessors – static word embedding models (Mikolov

et al., 2013c; Pennington et al., 2014) – neural language models still only “consume” the

distributional information from large corpora. Yet, a number of structured knowledge

sources exist – general purpose KBs (Suchanek et al., 2007; Auer et al., 2007) and lexico-

semantic networks (Miller, 1995; Liu and Singh, 2004; Navigli and Ponzetto, 2010) –

encoding many types of knowledge that are underrepresented in text corpora and play an

important role in argumentative reasoning (see Section 3.1, C1).

Starting from this observation, most recent e�orts focused on injecting factual (Zhang

et al., 2019; Liu et al., 2020; Peters et al., 2019a) and, as also in the previous Section, linguis-

tic knowledge (Peters et al., 2019a) into pretrained language models and demonstrated

the usefulness of such knowledge in language understanding tasks (Wang et al., 2019b,a).

Joint pretraining models, on the one hand, augment distributional LM objectives with

additional objectives based on external resources (Yu and Dredze, 2014; Nguyen et al.,

2016) and train the extended model from scratch. We proposed such a procedure in

Section 4.1. For models like BERT, however, this implies computationally expensive

retraining from scratch of the encoding transformer network. post hoc fine-tuning models

(Zhang et al., 2019; Liu et al., 2020; Peters et al., 2019a), on the other hand, use the ob-

jectives based on external resources to �ne-tune the encoder’s parameters, pretrained via

distributional LM objectives. If the amount of �ne-tuning data is substantial, however,

this approach may lead to (catastrophic) forgetting of distributional knowledge obtained

in pretraining (Goodfellow et al., 2014; Kirkpatrick et al., 2017).

In this Section, similar to the concurrent work of Wang et al. (2020), we resort to

the recently proposed adapter-based fine-tuning paradigm (Rebu� et al., 2018; Houlsby

et al., 2019), which remedies for shortcomings of both joint pretraining and standard post

hoc �ne-tuning. Adapter-based training injects additional parameters into the encoder

and only tunes their values: the original transformer parameters are kept �xed. Because of

freezing these layers, adapter training preserves the distributional information obtained
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in LM pretraining, without the need for any distributional (re-)training. While (Wang

et al., 2020) inject factual knowledge from Wikidata (Vrandečić and Krötzsch, 2014) into

BERT, in this work, we investigate two resources that are commonly assumed to contain

general-purpose and common sense knowledge,
9

types of knowledge that are useful for

argumentative reasoning tasks: ConceptNet (Liu and Singh, 2004; Speer et al., 2017) and

the Open Mind Common Sense (OMCS) corpus (Singh et al., 2002), from which the

ConceptNet graph was (semi-)automatically induced. For our �rst model, dubbed CN-

Adapt, we �rst create a synthetic text corpus by randomly traversing the ConceptNet

graph and then learn adapter parameters with MLM training (Devlin et al., 2019) on

that synthetic corpus. For our second model, named OM-Adapt, we learn the adapter

parameters via MLM training directly on the OMCS corpus.

As in Section 4.1, we evaluate both models on the GLUE benchmark, which contains

a variety of tasks relevant for CA, where we observe limited improvements over BERT on

a subset of GLUE tasks. However, a more detailed inspection reveals large improvements

over the base BERT model (up to 20 Matthews correlation points) on language inference

(NLI) subsets labeled as requiring World Knowledge or knowledge about Named Entities.

Investigating further, we relate this result to the fact that ConceptNet and OMCS contain

much more of what in downstream is considered to be factual world knowledge than

what is judged as common sense knowledge. Our �ndings pinpoint the need for more

detailed analyses of the compatibility between (1) the types of knowledge contained by

external resources; and (2) the types of knowledge that bene�t concrete downstream tasks;

within the emerging body of work on injecting knowledge into pretrained transformers.

4.2.2 Knowledge Injection Models

In this work, we are primarily set to investigate if injecting speci�c types of knowledge

(given in the external resource) bene�ts downstream argumentative inference that clearly

requires those exact types of knowledge. Because of this, we resort to arguably the most

straightforward mechanisms for injecting the ConceptNet and OMCS information

into BERT and leave the exploration of potentially more e�ective knowledge injection

objectives for future work. We inject the external information into adapter parameters

of the adapter-augmented BERT (Houlsby et al., 2019) via BERT’s natural objective

– MLM, explained in Section 2.2.2. OMCS, already a corpus in natural language, is

directly subjectable to MLM training – we �ltered out non-English sentences. To subject

ConceptNet to MLM training, we need to transform it into a (synthetic) corpus.

Unwrapping ConceptNet. Following established previous work (Perozzi et al., 2014;

Ristoski and Paulheim, 2016), we induce a synthetic corpus from ConceptNet by ran-

domly traversing its graph. We then convert the relation strings, which are part of the

obtained walks, into natural language phrases (e.g., synonyms to is a synonym of ) and

duplicate the object node of a triple, using it as the subject for the next sentence. For

example, from the path “alcoholism
causes−−−−→ stigma

hasContext−−−−−→ christianity

partOf

−−−→ religion”

9
Our results in Subsection 4.2.3 scrutinize this assumption.
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we create the text “alcoholism causes stigma. stigma is used in the context of christianity.

christianity is part of religion.”. We set the walk lengths to 30 relations and sample the

starting and neighboring nodes from uniform distributions. In total, we performed

2,268,485 walks, resulting in a corpus of 34,560,307 synthetic sentences.

Adapter-Based Training. We follow Houlsby et al. (2019) and adopt the adapter-

based architecture for which they report solid performance across the board. We inject

bottleneck adapters into BERT’s transformer layers. In each transformer layer, we insert

two bottleneck adapters: one after the multi-head attention sub-layer and another after

the feed-forward sub-layer. Let X ∈ RT×H be the sequence of contextualized vectors

(of size H) for the input of T tokens in some transformer layer, input to a bottleneck

adapter. The bottleneck adapter, consisting of two feed-forward layers and a residual

connection, yields an output de�ned as follows:

Adapter(X) = X + f (XWd + bd) Wu + bu , (4.3)

where the matrices Wd (with the bias bd) and Wu (with the bias bu) are the adapter’s

parameters, that is, the weights of the linear down-projection and up-projection sub-

layers and f is the non-linear activation function. Matrix Wd ∈ RH×m compresses the

vectors in X to the adapter size m << H , and the matrix Wu ∈ Rm×H projects the

activated down-projections back to the transformer’s original hidden sizeH .

4.2.3 Evaluation

We �rst brie�y describe the downstream tasks and training details and then proceed with

the discussion of results obtained with our adapter models.

Experimental Setup

Downstream Tasks. We evaluate BERT and our two adapter-based models, CN-

Adapt and OM-Adapt, with injected knowledge from ConceptNet and OMCS, re-

spectively, on the tasks from the GLUE benchmark (Wang et al., 2019b), described in

Section 4.1.4. The benchmark contains a large variety of tasks, which are relevant to CA.

Training Details. We inject our adapter layers into a BERTBASE model (12 trans-

former layers with 12 attention heads each;H = 768) pretrained on lowercased corpora.

Following (Houlsby et al., 2019), we set the size of all adapters tom = 64 and use gaus-

sian error linear unit (Hendrycks and Gimpel, 2016) as the adapter activation function

f . We train the adapter parameters with the Adam algorithm (Kingma and Ba, 2015)

and set the initial learning rate to 1 · 10−4
, with 10000 warm-up steps and the weight

decay factor of 0.01. In the downstream �ne-tuning, we train in batches of size 16 and

limit the input sequences to T = 128 WordPiece tokens. For each task, we �nd the

optimal hyperparameter con�guration by searching in the following grid: learning rate

l ∈ {2 · 10−5, 3 · 10−5} and epochs in n ∈ {3, 4}.
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Model CoLA SST-2 MRPC STS-B QQP MNLI-m MNLI-mm QNLI RTE AX Avg

MCC Acc F1 Spear F1 Acc Acc Acc Acc MCC –

BERT Base 52.1 93.5 88.9 85.8 71.2 84.6 83.4 90.5 66.4 34.2 75.1

OM-Adapt (25K) 49.5 93.5 88.8 85.1 71.4 84.4 83.5 90.9 67.5 35.7 75.0

OM-Adapt (100K) 53.5 93.4 87.9 85.9 71.1 84.2 83.7 90.6 68.2 34.8 75.3

CN-Adapt (50K) 49.8 93.9 88.9 85.8 71.6 84.2 83.3 90.6 69.7 37.0 75.5

CN-Adapt (100K) 48.8 92.8 87.1 85.7 71.5 83.9 83.2 90.8 64.1 37.8 74.6

Table 4.6: Results on test portions of GLUE benchmark tasks. Numbers in parentheses

next to adapter-based models (25K, 50K, 100K) indicate the number of update steps of

adapter training on the synthetic ConceptNet corpus (forCN-Adapt) or on the original

OMCS corpus (for OM-Adapt). Bold: the best score in each column.

Results and Analysis

GLUE Results. Table 4.6 reveals the performance of CN-Adapt and OM-Adapt

in comparison with BERTBASE on the GLUE evaluation tasks.
10

We show the results

for two snapshots of OM-Adapt, after 25K and 100K update steps, and for two snap-

shots of CN-Adapt, after 50K and 100K steps of adapter training. Overall, none of our

adapter-based models with injected external knowledge from ConceptNet or OMCS

yields signi�cant improvements over BERT Base on GLUE. However, we observe sub-

stantial improvements (of around 3 points) on RTE and on the Diagnostics NLI data

set (AX), which encompasses inference instances that require a speci�c type of knowledge.

Since our adapter models draw speci�cally on the conceptual knowledge encoded in

ConceptNet and OMCS, we expect the positive impact of injected external knowledge

– assuming e�ective injection – to be most observable on test instances that target the

same types of conceptual knowledge. To investigate this further, we measure the model

performances across di�erent categories of the Diagnostic NLI data set (as in Section 4.1).

This allows us to tease apart inference instances which truly test the e�cacy of our

knowledge injection methods. We show the results obtained on di�erent categories of the

Diagnostic NLI data set in Table 4.7. The improvements of our adapter-based models over

BERTBase on these phenomenon-speci�c subsections of the Diagnostics NLI data set are

generally much more pronounced: e.g., OM-Adapt (25K) yields a 7% improvement on

inference that requires factual or common sense knowledge (KCS), whereas CN-Adapt

(100K) yields a 6% boost for inference that depends on lexico-semantic knowledge (LeS).

These results suggest that (1) ConceptNet and OMCS do contain the speci�c types of

knowledge required for these inference categories and that (2) we managed to inject that

knowledge into BERT by training adapters on these resources.

10
Note that these results are not comparable with Table 4.2, as the originalBERT checkpoint from which

we start here, has seen more and slightly di�erent data than the model we trained from scratch in Section 4.1.
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Model LeS KCS Lo PAS All

BERT Base 38.5 20.2 26.7 39.6 34.2

OM-Adapt (25K) 39.1 27.1 26.1 39.5 35.7

OM-Adapt (100K) 37.5 21.2 27.4 41.0 34.8

CN-Adapt (50K) 40.2 24.3 30.1 42.7 37.0

CN-Adapt (100K) 44.2 25.2 30.4 41.9 37.8

Table 4.7: Breakdown of Diagnostics NLI per-

formance (Matthews correlation), according to

information type needed for inference (coarse-

grained categories): Lexical Semantics (LeS),

Knowledge and Common Sense (KCS), Logic

(Lo), and Predicate-Argument Structure (PAS).

Model CS World NE

BERT Base 29.0 10.3 15.1

OM-Adapt (25K) 28.5 25.3 31.4

OM-Adapt (100K) 24.5 17.3 22.3

CN-Adapt (50K) 25.6 21.1 26.0

CN-Adapt (100K) 24.4 25.6 36.5

Table 4.8: Results (Matthews correla-

tion) on Common Sense (CS), World

Knowledge (World), and Named Enti-

ties (NE) categories of the Diagnostic

NLI data set. Our models outperform

BERT on World and NE knowledge.

Fine-Grained Knowledge Type Analysis. In our �nal analysis, we “zoom in” our

models’ performances on three �ne-grained categories of the Diagnostics NLI data

set – inference instances that require Common Sense Knowledge (CS), World Knowl-

edge (World), and knowledge about named entities (NE), respectively. The results for

these �ne-grained categories are given in Table 4.8. These results show an interesting

pattern: our adapter-based knowledge-injection models massively outperform BERT

Base (up to 15 and 21 MCC points, respectively) for NLI instances labeled as requiring

World Knowledge or knowledge about Named Entities. In contrast, we see drops in

performance on instances labeled as requiring common sense knowledge. This initially

came as a surprise, given the common belief that OMCS and ConcepNet contain the

so-called common sense knowledge. A manual follow-up analysis of the diagnostic test

instances from both CS and World categories uncovers a noticeable mismatch between

the kind of information that is considered common sense in KBs like ConceptNet and

what is considered common sense knowledge in the downstream. In fact, the majority

of information present in ConceptNet and OMCS falls under the World Knowledge

de�nition of the Diagnostic NLI data set, including factual geographic information

(stockholm [partOf] sweden), domain knowledge (roadster [isA] car) and

specialized terminology (indigenous [synonymOf] aboriginal). Diagnostic NLI

examples from the World Knowledge and Common Sense categories are depicted in Ta-

ble 4.9. In contrast, many of the common sense inference instances require complex,

high-level reasoning, understanding metaphorical and idiomatic meaning, and making

far-reaching connections. In such cases, explicit conceptual links often do not su�ce for

a correct inference and much of the required knowledge is not explicitly encoded in the

external resources. Consider, e.g., the following common sense NLI instance: [premise:
My jokes fully reveal my character ; hypothesis: If everyone believed my jokes, they’d

know exactly who I was ; entailment]. While ConceptNet and OMCS may associate

character with personality or personality with identity, the knowledge that the phrase who

I was may refer to identity is beyond these resources.
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Knowledge Premise Hypothesis ConceptNet?

World The sides came to

an agreement after

their meeting in

Stockholm.

The sides came to an

agreement after their

meeting in Sweden.

stockholm [partOf]

sweden

Musk decided to o�er

up his personal Tesla

roadster.

Musk decided to o�er

up his personal car.

roadster [isA] car

The Sydney area has

been inhabited by in-

digenous Australians

for at least 30,000 years.

The Sydney area has

been inhabited by

Aboriginal people

for at least 30,000

years.

indigenous

[synonymOf]

aboriginal

Common Sense My jokes fully reveal

my character.

If everyone believed my

jokes, they’d know ex-

actly who I was.

The systems thus pro-

duced are incremental:

dialogues are processed

word-by-word, shown

previously to be essen-

tial in supporting nat-

ural, spontaneous dia-

logue.

The systems thus pro-

duced support the ca-

pability to interrupt

an interlocutor mid-

sentence.

He deceitfully pro-

claimed: “This is all I

ever really wanted.”

He was satisfied.

Table 4.9: Premise-hypothesis examples from the diagnostic NLI data set tagged for

common sense and world knowledge, and relevant ConceptNet relations, where available.

4.2.4 Conclusion

In this Section, we presented two simple strategies for injecting knowledge from Concept-

Net and OMCS, respectively, into BERT via bottleneck adapters. Additional adapter

parameters store the external knowledge and allow for the preservation of the corpus

knowledge obtained in the pretraining of the original transformer parameters. We demon-

strated the e�ectiveness of these models in language understanding settings that require

precisely the type of knowledge one �nds in ConceptNet and OMCS, in which our

adapter-based models outperform BERT up to 20 performance points. Our �ndings

stress the importance of detailed analyses comparing the types of knowledge found in

external sources and the types of knowledge needed in concrete reasoning tasks.

72



4. EXTERNAL KNOWLEDGE

To address the challenge of underrepresented external knowledge in distributional lan-

guage representation models for CA (C1), in this Chapter, we presented two case studies

grounded for knowledge injection from external sources: (1) injection of lexico-semantic

constraints via an additional pretraining objective, and (2) injection of conceptual knowl-

edge via adapter layers. Next, we address (C2), domain-speci�c knowledge.
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Chapter 5

Domain Knowledge

*Given that argumentation exists in a large variety of domains, e.g., scienti�c writing,

a challenge for language representations for CA is their suitability for domain-speci�c

scenarios (C2, see Section 3.2). As discussed before, one possibility is to identify domain-

speci�c data from which, in turn, domain-speci�c language representations can be in-

duced. However, this might not always result in improved performance in downstream

tasks, as the degree of speci�city of the particular domain along the hierarchy of topics and

genres can correlate with the amount of data available. This can imply a trade-o� between

bigger and more noisy vs. smaller and more homogeneous data, a�ecting the quality

of the resulting embeddings. In order to address the challenge of domain-speci�city in

language representations for computational argumentation, we focus on analyzing this

trade-o� for the case of scienti�c argumentation. In particular, we study the impact of

employing general vs. general scienti�c vs. CL-speci�c corpora in order to induce word

embeddings for semantically characterizing citations in NLP and CL publications in

terms of polarity and purpose, tasks which fall under the category of scitorics (see Sec-

tions 2.1.3 and 2.1.4, respectively). To this end, we frame polarity and purpose detection as

classi�cation tasks and investigate the performance of convolutional networks with gen-

eral and domain-speci�c word embeddings on these tasks. Our best-performing model

outperforms previously reported results on a benchmark data set by a wide margin.

5.1 Introduction

Citations play a vital role in scienti�c argumentation as they connect the authors’ mono-

logical argument to the overall scienti�c discourse (see Section 2.1.3). Acknowledging

the importance of these references, citation graphs and citation indices have long been

supporting various analyses in the sociology of science (Gar�eld, 1955; Gar�eld et al., 1984).

As such, citation graphs are used to detect research communities and retrace the evolution

*
This Chapter is adapted from: Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto, and Kai Eck-

ert. Investigating convolutional networks and domain-speci�c embeddings for semantic classi�cation of

citations. In Proceedings of the 6th International Workshop on Mining Scientific Publications, pages 24–28,

Toronto, ON, Canada, December 2017, ACM Press.
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of ideas within the scienti�c discourse over time. Various measures re�ecting the impact

of a publication, journal, or author exploit only raw citation counts. For example, the

h-index (Hirsch, 2005) is commonly used to assess the impact of a researcher.

Purely quantitative measures alone, however, may often be misleading regarding the

positive impact of some research. For example, a publication on widely-criticized work

will still have a large number of citations. Being based on simple counts, quantitative

scientometric measures re�ect quantitative rather than qualitative aspects of research

– we are not only interested in how often a work is cited, but also why it is being cited,

and accordingly, which argumentative intent caused the citer to refer to another work.

Knoth and Herrmannova (2014) recently introduced the term semantometrics to describe

a new category of scientometric measures that account for qualitative aspects of citations.

Automated qualitative analysis of publications is challenging, as it requires processing

the textual content of all citing publications. Historically, models for qualitative analysis

of citations employ a range of heavily manually-engineered features.

In this Chapter, we evaluate models that require virtually no feature engineering on

tasks of citation polarity and purpose classi�cation while, at the same time, we seek to

understand the e�ect of domain-speci�city of our employed language representations (see

Section 3.2). Citation polarity (also known as citation sentiment classi�cation) assigns

a polarity (positive, negative, or neutral) to a citation, considering the citation context

(Athar, 2011). Citation purpose classi�cation (also known as citation function and citation

intent classi�cation, see Section 2.1.4) is a more �ne-grained type of analysis that aims to

provide a functional characterization of a citation (Teufel et al., 2006).

The contributions of this work are twofold. First, following a series of successful

applications of convolutional neural networks (CNNs; LeCun and Bengio, 1998) in

short text classi�cation (Kim, 2014; Kalchbrenner et al., 2014), we present the �rst CNN

application in the area of qualitative citation analysis. Using CNNs allows us to avoid

extensive feature-engineering present in existing semantometric models. Secondly, we

investigate the impact of using domain-speci�c word embeddings.
1

Experimental results on a benchmark data set show that our best performing models

outperform previously reported results for both classi�cation tasks by a wide margin.

5.2 Related Work

A signi�cant body of work exists both for citation polarity classi�cation (Athar, 2011;

Jochim and Schütze, 2012; Abu-Jbara et al., 2013; Kim and Thoma, 2015) and citation

purpose classi�cation (Teufel et al., 2006; Dong and Schäfer, 2011).

Athar (2011) �rst worked on citation polarity classi�cation, combining a range of lexi-

cal, dictionary-based, and syntactic features with a linear support vector machines (SVM)

classi�er. Similarly, Jochim and Schütze (2012) fed a range of features for citation polarity

classi�cation to a maximum entropy classi�er, whereas Kim and Thoma (2015) trained

an SVM model with radial basis function (RBF) kernel using occurrence statistics of

1
The domain-speci�c word vector representations produced in this research are available for download

at: https://github.com/anlausch/scientific-domain-embeddings.
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n-grams in an annotated corpus as features. Teufel et al. (2006) classi�ed function of

citations into one of 12 categories. They employed a k-NN classi�er using cue phrases,

self-citation, and the position of the citing sentence as features. Dong and Schäfer (2011)

analyzed the e�ectiveness of di�erent feature groups (e.g., positional, lexical, syntactic)

for function classi�cation over a range of classi�ers, pointing to syntactic features as being

most useful. Xu et al. (2013) focused on discerning functional from perfunctory citations,

using a combination of textual and external features. Abu-Jbara et al. (2013) and Jha et al.

(2016) addressed both polarity and purpose classi�cation with an SVM employing an

extended set of features such as speculation cues and self-citation indicators. All of the

above models rely on heavy manual feature design and feature engineering.

Jochim and Schütze (2014) were the �rst to apply a deep learning model to the citation

polarity classi�cation. In a domain-adaption setting, they trained a marginalized stacked

denoising autoencoders (mSDA) model on product reviews and used it to predict the

polarity of citations. To the best of our knowledge, there have been no attempts to apply

convolutional neural networks, achieving state-of-the-art performance on a range of text

classi�cation tasks (Kim, 2014; Kalchbrenner et al., 2014; Severyn and Moschitti, 2015;

Shrestha et al., 2017, inter alia), to citation context analysis.

5.3 Classi�cation Models

Our primary goals are to avoid tedious feature engineering for citation classi�cation and to

understand the trade-o� between larger, more heterogeneous vs. smaller, more homoge-

neous corpora for inducing word embeddings. Here, we describe two models that satisfy

the �rst criterion, and which we will employ in our experiments towards understanding

the degree of domain-speci�city that is bene�cial for the models’ performances.

5.3.1 Convolutional Neural Network

CNNs (LeCun and Bengio, 1998), introduced to the NLP community by Collobert and

Weston (2008), exhibit state-of-the-art performance on a range of text classi�cation tasks

(Kim, 2014; Severyn and Moschitti, 2015; Shrestha et al., 2017). A CNN is a feed-forward

neural network consisting of one or more convolution layers. Each convolution layer

consists of a set of �lters. When applied to textual data, convolutions of �lters and text

slices – matrices produced by sequentially sliding a window of size k over the embedding-

based representation of text – are computed. Each convolution layer is followed by a

pooling layer, which subsamples the output of the convolution layer (e.g., by takingN
maximal values). This architecture allows the network to capture local aspects, i.e., the

most informative k-grams in text for the task. We use a CNN with a single convolution

and single max-pooling layer. We use recti�ed linear unit activation and optimize the

network parameters with the RMSprop algorithm (Tieleman and Hinton, 2012) to

minimize the cross-entropy loss. To be subdued to a CNN, texts must be represented

as numerical vectors, which can be achieved by using word embeddings (Mikolov et al.,

2013c; Pennington et al., 2014, inter alia). More precisely, each text is represented as a

matrix of sizeN × L, whereN is the length of the text (in number of tokens), and L
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is the length of the word embeddings. Because the CNN expects the same number of

features for all texts, all instances must be of equal length. In our experiments, we setN
to the length of the longest text in the data set and pad all other sentences with a special

padding token to which we assign a random embedding vector.

5.3.2 SVM with Embedding Features

Having in mind (1) that SVM has been widely used for citation polarity and purpose

classi�cation and (2) that by employing word embeddings, we may still avoid manual

feature engineering and study the domain-speci�city of those, we decided to compare

CNN’s performance to that of an SVM model using the semantic embedding of the text.

We compute the embedding of the text as weighted continuous bag of words (WCBOW)

aggregation of word embeddings (Mikolov et al., 2013c):

WCBOW(t1, . . . , tk) =
1∑k
i=1 ai

k∑
i=1

aiti , (5.1)

where ti is the i-th token of a k-token-long text, ti is the word embedding of the token

ti, and ai is the TF–IDF weight of the token. We compute the TF–IDF weight on the

training set and use it in order to re�ect the relative informativeness of words. This results

in a single aggregate embedding vector for each text, which we then feed to the SVM

classi�er with a radial basis function (RBF) kernel.

5.3.3 General vs. Domain-Speci�c Word Embeddings

Both above models use static language representations – semantic vectors that capture

the meaning of words (see Section 2.2.2). As discussed before, those representations

are generally trained in a self-supervised manner on large general-domain corpora, e.g.,

Wikipedia. However, in all our experiments, we classify argumentative texts involving

citations from a speci�c subdomain of scienti�c publications: from the area of NLP and

CL (see Section 5.4). A research question that naturally arises and which relates to one

of the �ve main challenges in the context of language representations for CA (C2, see

Section 3.2) is whether domain-speci�c word embeddings, i.e., static word embeddings

trained on an in-domain corpus, would lead to better classi�cation performance than

word embeddings trained on general-domain corpora. To investigate the e�ects of using

domain-speci�c embeddings, we evaluate three di�erent variants of the above two models,

employing (1) general word embeddings, (2) embeddings trained on domain corpora

consisting of scienti�c publications from various research �elds, and (3) embeddings

trained on a narrowly in-domain corpus of publications from the area of NLP and CL.

5.4 Data

We brie�y describe the corpora used to train di�erent language representation spaces and

the classi�cation data set used in our experiments.
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Data set Size (in tokens)

Wikipedia + GigaWord 6,000,000,000

CORE corpus 2,530,738,678

ACL Reference Corpus 81,365,802

Table 5.1: Corpora used to train word

embeddings. The corpus with the high-

est degree of domain-speci�city with re-

spect to our target argumentative domain

is the smallest (ACL Reference Corpus),

while our largest corpus is the least domain-

speci�c (Wikipedia + Giga Word).

Classi�cation Label Proportion

Polarity positive 32.6%

negative 12.4%

neutral 55.0%

Purpose criticizing 16.3%

comparison 8.1%

use 18.0%

substantiating 8.0%

basis 5.3%

neutral 44.3%

Table 5.2: Citation label distributions.

5.4.1 Word Embeddings Corpora

We experimented with 50-dimensional GloVe embeddings (Pennington et al., 2014)

trained on three di�erent corpora: (1) general domain (Wikipedia + GigaWord corpus),
2

(2) the CORE corpus of scienti�c publications aggregated from Open Access repositories

and journals (Knoth and Zdrahal, 2012), and (3) the Association for Computational Lin-

guistics (ACL) Reference Corpus
3

(Bird et al., 2008). We compare the sizes of these three

corpora in Table 5.1. The CORE corpus is signi�cantly larger than the ACL Reference

Corpus, as it aggregates publications over various disciplines, whereas the ACL Reference

Corpus only contains publications related to CL and NLP. Accordingly, the sizes of these

corpora are inversely correlated with their homogeneity.

5.4.2 Citation Classi�cation Corpus

We use the data set from Abu-Jbara et al. (2013) and Jha et al. (2016) in our experiments.

In total, it contains 3,271 citation context instances, each consisting of four sentences:

the sentence citing a given target reference, one preceding sentence, and two following

sentences. All of these contexts have been annotated with citation polarity and citation

purpose information. Citation polarity was annotated with one of three labels –positive,

negative, and neutral. Furthermore, one of six categories has to be chosen as a label

for the citation purpose: criticism, comparison, use, substantiation, basis, and neutral.

The distribution of instances over the di�erent categories for both polarity and purpose

are shown in Table 5.2. In addition to assigning polarity and purpose labels to citation

contexts, annotators labeled each sentence of the context as being informative for the

polarity and polarity classi�cation or not. We observe that the data set is heavily skewed

towards the least informative neutral class for both classi�cation dimensions.

2http://nlp.stanford.edu/data/glove.6B.zip
3
Version 20160301, ParsCit structured XML.
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5.5 Evaluation

We describe the experimental setting, the model variants and baselines we evaluate, and

the performance levels they reach for citation polarity and purpose classi�cation.

5.5.1 Models and Baselines

We evaluate the two models from Section 5.3: CNN and SVM with aggregate text em-

beddings. For each of these two models we evaluate three variants, using static language

representations trained on di�erent corpora: General, CORE, and ACL (see Section 5.4).

We compare our models with the following baselines:

(1) Given the heavily skewed label distributions for both tasks, we use the majority class

baseline predicting the most frequent class in the training set (neutral in both cases);

(2) We also evaluate a linear SVM with discrete TF–IDF-weighted bag-of-words features.

Comparing this baseline with the embedding-based SVM model provides insights into

usefulness of word embeddings for citation classi�cation tasks;

(3) Last, we report the performance of the SVM model with a rich set of features from

Jha et al. (2016), as they evaluate their model on the same data set (Abu-Jbara et al., 2013).

5.5.2 Experimental Setting

In order to make our results comparable to those reported by Jha et al. (2016), we evaluate

the models in 10-fold cross validation (CV) setting. More precisely, for each model, we

execute a nested CV evaluation, where for each fold of the outer CV loop, we optimize

the model’s hyperparameters via grid search in the inner CV. The reported performance

is macro-averaged over the folds of the outer CV loop.

5.6 Results

Polarity classi�cation results are shown in Table 5.3 and purpose classi�cation results in

Table 5.4. Surprisingly, the linear SVM with bag-of-words features is a very competitive

baseline on both classi�cation tasks. More surprisingly, it performs 8 percentage points

(polarity) and 14 percentage points (purpose) better than the SVM model from Jha et al.

(2016), which uses a much richer set of features. This is probably because Jha et al. (2016),

reportedly, do not optimize their model’s hyperparameters. Also, the SVM models with

embedding features do not outperform the linear SVM baseline, regardless of the corpus

used to train the embeddings. All this suggests that citation polarity and purpose are

strongly indicated by a particular set of lexical clues.

The CNN model has a slight edge over all SVM-based models, but the performance

gains are much lower than reported for other text classi�cation tasks (Kim, 2014; Shrestha

et al., 2017). The in-domain specialization of the language representations does not seem

to play a signi�cantly positive role. The best results are obtained using the super-domain

CORE embeddings. The in-domain ACL embeddings are probably of lower quality due

to the much smaller size of the training corpus. This con�rms the expected trade-o�.
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Model P R F1

Majority 18.3 33.3 23.6

Jha et al. (2016) 67.1 70.6 68.8

SVM TF–IDF 77.9 76.3 77.1

SVM General emb. 79.1 74.0 76.5

SVM CORE emb. 83.2 72.1 75.3

SVM ACL emb. 81.3 75.4 77.3

CNN General emb. 82.0 75.9 78.8

CNN CORE emb. 81.8 76.1 78.8

CNN ACL emb. 81.2 75.4 78.2

Table 5.3: Polarity classi�cation results.

Model P R F1

Majority 7.4 16.7 10.3

Jha et al. (2016) 54.9 62.5 58.4

SVM TF–IDF 74.3 70.9 72.6

SVMGeneral emb. 86.8 64.7 74.1

SVM CORE emb. 81.7 66.2 73.1

SVM ACL emb. 81.7 66.0 73.0

CNN General emb. 79.9 68.2 73.6

CNN CORE emb. 80.8 68.8 74.3

CNN ACL emb. 76.7 68.4 72.3

Table 5.4: Purpose classi�cation results.

Classi�cation Model Context P R F1

Polarity CNN CORE emb. Citing Sentence 81.8 76.1 78.8

CNN CORE emb. Gold Standard 85.8 78.7 82.1

SVM CORE emb Citing Sentence 83.2 72.1 75.3

SVM CORE emb. Gold Standard 84.1 75.6 79.6

Purpose CNN CORE emb. Citing Sentence 80.8 68.8 74.3

CNN CORE emb. Gold Standard 85.2 73.3 78.9

SVM CORE emb. Citing Sentence 81.7 66.2 73.1

SVM CORE emb. Gold Standard 84.8 69.2 76.2

Table 5.5: Impact of the choice of the citation context on the classi�cation results.

Table 5.5 shows the classi�cation results of the SVM and CNN models with CORE

embedding features when using di�erent citation context sizes. As it can be seen, for all

models, the performance improves by around 3 to 4 percentage points when the gold

standard citation context is taken into account instead of only the directly citing sentence.

This suggests that a �ne-grained identi�cation of the citation context is an important

step that needs to precede the citation classi�cation tasks at hand.

When analyzing the results in depth, we notice that for both classi�cation tasks, most

errors that happened correspond to a misclassi�cation of a context into the category

neutral. This type of error occurred in 61% of all the misclassi�cations that happened

in the purpose classi�cation and in 59% of the errors which occurred when classifying

polarity. We hypothesize that this may be due to the skewness of the benchmark data

set we used. Another frequent error that happened in the purpose classi�cation is the

misclassi�cation of an instance of the category basis as use, which is probably due to the

high interrelation of those two purposes. Similarly, all purpose classi�ers often confuse

the instances of the class comparison with instances of the class criticizing.
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5.7 Conclusion

Understanding citations plays an important role in the argumentative analysis of scienti�c

publications: they connect the authors’ argumentation to the overall scienti�c debate and

act as central tools in building a convincing scienti�c argument (see Section 2.1.3). Existing

models for the semantic classi�cation of citations rely on extensive feature engineering. In

this Chapter, we investigated two models that do not require any manual feature design

– CNN and SVM with aggregate text embeddings – on citation polarity and citation

purpose classi�cation tasks. The investigated models outperform previously reported

results on a benchmark data set by a wide margin. However, only CNN models slightly

outperform a simple linear SVM with lexical features. This suggests that lexical clues

alone quite strongly indicate citation polarity and purpose.
4

We also �nd that using

highly domain-speci�c word embeddings provides no observable performance boost,

con�rming the expected trade-o� between larger and more general vs. smaller and more

domain-speci�c corpora. In the next Chapter, we investigate the complementarity of

knowledge across a variety of argumentative analysis tasks (C3).

4
Note that this work was performed in 2017, before the era of contextualized embedding models. We ex-

pect that employing such language representations, e.g., BERT and the domain-speci�c SciBERT (Beltagy

et al., 2019), will yield better results compared to employing static representations.
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Chapter 6

Complementarity of

Knowledge across Tasks

As outlined in Section 3.3, the complexity of the computational argumentation �eld

with its variety of interrelated and interdependent problems (see Section 2.1.4) naturally

lends itself to sharing knowledge encoded in language representations (C3). Within this

frame, preceding work has shown the e�ectiveness of multi-task learning (MTL) on

argumentative tasks for low-resource scenarios (Schulz et al., 2018). In this Chapter, we

employ such inductive transfer learning techniques (see Section 2.2.3) for addressing two

speci�c problems in CA: (1) we acknowledge the argumentative, multi-layered nature

of scienti�c text (discussed in Section 2.1.3) and study the role of argumentation with

respect to other scitorics
1

with neural MTL models. To this end, we extend a corpus of

scienti�c literature with an additional �ne-grained argumentation annotation layer. We

then demonstrate performance improvements when coupling argumentation with the

other rhetorical analysis problems in a joint MTL setup, thereby sharing knowledge in

the language representations. (2) We move from the special case of scienti�c argumen-

tation to AQ in multiple domains of online writing. Here, especially the theory-based

perspective (Wachsmuth et al., 2017b), as explained in Subsection 2.1.2, remains underex-

plored. So far, no large-scale corpus annotated with theory-based AQ dimensions (logic,

rhetoric, and dialectic) allowing for training computational models which exploit the

complementarity of knowledge across tasks is in place. We close this research gap by

presenting GAQCorpus, the �rst English multi-domain theory-based argument quality

corpus. We further demonstrate performance improvements in two settings exploiting

complementarity of knowledge in contextualized embedding models: (a) in a �at and a

hierarchical multi-task learning setup, and (b) in a sequential task transfer setup (STILT).

1
The rhetorical aspects of scienti�c writing which we discussed in Section 2.1.4.
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6.1 Complementarity of Knowledge across Scitorics

*The exponential growth in the number of scienti�c publications yields the need for

the e�ective automatic analysis of the rhetorical aspects of scienti�c writing, which we

collectively dub scitorics (see Section 2.1.4). Acknowledging the argumentative nature of

scienti�c text, in this Section, we investigate the link between the argumentative struc-

ture of scienti�c publications and other rhetorical aspects such as discourse categories or

citation contexts. To this end, we �rstly (1) augment a corpus of scienti�c publications

annotated with four layers of rhetoric annotations with argumentation annotations.

Concretely, we add the argumentative annotations to the existing Dr. Inventor Cor-

pus (Fisas et al., 2015, 2016), already annotated for four other rhetorical aspects. We

analyze the annotated argumentative structures and investigate the relations between

argumentation and other rhetorical aspects of scienti�c writing, such as discourse roles

and citation contexts. Secondly, (2) we investigate the complementarity of knowledge in

language representations (C3, see Section 3.3) using neural multi-task learning (MTL)

architectures (discussed in Section 2.2.3) combining argument extraction with a set of

rhetorical classi�cation tasks. By coupling the rhetorical classi�ers with the extraction

of argumentative components in a joint MTL setting, we obtain statistically signi�cant

performance gains for the di�erent rhetorical analysis tasks.
2

6.1.1 Introduction

Scienti�c publications, as highly argumentative texts in research (Gilbert, 1977), are care-

fully composed documents written to convince the reader of the validity and merit of

the researchers’ work (see Section 2.1.3). As such, they are inherently argumentative and

often adhere to well-trodden rhetorical patterns and follow established structures and

practices of the respective research �eld. As demonstrated during the COVID-19 pan-

demic, knowledge access is vital when it comes to societal crises. However, the accelerated

growth of scienti�c literature (Bornmann and Mutz, 2015) makes the exploration and

analysis of relevant publications increasingly di�cult. This yields the need for automatic

analyses of these documents, including their argumentative and rhetorical structure.

Accordingly, as discussed in Section 2.1.4 and as dealt with in the previous Chapter,

computational models already support a series of publication analysis tasks, e.g., clas-

si�cation of citation purpose and polarity (Athar, 2011; Jha et al., 2016, inter alia) and

classi�cation of (sentential) discourse roles (Teufel et al., 1999; Liakata et al., 2010, inter

alia). Further, rhetorical predictions at the (sub-)sentence level obtained using these

models have been shown useful in higher-level downstream tasks such as publication

*
Adapted from: (1) Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto, and Kai Eckert. Investi-

gating the role of argumentation in the rhetorical analysis of scienti�c publications with neural multi-task

learning models. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 3326–3338, Brussels, Belgium, October–November 2018, Association for Computational

Linguistics. (2) Anne Lauscher, Goran Glavaš, and Simone Paolo Ponzetto. An argument-annotated cor-

pus of scienti�c publications. In Proceedings of the 5th Workshop on Argument Mining (ArgMining), pages

40–46, Brussels, Belgium, October–November 2018, Association for Computational Linguistics.
2
Code and data are available here: https://github.com/anlausch/multitask_sciarg.
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classi�cation (Teufel et al., 1999), (extractive) publication summarization (Cohan and

Goharian, 2015), and research trend prediction (McKeown et al., 2016).

To allow for the holistic analysis of scienti�c publications with respect to the inter-

actions between di�erent rhetorical aspects of scienti�c text (C3), which we collectively

dub scitorics, Fisas et al. (2016) created a corpus of scienti�c publications with manual

annotations of several high-level rhetorical aspects of scienti�c writing (e.g., sentence-level

discourse roles), but without annotations of the argumentative structure of publications.

Despite (1) scienti�c texts being inherently argumentative (Gilbert, 1976), (2) the exis-

tence of theoretical argumentative frameworks (Toulmin, 1958, 2003 edition; Kirschner

et al., 2015), and (3) a wide range of argument extraction models in other domains (e.g.,

debates or essays, see Palau and Moens (2009); Habernal and Gurevych (2017), inter

alia), there is still very little work on automatic argumentation mining from scienti�c

literature. Consequently, to the best of our knowledge, there has been no work analyzing

associations between argumentation and other rhetorical constructs in scienti�c writing,

although such dependencies clearly exist. Consider the following example:

“In general, our OMR preserves the high frequency content of the motion quite well

[claim], since
::::::
inverse

::::
rate

::::::
control

:
is
:::::::
directed

::
by

::::::::
Jacobian

:::::
values [data].”

Here, the authors make a claim (underlined text) about their approach and support

it with a technical fact (data) about the method (wave-underlined text). At the same

time, regarding other rhetorical constructs, this sentence is stating the subjective aspect of

advantage (of the proposed method), belongs to the discourse category of outcome (of the

authors’ work), and may be considered relevant for the summary of the publication. We

argue that these rhetorical dimensions are interconnected and that �ne-grained argumen-

tation underpins other rhetorical layers in scienti�c text. For example, sentences stating an

advantage of a method are likely to be argumentative and may contain claims that should

be included in the summary. In contrast, purely descriptive, non-argumentative sentences

often describe low-level technical details (e.g., belong to discourse class approach) and,

lacking any claims, should not be included in the summary.

Assuming that argumentation guides rhetorics in scienti�c text, we investigate neural

MTL models, which couple argument extraction with several other rhetorical analysis

tasks. To this end, we augment the existing corpus of scienti�c publications (Fisas et al.,

2016), containing several layers of rhetorical annotations, with an additional layer of

argumentative components and relations. We then explore two neural MTL architectures

based on shared recurrent encoders, intra-sentence attention, and private task-speci�c

classi�ers and couple the neural architectures with a joint MTL objective with uncertainty-

based weighting of task-speci�c losses (Kendall et al., 2018). We validate our approach by

testing that it outperforms traditional machine learning models in single-task settings.

We �nally show that coupling rhetorical analysis tasks with argument extraction using

MTL models signi�cantly improves the results for the rhetorical analysis tasks.

Contributions. We propose a general argument annotation scheme for scienti�c text

that can cover various research domains. We next extend the Dr. Inventor corpus (Fisas

et al., 2015, 2016) with an annotation layer containing �ne-grained argumentative com-
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ponents and relations. These e�orts result in the �rst argument-annotated corpus of

scienti�c publications in English, which allows for joint analyses of argumentation and

other rhetorical dimensions of scienti�c writing. We make the argument-annotated cor-

pus publicly available. Next, we o�er an extensive statistical and information-theoretic

analysis of the corpus. We then carry out the �rst study on dependencies between di�erent

rhetorical dimensions in the computational analysis of scienti�c writing. Using MTL

models, we show that argumentation informs other rhetorical analysis tasks. Finally, in

the context of MTL research, our results indicate that the dynamic uncertainty-based

loss weighting (Kendall et al., 2018) is bene�cial for high-level NLP tasks.

6.1.2 Related Work

We provide an overview of (1) studies analyzing rhetorical aspects in scienti�c publications

and (2) a large body of work on argumentation mining.

Rhetorical Analysis of Scienti�c Texts

Previous work has analyzed a number of rhetorical aspects of scienti�c publications.

Pioneering annotation e�orts of Teufel and Moens (1999a,b); Teufel et al. (1999) focused

on discourse-level argumentation (dubbed argumentative zones), denoting more the

rhetorical structure of the publications than �ne-grained argumentation, i.e., there are

no (1) �ne-grained argumentative components (at sub-sentence level) and no (2) relations

between components, giving rise to an argumentation graph. Liakata et al. (2010) pro-

posed a more general discourse scheme dubbed core scientific concepts and in subsequent

work (Liakata et al., 2012) trained a conditional random �elds (CRF) model to assign

discourse labels to text spans. Blake (2010) distinguishes between explicit and implicit

claims, correlations, comparisons, and observations in biomedical publications. In con-

trast, we are not interested in how the claim is made, but rather in what are the claims (and

what is not a claim) and how they are mutually connected. Several authors focused on

tasks relating to citations: extraction of citation context (e.g., Abu-Jbara et al., 2013; Jha

et al., 2016), classi�cation of citation polarity (e.g., Athar, 2011) and purpose (e.g., Teufel

et al., 2006; Jochim and Schütze, 2012), and the automatic detection of referenced parts

of the cited publication (Jaidka et al., 2016). Both discourse and citation information

have been exploited for summarizing scienti�c publications (Cohan and Goharian, 2015;

Teufel and Moens, 2002; Abu-Jbara and Radev, 2011; Chen and Zhuge, 2014). Intuitively,

citation contexts may contain information relevant to the summary. Similarly, summaries

commonly contain sentences with diversi�ed discourse properties.

Fisas et al. (2016) provided di�erent layers of rhetorical annotations on the same

corpus of scienti�c text. Their Dr. Inventor Corpus is annotated with a combination

of existing discourse annotation schemes (Teufel et al., 2009; Liakata et al., 2010) and

citation-based annotations. Despite the argumentative nature of scienti�c texts, the

Dr. Inventor Corpus contains no annotations of argumentative components such as

claims. Several computational studies followed, addressing the rhetorical tasks corre-

sponding to the layers of the Dr. Inventor Corpus (Ronzano and Saggion, 2015, 2016;

Accuosto et al., 2017), but none of them investigated dependencies between di�erent
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tasks. Green (2014a,b, 2015b, 2016) proposed methods for identifying and annotating

argumentative structures in scienti�c publications, but released no publicly available

annotated corpus, and consequently, no computational models.

The work of Kirschner et al. (2015) is the closest to ours since they annotated scienti�c

publications with �ne-grained argumentation. However, their corpus is in German and

contains no annotations of other rhetorical dimensions. Moreover, their corpus is signi�-

cantly smaller than the Dr. Inventor Corpus (Fisas et al., 2016). In contrast, we augment

the Dr. Inventor Corpus with an argumentation layer, allowing for combinations of

argumentation extraction and other rhetorical analysis tasks in MTL settings.

Argumentation Mining

In their pioneering work on automatic AM, Palau and Moens (2009) discriminated

argumentative from non-argumentative sentences and proposed a rule-based approach

for extracting argumentative structures in documents. Habernal and Gurevych (2016,

2017) extracted argumentative components from online discussions. They framed the

argumentative component extraction as a sequence labeling task and applied structured

SVMs as a learning model. Recent work started exploiting dependencies between AM

tasks using global optimization (Peldszus and Stede, 2015; Persing and Ng, 2016; Stab

et al., 2014) and MTL models (Eger et al., 2017; Niculae et al., 2017). Peldszus and Stede

(2015) used decoding based on minimum spanning trees to jointly predict argumentative

segments and their types as well as argumentative relations, to generate an argumentation

graph from text. Persing and Ng (2016) and Stab and Gurevych (2017a) similarly pro-

duced argumentative structures by globally optimizing local predictions of argumentative

components and relations. Potash et al. (2017) proposed a neural architecture based on

a pointer network for jointly predicting types of argumentative components and iden-

tifying argumentative relations. In a similar e�ort, Eger et al. (2017) combined the AM

tasks using the MTL framework of Søgaard and Goldberg (2016). Remedying for data

sparsity, Schulz et al. (2018) treated di�erent argumentation formalisms as di�erent tasks

and combined respective extraction tasks and data sets in a MTL setting. In contrast to

these e�orts that combine several AM subtasks or formalisms with joint optimization

and MTL models, in this work, we examine the dependencies between argumentative

components and other rhetorical aspects of scienti�c writing.

6.1.3 Data Annotation

We �rst brie�y describe the original Dr. Inventor Corpus (Fisas et al., 2016), which we

augment with �ne-grained argumentative annotations. We then explain in more detail

our argumentation annotation scheme and the annotation process.

Dr. Inventor Corpus

We chose the Dr. Inventor Corpus (Fisas et al., 2015, 2016) as a starting point for our

study of associations between argumentative structure and rhetorical aspects of scienti�c

publications for two reasons. First, containing 40 publications with a total of 10, 789

86



6. COMPLEMENTARITY OF KNOWLEDGE ACROSS TASKS

Annotation Layer Labels %

Discourse Role

Background 20

Challenge 5

Approach 57

Outcome 16

Future Work 2

Subjective Aspect

Advantage 33

Disadvantage 16

Adv.-Disadv. 3

Disadv.-Adv. 1

Novelty 13

Common Practice 32

Limitation 2

Annotation Layer Labels %

Summarization Rel.

Totally irrelevant 66

Should not appear 6

May appear 14

Relevant 6

Very relevant 8

Citation Purpose

Criticism 23

Comparison 9

Use 11

Substantiation 1

Basis 5

Neutral 53

Table 6.1: Annotation layers of the Dr. Inventor Corpus (Fisas et al., 2016).

sentences, it is one of the largest corpora of scienti�c arguments, which is manually

labeled with rhetorical information. Secondly, it contains four di�erent layers of rhetorical

annotations which allow for studying complementarity of knowledge across tasks: (1) a

discourse layer, specifying discourse roles of sentences, (2) a citation context layer, specifying

the textual context of citations, (3) a layer with subjective aspect categories assigned to

sentences, and (4) a summarization relevance layer, indicating how relevant sentences are

for the summary. The overview of labels for all annotation layers with the distribution of

instances across labels is shown in Table 6.1. For more details on the original Dr. Inventor

Corpus we refer the reader to (Fisas et al., 2015, 2016).

Argumentation Annotation Scheme

We considered several existing argumentation frameworks (e.g., Anscombre and Ducrot,

1997; Walton et al., 2008, inter alia) and selected Toulmin’s model (Toulmin, 1958, 2003

edition), explained in Section 2.1.2, as basis for our annotation scheme. We chose Toul-

min’s model because: (1) it is a well-established in philosophy as well as in computer

science (e.g, Freeman, 1991; Bench-Capon, 1998; Verheij, 2009, inter alia) and (2) it con-

tains di�erent types of argumentative components and takes the relations between them

into account, which is useful for �ne-grained analyses. To test the applicability of the

framework for our purposes, we �rst carried out a preliminary annotation round with two

expert annotators and adjusted the annotation scheme according to their observations.

Argumentative components. We devised an adapted version of the Toulmin model,
3

containing the following argumentative components:

• Background claim: an argumentative statement related to the work of other authors,

state-of-the-art methods, or common practices;

3
We omitted some of Toulmin’s component types due to very rare occurrences in the corpus.
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“The range of breathtaking realistic 3D models is only limited by the creativity of artists

and resolution of devices.”

• Own claim: an argumentative statement about the authors’ own work;

“Using our method, character authors may use any tool they like to author characters.”

• Data: a fact that the authors state as evidence that supports or contradicts a claim.

“SSD is widely adopted in games, virtual reality, and other realtime applications due to

::
its

:::
ease

::
of
::::::::::::::

implementation and
:::
low

:::
cost

::
of

:::::::::
computing.”

Argumentative components are annotated as arbitrary spans of text (in terms of length,

annotated components ranged from a single token to multiple sentences). Annotators

were instructed to annotate the shortest possible span of text that completely captures

the argumentative component. Thus, we do not bind arguments to sentences, i.e., we

allow for �ne-grained argumentative components.

Argumentative relations. Authors connect argumentative components in order to

form convincing reasoning chains. We also annotated relations between argumentative

components. Following proposals from previous work (Dung, 1995; Bench-Capon, 1998),

we distinguish between three relation types:

• Supports: indicates that a claim component is supported by a data component or

another claim. The (assumed) validity of the supporting component (data or claim)

contributes to the validity of the supported claim.

• Contradicts: indicates that the validity of a claim decreases with the validity of another

argumentative component. If an argumentative component is assumed to be true, the

claim it contradicts is assumed to be false, and vice versa.

• Same claim: connects di�erent mentions of what is essentially the same claim. It is

common to repeat important claims (e.g., the central claim) of the work several times

in the publication, e.g., in the inroduction and in the conclusion.

Further details about the annotation scheme can be found in the annotation guidelines.
4

Annotation Procedure

We hired four annotators for the task, one of whom we considered to be an expert an-

notator
5

and executed the process in two phases. In the �rst phase, we calibrated the

annotators for the task in �ve iterations on �ve publications from the Dr. Inventor Cor-

pus. After all annotators labeled one of the �ve documents, we met with them, discussed

the disagreements, identi�ed erroneous annotations, and, when required, revised the

annotation guidelines. At the end of the calibration phase, the annotators re-annotated

4http://data.dws.informatik.uni-mannheim.de/sci-arg/annotation_guidelines.pdf
5
A researcher in computer science, albeit not in computer graphics, which is the domain of the corpus.
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the �ve calibration publications and resolved the remaining disagreements by consen-

sus. In Figure 6.1 we show the inter-annotator agreement (IAA) for both component

identi�cation and relation classi�cation, in terms of averaged pairwise F1 score,
6

after

each of the �ve calibration iterations. The evolution of IAA over the �ve calibration

iterations is depicted in two variants: (1) a strict version in which components have to

match exactly in span and type and relations have to match exactly in both components,

direction and type of the link and (2) a relaxed version in which components only have

to match in type and overlap in span (by at least half of the length of the shorter of them).

Expectedly, we observe higher agreements with more calibration as the discussions helped

to get a common understanding of the task among the annotators. The agreement on

argumentative relations is 23% lower than on the components, which we think is due

to the high ambiguity of argumentation structures, as it was also previously noted by

Stab et al. (2014). That is, given an argumentative text with pre-identi�ed argumentative

components, there are often multiple valid interpretations of an argumentative relation

between them, i.e., it is “[...] hard or even impossible to identify one correct interpre-

tation” (Stab et al., 2014). Additionally, disagreements in component identi�cation are

propagated to relations as well, since the agreement on a relation implies the agreement

on annotated components at both ends of the relation. Interestingly, the average agree-

ment of our expert annotator with the non-expert annotators was similar to the average

agreement between non-expert annotators. This is encouraging because it suggests that

annotating argumentative structures in scienti�c text does not require expert knowledge

of the domain. In the second phase, we evenly split the remaining 35 documents of the

Dr. Inventor Corpus among the four annotators, without any overlaps.

6.1.4 Corpus Analysis

We make the Dr. Inventor Corpus augmented with argumentation annotations (together

with the annotation guidelines) publicly available.
7

The �nal corpus contains 12,289

annotations of argumentative components and 6,530 relation annotations. We next

study the argumentation layer we annotated in isolation. Afterwards, we focus on the

interrelations with other rhetorical annotation layers.

Analysis of Argumentation Annotations. Table 6.2 lists the number of compo-

nents and relations in total and on average per publication. The number of own claims

roughly doubles the amount of background claims, as the corpus consists only of orig-

inal research papers, in which the authors mainly emphasize their own contributions.

Interestingly, there are only half as many data components as claims. We can see two

reasons for this – �rst, not all claims are supported and secondly, claims can be supported

by other claims. There are many more supports than contradicts relations. This is intuitive,

6
We measured the agreement in terms of the F1 measure because (1) it is straight-forward to compute,

(2) it is directly interpretable, and (3) it can account for spans of varying length, allowing for computing

relaxed agreements in terms of partial overlaps, and (4) the chance-corrected measures, e.g., Cohen’s Kappa,

approach F1-measure when the number of negative instances grows (Hripcsak, 2005).
7http://data.dws.informatik.uni-mannheim.de/sci-arg/compiled_corpus.zip
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(b) Argumentative Relations

Figure 6.1: IAA evolution over calibration phases: (a) argumentative components; (b)

relations. We report both strict (annotated components match in span and type; relations

match in type and components at both ends match strictly) and relaxed agreement

scores (components match in type and overlap in span; relations match in type and their

components at both ends match according to the relaxed criterion).

Category Label Total Per Publication

Component

Background claim 2,751 68.8± 25.2

Own claim 5,445 136.1± 46.0

Data 4,093 102.3± 32.1

Relation

Supports 5,790 144.8± 43.1

Contradicts 696 17.4± 9.1

Semantically same 44 1.1± 1.81

Table 6.2: Total and per-publication distributions of labels of argumentative components

and relations in the augmented Dr. Inventor Corpus.

Label Min Max Avg (µ) Std (σ)

Background claim 5 340 87.46 43.74

Own claim 3 500 85.70 44.03

Data 1 244 25.80 27.59

Table 6.3: Statistics on the length of argumentative components (in number of characters)

identi�ed in the augmented Dr. Inventor Corpus.

as authors mainly argue by providing supporting evidence for their own claims.

Table 6.3 shows the statistics on length of argumentative components. While the

background claims and own claims are on average of similar length (85 and 87 characters,

respectively), they are much longer than data components (average of 25 characters). This
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Criterion Min Max Avg (µ) Std (σ)

Diameter 2 5 3.05 0.71

Max In-Degree 3 11 6.33 1.97

# standalone claims 27 127 63.00 21.40

# unsupported claims 39 180 94.38 29.14

# unconnected subgraphs 78 231 147.23 35.78

# components per subgraph 1 17 2.09 1.5

Table 6.4: Graph-based analysis of the argumentative structures identi�ed in the aug-

mented Dr. Inventor Corpus. We report per publication statistics.

Type Pub. Claim with maximal PageRank score

background claim

A13 ’physical validity is often sacri�ced for performance’

A21 ’a tremendous variety of materials exhibit this type of behavior’

own claim A39

’the solution to the problem of asymmetry is to modify the CG method so

that it can operate on equation (15), while procedurally applying the con-

straints inherent in the matrix W at each iteration’

Table 6.5: Claims with maximum PageRank score in a publication.

is intuitive given the domain of the corpus, as facts in computer science often require less

explanation than claims. For example, we noticed that authors often refer to tables and

�gures as evidence for their claims. Similarly, when claiming weaknesses or strengths of

related work, authors commonly provide references as evidence.

The argumentative structure of an individual publication corresponds to a forest

of directed acyclic graphs (DAG) with annotated argumentative components as nodes

and argumentative relations as edges. Thus, to obtain further insight into structural

properties of argumentation in scienti�c publications, in Table 6.4 we provide graph-

based measures like the number of connected components (i.e., subgraphs), the diameter,

and the number of standalone claims (i.e., nodes without incoming or outgoing edges)

and unsupported claims (i.e., nodes with no incoming supports edges). Our annotators

identi�ed an average of 141 connected components per publication, with an average

diameter of 3. This indicates that either authors write very short argumentative chains or

that our annotators had di�culties noticing long-range argumentative dependencies.

On the one hand, there are at least 27 standalone claims in each publication, i.e.,

claims not connected with any other components. On the other hand, the maximum

in-degree of a claim in a publication, on average, is 6, indicating that there are claims with

a lot of evidence given. Intuitively, the claims for which more evidence is given should be

more prominent. We next run PageRank (Page et al., 1999) on argumentation graphs of

individual publications to identify most prominent claims. We list a couple of examples

of claims with the highest PageRank scores in Table 6.5. Somewhat unexpectedly, in 30
out of 40 publications, the highest-ranked claim was a background claim. This suggests

that in computer graphics, authors emphasize more research gaps and motivation for

their work than they justify its impact (for which empirical results often su�ce).
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AC DR SA SR

AC – – – –

DR 0.22 – – –

SA 0.08 0.11 – –

SR 0.04 0.10 0.13 –

CC 0.18 0.10 0.04 0.01

Table 6.6: Normalized mutual information between the label sets of the annotation layers

indicating Argument Components (AC), Discourse Roles (DR), Subjective Aspects

(SA), and Citation Contexts (CC) in the extended Dr. Inventor Corpus.

Links to Other Rhetorical Aspects. We next investigate the interdependencies be-

tween the newly added argumentative annotations and the existing rhetorical annotations

of the Dr. Inventor Corpus. An inspection of dependencies between di�erent annotation

layers in the corpus may indicate the usefulness of computational approaches that aim to

exploit such interrelations. E.g., Bjerva (2017) recently showed that the measure of mutual

information strongly correlates with performance gains obtained by multi-task learning

models. Accordingly, We employ the measure of normalized mutual information (NMI)

(Strehl and Ghosh, 2003) to assess the amount of information shared between the �ve

annotation layers. NMI is a variant of mutual information scaled to the interval [0, 1]
through normalization with the entropy of each of the two label sets. For our analysis,

we port all token-level annotations to the sentence-level, and then compute pairwise

NMI. In Table 6.6 we show the NMI scores for all pairs of annotations layers: Argument

Components (AC), Discourse Roles (DR), Citation Contexts (CC), Subjective Aspects

(SA), and Summary Relevances (SR). The strongest association is found between AC

and DR. Looking at the labels of these two annotation layers, this seems plausible –

background claim (AC) is likely to appear in a sentence of discourse role background

(DR). Similarly, own claims more frequently appear in sections describing the outcomes

of the work. To con�rm this intuition, we computed co-occurrence matrices for pairs

of label sets – indeed, the AC label own claim most frequently appears together with

the discourse role approach and outcome, and the background claim with discourse roles

background and challenge. Consider the following sentence:

“With the help of modeling tools or capture devices, complicated 3D character models

are widely used in the fields of entertainment, virtual reality, medicine, etc.”

It contains a general claim about the research area (i.e., it is a background claim) and

it also o�ers background information in terms of the overall scienti�c discourse of the

publication. A similar set of intuitive label alignments justi�es the higher NMI score

between argumentative components (AC) and citation contexts (CC): citation contexts

often appear in sentences with a background claim. Again, this is not surprising, as

authors need to reference other publications and in order to motivate their work and to

position their work within their respective research �eld.
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This is exempli�ed by the following two sentences:

“An improvement based on addition of auxiliary joints has been also proposed in

[
:::::
Weber

::::
2000]. Although this reduces the artifacts, the skin to joints relationship

must be re-designed after joint addition.”

In the above example, the wave-underlined text, i.e., the citation, serves as the data for the

underlined text, which is the background claim stating a research gap in the referenced

work. Simultaneously, the underlined text acts as the citation context of the reference.

6.1.5 Multi-task Learning for Analyzing Scienti�c Argumentation

We next exploit the augmented corpus to study the dependencies between �ne-grained

argumentation and other scitorics. To this end, we adopt neural MTL.

Tasks

The following are the rhetorical analysis and argument extraction tasks we investigate.

We discussed those from a general perspective in Section 2.1.4) and introduce here the

concrete task formalization we are dealing with in our study.

Argument Component Identi�cation (ACI). The task is to extract and classify ar-

gumentative components. We frame ACI as a token-level sequence labeling task: given a

sequence of tokens x = (x1, .., xn) of length n, the task is to assign a sequence of tags

yaci = (y1, .., yn), yi ∈ Yaci . The tagset Yaci contains seven token-level tags, obtained

by combining the standard B–I–O annotation scheme with three types of argumentative

components: Own claim, Background claim, and Data.

Discourse Role Classi�cation (DRC). The multi-class classi�cation task in which

each sentence needs to be assigned one out of the set of discourse roles Ydrc = {
Background,Unspecified,Challenge, FutureWork,Approach,Outcome}.

Citation Context Identi�cation (CCC). The task is to identify the span of the publi-

cation text that introduces or explains a reference. It is also a token-level sequence-labeling

task – a sequence of tags ycci = (y1, .., yn) with yi ∈ Ycci = {BCC , ICC , O} is

assigned to a sequence of tokens x = (x1, .., xn).

Subjective Aspect Classi�cation (SAC). Another sentence-level classi�cation task

in which the model has to assign one of the subjective aspect labels, Ysac = {None,
Limitation,Advantage,Disadvantage-Advantage,Disadvantage,Common Practice,
Novelty,Advantage-Disadvantage}, to each sentence.
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(a) Simple model.
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(b) Hierarchical model.

Figure 6.2: Neural MTL architectures for the rhetorical and argumentative analysis of

scienti�c publications: (a) the Simple model addresses sentence-level tasks (DRC, SAC,

SRC) as plain classi�cation tasks, whereas (b) the Hierarchical model treats sentence-level

tasks as sequence labeling tasks thereby considering surrounding context. Both models

address ACI and CCC as token-level sequence labeling tasks.

Summary Relevance Classi�cation (SRC). The task is to predict the relevance of sen-

tences for the summary of the publication. Each sentence needs to be assigned a label with

Ysrc = {Very relevant,Relevant,May appear, Should not appear,Totally irrelevant}.

ACI and CCC are token-level sequence labeling tasks. The remaining three tasks can be

cast as either (1) plain sentence classi�cation tasks or (2) sentence-level sequence labeling

tasks (assuming that there are regularities in sequences of sentence-level labels that can be

captured). We propose one MTL architecture for each of the two possibilities.

Multi-Task Learning Models

We propose two di�erent MTL architectures for the rhetorical and argumentative analysis

of scienti�c publications. The Simple model treats sentence-level tasks (DRC, SAC, and

SRC) as plain classi�cation tasks (i.e., the prediction for each sentence ignores the content

and labels of other, neighboring sentences). The Hierarchical model addresses sentence-

level tasks as sequence labeling tasks. This model can be seen as a hierarchical sequence

labeling model, in which the sentence-level recurrent network is stacked on top of the

token-level sequence labeling network. Both architectures are illustrated in Figure 6.2.

Token-level Predictions. Given a sentence si = (xi1, .., xin) out of a sequence

of sentences D = (s1, .., sm) we �rst retrieve the pre-trained embedding vector for

each token xij .We then obtain context-aware token representations hij by applying a

bidirectional recurrent network with long short-term memory (LSTM) cells (Hochreiter

and Schmidhuber, 1997) on the sequence of pre-trained word embeddings:
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hij = [
−−−→
LSTM(xi1, . . . ,xij);

←−−−
LSTM(xin, . . . ,xij)] . (6.1)

This token-level Bi-LSTM encoder is shared between the tasks combined by the MTL

models. Next, we de�ne a separate classi�er for each of the token-level (TL) tasks (i.e.,

ACI and CCC) and feed the contextualized token representations hij to these classi�ers.

Each of the classi�ers is de�ned as a feed-forward network with a single hidden layer. The

label probability distribution is obtained by applying the softmax function on its output.

yijt = softmax(Wthij + bt) , (6.2)

where Wt ∈ R2K×|Yt| and bt ∈ R|Yt| are the task-speci�c classi�cation parameters for

the task t, withK being the size of the LSTM state and |Yt| the number of labels of t.

Sentence-level Predictions. We learn to aggregate a sentence representation si from

contextualized vectors of its tokens, hij (produced by the token-level Bi-LSTM), using

the intra-sentence attention mechanism (Yang et al., 2016):

si =
∑
j

αijhij , (6.3)

with the weights αi computed dynamically as:

αi = softmax(Ui uatt) , (6.4)

where uatt is the trainable attention head vector and Ui is a matrix with non-linearly

transformed token representations (hij) as rows:

Uij = tanh(Watthij + batt) . (6.5)

In the Simple architecture, sentence representations si are fed directly to the sentence-

level task-speci�c classi�ers, which are also single-layer feed-forward networks:

yit = softmax(Wtsi + bt) . (6.6)

Within the Hierarchical architecture, sentence representations are �rst contextualized

with representations of other sentences via the sentence-level Bi-LSTM layer (denoted

with the function Bi-LSTMS) and then forwarded to the classi�er:

yit = softmax(WtBi-LSTMS(si) + bt) . (6.7)
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Joint optimization and loss functions. All of the tasks we consider are framed as

multi-class classi�cation tasks. Thus, we simply specify all task-speci�c losses to be L2-

regularized cross-entropy errors. Let yto be the one-hot ground truth label vector for the

prediction instance o8
of the task t, and let y′to be the predicted probability distribution

over the task labels for the same instance. With Yt as the set of classi�cation labels for the

task t, the task-speci�c lossLt is computed as follows:

Lt = λ‖θt‖2 −
∑
o

|Yt|∑
k=1

y
(k)
to · ln

(
y
′(k)
to

)
, (6.8)

where θt is the set of model’s parameters relevant for the task t9
andλ is the regularization

factor. We train the MTL model jointly on di�erent tasks by de�ning and minimizing

the joint loss functionL that combines task-speci�c lossesLt. Instead of using constant

weights, we opt for dynamic weighting of task-speci�c losses during the training process,

based on the homoscedastic uncertainty of tasks, as proposed by Kendall et al. (2018):

L =
∑
t

1

2σ2
t

Lt + lnσ2
t , (6.9)

whereσt is the variance of the task-speci�c loss over training instances used to quantify the

uncertainty of task t. Kendall et al. (2018) show that better MTL results can be obtained

by dynamically assigning less weight to the more uncertain tasks, as opposed to constant

task weights throughout the whole training process.
10

6.1.6 Evaluation

We run two sets of experiments. First, we evaluate the performance of the Simple and

the Hierarchical neural models on individual tasks (i.e., in single-task learning (STL)

scenarios). We then evaluate the impact of the argumentative signal on other dimensions

of rhetorical analysis by combining them in joint MTL settings.

Experimental Setup.

We randomly split the corpus on the document level into train (roughly 70%, 28 docu-

ments containing 6,697 sentences) and test portions (roughly 30%; 12 documents with

2,874 sentences). We used roughly 20% of the train portion as the validation set.

Model Con�guration and Training. We ran an initial grid search on the validation

set with values for the hyperparameters learning rate ν ∈ {10−4, 10−5}, L2 regulariza-

tion factor λ ∈ {0.001, 0.0001}, and LSTM states K ∈ {64, 128, 256} and found

8
The prediction instance is a token for ACI and CCC, and a sentence for DRC, SAC, and SRC.

9
The set of relevant parameters di�ers across tasks: for token-level tasks (e.g., ARI) θt denotes token-

level Bi-LSTM parameters and the parametersWt andbt of task t’s classi�er; for a sentence-level task (e.g.,

DRC) within the Hierarchical architecture, θt includes all parameters of both token- and sentence-level

Bi-LSTMs, intra-sentence attention parameters, and parameters of the task-speci�c classi�er.
10

Later, we experiment with constant weights and con�rm this observation.

96



6. COMPLEMENTARITY OF KNOWLEDGE ACROSS TASKS

ACI CCC

Model P R F1 P R F1

HMM 30.8 17.2 20.8 18.3 13.1 15.0

CRFlexical 38.8 29.1 31.7 15.3 17.8 16.4

CRFembeddings 37.9 23.3 26.1 12.8 1.4 2.5

Neural: Simple 47.0 44.5 44.7 48.7 43.8 46.1

Table 6.7: Single-task results for the token-level classi�cation tasks (Precision (P), Recall

(R), and F1 performances macro-averaged over the classes).

the con�guration ν = 10−4
, λ = 0.001, andK = 128 to be optimal for the majority

of the STL and MTL models. In all experiments, we represent tokens with pretrained

300-dimensional GloVe embeddings (Pennington et al., 2014)
11

and optimize the model

parameters using the Adam algorithm (Kingma and Ba, 2015). We initialize all model pa-

rameters using Xavier initialization (Glorot and Bengio, 2010), train the models in batches

ofN = 16 sentences and apply early stopping based on the validation set performance.

Baselines. As a type of “sanity check”, we �rst compare the performance of the two neu-

ral architectures against traditional supervised machine learning algorithms on each of the

tasks separately. For the token-level sequence labeling tasks (ACI and CCC) we use a hid-

den markov model (HMM) andCRF (La�erty et al., 2001) as baselines. TheHMMworks

directly on the tokens, while we feed either the lexical representation or the embedding

representation of the tokens as features for the CRF. For the sentence classi�cation tasks

(DRC, SAC, and SRC), we evaluate as baselines (1) the linear SVM with TF–IDF feature

vectors and (2) SVM with RBF kernel and embedding features. In the latter case, we ob-

tain a sentence representation by averaging the pretrained embeddings of sentence words.

We tune the hyperparameter values of the SVM by conducting a grid search with possible

penality parameter values c ∈ {0.1, 1.0, 10.0} (linear SVM and SVM with RBF kernel)

and the parameter of the radial basis function γ ∈ {0.01, 0.1, 1.0} (SVM with RBF

kernel). The possible hyperparameter values for the L1 regularization coe�cient c1 and

for L2 regularization coe�cient c2 of the CRF are c1, c2 ∈ {0.1, 0.2, 0.001, 0.0001}.
In MTL the experiments, we consider the respective task performances from the STL

experiments as well as MTL with a joint loss function with �xed equal weighting of the

task losses, i.e., weights set to 0.5 when coupling two tasks, as baselines.

Single-Task Experiments. We �rst report the model performances for individual

tasks in STL settings. Results for token-level tasks are shown in Table 6.7, whereas

Table 6.8 displays results for sentence-level tasks. The scores (Precision, Recall, and

F1 score) are reported as macro-averages over all task labels. Expectedly, our neural

architectures substantially outperform the traditional machine learning baselines on all

tasks. For the three sentence-level tasks, the Hierarchical architecture outperforms the

11http://nlp.stanford.edu/data/glove.840B.300d.zip
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Model DRC SAC SRC

SVMtfidf 34.0 10.3 22.2

SVMembeddings 25.7 08.5 19.3

Neural: Simple 44.1 20.5 31.5

Neural: Hierarchical 42.6 19.1 33.2

Table 6.8: Single-task results for sentence-level tasks (macro-averaged F1 scores).

CCC DRC SAC SRC

Single Task

Simple 46.1 44.1 20.5 31.5

Hierarchical – 42.6 19.1 33.2

Multi Task (w. ACI)

Simple0.5 43.8 (44.2) 43.5 (41.6) 18.0 (42.0) 32.2 (41.9)

Simpleuncert 49.9 (40.5) 45.2 (38.6) 22.1 (39.4) 34.8 (41.0)

Hierarchical0.5 – 41.6 (42.1) 17.8 (42.9) 30.3 (43.4)

Hierarchicaluncert – 43.9 (40.8) 18.9 (41.6) 34.8 (40.8)

Table 6.9: MTL results: rhetorical analysis tasks coupled with argumentative component

identi�cation. We report the F1 score macro-averaged over the classes. The scores achieved

for argumentative component identi�cation are shown in parentheses.
12

Simple model only when classifying sentences by summary relevance (SRC). This result

seems intuitive – a Very relevant sentence is likely to be surrounded with Relevant and

May appear sentences (and an Irrelevant sentence with other Irrelevant and Should not

appear sentences). The fact that we observe no gains from the additional sentence-level

Bi-LSTM encoder for DRC and SAC suggests that the content of the sentence informs

its discourse role and subjective aspect much more strongly than neighboring sentences.

In other words, DRC and SAC seem to be more localized classi�cation tasks than SRC.

Multi-Task Learning Results. Our core research question relates to the e�ect that

recognizing �ne-grained argumentative components has on other rhetorical analysis tasks,

thereby addressing the issue of complementarity of knowledge in language representations

across tasks (C3). This is why, in our central set of experiments, we evaluate MTL models

with homoscedastic uncertainty weighting which combine the ACI (as an auxiliary task)

with each of the four other tasks. In each MTL model, the token-level Bi-LSTM encoder

is shared between the two tasks. For sentence-level tasks (DRC, SAC, SRC), we evaluate

both the Simple and Hierarchical architecture. In Table 6.9 we show the performances of

the MTL models on the rhetorical analysis tasks (these can be compared to the respective

single-task model performances from Tables 6.7 and 6.8.

When coupled in MTL settings with ACI using the joint loss formulation of Kendall

12
In the multi-task settings, the early stopping criterion was based on the auxiliary task score.
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et al. (2018), the results signi�cantly
13

improve for all rhetorical analysis tasks and models

(except for SAC with the Hierarchical model), in comparison with the respective single-

task models. However, the performance for the argumentation component identi�cation

does not improve in MTL. In other words, the extraction of �ne-grained argumentative

components seems to inform higher-level rhetorical analysis tasks, but not vice-versa.

This indeed supports the hypothesis that argumentation guides scienti�c writing and

in�uences rhetorical structure of publications. Furthermore, our results support the �nd-

ings of Schulz et al. (2018) who show that, opposed to initial results of Martínez Alonso

and Plank (2017), MTL can yield performance gains for higher-level semantic tasks.

6.1.7 Conclusion

Acknowledging the argumentative nature of scienti�c text and the issue of complementar-

ity of knowledge across argumentative analysis tasks (C3), in this Section, we investigated

the role of argumentation in the rhetorical analysis of scienti�c publications. We �rst

extended an existing corpus annotated with four di�erent layers of rhetorical informa-

tion with annotations of argumentative components and relations, creating the largest

argumentation-labeled corpus of scienti�c text in English. We �rst presented an anno-

tation scheme for argumentation analysis in scienti�c publications. We annotated the

Dr. Inventor Corpus (Fisas et al., 2015, 2016) with an argumentation layer. The resulting

corpus, which is, to the best of our knowledge, the �rst argument-annotated corpus of

scienti�c publications in English, enables (1) computational analysis of argumentation

in scienti�c writing and (2) integrated analysis of argumentation and other rhetorical

aspects of scienti�c text. We further provided corpus statistics and graph-based analysis of

the argumentative structure of the annotated publications and analyzed the dependencies

between di�erent rhetorical aspects, which can inform computational models aiming

to jointly address multiple aspects of scienti�c discourse. Employing the corpus, we ex-

plored intuitive neural architectures with recurrent encoders for argument extraction and

rhetorical analysis tasks and showed signi�cant improvements over traditional machine

learning models. We then coupled argument extraction with di�erent rhetorical analysis

tasks in MTL models with dynamic loss weighting and demonstrated that the argumen-

tative signal has a positive impact on high-level rhetorical analysis tasks.
14

Admittedly, the

corpus we used in this work is limited to the domain of computer graphics. Nonetheless,

we believe that our �ndings relating to the argumentative nature of scienti�c text and

links between argumentation and other rhetorical aspects generalize to other domains too.

This is also supported by the comparable IAA between expert and non-expert annotators.

In the next Section, we leave the speci�c case of scienti�c argumentation. Instead, we

study the complementarity of knowledge in contextualized language representations for

computational AQ assessment in multiple domains of online argumentation.

13
Signi�cant at α < 0.05, tested using the non-parametric strati�ed shu�ing test (Yeh, 2000).

14
The recurrent encoder employed in this study could naturally be replaced with a pretrained contextu-

alized language representations, e.g., BERT (Devlin et al., 2019).
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6.2 Complementarity of Knowledge across Argument Qual-

ity Dimensions

*Envisioned CA applications include systems, which automatically assess the quality of

argumentative texts in order to support users in improving their argumentative writing.

Though preceding work in computational argument quality (AQ) mostly focuses on

assessing overall AQ or speci�c conceptualizations of AQ, researchers agree that writers

would bene�t from feedback targeting individual dimensions of argumentation theory as

described in Subsection 2.1.2. However, a large-scale theory-based corpus and correspond-

ing computational models are missing. In this Section, we address this research gap by

conducting an extensive analysis covering three diverse domains of online argumentative

writing and presenting GAQCorpus: the �rst large-scale English multi-domain (commu-

nity questions and answers forums, debate forums, review forums) corpus annotated with

theory-based AQ scores. We then propose the �rst computational approaches to theory-

based assessment, which can serve as strong baselines for future work. We demonstrate

the feasibility of large-scale AQ annotation, show that exploiting the complementarity of

knowledge between dimensions (C3) yields performance improvements, and explore the

synergies between theory-based prediction and practical AQ assessment.

6.2.1 Introduction

Providing relevant and su�cient justi�cations for a claim and using clear and appropriate

language to express reasoning are important features of everyday argumentative writing.

These features relate to the notion of argument quality (AQ), which has been studied in

many domains, such as student essays (Wachsmuth et al., 2016), news editorials (El Ba�

et al., 2018), and online debate forums (Lukin et al., 2017).

Preceding work in NLP and CL has mostly focused on practical AQ assessment,
15

considering either the overall quality of arguments (Toledo et al., 2019; Gretz et al., 2020,

inter alia) or a single speci�c conceptualization of AQ, e.g., argument strength (Persing

and Ng, 2015), convincingness (Habernal and Gurevych, 2016), and relevance (Wachsmuth

et al., 2017d). However, Gretz et al. (2020) note the need to predict quality in terms of

�ne-grained aspects. Fine-grained prediction enables a deeper understanding of argu-

mentation and o�ers speci�c feedback to authors aiming to improve their argumentative

writing skills. For instance, authors might want to know whether their premises are suffi-

cient with regard to their claim(s) or whether their language is appropriate. As explained

in Subsection 2.1.2, Wachsmuth et al. (2017b) surveyed and synthesized theory-based

*
Adapted from: (1) Anne Lauscher, Lily Ng, Courtney Napoles, and Joel Tetreault. Rhetoric, Logic,

and Dialectic: Advancing theory-based argument quality assessment in natural language processing. In Pro-

ceedings of the 28th International Conference on Computational Linguistics (COLING), pages 4563–4574,

Barcelona, Spain (Online), December 2020, International Committee on Computational Linguistics. (2)

Lily Ng, Anne Lauscher, Joel Tetreault, and Courtney Napoles. Creating a domain- diverse corpus for

theory-based argument quality assessment. In Proceedings of the 7th Work- shop on Argument Mining

(ArgMining), pages 117–126, Online, December 2020, Association for Computational Linguistics.
15

We adopt the terminology of Wachsmuth et al. (2017a) who refer to task-driven approaches, which

often also focus on the relative assessment of AQ, as “practical”.
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dimensions of AQ into a taxonomy consisting of several �ne-grained aspects under three

main dimensions: Cogency (Logic), E�ectiveness (Rhetoric), and Reasonableness (Di-

alectic). The taxonomy enables for theory-based AQ assessment, which provides a more

targeted and informative perspective for researchers and end users. However, this holistic

approach comes with the downside of higher complexity, especially when it comes to

annotating textual corpora, which are required for training and developing common com-

putational approaches (e.g., Gretz et al., 2020). In a small study, Wachsmuth et al. (2017a)

demonstrate that theory-based AQ annotations can be done both by trained experts and

by crowd annotators, though the authors acknowledge the high complexity and subjec-

tivity of the problem. Accordingly, the authors call for the simpli�cation of theory-based

AQ annotation in order to reliably create larger-scale corpora. Given the overall feasibility

of annotation and the recognized need for �ne-grained dimensions in AQ assessment,

it is surprising that no further e�orts in NLP and CL have been made. There is no

attempt on simplifying the task, no large scale annotated corpus and, consequently, no

computational model. Furthermore, although intuitively there are interrelations between

the di�erent AQ dimensions, complementarity of knowledge between those (C3, see

Section 3.3) has not been studied yet. In this Section, we aim to �ll this research gap by

conducting an in-depth analysis of theory-based AQ assessment covering overall AQ and

the three dimensions (logic, rhetoric, and dialectic) of the Wachsmuth et al. taxonomy,

and three diverse domains of online argumentative writing (Community Questions and

Answers forums, debate forums, and review forums).

Drawing on existing AQ theories, we address �ve research questions (RQs) to inform

and fuel future AQ annotation studies and computational AQ research:

(RQ1) Can we develop a large-scale theory-based AQ corpus? Building on Wachsmuth

et al. (2017a), we modify the complex task of annotating theory-based AQ dimensions

to be suitable for both experts and the crowd while preserving the theoretical basis of

the taxonomy. We collect and annotate argumentative texts from web debate forums, as

well as community questions and answers (CQA) forums, and review forum texts, which

are still understudied in computational AQ. The latter domains can consist of rather

non-canonical arguments in that they exhibit a lack of explicitness of certain argumenta-

tive components; are topic-wise more subjective; or consist of longer, more convoluted

text. This makes assessing the quality of such arguments even more challenging, but

downstream can result in a more robust model of computational AQ.

Given all these challenges, we work closely with trained linguists to adapt the anno-

tation task, iterating over how best to approach these novel domains and simplify the

annotation guidelines for crowdsourcing, allowing us to collect a large number of judg-

ments e�ciently. Our e�orts result in GAQCorpus, the �rst large-scale multi-domain

English corpus annotated with theory-based AQ scores. In total, GAQCorpus consists

of 5, 295 arguments from three domains of online argumentative writing.

(RQ2) Are we able to develop computational models that can do theory-based AQ

assessment in varying domains? Based on GAQCorpus, we are the �rst to propose

computational approaches to theory-based AQ assessment and show that it is possible to

develop models for this task. Our models can serve as strong baselines for future research

and enable the �eld to investigate follow-up research questions.
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(RQ3) Can the interrelations between the di�erent AQ dimensions be exploited in a

computational setup? Inspired by the hierarchical structure of the taxonomy, We explore

whether the relationships between dimensions can be computationally exploited. In

addition to simple single-task learning approaches, we study the complementarity of

knowledge in theory-based AQ assessment. To this end, we jointly predict AQ dimensions

in two MTL (see Section 6.2.5) variants (flat vs. hierarchical) and �nd that combining

the training signals of all four aspects bene�ts theory-based AQ assessment.

(RQ4) Does the corpus support training a single unified model for multi-domain

evaluation? Relating back to our discussions about domain-speci�city (C2) in Section 3.2

and Chapter 5, training on in-domain data is typically preferred over multi-domain data

assuming that domain-speci�city of language representations results in performance

improvements. However, as we have seen before, there exists a trade-o�: a higher degree

of domain-speci�city may imply a smaller amount of data and, accordingly, does not

always result in better performance. Larger amounts of data are especially useful for

complex model architectures currently prominent in NLP (e.g., BERT (Devlin et al.,

2019), GPT2 (Radford et al., 2019)). We study these two mutually opposing e�ects on

GAQCorpus and show that our corpus supports training a single uni�ed model across

all three domains, with improved performances in individual domains.

(RQ5) Can we empirically substantiate the idea that theory-based and practical AQ

assessment can learn from each other? Wachsmuth et al. (2017a) suggest that both the

practical and the theory-based views can learn from each other, but so far, this has been

only tested manually. Employing our models, we go one step further and conduct a bi-

directional experiment employing a practical AQ corpus. We demonstrate two concrete

ways how theory-based and practical AQ research can pro�t from their combination.

6.2.2 Related Work

Earlier work in AQ assessment can be divided into practical and theory-based approaches.

Practical approaches. Recently, the �eld of computational AQ research has been

mostly driven by practical approaches that each target an individual domain. Accordingly,

past approaches tackle either overall quality (Toledo et al., 2019) or speci�c subqualities

of argumentation, such as convincingness (Habernal and Gurevych, 2016) and relevance

(Wachsmuth et al., 2017d). The popularity of practical approaches can partly be attributed

to the relative simplicity of crowd-sourcing annotations.

Much prior work has focused on aspects of student essays, including essay clarity

(Persing and Ng, 2013), organization (Persing et al., 2010), prompt adherence (Persing and

Ng, 2014), and argument strength (Persing and Ng, 2015). Later, Wachsmuth et al. (2016)

present an approach driven by detecting argumentative units, thereby demonstrating the

usefulness of argument mining techniques to the problem. Similarly, Stab and Gurevych

(2016) predict the absence of opposing arguments and in subsequent work (2017b) predict

insu�cient premise support in arguments. Another well-studied domain is web debates.

Wachsmuth et al. (2017d) adapt PageRank to identify argument relevance. Habernal

and Gurevych (2016) conduct pairwise comparison of the convincingness of debate
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arguments. Additionally, Persing and Ng (2017) predict why an argument receives a

low persuasive power score. By explaining �aws in argumentation, they highlight the

importance of explainability and speci�c author feedback. Other approaches take into

account properties of the source, i.e., the author (Durmus and Cardie, 2019) or the

audience (El Ba� et al., 2018; Durmus and Cardie, 2018). In contrast, we assume that

a system may not have much knowledge about the authors or audience and thus our

models operate solely on the text. Most recently, Toledo et al. (2019) and Gretz et al.

(2020) crowd-sourced overall argument quality by presenting pairwise arguments to

annotators, who then had to select the argument “they would recommend a friend to

use that argument as is in a speech supporting/contesting the topic.” This is an extreme

simpli�cation of the task, which does not seem to lead to better IAA: the authors report

an average IAA of κ = 0.12 and attribute the low score to the high subjectivity of the

task (Gretz et al., 2020). These corpora, on which they train computational models, cover

a variety of topics, but only within single domains. The authors emphasize that research

on theory-based approaches could further advance the �eld of computational AQ.

Theory-based approaches. Rooted in classic argumentation theory, the works can

according to Wachsmuth et al. (2017b), be categorized based on whether they related

to the logical (Johnson and Blair, 2006; Hamblin, 1970), rhetorical (Aristotle, ca. 350

B.C.E./ translated 2006), or dialectical (Perelman et al., 1969; Eemeren and Grootendorst,

2003) properties of an argument. Wachsmuth et al. (2017b) were the �rst to survey

and highlight the importance of the theory-based approach to computational AQ and

synthesized the argumentation-theoretic literature into a taxonomy, which we introduced

in Subsection 2.1.2. Wachsmuth et al. (2017a) conducted a study in which crowd workers

annotated 304 arguments for all 15 quality dimensions following Wachsmuth et al. (2017b),

and demonstrated that the theory-based and practical AQ assessment match to a large

extent and that the two views can learn from each other, for instance, when it comes to

more practical annotation processes for theory-based AQ annotations.

However, until now, no further research on computational theory-based AQ assess-

ment in NLP has been conducted, no larger-scale annotated corpus has been presented,

and thus no computational model that would allow further investigation into the concrete

synergies between the two perspectives exists.

6.2.3 Annotation Study

Wachsmuth et al. (2017a) suggest that large-scale annotation of theory-based AQ dimen-

sions is possible. We test this �nding and take it one step further by asking whether we

can develop a large-scale theory-based AQ corpus (RQ1). This section presents GAQCor-

pus, the result of the �rst study annotating theory-based dimensions, including 5, 285
arguments from three diverse domains of real-world argumentative writing.

Simplifying the task

In designing our annotation task, we start from the annotation guidelines of Wachsmuth

et al. (2017a), henceforth TvsP, which re�ect the full taxonomy in Figure 6.3, but which

103



6. COMPLEMENTARITY OF KNOWLEDGE ACROSS TASKS
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Figure 6.3: Scored dimensions and guideline questions based on the taxonomy of theory-

based argument quality (Wachsmuth et al., 2017b). Annotators were guided by questions

relating to all aspects for assessing the higher-level dimensions.

the authors posited was too complex for crowd-sourcing. Before collecting any crowd-

sourced annotations, we conducted 14 pilot experiments with a group of four "expert"

annotators, simplifying the TvsP task design through their feedback and observations,

as they provided both a deep understanding of the argumentation theory and practical

experience annotating the arguments. Each expert annotator was a �uent or native

English speaker with an advanced degree in linguistics. Experts underwent training,

which included studying guidelines and participating in calibration tasks to analyze

debate arguments from three sources: Dagstuhl-ArgQuality-Corpus-V2,
16

originally from

UKPConvArgRank (Habernal and Gurevych, 2016); the Internet Argument Corpus

V2
17

(IAC; Abbott et al., 2016); and ChangeMyView,
18

a Reddit forum. Through the pilot

studies and subsequent debriefs with the experts, we made the following modi�cations

to the annotation task of Wachsmuth et al. (2017a):

(1) Reduce taxonomy complexity. While TvsP de�ned the task to score all 11 AQ

subaspects (Local Acceptability, Local Relevance, etc.), 3 dimensions (Cogency, E�ec-

tiveness, Reasonableness), and overall AQ, we reduced the number of qualities scored by

only focusing on the 3 higher-level dimensions plus overall AQ. As a result, annotators

assessed an argumentative text in terms of 4 scores instead of 15 scores, and instead of 3
di�erent AQ levels, the simpli�ed taxonomy is reduced to 2.

(2) Instruction modi�cations. We reworded the TvsP dimension descriptions and

added several examples to make the guidelines more understandable. As the annotators

were not rating the 11 AQ subaspects, we experimented with di�erent methods to in-

16http://argumentation.bplaced.net/arguana/data
17https://nlds.soe.ucsc.edu/iac2
18https://www.reddit.com/r/changemyview/
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Dimension Subdimension Question

Cogency Local Acceptability Are the justi�cations for the argument acceptable/be-

lievable?

Local Relevance Are the justi�cations relevant to the author’s point?

Local Su�ciency Do the justi�cations provide enough support to draw

a conclusion?

E�ectiveness Credibility Is the author quali�ed to be making the argument?

Emotional Appeal Does the argument evoke emotions that make the au-

dience more likely to agree with the author?

Clarity Does the author’s language make it easy for you to un-

derstand what they are arguing for or against?

Appropriateness Is the author’s argument and delivery appropriate for

an online forum?

Arrangement Did the author present their argument in an order

that makes sense?

Reasonableness Global Acceptability Would the target audience accept the argument and

the way it is stated?

Global Relevance Does the argument contribute to the resolution of

the given issue?

Global Su�ciency Does the argument address and adequately rebut

counterarguments?

Table 6.10: AQ subdimensions represented as questions in the annotation task of debates.

corporate the subaspects into the guidelines. Instead of explaining the subdimensions in

the guidelines and trusting crowd annotators to bear them in mind, we represented each

subdimension as a yes/no question in the annotation task itself (Table 6.10). Our pilot

experiments showed that presenting the questions without asking for a response eased

the perceived complexity of the task while not a�ecting agreement.

(3) Five-point scale. While TvsP collected judgments with a three-point rating scale

(low, medium, high), we employ a �ve-point scale (very low, low, medium, high, very high,

plus cannot judge) to allow for more nuanced judgments, as the expert annotators found

the distance between the items on a three-point scale too large. Scales with 5–9 items have

been shown to be optimal, balancing the informational needs of the researcher and the

capacity of the raters (Cox, 1980). We experimented with both three- and �ve-point scales

and found that the larger scale did not negatively a�ect inter-annotator agreement.

Our �nalized task design is as follows: �rst, annotators decide whether a text is

argumentative. Next, if yes, each of the three high-level dimensions is scored on a �ve-

point scale and subaspect questions are presented to guide the annotator’s judgment.

Finally, overall AQ is scored, also on a �ve-point scale.
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Cogency E�ectiveness Reasonableness Overall

Ours 0.46 0.48 0.48 0.55

TvsP 0.27 0.38 0.13 0.43

Table 6.11: Agreement between the Dagstuhl “gold” annotations and our crowd-sourced

annotations (Ours) compared to the agreement of TvsP.

Validating the Task Design

Before collecting annotations from the crowd, we validated our modi�cations subjec-

tively and objectively. First, we ran a series of pilot tasks with our expert annotators.

They initially annotated using the TvsP guidelines, and next worked with the simpli�ed

taxonomy. In follow-up discussions, the experts con�rmed that the new task design

reduced the cognitive load necessary to rate arguments, and that the guidelines were more

understandable. This makes the task more approachable, which is vital when presenting

it to (untrained) crowd-workers for larger-scale annotation.

We validated the simpli�cations quantitatively by reproducing the study of TvsP,

which compared their crowd and "expert" annotations. To this end, we randomly sam-

pled 200 arguments from Dagstuhl-ArgQuality-Corpus-V2, which come with author-

annotated "gold" ratings. We collected ratings from a crowd (10 ratings per item), following

our simpli�ed design.
19

All crowd contributors were native or �uent English speakers

engaged through Appen (formerly Figure Eight). Crowd contributors did not participate

in calibration meetings, and all feedback was relayed to contributors through a liaison.

We average the crowd ratings to obtain a single score for each argument and computed

the IAA with the "gold" annotations using Krippendor�’s α (Krippendor�, 2007). The

results are shown in Table 6.11. Even though the annotation scores are not strong, the

IAA between our crowd annotators and the gold annotations generally surpasses the

agreement scores reported by TvsP. This is a highly nuanced and subjective task, which

is re�ected in the agreement levels. Based on these results and annotator observations,

we conclude that our task guidelines and design allow for better (or at least comparable)

quality crowd-sourcing of theory-based AQ annotations.

Data

We investigate di�erent domains to obtain a deeper understanding of real-world AQ and

the feasibility of the annotation scheme in di�erent settings. We include three domains in

our study: CQA forum posts (CQA), debate forum posts (Debates), and business review

forum posts (Reviews). While Debates are generally well-explored in computational

AQ assessment, we are unaware of any work involving CQA and Reviews. For each of

these domains, we �rst identi�ed items likely to be argumentative and then adjusted the

guidelines in consultation with expert annotators, as described below.

19
The only di�erence is that we used a 3-point scale to more fairly compare to the gold.
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Debate forums. Out of the three domains we investigate, Debates is the most straight-

forward to annotate. Given a topic or motion, users can de�ne their stance (pro/contra)

and write an argument which supports it. We included data from two online debate

forums. ConvinceMe (CM) is a subset of the IAC, where users share their Stance on

a topic and discuss their point of view, with replies aiming to change the view of the

original poster. Change My View (CMV) is a Reddit forum in which participants post

their opinion on a topic and ask others to post replies to change their mind. We sampled

original posts from CMV, skipping any moderator posts, and the �rst reply to an original

post from CM, in order to limit the context that annotators must consider when evalu-

ating arguments. CMV posts always include the author’s perspective in the title, while

CM posts may or may not include a stance in the title. In the guidelines, we instruct

annotators to judge a post by how successfully it justi�es the author’s claim.

CQA. In community questions and answers forums, users post questions or ask for

advice, which other users can address. We experimented with arguments from Yahoo!

Answers.
20

When posting a question, users can provide background information (context)

and can later indicate which response is the best answer to their question. The forum’s

looser structure provides for a wide variety of content, which is appealing as a potential

source of non-standard arguments, but challenging as many of the posts do not contain

any arguments. Through manual analysis, we identi�ed three categories that frequently

contained controversial topics, hypothesizing they would have a higher incidence of

debates: Social Science> Sociology, Society & Culture>Other, and Politics & Government

> Law & Ethics. We empirically selected the category with the highest proportion of

arguments in a study on Amazon Mechanical Turk. Quali�ed annotators
21

decided if

question and best-answer pairs were argumentative. We collected 10 judgments for 100

pairs from each category and aggregated judgments with a simple majority. Law & Ethics

had the most argumentative posts (70%, compared to Sociology with 40% and Society &

Culture with 34%), so we sampled posts from this category to annotate.

In the guidelines for this domain, we asked annotators to judge the argumentative

strength of an answer with respect to how well it addressed the given question. The

guidelines and subdimension questions were altered to encourage this. One obstacle in

pilot studies with expert annotators was posts o�ering advice, as many users solicited

legal support in the Law & Ethics forum. We decided to consider advice-giving posts

as argumentative as long as the author supported the advice with justi�cations, which

mirrors our general approach to the Argumentative dimension.

Reviews. The third domain consists of restaurant reviews from the Yelp-Challenge-

Dataset.
22

On Yelp, users write reviews of businesses and rate the quality of their experi-

ence from 1 (low) to 5 (high) stars. Unlike the Debate and CQA forums, the format of

Yelp does not support dialogue between users (i.e., users cannot directly reply to other

20https://answers.yahoo.com/
21

HIT approval rate>= 97; HITs approved> 500; Location = US
22https://www.yelp.com/dataset
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Crowd Experts Overlap

# Annotators 10 1 2 3 11–13 Total size

CQA 1,334 626 – 625 500 2,085

Debates 1,438 600 – 600 538 2,100

Reviews 600 200 400 – 100 1,100

Table 6.12: Number of arguments annotated by experts and the crowd and the number

of overlapping instances (annotated by both experts and the crowd) by domain.

users or posts), and so it is possible to present each post in isolation as a self-contained

argument. As most posts do not explicitly state a claim, we pose the star rating as a claim

the user is making about the business, and the review as the argument supporting it.

Yelp reviews can be highly subjective as each review is based on a single user’s expe-

rience. For instance, a user may rate a restaurant as 5-stars and write only The food was

delicious. To address this subjectivity, we asked annotators to judge the argumentative

quality of each review with respect to how well it supported the rating provided. Another

challenge was de�ning what constituted a counterargument, as these have a very di�erent

character than counterarguments in debates (e.g., Everyone says that the pizza crust is too

thin here but that’s authentic!). In consultation with our experts, we de�ned counterargu-

ments by the following characteristics: (1) addressing and rebutting the viewpoints of

other reviews, (2) addressing and rebutting points that discredit the author’s rating, and

(3) bringing up favorable points in an unfavorable review and vice versa.

Experts completed a series of pilots before each domain was presented to the crowd,

using the simpli�ed task design. Expert agreement on novel domains (CQA and Reviews)

is shown in Table 6.13. Feedback on the task and guidelines was gathered during calibration

meetings, and guidelines were iteratively altered to be more clear and speci�c.

Data Analysis

Applying the annotation task design and data selection described above, we created GAQ-

Corpus, containing 5,285 arguments across three domains of online writing, annotated

for theory-based dimensions. All arguments were limited to have a length between 70

and 200 characters. Ratings were provided by the two groups of annotators mentioned

above, Expert and the Crowd. Each group judged 3,000 arguments, with about 1,000

arguments annotated by both groups for comparison. The size of the corpus is described

in Table 6.12. Annotators worked with the domains in the following order: Debate

forums, CQA forums, and Review forums. Before switching to a new domain, annota-

tors completed a small study for calibration. All data and guidelines are available from

https://github.com/grammarly/gaqcorpus.
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Domain Cogency E�ective. Reasonable. Overall

CQA 0.16 0.31 0.36 0.29

Debates 0.22 0.33 0.20 0.33

Reviews 0.41 0.19 0.21 0.34

Table 6.13: Agreement (Krippendor�’s α)

between experts on pilot studies for CQA,

Debates, and Reviews (146, 150, and 50 ar-

guments, respectively).

Cogency E�ective. Reasonable. Overall

CQA 0.42 0.52 0.52 0.53

Debates 0.14 0.11 0.21 0.19

Reviews 0.32 0.32 0.31 0.33

Table 6.14: IAA between the mean expert

and crowd scores for Cogency, E�ectiveness,

Reasonableness, and Overall AQ.

Title: Should ‘blogging’ be a capital crime? Iran is considering it...
Stance: A government has the right to censor speech (...)

Text: My government doesn’t give me freedom of speech, so I have
to argue for this side. Freedom of speech is bad because ... um ...
then Our Leader’s beliefs could be challenged. No one wants that. I
mean, if everyone would just say and believe what Our Leader says
to, we wouldn’t need those firing squads altogether! Everyone wins.

Cogency Effectiveness Reasonableness Overall

Annotator 1 4 1 1 2
Annotator 2 4 5 3 4
Annotator 3 2 2 2 2

Figure 6.4: Example argument exhibiting disagreement in the E�ectiveness dimension.

Inter-Annotator Agreement. We assessed the quality of the crowd annotations by

calculating the IAA between the experts and crowd workers on the overlapping portions

of GAQCorpus using the mean scores (Table 6.14). For debate forums, the agreement is

weak with α ≤ 0.21, while for the CQA forums, the agreement is higher: 0.42–0.53.

These results suggest that the di�culty of the task is highly dependent on the domain.

While our Debates data and the Dagstuhl-ArgQuality-Corpus-V2 data both consist

of web debate arguments, the di�erence in IAA is high, which might be attributed to

di�erent complexities of the web debates data. While TvsP only look at single arguments

in isolation, often consisting of a single sentence only, we look at web posts, which mostly

consist of multiple sentences. One area of disagreement centered on arguments, which

were sarcastic, ironic, or included rhetorical questions. Consider the argument given in

Figure 6.4, over which the expert annotators expressed disagreement. This argument

appears to support the stance that a government has the right to censor speech, but

several linguistic cues indicate that the argument might be ironic: (a) Punctuation: ellipsis

indicates thinking/searching for justi�cations; similarly, (b) the �ller um; (c) capitalization:

the noun phrase Our Leader is capitalized, indicating hyperbolic apotheosis; and �nally,

(d) the phrase (...) so I have to argue for this side. acts like an apologia, which is put in front

of the actual argument. Annotators 1 and 2 based their judgments on an interpretation
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Figure 6.5: Score distributions by domain for expert and crowd annotators.

of this text that related to the estimated degree of irony in the post. While Annotator 1
did not perceive irony and judged the argument as very weak in E�ectiveness, Annotator 2
considered it to be highly e�ective as in their view, the irony positively underlined the

perceived stance. Annotator 3 gave medium scores across the board. Such disagreements

were regularly discussed and usually revealed that multiple opinions may exist according

to how the texts were interpreted, highlighting the high subjectivity of the task.

Another area of disagreement was how to judge arguments on topics that were

deemed "less worthy" of being discussed, and which usually were rather humorous in

nature or had trivial consequences, such as Batman vs. Superman, in which users argued

for the the superiority of either superhero. In our pilot studies, some experts provided

lower ratings of arguments on these topic that they considered less worthy. In contrast,

others thought that writing a strong, serious argument on a less worthy topic was especially

di�cult, and thus provided higher ratings for such arguments.

Analysis of the Scores. The distributions of mean scores across domains and an-

notator groups in GAQCorpus are depicted in Figures 6.5a and 6.5b. In general, the

interquartile range of the expert scores was higher than the crowd, suggesting that experts

were more speci�c when scoring items, which is also re�ected in the medians: while the

crowd exhibits a tendency to score variables equally, expert annotations exhibit more

di�erentiation. To understand the interrelations between Overall AQ and the dimen-

sions, we compute Pearson correlations between the mean scores (Figure 6.6). Generally,

the trends are similar across all three domains. For instance, for Debates (Figures 6.6d

and 6.6a), the crowd annotations exhibit stronger correlations between the di�erent

dimension scores than the experts, with 0.83 ≤ r ≤ 0.96. Interestingly, the variance

among the Pearson scores is lower, indicating that the crowd tends to distribute ratings

for a single instance more consistently while the experts seem to put more weight on

di�erentiating the dimensions. Expert ratings of Overall AQ have substantially stronger

correlation with the dimensions than any of the dimension scores with each other, further
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Figure 6.6: Mean score correlations between the di�erent dimensions for expert and

crowd annotators across the three domains (Pearson’s r).

indicating that experts are more discerning in their scores than the crowd. Across both an-

notator groups and all domains, the correlation between Overall AQ and Reasonableness

is highest, which is consistent with earlier observations (Wachsmuth et al., 2017b).

Qualitative Analysis. We next examine low-scoring arguments from all domains to

understand how AQ is perceived di�erently, focusing on the Reasonableness dimen-

sion (Table 6.15). The Debate argument raises a counterargument but does not rebut it

and additionally neglects to address an obvious counterargument (i.e., the many ethical

implications of such a policy). On the other hand, the CQA and Review arguments do

not raise or address any counterarguments and are not judged Reasonable for other rea-

sons: the CQA argument jokes about the original poster’s question and accuses the poster

of malignant behavior, while the Review argument delves into a personal experience that

does not contribute to the discussion about the quality of the business.

Standard Split

We provide and use a standard split for each domain, which is composed as follows: The

training and development sets consist of the instances which were either annotated by our

linguistic experts or the crowd workers. In contrast, the test sets encompass only instances

scored by both experts and the crowd. For each instance and group, we obtain a single score

by averaging the annotators’ votes. In addition to the group-speci�c annotations (expert

and crowd), we also compute a mix score which is the average of the two group-speci�c

scores. This way, we train on a mix of expert and crowd annotations, where the dominant
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Debates

Cogency 2.0

E�ectiveness 1.7

Reasonableness 1.0

Overall 1.3

Title: Should you need to pass an IQ test to have kids?– Stance: Dumb parents lead

to more dumb kids. Text: I have a strong opinion that before having children, the

prospective parents should have to pass a series of background and IQ tests. Kids

being brought into this world need a good foundation to start a successful life with.

You may have that limited case where the parents are morons and the kids strive to be

di�erent then their failure parents, but in most cases it is an endless line of parasites

on our world. We need more smart people.

CQA

Cogency 2.7

E�ectiveness 2.0

Reasonableness 1.7

Overall 2.0

Question: Bounced CHECK? Context: Does the company holding the bounced

check have to send you a certi�ed letter before issuing a warrant for your arrest. I feel

almost certain that they do but i am not sure. Answer: I always make sure my checks

are not printed on rubber. they are just too expensive and not worth it. We all make a

mistake from time to time, and usually it is no big deal except for the extreme annoy-

ance and all the bounced check fees. But if you are worried about an arrest warrant

then I am sure you are doing this deliberately and trying to defraud the company. You

have probably sent them a couple of bad checks already in an attempt to string them

along so your guilt is probably pretty well established. You can hope that you do not

have to share a jail cell with a gross deviate of some sort.

Reviews

Cogency 1.0

E�ectiveness 1.0

Reasonableness 1.0

Overall 1.0

Title: Business review: 2.0 Stars. Business name: Cook Out. City: Charlotte. Cat-

egories: Restaurants, Desserts, Food, Fast Food, American (Traditional), Hot Dogs,

Burgers Review: Burgers are good but I like those other 5 guys burgers instead oh

and I guess if your not from around here don’t even think about going thru the drive

thru it’s like the biggest most unreadable confusing hurried crazy thing ever if I ever

go again hell with drive thru until I’ve lived here for at least 5 maybe 10 years and can

be a veteran drive thru person I’m walking in it’s like if I mix up all the letters in this

review and give you 1 minute to read it and �gure it out then you gotta move on.

Table 6.15: Low-scoring arguments from all domains.

portion comes from the crowd, and test on overlapping instances, enabling us to compare

model performance to both expert and crowd ratings on a static set of instances. The

numbers of instances in each portion are given in Table 6.16.

6.2.4 Models

Having developed GAQCorpus to enable computational AQ assessment (RQ1), we ad-

dress the remaining research questions by experimenting with AQ models. To determine

whether we can develop a computational theory-based AQ model (RQ2), we employ

a naive length baseline, three di�erent support vector regression (SVR) models, and a

BERT-based (Devlin et al., 2019) model. We next investigate whether the interrelations

between AQ dimensions can be exploited in a computational setup (RQ3), employing

two MTL BERT-based models. For the BERT-based models, we transform each argu-

ment into a “BERT-compatible” format, i.e., into a sequence of WordPiece (Johnson

et al., 2017) tokens and prepend the sequence with BERT’s start token ([CLS]). The
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Domain Total Train Dev Test

CQA 2,085 1,109 476 500

Debates 2,100 1,093 469 538

Reviews 1,100 700 300 100

All 5,285 2,902 1,245 1,138

Table 6.16: Number of instances in the train, development, and test sets of GAQCorpus.

pooled hidden representation of the latter corresponds to the aggregated document

representation. The speci�c details of each model are described below.

Argument Length (Arg length). To estimate the task di�culty and to measure

a potential length bias in our data set, our naive baseline is the correlation between the

argument’s character length and quality scores.

SVR with Lexical Features (SVRtfidf). We run a simple SVR with TF–IDF repre-

sentations and test to what extend quality is re�ected by purely lexical features.

SVRwith Semantic Features (SVRembd). We represent each argument as the average

of the fastText (Bojanowski et al., 2017) embedding
23

representations of each word.

Feature-rich SVR (WachsmuthCFS). We reimplement the approach of Wachsmuth

et al. (2016), who employ standard features (token n-grams, part-of-speech tags, etc.) and

higher-level features (sentiment �ows, argumentative units, etc.). We run correlation-

based feature selection on the training set and include only the most predictive features.

Single-task Learning Setting (BERT ST). For each AQ dimension t, e.g., E�ective-

ness, we train an individual regressor. Our AQ predictor is a simple linear regression layer

in which we feed the pooled document representation. The loss Lt is then simply the

mean squared error over the k instances in the training batch.

Flat Multi-Task Learning Setting (BERT MTflat). We explore whether a joint

training setup would improve the individual score predictions. For each quality di-

mension, we employ an individual prediction layer as described above and compute an

individual task loss. We then de�ne the total training loss as the sum of the task losses.

Hierarchical Multi-Task Learning Setting (BERTMThier). We propose a hierar-

chical MTL setting to exploit the hierarchical relationship between the scores suggested

by the taxonomy. Similar to above, we �rst learn jointly the lower-level tasks (Cogency,

23https://dl.fbaipublicfiles.com/fasttext/vectors-english/
wiki-news-300d-1M-subword.vec.zip
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Model CQA D R

Overall

Arg length 0.406 0.420 0.365

SVRtfidf 0.389 0.265 0.450

SVRembd 0.278 0.388 0.265

WachsmuthCFS 0.492 0.432 0.533

BERT ST 0.652 0.511 0.605

BERTMTflat 0.667 0.537 0.588

BERTMThier 0.661 0.494 0.593

Cogency

Arg length 0.420 0.437 0.340

SVRtfidf 0.444 0.257 0.384

SVRembd 0.261 0.333 0.103

WachsmuthCFS 0.503 0.429 0.464

BERT ST 0.587 0.503 0.554

BERTMTflat 0.633 0.541 0.561

BERTMThier 0.638 0.474 0.541

Model CQA D R

E�ective.

Arg length 0.390 0.399 0.372

SVRtfidf 0.411 0.120 0.340

SVRembd 0.293 0.403 0.187

WachsmuthCFS 0.523 0.450 0.432

BERT ST 0.612 0.542 0.555

BERTMTflat 0.671 0.570 0.514

BERTMThier 0.670 0.532 0.486

Reasonable.

Arg length 0.396 0.377 0.405

SVRtfidf 0.457 0.247 0.452

SVRembd 0.379 0.258 0.234

WachsmuthCFS 0.476 0.399 0.432

BERT ST 0.665 0.418 0.609

BERTMTflat 0.644 0.473 0.610

BERTMThier 0.626 0.408 0.611

Table 6.17: Pearson correlations of our model predictions with the annotation scores on

the mix test annotations when training on in-domain data for Community Q&A (CQA),

Debates (D), and Reviews (R). Numbers in bold indicate best performances.

E�ectiveness, Reasonableness) resulting in three scores ŷCog, ŷE�, and ŷRea. Next, we em-

ploy these scores for informing the overall AQ predictor by concatenating these with the

hidden document representation hD : hinformed = h_D [ŷCog, ŷE�, ŷRea].The resulting

vector hinformed serves as input to the overall AQ predictor as de�ned in before.

6.2.5 Experiments

We employ the proposed architectures above to answer research questions RQ2–RQ5.

RQ2: Computational theory-based AQ assessment

To test whether our corpus supports the development of theory-based AQ assessment

models, this experiment employs all single-task models presented in Subsection 6.2.4 (Arg

length, SVRtfidf, SVRembd WachsmuthCFS, and BERT ST). We train and predict

on the domain-speci�c data sets and report the results on the mix test set per AQ di-

mension for each domain.
24

Details on the grid search we conduct for hyperparameter

optimization can be found in Part B of the supplementary material.

Results. The respective Pearson correlation scores for AQ dimensions on the three

domain-speci�c test sets are shown in Table 6.17. Generally, we reach medium to high

Pearson correlation scores of up to nearly 0.67. However, like the IAA, performance

varies across domains: on Debates, the best model, BERT ST, achieves a correlation

coe�cient with the annotation scores for reasonableness of 0.42 and on the CQA forums,

24
Trends for the other evaluation sets (crowd and expert) are similar. Full results can be found in Part B

of the supplementary material.
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it achieves a performance of 0.67. The BERT-based regressor outperforms the other

methods, showing that we can successfully utilize a large-scale corpus with theory-based

AQ dimensions to train models for automatic AQ assessment (RQ2). Note that Arg

Length is relatively high across all domains and properties and often outperforms

SVRtfidf and SVRembd, indicating a slight length bias in the corpus. However, BERT

ST outperforms this baseline in all cases by a large margin, demonstrating this model’s

ability to capture useful information beyond pure length.

RQ3: E�ect of AQ dimension interrelations

Next, we seek to determine whether it is possible to exploit the interrelations between

the three dimensions and the overall AQ as suggested by the taxonomy by conducting

experiments on GAQCorpus. We compare the MTL architectures, BERTMTflat and

BERTMThier, against the results of theBERTSTmodel, the best performing single-task

model. Again, we train and predict on the domain-speci�c data splits.

Results. Table 6.17 shows the respective Pearson correlation scores for the four AQ

dimensions on each domain. The MTL models outperform the single-task model in 9
out of 12 cases,which suggests that the interrelations between the AQ dimensions and

overall AQ can be exploited to improve model performance (RQ3). More speci�cally, the

best method is BERTMTflat, which outperforms the other methods in 7 cases. BERT

ST and BERTMThier are best in 3 and 2 cases, respectively.

RQ4: Uni�ed multi-domain model

Relating back to our experiments on domain-speci�city from before (see Chapter 5), we

examine whether our corpus supports training a uni�ed multi-domain model (C2). To

this end, we train the BERT-based models on the joint training set covering all domains

and test performance on each individual domain, thereby including out-of-domain data

in training. Similarly, we optimize the hyperparameters on the joint development set. We

compare with the best in-domain score from Table 6.17.

Results. The respective results for the four argument quality dimensions can be seen

in Table 6.18. In 11 out of 12 cases, training on all domains increases the performance

compared to the best in-domain model. While the resulting models are less domain-

speci�c, the increased amount of data leads to better convergence and leads to gains up

to 5 percentage points. This is in-line with our �ndings on the trade-o� between larger

and more heterogeneous vs. smaller and more homogeneous corpora from Chapter 5.

RQ5: Synergies between practical and theory-driven AQ

To empirically test the hypothesis that synergies exist between practical and theory-based

computational AQ assessment, we conduct a bi-directional experiment with the recently

released IBM-Rank-30k corpus (Gretz et al., 2020).
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Model CQA Debates Reviews

Overall

Best in-domain 0.667 0.537 0.605

BERT ST 0.676 0.545 0.596

BERTMTflat 0.681 0.562 0.633

BERTMThier 0.665 0.562 0.622

Cogency

Best in-domain 0.638 0.541 0.561

BERT ST 0.608 0.515 0.563

BERTMTflat 0.653 0.542 0.570

BERTMThier 0.638 0.552 0.599

E�ective.

Best in-domain 0.671 0.570 0.555

BERT ST 0.686 0.598 0.601

BERTMTflat 0.670 0.578 0.603

BERTMThier 0.653 0.592 0.576

Reasonable.

Best in-domain 0.665 0.473 0.611

BERT ST 0.635 0.487 0.603

BERTMTflat 0.657 0.486 0.631

BERTMThier 0.633 0.483 0.643

Table 6.18: Pearson correlations of the

model predictions with the annotation

scores when training on the joint training

sets of all domains. We compare with the

best result of the in-domain setting.

Domain Dimension r ρ

BERT IBM – 0.492 0.456

Gretz et al. (2020) – 0.52 0.48

All Overall 0.313 0.303

Cogency 0.311 0.300

E�ectiveness 0.313 0.303

Reasonableness 0.304 0.298

CQA Overall 0.258 0.224

Cogency 0.269 0.228

E�ectiveness 0.262 0.225

Reasonableness 0.262 0.226

Debates Overall 0.336 0.326

Cogency 0.331 0.321

E�ectiveness 0.336 0.326

Reasonableness 0.333 0.319

Reviews Overall 0.150 0.145

Cogency 0.139 0.138

E�ectiveness 0.152 0.151

Reasonableness 0.149 0.148

Table 6.19: Performance of BERTMTflat

trained on GAQCorpus, predicting on

IBM-Rank-30k evaluated against the

weighted average score.

Experimental setup. IBM-Rank-30k consists of 30,497 crowd-sourced arguments

relating to 71 topics, where each argument is restricted to 35–210 characters. The corpus

has binary judgments indicating whether raters would recommend the argument to a

friend. Based on these ratings, a score for each argument was computed, either using

MACE or weighted average of all ratings. Compared to GAQCorpus, IBM-Rank-30k is

much larger but the arguments are much shorter and more arti�cial than real world texts.

Manual inspection revealed that the nature of the texts substantially di�ers from each

those in GAQCorpus, i.e., arguments mainly cover reasons for higher-level claims. For

example, in IBM-Rank-30k for the topic “We should end racial profiling”, a highly rated

argument is “racial profiling unfairly targets minorities and the poor”. We conduct three

experiments in two directions: (E1) train on GAQCorpus, then predict on IBM-Rank-

30k, (E2) train on IBM-Rank-30k, then predict on GAQCorpus, and �nally, (E3) train

on IBM-Rank-30k, next, train on GAQCorpus, and then, predict on GAQCorpus.

For experiment (E1), we take the (already trained) BERTMTflat models trained

on each domain of GAQCorpus and predict on the test portion of IBM-Rank-30k. This

enables us to determine which one of our domains and dimensions are closest to the

data and annotations in IBM-Rank-30k. We compare against the best score reported in

the Gretz et al. (2020) as well as against our own reimplementation using BERTBASE,

dubbed BERT IBM.
25

We optimize the BERT IBM baseline by grid searching for the

learning rate λ ∈ {2e− 5, 3e− 5} and the number of training epochs∈ {3, 4} on the

25
Note that Gretz et al. (2020) do not indicate whether they employ BERTBASE or BERTLARGE.
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CQA Debates Reviews

Overall

BERT IBM 0.392 0.317 0.154

BERT IBMMTflat 0.666 0.543 0.568

BERTMTflat 0.681 0.562 0.633

Cogency

BERT IBM 0.368 0.274 0.149

BERT IBMMTflat 0.639 0.518 0.541

BERTMTflat 0.653 0.542 0.570

E�ectiveness

BERT IBM 0.426 0.378 0.195

BERT IBMMTflat 0.678 0.594 0.545

BERTMTflat 0.670 0.578 0.603

Reasonableness

BERT IBM 0.348 0.246 0.151

BERT IBMMTflat 0.637 0.465 0.581

BERTMTflat 0.657 0.486 0.631

Table 6.20: Pearson correlations on GAQCorpus when predicting with BERT IBM

(trained on IBM-Rank-30k) andBERTIBMMTflat trained on IBM-Rank-30k in STILT

setup �ne-tuned on GAQCorpus in comparison to BERTMTflat.

IBM-Rank-30k development set. For the already trained models from Sections 6.2.5 and

6.2.5, no further optimization is necessary. In experiment (E2), we reverse the direction

of (E1): We train a BERT-based regressor as de�ned before on the MACE-P aggregated

annotations of IBM-Rank-30k.
26

We predict on GAQCorpus and correlate the scores

with our annotations. Finally for experiment (E3), in order to �atten out expected losses

from the zero-shot domain transfer, inspired by Phang et al. (2018) we use IBM-Rank-

30k in the STILT setup, which we discussed in Section 2.2.3. Concretely, we take the

trained BERT IBM encoder and continue training the model as BERT IBMMTflat in

the all-domain setup. We compare both models from (2) and (3) with the BERTMTflat.

Results. The results of experiment (E1) are depicted in Table 6.19. As expected, the

zero-shot domain transfer results in a large drop compared to training on the associated

train set of IBM-Rank-30k. Quite surprisingly, the model trained on the debate forums

reaches the highest correlation scores – even higher than the model trained on all-domains.

Further, in most cases, the e�ectiveness predictions correlate best with the annotations

provided by Gretz et al. (2020). This is in-line with the authors’ observations, who

manually had to annotate the data for the theory-based scores.

Table 6.20 displays the results of (E2)–(E3). Experiment (E2), draws a similar picture:

the zero-shot domain transfer using BERT IBM results in a huge loss in performance

compared to BERTMTflat. Finally, the results in (E3) indicate potential for using re-

sources drawn from practical approaches in a theory-based AQ assessment scenario: when

reusing the encoder in the STILT setup, BERT IBMMTflat, the losses originating from

the zero-shot domain transfer can be �attened out – in some cases even outperforming

26
This corresponds to our BERT IBM baseline from before.
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BERTMTflat. This is especially the case when correlating the predictions with our an-

notations for the E�ectiveness dimension. To sum up, our experiment (E1)–(E3) yield the

following �ndings: (1) large-scale predictions, obtained from a theory-based AQ model

on a large (practical) AQ data set, correlate mostly with the E�ectiveness dimension. (2)

The transferred knowledge obtained in the STILT-setup on IBM-Rank-30k in BERT

IBM MTflat improves the performance on GAQCorpus for E�ectiveness the most.

These two facts match Gretz et al. (2020)’s hypothesis that their annotations mostly cap-

tured E�ectiveness. To summarize, with these experiments, we empirically substantiate

the idea (without any manual e�ort) that, on the one hand, a theory-based approach

can inform practical AQ research and increase interpretability of practically-driven re-

search outcomes. On the other hand, the practical approach can increase the e�cacy of

theory-based AQ models when targeting a matching domain and dimension.

6.2.6 Conclusion

Speci�c assessment of the rhetorical, logical, and dialectical perspectives on argumentative

texts can inform researchers, e.g., about phenomena captured within their annotation

study, and help people improve their writing skills by providing targeted feedback. How-

ever, the �eld of computational AQ assessment has been almost exclusively driven by

practical approaches. Aiming to �ll this research gap, in this Section, we advanced theory-

based computational AQ research with the following contributions: we performed a

large-scale annotation study on English argumentative texts covering debate forums, CQA

forums, and business review forums. We thereby presented GAQCorpus, the largest

and �rst multi-domain corpus annotated with theory-based AQ scores (RQ1). Next, we

proposed the �rst computational theory-based AQ models (RQ2) and demonstrated that

jointly predicting AQ scores can improve the performance of the models (RQ3) thereby

exploiting the complementarity of knowledge across the AQ assessment dimensions (C3).

Furthermore, we showed that in most cases, models bene�t from including out-of-domain

training data (RQ4, C2). Finally, we investigated concrete synergies between the practical

and the theory-based approach to AQ assessment in a bi-directional experimental setup

(RQ5). The theory-based models can help to increase the interpretability of practical

approaches, and practical approaches can be employed to increase the performance of the

theory-based models, another example of the complementarity of knowledge in language

representations for computational AQ assessment (C3).

In this Chapter, we have presented two case studies that focus on understanding the

complementarity of knowledge (C3) across two argumentative understanding problems,

(1) analysis of scitorics, and (2) AQ assessment. In both cases, we have demonstrated

performance improvements when coupling di�erent CA tasks using inductive transfer

learning techniques. In the next Chapter, we focus on multilinguality (C4).
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Chapter 7

Multilinguality

*Given that argumentation is supposed to exist in most, if not all, human civilizations, a

challenge for language representations in computational argumentation is multilingual-

ity (C4, see Section 3.4). This issue can be addressed by employing cross-lingual transfer,

which is in its most extreme case when no data for the target task in the target language

is employed, termed zero-shot transfer. Here, massively multilingual transformers pre-

trained via language modeling (e.g., mBERT, XLM-R) have become a default paradigm

in NLP, o�ering unmatched transfer performance. Current evaluations, however, verify

their e�cacy in transfers (a) to languages with su�ciently large pretraining corpora and

(b) between close languages. In this work, we analyze the limitations of downstream

language transfer with MMTs, showing that, much like cross-lingual word embeddings,

they are substantially less e�ective in resource-lean scenarios and for distant languages.

Our experiments, encompassing two higher-level semantic tasks with NLI as an instance

of argumentative reasoning (see Section 2.1.4), plus question answering (QA), empiri-

cally correlate transfer performance with linguistic proximity between source and target

languages, but also with the size of target language corpora used in MMT pretraining.

Finally, we demonstrate that inexpensive few-shot transfer (i.e., additional �ne-tuning on

a few target-language instances) is e�ective across the board, warranting more research

e�orts reaching beyond the limiting zero-shot conditions.

7.1 Introduction

Labeled data sets of su�cient size support supervised learning in CA and NLP. The no-

torious tediousness, subjectivity, and cost of linguistic annotation (Dandapat et al., 2009;

Sabou et al., 2012; Fort, 2016), coupled with plethora of structurally di�erent NLP tasks,

lead to existence of such data sets only for a handful of resource-rich languages (Bender,

2011; Ponti et al., 2019a; Joshi et al., 2020). This data scarcity renders the need for e�ective

*
This Chapter is adapted from: Anne Lauscher, Vinit Ravishankar, Ivan Vulić, and Goran Glavaš.

From Zero to Hero: On the limitations of zero-shot cross-lingual transfer with multilingual transformers.

In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP),

pages 4483–4499, Online, November 2020, Association for Computational Linguistics. The published

version also includes results of experiments on lower-level tasks carried out by Vinit Ravishankar.
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cross-lingual transfer strategies (see Section 2.2.3): how can we exploit abundant labeled

data from resource-rich languages to make predictions in resource-lean languages? In the

most extreme scenario, termed zero-shot cross-lingual transfer, not a single labeled instance

exists for a target language. Recent work has placed much emphasis on this scenario

exactly; in theory, it o�ers the widest portability across the world’s 7,000+ languages

(Pires et al., 2019; Artetxe et al., 2020b; Lin et al., 2019; Cao et al., 2020; Hu et al., 2020).

The current mainstay of cross-lingual transfer in NLP are approaches based on

continuous cross-lingual representation spaces such as cross-lingual word embedding

spaces (Ruder et al., 2019) and, most recently, massively multilingual transformer (MMT)

networks, pretrained on multilingual corpora with language modeling (LM) objectives

(Devlin et al., 2019; Conneau and Lample, 2019; Conneau et al., 2020a). The latter have de

facto become the default language transfer paradigm, with multiple studies reporting their

unparalleled transfer performance (Pires et al., 2019; Wu and Dredze, 2019; Rönnqvist

et al., 2019; K et al., 2020; Conneau et al., 2020b).

Key Questions and Contributions. In this Chapter, we dissect the current state-of-

the-art MMT-based approach to (zero-shot) cross-lingual transfer and analyze a variety

of conditions and factors that critically impact or limit e�ective cross-lingual transfer.

Our aim is to provide answers to the following crucial questions.

(RQ1) What is the e�ect of language (dis)similarity and language-specific corpora size in

pretraining on the zero-shot transfer performance?

Current cross-lingual transfer via MMTs is still primarily focused on either (1) languages

that are typologically or etymologically close to English (e.g., German, Scandinavian

languages, French, Spanish), or (2) languages with large monolingual corpora, well-

represented in the multilingual pretraining corpora (e.g., Arabic, Hindi, Chinese). Con-

neau et al. (2020b) suggest that LM-pretrained transformers, much like static word

embeddings models, produce topologically similar representation spaces that can easily

be aligned between languages, o�ering this as explanation of language transfer e�cacy

of MMTs. However, transfer with static CLWEs has been shown ine�ective between

dissimilar languages (Søgaard et al., 2018; Vulić et al., 2019) or languages with small cor-

pora (Vulić et al., 2020). We thus scrutinize MMTs in diverse zero-shot transfer settings

and �nd, in line with prior work on CLWEs, that MMTs’ transfer performance critically

depends on (1) linguistic (dis)similarity between the source and target language and (2)

size of the pretraining corpus of the target language.

(RQ2) Can we (even) predict transfer performance?

Running a simple regression on available transfer results, we show that we can (roughly)

predict the transfer performance from the combination of language proximity and size

of target-language pretraining corpora for our two high-level semantic tasks.

(RQ3) Should we focus more on few-shot transfer scenarios and quick annotation cycles?

Complementing the e�orts on improving zero-shot transfer (Cao et al., 2020), we point

to few-shot transfer as a very e�ective mechanism for improving target-language perfor-

mance. Similar to the seminal “pre-neural” work of Garrette and Baldridge (2013), our

results suggest that only several hours (or even minutes) of annotation work can “buy”

120



7. MULTILINGUALITY

substantial performance gains for low-resource target languages. For both tasks in our

study, we obtain substantial improvements with minimal annotation e�ort. Crucially,

the few-shot gains are most pronounced exactly where zero-shot transfer fails: for distant

target languages with small monolingual corpora.

7.2 Related Work

For completeness and as a reminder on the language representations and the cross-lingual

transfer fundamentals discussed in Sections 2.2.2 and 2.2.3, we provide a brief overview

of 1) cross-lingual transfer approaches, with a focus on 2) MMT models, and then 3)

position our work w.r.t. other studies that examine di�erent properties of MMTs.

7.2.1 Cross-Lingual Transfer Paradigms

Language transfer entails representing texts from both the source and target language in a

shared cross-lingual space. Transfer paradigms based on discrete language representations

include machine translation (MT) of target language text to the source language (or vice-

versa) (Mayhew et al., 2017; Eger et al., 2018), and grounding texts from both languages

in multilingual knowledge bases KBs (Navigli and Ponzetto, 2012; Lehmann et al., 2015).

While reliable MT hinges on availability of large parallel corpora, transfer via multilingual

KBs (Camacho-Collados et al., 2016; Mrkšić et al., 2017) is impaired by the limited KB

coverage and inaccurate entity linking (Moro et al., 2014; Raiman and Raiman, 2018).

Therefore, recent years have seen a surge of language transfer methods based on

continuous representation spaces. The previous state-of-the-art, CLWEs (Mikolov et al.,

2013b; Ammar et al., 2016; Artetxe et al., 2017; Smith et al., 2017; Glavaš et al., 2019; Vulić

et al., 2019; Glavaš and Vulić, 2020) and sentence embeddings (Artetxe and Schwenk,

2019), have most recently been replaced by MMTs pretrained with LM objectives (Devlin

et al., 2019; Conneau and Lample, 2019; Conneau et al., 2020a).

7.2.2 Massively Multilingual Transformers

Multilingual BERT (mBERT). As we have already discussed in Section 2.2.2, BERT’s

(Devlin et al., 2019) core is a multi-layer transformer network (Vaswani et al., 2017),

parameters of which are pretrained using language modeling objectives, MLM and NSP.

Liu et al. (2019) introduce RoBERTa, a more robust instance of BERT trained on larger

corpora using only the MLM objective. mBERT is an instance of BERT trained on

concatenation of the 104 largest Wikipedias. The e�ects of under�tting for languages

with small Wikipedias and over�tting to languages with large Wikipedias are respectively

attenuated with exponentially smoothed up-sampling and down-sampling of the data.

XLM-RoBERTa (XLM-R). Conneau et al. (2020a) present XLM-R, an instance of

RoBERTa, which is robustly trained on a large multilingual CommonCrawl-100 (CC-

100) corpus (Wenzek et al., 2020) covering 100 languages. mBERT’s pretraining corpus

and CC-100 share 88 languages, with the corresponding portions of CC-100 being much

larger than the Wikipedias employed to train mBERT.
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The “Curse of Multilinguality”. For XLM-R, Conneau et al. (2020a) observe that

for a �xed model capacity, downstream cross-lingual transfer improves with more pre-

training languages up to a point after which adding more pretraining languages hurts the

downstream transfer. This e�ect, termed the “curse of multilinguality”, can be mitigated

by increasing the capacity of the model (Artetxe et al., 2020b) or additional training

for particular language pairs (Pfei�er et al., 2020). This points to MMTs’ capacity (i.e.,

computational budgets), as a critical factor for e�ective zero-shot transfer.

In contrast, we identify few-shot target-language cross-lingual transfer as a much

more cost-e�ective strategy for improving downstream target language performance

(Section 7.4). We show for a number of target languages and two downstream tasks that

one can obtain consistent performance gains with very small annotation cost, without

having to pretrain from scratch an MMT of larger capacity.

7.2.3 Cross-Lingual Transfer with MMTs

A body of recent work probed the knowledge encoded in MMTs, primarily mBERT.

Libovický et al. (2020) analyze language-speci�c versus language-universal knowledge

encoded in mBERT. Pires et al. (2019) demonstrate mBERT to be e�ective for part-of-

speech POS tagging and named entity recognition (NER) zero-shot transfer between

related languages. Wu and Dredze (2019) extend this analysis to more tasks and languages,

and show that mBERT-based transfer is on a par with the best task-speci�c zero-shot

transfer approaches. Similarly, K et al. (2020) prove mBERT to be e�ective for NER

and NLI transfer to Hindi, Spanish, and Russian.
1

Importantly, they show that transfer

e�ectiveness does not depend on the vocabulary overlap between the languages.

In most recent work, concurrent to this, Hu et al. (2020) introduce XTREME, a

benchmark for evaluating multilingual encoders encompassing 9 tasks and 40 languages.
2

While the primary focus is a large-scale zero-shot transfer evaluation, they also experi-

ment with target-language �ne-tuning (1,000 instances for POS and NER). While Hu

et al. (2020) focus on the evaluation aspects and protocols, in this work, we provide a

more detailed analysis of the factors that hinder e�ective zero-shot transfer across several

tasks.
3

We also put more emphasis on few-shot transfer and approach it di�erently: by

sequentially �ne-tuning MMTs, �rst on (larger) source language training data and then

on few target-language instances. Artetxe et al. (2020b) and Conneau et al. (2020b)

analyze di�erent monolingual BERTs to explain transfer e�cacy of mBERT. They �nd

topological similarities between monolingual spaces, suggesting these are responsible for

e�ective language transfer with MMTs. In essence, their work recasts the well-known

assumption of approximate isomorphism of monolingual representation spaces (Søgaard

et al., 2018). For CLWEs, this assumption does not hold for distant languages (Søgaard

et al., 2018; Vulić et al., 2019), and in face of monolingual corpora of small size (Vulić

et al., 2020). We demonstrate that the same is the case for language transfer with MMTs.

1
Note that all three are high-resource Indo-European languages with large Wikipedias.

2
None of the individual tasks in XTREME covers all 40 languages, but much smaller language subsets.

3
We leave an even more general analysis that combines transfer both across tasks (Pruksachatkun et al.,

2020; Glavaš and Vulić, 2020) and across languages for future work.
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7.3 Zero-Shot Transfer: Analyses

We �rst address RQ1: we conduct zero-shot language transfer experiments for our two

tasks and analyze the factors behind the varying performance drops across languages.

7.3.1 Experimental Setup

Tasks and Languages. We experiment with two high-level NLU tasks: NLI, a task in

argumentative reasoning, and QA, which similarly requires deep semantic knowledge.

Cross-Lingual Natural Language Inference (XNLI). We evaluate on the XNLI cor-

pus (Conneau et al., 2018), which was created by translating the development and test

portions of the English MNLI data (Williams et al., 2018) by professional translators.

XNLI covers 14 languages (French (fr), Spanish (es), German (de), Greek (el), Bulgar-

ian (bg), Russian (ru), Turkish (tr), Arabic (ar), Vietnamese (vi), Thai (th), Chinese

(zh), Hindi (hi), Swahili (sw), and Urdu (ur)).

Cross-lingual Question Answering Dataset (XQuAD). We rely on the XQuAD data

set (Artetxe et al., 2020b), created by translating the 240 dev paragraphs (from 48 docu-

ments) and corresponding 1,190 QA pairs of SQuAD v1.1 (Rajpurkar et al., 2016) to 11

languages (es,de, el, ru, tr, ar, vi, th, zh, andhi). In order to allow for a comparison

between zero-shot and few-shot transfer (see Section 7.4), we reserve 10 documents as

the development set for our experiments and evaluate on the remaining 38 articles.
4

Fine-tuning. We perform standard downstream �ne-tuning of LM-pretrained mBERT

and XLM-R.
5

We add the following task-speci�c architectures on top of the two MMTs:

for XNLI, we apply a simple softmax classi�er on the vector of the sequence start token

([CLS] for mBERT; <s> for XLM-R); in the case of XQuAD, we pool the MMT’s

representations of all input subwords and forward these to a span classi�cation head – a

linear layer computing the start and the end of the answer.

Training and Evaluation Details. We experiment with mBERTBASE in the cased ver-

sion and XLM-RBASE, both withL = 12 transformer layers, hidden size ofH = 768,

andA = 12 self-attention heads. For XNLI, we limit the inputs to T = 128 subword

tokens and train in batches of 32 instances. For XQuAD, we limit paragraphs toT = 384
tokens and questions toQ = 64 tokens. We slide over paragraphs with a window of 128
tokens and train in batches of size 12. For both of our tasks, we search in the following

hyperparameter grid: learning rateλ ∈ {5 ·10−5, 3 ·10−5}; training epochsn ∈ {2, 3}.

We optimize all models with Adam (Kingma and Ba, 2015).

4
As a general note, while the e�ects of “translationese” might have some impact on the absolute numbers

(Artetxe et al., 2020a), they are not prominent enough to have any impact on the relative trends in the

reported results. For both XNLI and XQuAD, the translations were done completely manually and not via

post-editing of MT (which would pose a higher “translationese” risk). Moreover, having an independently

created test set in each language would impede comparability across languages.
5
We tokenize the input for each model with the corresponding pretrained �xed-vocabulary tokenizer:

WordPiece tokenizer (Johnson et al., 2017) with the vocabulary of 110K tokens for mBERT, and the Senten-

cePiece byte-pair encoding tokenizer (Sennrich et al., 2016) with the vocabulary of 250K tokens forXLM-R.
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en
zh tr ru ar hi vi th es el de fr bg sw ur

Task Model
en

∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆

XNLI
B 82.8 -13.6 -20.6 -13.5 -17.3 -21.3 -11.9 -28.1 -8.1 -14.1 -10.5 -7.8 -13.3 -33.0 -23.4

X 84.3 -11.0 -11.3 -9.0 -13.0 -14.2 -9.7 -12.3 -5.8 -8.9 -7.8 -6.1 -6.6 -20.2 -17.3

XQuAD
B 71.1 -22.9 -34.2 -19.2 -24.7 -28.6 -22.1 -43.2 -16.6 -28.2 -14.8 - - - -

X 72.5 -26.2 -18.7 -15.4 -24.1 -22.8 -19.7 -14.8 -14.5 -15.7 -16.2 - - - -

Table 7.1: Zero-shot cross-lingual transfer performance on XNLI, and XQuAD with

mBERT (B) and XLM-R (X). We show the monolingual en performance and report

drops in performance relative to en for all target languages. Numbers in bold indicate

the largest zero-shot performance drops for each task.

7.3.2 Results and Preliminary Discussion

A summary of the zero-shot cross-lingual transfer results, per target language, is pro-

vided in Table 7.1. For XNLI we report accuracy, and for XQuAD, we report the Exact

Match (EM) score. As expected, we observe drops in performance for all tasks and all

target languages w.r.t. reference en performance. However, the drops vary greatly across

languages. For example, XNLI transfer with XLM-R yields a moderate 6.1 percentage

points drop for fr, but a large 20 percentage points drop for sw, and, similarly, for

XQuAD with mBERT we note a moderate drop of 14.8 percentage points for de, but a

huge 43.2 percentage points drop for th. At �rst glance, it appears – as suggested in prior

work – that the transfer drops primarily correlate with language proximity: they are more

pronounced for languages that are more distant from en (e.g.,zh, ar, th, sw). But we

also see that language proximity alone does not explain many of the XNLI and XQuAD

results. For instance, ru XNLI (for both mBERT and XLM-R) is comparable to that

of zh, and lower than that for hi and ur: this is despite the fact that, as Indo-European

languages, ru, hi, and ur are linguistically closer to en than zh. Similarly, we observe

comparable performance on XQuAD for th, ru, and es.

7.3.3 Analysis

For both tasks, we now analyze the correlations between transfer performance and a)

several measures of linguistic proximity (i.e., similarity) between languages and b) the size

of MMT pretraining corpora of each target language.

Language Vectors and Corpora Sizes. For estimates of linguistic similarity, we rely

on language vectors from lang2vec, which encode various linguistic features from

the URIEL database (Littell et al., 2017). We consider the following lang2vec vectors:

syntax (SYN) vectors encode syntactic properties, e.g., if a subject appears before or

after a verb; phonology (PHON) vectors encode phonological properties such as the

consonant-vowel ratio; inventory (INV) vectors denote presence or absence of natural

classes of sounds (e.g.,voiced uvulars); FAM vectors encode memberships in language
families; and GEO vectors express orthodromic distances for languages w.r.t. �xed

points on the Earth’s surface. Language proximity is computed as cosine similarity

between the languages’ corresponding lang2vec vectors: each vector type (e.g.,SYN)
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SYN PHON INV FAM GEO SIZE

Task Model Pears Spear Pears Spear Pears Spear Pears Spear Pears Spear Pears Spear

XNLI
XLM-R 0.88 0.90 0.29 0.27 0.31 -0.11 0.63 0.54 0.54 0.74 0.70 0.76

mBERT 0.87 0.86 0.21 0.08 0.29 0.04 0.61 0.47 0.55 0.67 0.77 0.91

XQuAD
XLM-R 0.69 0.53 0.85 0.81 0.62 -0.01 0.81 0.54 0.43 0.50 0.81 0.55

mBERT 0.84 0.89 0.56 0.48 0.55 0.22 0.79 0.64 0.51 0.55 0.89 0.96

Table 7.2: Correlations between zero-shot transfer performance with mBERT and XLM-

R for XNLI and XQuAD with linguistic proximity features (SYN, PHON, INV, FAM

and GEO) and pretraining size of target-language corpora (SIZE). Results reported in

terms of Pearson (Pears) and Spearman (Spear) correlation coe�cients.

Task Model Selected features Pears Spear MAE

XNLI
XLM-R SYN (.51); SIZE (.49) 0.84 0.85 2.01

mBERT SYN (.35); SIZE (.34); FAM (.31) 0.89 0.90 2.78

XQuAD
XLM-R PHON (.99) 0.95 0.83 2.89

mBERT SIZE (.99) 0.89 0.93 4.76

Table 7.3: Results of the meta-regression analysis, i.e., predicting zero-shot transfer per-

formance for mBERT and XLM-R. For each task-model pair we list only features with

weights≥ 0.01. Pears=Pearson; Spear=Spearman; MAE=Mean Absolute Error.

produces one similarity score (i.e., feature). We couple lang2vec features with the

z-normalized size of the target language corpus used in MMT pretraining (SIZE).
6

Correlation Analysis. We �rst correlate individual features with the zero-shot transfer

scores for each task and show the results in Table 7.2. SYN correlates well with all transfer

results except withXLM-R results on XQuAD. Somewhat surprisingly, the phonological

language similarity (PHON) correlates best with transfer performance with XLM-R for

XQuAD. For both tasks and both MMTs, we observe very high correlations between the

transfer performance and the size of pretraining corpora of the target language (SIZE).

We believe that this re�ects the fact that high-level NLU tasks, such as argumentative

reasoning, rely on rich representations of semantic phenomena of a language for which it

takes a large amount of distributional data to acquire.

Meta-Regression. Across the tasks, we observe high correlations between zero-shot

transfer results and several features (e.g.,SYN, PHON and SIZE). We next test if we can

predict the transfer performance for a new language by (linearly) combining individual

features. For each task, we �t a linear SVR using transfer results for target languages as

labels. With only between 11 and 14 target languages (i.e., instances for �tting the regressor)

per task, we resort to leave-one-out cross-validation to obtain correlations for feature

combinations. We perform greedy forward feature selection: in each iteration, we add the

6
For XLM-R, we take reported sizes of language-speci�c CC-100 portions (Conneau et al., 2020a); for

mBERT, we work with sizes of language-speci�c Wikipedias.
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k k = 10 k = 50 k = 100 k = 500 k = 1000

Task Model k = 0 score ∆ score ∆ score ∆ score ∆ score ∆

XNLI
mBERT 65.92 65.89 -0.03 65.08 -0.84 64.92 -1.00 67.41 1.49 68.16 2.24

XLM-R 73.32 73.73 0.41 73.76 0.45 75.03 1.71 75.34 2.02 75.84 2.52

k = 2 k = 4 k = 6 k = 8 k = 10

XQuAD
mBERT 45.62 48.12 2.50 48.66 3.04 49.34 3.72 49.91 4.29 50.19 4.57

XLM-R 53.68 53.73 0.05 53.84 0.17 54.76 1.08 55.56 1.88 55.78 2.10

Table 7.4: Results of the few-shot experiments with varying numbers of target-language

examples k. For each k, we report the performance averaged across all languages and the

di�erence (∆) with respect to the zero-shot setting.

feature which boosts correlation (obtained via leave-one-out cross-validation) the most;

we stop when none of the remaining features further improves the Pearson correlation.

We summarize the results of this meta-regression analysis in Table 7.3. For each

task-model pair, we list features selected with the greedy feature selection and show

(normalized) weights assigned to each feature. Combinations of features manage to yield

higher correlations with zero-shot transfer results than any of the features on their own.

These results empirically con�rm our previous intuition that linguistic proximity between

the source and target language only partially explains zero-short transfer performance.

On XNLI, transfer performance is best explained with the combination of structural

similarity between languages (SYN) and the size of the target-language pretraining corpora

(SIZE); on XQuAD with mBERT, SIZE alone best explains zero-short transfer scores.

Note that the features are mutually quite correlated as well (e.g.,languages closer to en

also tend to have larger pretraining corpora): thus, if the regressor selects only one feature,

this does not mean that other features do not correlate with transfer performance (as

shown by Table 7.2). The coe�cients in Table 7.3 again indicate the importance of SIZE

for the language understanding tasks and highlight our core �nding: pretraining corpora

sizes are strong features for predicting zero-shot performance in higher-level semantic.

7.4 Few-Shot Target-Language Fine-Tuning

Motivated by the low zero-shot transfer performance for many languages obtained on

both tasks in Section 7.3, we now investigate Q3 from Section 7.1: we aim to mitigate

transfer losses with inexpensive few-shot cross-lingual transfer.

Experimental Setup. We rely on the same models, tasks, and evaluation protocols as

described in Subsection 7.3.1. However, instead of �ne-tuning the MMTs on task-speci�c

data in en only, we continue the �ne-tuning process by feeding k additional training

examples randomly chosen from reserved target language data portions, disjoint with the

test sets.
7

For both tasks, we run the experiments �ve times and report the average scores.

7
Note that for XQuAD, we performed the split on the article level to avoid topical overlap. Conse-

quently, for XQuAD k refers to the number of articles.
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(a) XQuAD with mBERT (b) XNLI with mBERT

(c) XQuAD with XLM-R (d) XNLI with XLM-R

Figure 7.1: Few-shot transfer results for each language with varying k for a) XQuAD with

mBERT, b) XNLI with mBERT, c) XQuAD with XLM-R, d) XNLI with XLM-R. For

XNLI k denotes the number of sampled sentences, for XQuAD, the number of articles.

7.4.1 Results and Discussion

The results on the two tasks, conditioned on the number of few-shot examples k and

averaged across all target languages, are presented in Table 7.4. We note consistent perfor-

mance improvements in few-shot learning setups for both tasks. The maximum gains

for XNLI and XQuAD after seeing k = 1, 000 target-language instances and 10 articles,

respectively, are between 2.52 (XLM-R) and 4.57 points (mBERT).

Figure 7.1 illustrates few-shot performance for individual languages for XNLI, and

XQuAD for di�erent values of k.
8

Across languages, we see a clear trend – more dis-

tant target languages bene�t much more from the few-shot data. Observe, e.g., de for

XQuAD with mBERT. It is closely related to en, exhibits high zero-shot transfer perfor-

mance, and bene�ts only marginally from few in-language instances. We hypothesize

that for such closely related languages, with enough pretraining data, MMT is able to

extrapolate the missing language-speci�c knowledge from few in-language examples; its

priors for languages close to en are already quite sensible and a priori o�er less room for

improvements. In stark contrast, th for XQuAD with mBERT, for example, exhibits

poor zero-shot performance and understandably so, given their linguistic distance to en.

Given in-language data, however, it sees rapid leaps in performance, displaying gains of

almost 5 percentage points, and we observe already substantial improvement from only

2 in-language documents. This can be seen as MMTs’ ability to rapidly learn to utilize

the multilingual space to adjust its task-speci�c knowledge for the target language.

In sum, we see the largest gains from few-shot transfer exactly for languages for which

the zero-shot transfer setup yields the largest performance drops: languages distant from

en and represented with small corpora in MMT pretraining.

8
Exact numbers are provided in Part C of the supplementary material.
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Task Number of Instances Cost estimate ∆ mBERT ∆ XLM-R

NLI 1,000 sentence pairs $10 +2.24 +2.54

QA 10 docs $30 +4.5 +2.1

Table 7.5: Conversion rates between target language annotation costs and corresponding

average performance gains from MMT-based few-shot language transfer.

Direct Target Language Few-Shot Fine-Tuning. We additionally ran a set of control

experiments in which we bypass the task-speci�c �ne-tuning on the English data and

directly �ne-tune the MMTs on the few target language instances. Expectedly, �ne-

tuning the MMTs with only a handful of target language examples (i.e., without prior

�ne-tuning in English) yields subpar performance with respect to the corresponding

model variant that had been previously �ne-tuned on English data. For instance, direct

few-shot target language �ne-tuning of mBERT yields the average XNLI performance

of 33.95 for k = 100 and 40.19 for k = 1, 000, respectively (compared to 64.92 and

68.16, respectively, when prior �ne-tuning on English data is performed). These �ndings

suggest that �ne-tuning with abundant (English) in-task data plus �ne-tuning with scarce

in-language in-task data yields a truly synergistic e�ect: the small number of examples in

the target language is not su�cient to adapt the MMT directly, but they can provide a

substantial edge over �ne-tuning only on the English data (i.e., zero-shot transfer).

7.4.2 Cost of Language Transfer Gains

As shown in Subsection 7.4.1, moving to few-shot target-language transfer can improve

the performance and reduce the gaps observed with zero-shot transfer, especially for

low-resource languages. While additional �ne-tuning on few target-language examples is

computationally cheap, data annotation may be expensive, especially for minor languages.

What are the annotation costs, and how do they translate into performance gains? Ta-

ble 7.5 provides ballpark estimates for both evaluation tasks; the estimates are based on

annotation costs from the literature (Marelli et al., 2014; Rajpurkar et al., 2016).

Natural Language Inference. Marelli et al. (2014) reportedly paid $2, 030 for 200k

judgements, which would amount to $0.01015 per NLI instance and, in turn, to $10.15
for 1, 000 annotations. In our few-shot experiments this would yield an average improve-

ment of 2.24 and 2.52 accuracy points for mBERT and XLM-R, respectively. It is also

possible to translate the English data directly via professional translation services as done

with the XNLI data set and XQuAD: platforms for hiring professionals, e.g., Upwork,

show that it is possible to �nd quali�ed translators even for lower-resource languages: e.g.,

the translation cost estimate for Zulu is $12.5-$16/h, or $19/h for the Basque language.

Question Answering. Rajpurkar et al. (2016) report a payment cost of $9 per hour and

a time e�ort of 4 minutes per paragraph. With an average of 5 paragraphs per article,

our few-shot scenario (10 articles) roughly requires 50 paragraphs-level annotations, i.e.,

200 minutes of annotation e�ort and would in total cost around $30 (for respective

performance improvements of 4.6 and 2.1 points for mBERT and XLM-R).
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A provocative high-level question that calls for further discussion in future work can

be framed as: are GPU hours e�ectively more costly
9

than data annotations are in the

long run? While MMTs are extremely useful as general-purpose models of language, their

potential for some (target) languages can be quickly unlocked by pairing them with a

small number of annotated target-language examples. E�ectively, this suggests leveraging

the best of both worlds, i.e., coupling knowledge encoded in large MMTs with a small

annotation e�ort to foster inclusive and sustainable language representations for CA.

7.5 Conclusion

A vital challenge on the intersection of CA and language representations is multilingual-

ity (C4, see Section 3.4). Here, research on zero-shot language transfer is motivated by

inherent data scarcity: the fact that most languages have no annotated data for most CA

and NLP tasks. Massively multilingual transformer models have recently been praised for

their zero-shot transfer capabilities that mitigate the data scarcity issue. In this Chapter,

we have demonstrated that, similar to earlier language transfer paradigms, MMTs perform

poorly in zero-shot transfer to distant target languages and to languages with smaller

monolingual corpora available for exploitation in MMT pretraining. We have presented

a detailed empirical analysis of factors a�ecting zero-shot transfer performance of MMTs

across two tasks and multiple diverse languages. Our results have revealed that the pre-

training corpora size of the target language is crucial for explaining transfer results for

higher-level language understanding tasks, i.e., natural language inference and question

answering. Finally, we have shown that the MMT potential on distant and low-resource

target languages can be quickly unlocked if they are provided a handful of annotated

instances in the target language. This �nding provides a strong incentive for intensifying

future research e�orts that focus on cheap or naturally occurring supervision (Vulić

et al., 2019; Artetxe et al., 2020c; Marchisio et al., 2020), quick and simple annotation

procedure, and the more e�ective few-shot transfer learning setups.

Next, we move to our last challenge, which deals with ethical considerations with

regard to language representations (C5). Here, we focus on the issue of stereotypical bias.

9
Financially, but also ecologically (Strubell et al., 2019).
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Chapter 8

Ethical Considerations

As discussed in Section 3.5, previous research has noted several ethical issues in the context

of language representations (C5). In light of these challenges, we have already addressed

two problems that arise in relation to computational argumentation: (1) to foster inclu-

sion of speakers of languages other than English in CA technologies, we have acknowl-

edged the inherently multilingual nature of argumentation and analyzed the size of the

performance gaps arising in the current state-of-the-art zero-shot cross-lingual transfer

paradigm. We then proposed a resource-lean approach for attenuating those losses. This

approach, few-shot target-language �ne-tuning, accounts for the (2) ecological impact of

language technologies. Big transformer-based language representation models require a

large amount of training resources, which results in a large carbon footprint of these rep-

resentations. By proposing resource-lean methods, we can (partially) account for this. For

the same reason, we have proposed an approach for the injection of external knowledge,

which does not require pretraining from scratch due to relying on the e�ciency of adapter

layers. In this Chapter, we aim to mitigate potential harm arising from CA technologies

due to unfair stereotypical bias in language representations. Unfair stereotypical bias may

arise due to co-occurrence biases in the pretraining data coupled with the distributional

nature of language representations (see Section 2.2.4). This has been pointed out as an

essential challenge for CA (Spliethöver and Wachsmuth, 2020). To account for this, we

(1) �rst present XWEAT, a resource based on which we conduct a multi-dimensional

analysis of biases in language representations. We then (2) present a general framework

that synthesizes previous work on bias evaluation and mitigation in static word embed-

dings. Within this framework, we propose a new bias measure (Bias Analogy Test (BAT))

and three bias mitigation methods (General Bias Direction Debiasing (GBDD), Bias

Alignment Method (BAM), and Explicit Neural Debiasing (DebiasNet)).
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8.1 Multidimensional Bias Analysis in Word Embeddings

*As discussed, word embeddings have recently been shown to re�ect many of the pro-

nounced societal biases (e.g., gender bias or racial bias), which poses a challenge for CA.

Existing studies are, however, limited in scope and do not investigate the consistency of

biases across relevant dimensions like embedding models, types of texts, and di�erent lan-

guages. In this Section, we present a systematic study of biases encoded in distributional

word vector spaces: we analyze how consistent the bias e�ects are across languages, cor-

pora, and embedding models. Furthermore, we analyze the cross-lingual biases encoded

in bilingual embedding spaces, indicative of the e�ects of bias transfer encompassed in

cross-lingual transfer of NLP models. Our study yields some unexpected �ndings, e.g.,

that biases can be emphasized or downplayed by di�erent embedding models or that

user-generated content may be less biased than encyclopedic text. We hope our work

catalyzes bias research in NLP and informs the development of bias reduction techniques.

8.1.1 Introduction

Recent work demonstrated that word embeddings induced from large text collections

encode many human biases (e.g., Bolukbasi et al., 2016; Caliskan et al., 2017). As we brie�y

outlined in Section 2.2.4, this �nding is not particularly surprising given that (1) we are

likely to project our biases in the text that we produce and (2) these biases in text are

bound to be encoded in word vectors due to the distributional nature (Harris, 1954) of

the word embedding models (Mikolov et al., 2013b; Pennington et al., 2014; Bojanowski

et al., 2017). For illustration, consider the famous analogy-based gender bias example from

Bolukbasi et al. (2016): “man is to computer programmer as woman is to homemaker”. This

bias will be re�ected in the text (i.e., the word man will co-occur more often with words

like programmer or engineer, whereas woman will more often appear next to homemaker

or nurse), and will, in turn, be captured by word embeddings built from such biased texts.

While biases encoded in word embeddings can be a useful data source for diachronic

analyses of societal biases (e.g., Garg et al., 2018), they may cause ethical problems for many

downstream applications and NLP models. For CA, Spliethöver and Wachsmuth (2020)

showed popular argumentative corpora to contain such stereotypical biases, and Dev

et al. (2020) demonstrated that argumentative downstream tasks, as in natural language

inference, biases in language representations may result in stereotypical inferences.

In order to measure the extent to which various societal biases are captured in static

language representations, Caliskan et al. (2017) proposed the Word Embedding Asso-

ciation Test (WEAT). WEAT measures semantic similarity, computed through word

embeddings, between two sets of target words (e.g., insects vs. �owers) and two sets of

attribute words (e.g., pleasant vs. unpleasant words). While they test a number of biases,

the analysis is limited in scope to English as the only language, GloVe (Pennington

*
This Section is adapted from: Anne Lauscher and Goran Glavaš. Are we consistently biased? Multi-

dimensional analysis of biases in distributional word vectors. In Proceedings of the Eighth Joint Conference

on Lexical and Computational Semantics (*SEM), pages 85–91, Minneapolis, Minnesota, June 2019, Asso-

ciation for Computational Linguistics.
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et al., 2014) as the embedding model, and Common Crawl as the type of text. Following

the same methodology, McCurdy and Serbetci (2017) extend the analysis to three more

languages (German, Dutch, Spanish) but test only for gender bias.

In this Section, we present the most comprehensive study of biases captured by dis-

tributional word vectors to date. We create Cross-lingual WEAT (XWEAT), a collection

of multilingual and cross-lingual versions of the WEAT data set, by translating WEAT to

six other languages and o�er a comparative analysis of biases over seven diverse languages.

We thereby, as in the previous Chapter, account for the challenge of multilinguality in

CA (C4). Furthermore, we measure the consistency of WEAT biases across di�erent

embedding models and types of corpora. What is more, given the recent surge of mod-

els for inducing cross-lingual embedding spaces (Mikolov et al., 2013b; Hermann and

Blunsom, 2014; Smith et al., 2017; Lample et al., 2018; Artetxe et al., 2018; Hoshen and

Wolf, 2018, inter alia) and their ubiquitous application in cross-lingual transfer of NLP

models for downstream tasks, we investigate cross-lingual biases encoded in cross-lingual

embedding spaces and compare them to bias e�ects present of corresponding monolin-

gual embeddings. Our analysis yields some interesting �ndings: the amount of the biases

depends on the embedding model, and, quite surprisingly, stereotypical bias seems to

be less pronounced in embeddings trained on social media texts. Furthermore, we �nd

that the e�ects (i.e., amount) of bias in cross-lingual embedding spaces can roughly be

predicted from the bias e�ects of the corresponding monolingual embedding spaces.

8.1.2 Data for Measuring Biases

We �rst introduce the WEAT data set (Caliskan et al., 2017) and then describe XWEAT,

our multilingual and cross-lingual extension of WEAT designed for comparative bias

analyses across languages and in cross-lingual embedding spaces.

WEAT

The Word Embedding Association Test (WEAT) (Caliskan et al., 2017) is an adaptation

of the Implicit Association Test (IAT) (Nosek et al., 2002). Whereas IAT measures biases

based on response times of human subjects to provided stimuli, WEAT quanti�es the

biases using semantic similarities between word embeddings of the same stimuli. For

each bias test, WEAT speci�es four stimuli sets: two sets of target words and two sets of

attribute words. The sets of target words represent stimuli between which we want to

measure the bias (e.g., for gender biases, one target set could contain male names and the

other female names). The attribute words, on the other hand, represent stimuli towards

which the bias should be measured (e.g., one list could contain pleasant stimuli like health

and love and the other negative war and death). The WEAT data set de�nes ten bias tests,

each containing two target and two attribute sets.
1

Table 8.1 enumerates the WEAT tests

and provides examples of the respective target and attribute words.

1
Some of the target and attribute sets are shared across multiple tests.
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Test Target Set #1 Target Set #2 Attribute Set #1 Attribute Set #2

T1 Flowers (e.g., aster, tulip) Insects (e.g., ant, flea) Pleasant (e.g., health) Unpleasant (e.g., abuse)

T2 Instruments (e.g., cello, guitar) Weapons (e.g., gun, sword) Pleasant Unpleasant

T3 Euro-American names Afro-American names Pleasant (e.g., caress) Unpleasant (e.g., abuse)

T4 Euro-American names Afro-American names Pleasant Unpleasant

T5 Euro-American names Afro-American names Pleasant (e.g., joy) Unpleasant (e.g., agony)

T6 Male names (e.g., John) Female names (e.g., Lisa) Career (e.g. management) Family (e.g., children)

T7 Math (e.g., algebra, geometry) Arts (e.g., poetry, dance) Male (e.g., brother, son) Female (e.g., woman)

T8 Science (e.g., experiment) Arts Male Female

T9 Physical condition (e.g., virus) Mental condition (e.g., sad) Long-term (e.g., always) Short-term (e.g., occasional)

T10 Older names (e.g., Gertrude) Younger names Pleasant Unpleasant

Table 8.1: WEAT bias tests.

Multilingual and Cross-Lingual WEAT

We port the WEAT test term sets to the multilingual and cross-lingual settings by trans-

lating the test vocabularies consisting of attribute and target terms from English to six

other languages: German (de), Spanish (es), Italian (it), Russian (ru), Croatian (hr),

and Turkish (tr). To this end, we �rst automatically translate the vocabularies and then

let native speakers of the respective languages (also �uent in English) �x the incorrect

automatic translations (or introduce better �tting ones). Our aim was to translate the

WEAT vocabularies to languages from diverse language families
2

for which we also had

access to native speakers. Whenever the translation of an English term indicated the

gender in a target language (e.g., Freund vs. Freundin in de), we asked the respective

translator to provide both male and female forms, and we included both forms in the �nal

test vocabularies. This helps to avoid arti�cially amplifying the gender bias stemming

from the grammatically masculine or feminine word forms.

The monolingual tests are created by simply using the corresponding translations of

target and attribute sets in those languages. For every two languages, L1 and L2 (e.g., de

and it), we additionally create two cross-lingual bias tests: we pair (1) target translations in

L1 with L2 translations of attributes (e.g., for T2 we combinede target sets {Klavier, Cello,

Gitarre, . . . } and {Gewehr, Schwert, Schleuder, . . . } with it attribute sets {salute, amore,

pace, . . . } and {abuso, omicidio, tragedia, . . . }), and vice versa, (2) target translations in L2

with attribute translations in L1 (e.g., T2 it target sets with de attribute sets). We did not

translate or modify proper names from WEAT sets 3–6. In our multilingual and cross-

lingual experiments we, however, discard the (translations of) WEAT tests for which we

cannot �nd more than 20% of words from some target or attribute set in the embedding

vocabulary of the respective language. This strategy eliminates tests 3–5 and 10 which

include proper American names, majority of which can not be found in distributional

vocabularies of other languages. The exception to this is test 6, containing frequent

English �rst names (e.g., Paul, Lisa), which we do �nd in distributional vocabularies of

other languages as well. In summary, for languages other than en and for cross-lingual

settings, we execute six bias tests (T1, T2, T6–T9).

2
en and de from the Germanic branch of Indo-European languages, it and es from the Romance

branch, ru and hr from the Slavic branch, and �nally tr as a non-Indo-European language.
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8.1.3 Methodology

We adopt the general bias-testing framework from Caliskan et al. (2017), but we span our

study over multiple dimensions: (1) corpora – we analyze the consistency of biases across

distributional vectors induced from di�erent types of text; (2) embedding models – we

compare biases across distributional vectors induced by di�erent embedding models (on

the same corpora); and (3) languages – we measure biases for word embeddings of di�erent

languages, trained from comparable corpora. Furthermore, unlike Caliskan et al. (2017),

we test whether biases depend on the selection of the similarity metric. Finally, given the

ubiquitous adoption of cross-lingual embeddings (Ruder et al., 2019; Glavaš et al., 2019),

we investigate biases in a variety of bilingual embedding spaces.

Bias-Testing Framework. We �rst describe the WEAT framework (Caliskan et al.,

2017). LetX and Y be two term sets of targets, andA andB two term sets of attributes

(see Subsection 8.1.2). The tested statistic is the di�erence betweenX and Y in average

similarity of their terms with the terms fromA andB:

s(X,Y,A,B) =
∑
x∈X

s(x,A,B)−
∑
y∈Y

s(y,A,B) , (8.1)

with the association di�erence for a term t computed as:

s(t, A,B) =
1

|A|
∑
a∈A

f(t,a)− 1

|B|
∑
b∈B

f(t,b) , (8.2)

where t is the distributional vector of term t and f is a similarity or distance met-

ric, �xed to cosine similarity in the original work (Caliskan et al., 2017). The signi�-

cance of the test statistic is validated by comparing the score s(X,Y,A,B) with the

scores s(Xi, Yi, A,B) obtained for di�erent equally sized partitions {Xi, Yi}i of the

setX ∪ Y . The p-value of this permutation test is then measured as the probability of

s(Xi, Yi, A,B) > s(X,Y,A,B) computed over all possible permutations {Xi, Yi}i.3
Finally, the e�ect size, i.e., the “amount of bias”, is computed as the normalized measure

of separation between the association distributions:

µ ({s(x,A,B)}x∈X)− µ ({s(y,A,B)}y∈Y )

σ ({s(w,A,B)}w∈X∪Y )
, (8.3)

where µ denotes the mean and σ the standard deviation.

Dimensions of Bias Analysis. We analyze the bias e�ects across multiple dimensions.

First, we analyze the e�ect that di�erent embedding models have: we compare biases in

distributional spaces induced from the English Wikipedia, using the CBOW (Mikolov

et al., 2013c), GloVe (Pennington et al., 2014), fastText (Bojanowski et al., 2017),

and Dict2Vec algorithms (Tissier et al., 2017). Secondly, we investigate the e�ect of

3
If f is a distance metric, we measure the probability of s(Xi, Yi, A,B) < s(X,Y,A,B).
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Metric T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Cosine 1.7 1.6 -0.1∗ -0.2∗ -0.2∗ 1.8 1.3 1.3 1.7 -0.6∗
Euclidean 1.7 1.6 -0.1∗ -0.2∗ -0.1∗ 1.8 1.3 1.3 1.7 -0.7∗

Table 8.2: WEAT bias e�ects in enWikipedia fastText embeddings for cosine similarity

and Euclidean distance. Asterisks indicate bias e�ects that are insigni�cant at α < 0.05.

employing di�erent corpora for inducing the language representations: we compare

biases between embeddings trained on the Common Crawl, Wikipedia, and a corpus of

tweets. Finally, and (arguably) most interestingly, we test the consistency of biases across

seven languages (see Subsection 8.1.2). To this end, we test for biases in seven monolingual

fastText spaces trained on Wikipedia dumps of the respective languages.

Biases in Cross-lingual Embeddings. Cross-lingual word embeddings (CLWEs) are

widely used in multilingual NLP and CA and for cross-lingual transfer of NLP and

CA models. Despite the ubiquitous usage of CLWEs, the biases they potentially en-

code have not been analyzed so far. We analyze projection-based CLWEs (Glavaš et al.,

2019), induced through post hoc linear projections between monolingual embedding

spaces (Mikolov et al., 2013b; Artetxe et al., 2016; Smith et al., 2017). The projection

is commonly learned through supervision with a few thousand word translation pairs.

Most recently, however, a number of models have been proposed that learn the projection

without any bilingual signal (Artetxe et al., 2018; Lample et al., 2018; Hoshen and Wolf,

2018; Alvarez-Melis and Jaakkola, 2018, inter alia). Let X and Y be, respectively, the

distributional spaces of the source (S) and target (T) language and letD = {w(i)
S , w

(i)
T }i

be the word translation dictionary. Let (XS ,XT ) be the aligned subsets of monolingual

embeddings, corresponding to word-aligned pairs fromD. We then compute the orthog-

onal matrix W that minimizes the Euclidean distance between XSW and XT (Smith

et al., 2017): W = UV>, where UΣV> = SVD(XTXS
>). We create comparable

bilingual dictionariesD by translating the 5K most frequent en words to the other six

languages and induce a bilingual space for all 21 language pairs.

8.1.4 Findings

Here, we report and discuss the results of our multi-dimensional analysis. Table 8.2 shows

the e�ect sizes for WEAT T1–T10 based on Euclidean or cosine similarity between word

vector representations trained on the en Wikipedia using fastText. We observe the

highest bias e�ects for T6 (Male/Female – Career/Family), T9 (Physical/Mental diseases

– Long-term/Short-term), and T1 (Insects/Flowers – Positive/Negative). Importantly,

the results show that biases do not depend on the similarity metric. We observe nearly

identical e�ects for cosine similarity and Euclidean distance for all WEAT tests. In the

following experiments, we thus analyze biases only for cosine similarity.
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WEAT CBOW GloVe FastText Dict2Vec

T1 1.20 1.41 1.67 1.35

T2 1.38 1.45 1.55 1.66

T3 -0.28* 1.16 -0.09* –

T4 -0.35* 1.36 -0.17* –

T5 -0.36* 1.40 -0.18* –

T6 1.78 1.75 1.83 –

T7 1.28 1.16 1.30 1.48

T8 0.39* 1.28 1.30 1.30

T9 1.55 1.35 1.72 1.69

T10 0.09* 1.17 -0.61* –

Table 8.3: WEAT bias e�ects for language representation spaces induced (on en

Wikipedia) with di�erent embedding models: CBOW, GloVe, fastText, and

Dict2Vec methods. Asterisks indicate bias e�ects that are insigni�cant at α < 0.05.

Word Embedding Models. Table 8.3 compares biases in embedding spaces induced

with di�erent models: CBOW, GloVe, fastText, and Dict2Vec. While the �rst

three embedding methods are trained on Wikipedia only, Dict2Vec employs de�nitions

from dictionaries (e.g., Oxford dictionary) as additional resources for identifying strongly

related terms.
4

We only report WEAT test results T1, T2, and T7–T9 for Dict2Vec, as

theDict2Vec’s vocabulary does not cover most of the proper names from the remaining

tests. Somewhat surprisingly, the bias e�ects seem to vary greatly across embedding mod-

els. WhileGloVe embeddings are biased according to all tests,
5
fastText and especially

CBOW exhibit signi�cant biases only for a subset of the tests. We hypothesize that the

bias e�ect sizes re�ected in the distributional space depend on the preprocessing steps

of the embedding model. E.g., fastText relies on embedding subword information

to avoid issues with representations of out-of-vocabulary and underrepresented terms:

additional reliance on morpho-syntactic signal may make fastText more resilient to

biases stemming from the distributional signal (i.e., word co-occurrences). The fact

that the embedding space induced with Dict2Vec exhibits larger bias e�ects may seem

counterintuitive at �rst since the dictionaries used for vector training should be more

objective and therefore less biased than encyclopedic text. We believe, however, that the

additional dictionary-based training objective only propagates the distributional biases

across de�nitionally related words. Generally, we �nd these results to be important as

they indicate that embedding models may accentuate or diminish biases expressed in text.

Corpora. In Table 8.4 we compare the biases of embeddings trained with the same

model (GloVe) but on di�erent corpora: Common Crawl (i.e., noisy web content),

Wikipedia (i.e., encyclopedic text) and a corpus of tweets (i.e., user-generated content).

Expectedly, the biases are slightly more pronounced for embeddings trained on Common

Crawl than for those obtained on Wikipedia. Countering our intuition, the corpus of

4
Terms A and B are strongly related if B appears in the de�nition of A and vice versa (Tissier et al., 2017).

5
This is consistent with the original results obtained by Caliskan et al. (2017).
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Corpus T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

Wiki 1.4 1.5 1.2 1.4 1.4 1.8 1.2 1.3 1.3 1.2

CC 1.5 1.6 1.5 1.6 1.4 1.9 1.1 1.3 1.4 1.3

Tweets 1.2 1.0 1.1 1.2 1.2 1.2 -0.2* 0.6* 0.7* 0.8*

Table 8.4: WEAT bias e�ect sizes for GloVe embedding spaces trained on di�erent

corpora: Wikipedia (Wiki), Common Crawl (CC), and corpus of tweets (Tweets).

Asterisks indicate bias e�ects that are insigni�cant at α < 0.05.

XW en de es it hr ru tr

T1 1.67 1.36 1.47 1.28 1.45 1.28 1.21

T2 1.55 1.25 1.47 1.36 1.10 1.46 0.83

T6 1.83 1.59 1.67 1.72 1.83 1.87 1.85

T7 1.30 0.46* 1.47 1.00 0.72* 0.59* -0.88

T8 1.30 0.05* 1.16 0.10* 0.13* 0.37* 1.72

T9 1.72 0.82* 1.71 1.57 -0.40* 1.73 1.09*

Avgall 1.56 0.92 1.49 1.17 0.81 1.22 0.88

Avgsig 1.68 1.4 1.54 1.45 1.46 1.54 1.30

Table 8.5: XWEAT e�ect sizes across seven languages (fastText embedding spaces

trained on Wikipedias). Avgall : average e�ect size over all tests; Avgsig : average e�ect

size over the subset of tests yielding signi�cant bias e�ect sizes for all languages. Asterisks

indicate bias e�ects that are insigni�cant at α < 0.05.

XW en de es it hr ru tr

en – 1.09* 1.58 1.49 0.72* 1.17* 1.20*

de 1.53 – 1.50 1.45 0.55* 1.35 1.07*

es 1.52 0.79* – 1.38* 0.60* 1.37* 1.09*

it 1.33* 0.69* 1.27 – 0.53* 0.82* 0.80*

hr 1.47 1.30* 1.29 1.18* – 1.14* 1.11*

ru 1.47 0.72* 1.35 1.35 0.77* – 0.80*

tr 1.41 0.90* 1.37* 1.45 0.29* 0.64* –

Table 8.6: XWEAT bias e�ects (aggregated over all six tests) for cross-lingual word em-

bedding spaces. Rows: targets language; columns: attributes language. Asterisks indicate

the inclusion of bias e�ects sizes in the aggregation that were insigni�cant at α < 0.05.

tweets seems to be consistently less biased (across all tests) than Wikipedia. In fact, the

biases covered by tests T7–T10 are not even signi�cantly present in the vectors trained on

tweets. This �nding is indeed surprising and warrants further investigation.

Multilingual Comparison. Table 8.5 compares the bias e�ects across the seven dif-

ferent languages. Whereas many of the biases are signi�cant in all languages, de, hr,
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and tr consistently display smaller e�ect sizes. Intuitively, the amount of bias should be

proportional to the size of the corpus.
6

Wikipedias in tr andhr are the two smallest ones

– thus, they are expected to contain the least biased statements. de Wikipedia, on the

other hand, is the second largest and low bias e�ects here suggest that German texts are

indeed less biased than texts in other languages. Additionally, for (X)WEAT T2, which

de�nes a universally accepted bias (Instruments vs. Weapons), tr and hr exhibit the

smallest e�ect sizes, while the highest bias is observed for en and it. We measure the

highest gender bias, according to (X)WEAT T6, for tr and ru, and the lowest for de.

Biases in Cross-Lingual Embeddings. We report bias e�ects for all 21 bilingual em-

bedding spaces in Table 8.6. For brevity, here we report the bias e�ects averaged over all six

XWEAT tests (we provide results detailing bias e�ects for each of the tests separately in

Section D.1 of the supplementary material). Generally, the bias e�ects of bilingual spaces

are in between the bias e�ects of the two corresponding monolingual spaces (cf. Table 8.5):

this means that we can roughly predict the amount of bias in a cross-lingual embedding

space from the same bias e�ects of corresponding monolingual spaces. For example,

e�ects in cross-lingual spaces increase over monolingual e�ects for low-bias languages

(hr and tr), and decrease for high-bias languages (en and es).

8.1.5 Conclusion

In this Section, we have presented the largest study on unfair stereotypical biases encoded

in static language representations to date. To this end, we have extended previous analyses

based on the WEAT test (Caliskan et al., 2017; McCurdy and Serbetci, 2017) in multiple

dimensions: across seven languages, four embedding models, and three di�erent types of

text. We �nd that di�erent language representation models may produce embeddings

with very di�erent biases, which stresses the importance of embedding model selection

when fair language representations are to be created. Surprisingly, we �nd that user-

generated texts, e.g., tweets, may be less biased than redacted content. Furthermore, we

have investigated the bias e�ects in cross-lingual embedding spaces and have shown that

they may be predicted from the biases of corresponding monolingual embeddings. We

make the XWEAT data set and the testing code publicly available.
7

WEAT, which we extended in this Section to XWEAT, is able to measure explicit

biases (Gonen and Goldberg, 2019). In the next Section, we explain the di�erence between

explicit and implicit biases and present a framework that provides a broader perspective

on biases by including bias measures for both bias types plus testing for the semantic

quality of embedding spaces. We further introduce three new debiasing methods.

6
The larger the corpus, the larger is the overall number of contexts in which some bias may be expressed.

7
At https://github.com/umanlp/XWEAT.
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8.2 Implicit and Explicit Debiasing of Word Embeddings

*In response to the issue of unfair bias in language representations, which we also dealt

with in the previous Section, a number of methods for attenuating stereotypical biases

have been proposed. However, existing models and studies (1) operate on under-speci�ed

and mutually di�ering bias de�nitions, (2) are tailored for a particular bias (e.g., gender

bias), and (3) have been evaluated inconsistently and non-rigorously. In this Section,

we introduce a general framework for debiasing word embeddings to further address

the challenge of bias in language representations for CA (C5). We operationalize the

de�nition of a bias by discerning two types of bias speci�cation: explicit and implicit. We

then propose three debiasing models that operate on explicit or implicit bias speci�cations

and that can be composed towards more robust debiasing. Next, we devise a full-�edged

evaluation framework in which we couple existing bias metrics with newly proposed

ones. Experimental �ndings across three embedding methods suggest that the proposed

debiasing models are robust and widely applicable: they often completely remove the

bias both implicitly and explicitly without degradation of semantic information encoded

in any of the input distributional spaces. Moreover, we successfully transfer debiasing

models, by means of cross-lingual embedding spaces, and remove or attenuate biases in

distributional word vector spaces of languages that lack readily available bias speci�cations

by which we implicitly also address the challenge of multilinguality in CA (C4). Finally, in

addition to the intrinsic evaluation provided by our evaluation framework, we extrinsically

test the e�ects of debiasing in an argumentative downstream application: with the task of

NLI, we show that a model employing one of our debiased spaces produces the smallest

amount of stereotypically biased inferences. However, the results also indicate that

debiasing e�ects may be overwritten by large amounts of training data.

8.2.1 Introduction

Distributional word vector spaces have been recently shown to encode prominent human

biases related to, e.g., gender or race (Bolukbasi et al., 2016; Caliskan et al., 2017; Manzini

et al., 2019). Such biases are observed across languages and embedding methods (see

Section 8.1), both in static and contextualized language representations (Zhao et al., 2019).

While this issue requires remedy, the �nding itself is hardly surprising: we project our

biases, in terms of biased word co-occurrences, into the texts we produce. Consequently,

this is propagated to the embedding models, both static (Mikolov et al., 2013c; Pennington

et al., 2014; Bojanowski et al., 2017) and contextualized (Peters et al., 2018) alike, by virtue

of the distributional hypothesis (Harris, 1954).
8

While biases may be useful for diachronic

or sociological analyses (Garg et al., 2018), they (1) raise ethical issues, since biases are

ampli�ed by machine learning models using embeddings as input (Zhao et al., 2017), and

*
This Section is adapted from: Anne Lauscher, Goran Glavaš, Simone Paolo Ponzetto, and Ivan Vulić.

A general framework for implicit and explicit debiasing of distributional word vector spaces. In Proceedings

of the Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI), pages 8131–8138, New York, New

York, U.S., January 2020, AAAI Press.
8
Borrowing the famous example (Bolukbasi et al., 2016), man will be found more often in the same

context with programmer, and woman with homemaker in any su�ciently large corpus.
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(2) impede tasks like coreference resolution (Zhao et al., 2018a; Rudinger et al., 2018) and

abusive language detection (Park et al., 2018). As we have outlined in previous Sections

(see Sections 2.2.4, 3.5, 8.1), bias in language representations is a speci�cally crucial issue

for the area of CA (Spliethöver and Wachsmuth, 2020).

A number of methods for attenuating and eliminating human-like biases in static

word vector spaces have been proposed recently (Bolukbasi et al., 2016; Zhao et al., 2018a,b;

Dev and Phillips, 2019). While they address the same types of bias – primarily the gender

bias – they start from di�erent bias “speci�cations” and either lack proper empirical eval-

uation (Bolukbasi et al., 2016) or employ di�erent evaluation procedures, both hindering

a direct comparison of the “debiasing abilities” of the methods (Zhao et al., 2019; Dev and

Phillips, 2019; Manzini et al., 2019). What is more, the most prominent debiasing models

(Bolukbasi et al., 2016; Zhao et al., 2018b) have been criticized recently for merely masking

the bias instead of removing it (Gonen and Goldberg, 2019). To resolve these inconsis-

tencies in the current debiasing research and evaluation, in this Section, we propose a

general debiasing framework DebIE (DEBiasing embeddings Implicitly and Explicitly),

which operationalizes bias speci�cations, groups the debiasing models according to the

bias speci�cation type they operate on, and evaluates the abilities of the models to remove

unfair stereotypical biases both explicitly and implicitly (Gonen and Goldberg, 2019).

We �rst de�ne two types of bias speci�cations – implicit and explicit – and propose

a method of augmenting bias speci�cations with the help of embeddings specialized

for semantic similarity (Mrkšić et al., 2017; Ponti et al., 2018). We then introduce the

main contributions of this Section: �rst, we present three novel debiasing models. (1)

We adjust the linear projection method of Dev and Phillips (2019), an extension of the

debiasing model of Bolukbasi et al. (2016), to operate on the augmented bias speci�cations.

(2) We then propose an alternative model that projects the embedding space to itself

using the term sets from implicit bias speci�cations as the projection signal. (3) Next,

we propose an e�ective neural debiasing model, which is, to the best of our knowledge,

the �rst debiasing model that operates on an explicit bias speci�cation. All three models

perform post hoc debiasing: they can be applied to any pretrained word vector space.
9

As

another contribution, we combine existing bias metrics with newly proposed ones and

assemble an evaluation suite that tests word vectors for explicit biases, implicit biases, and

(preservation of) semantic quality. Furthermore, by coupling the proposed debiasing

models with the cross-lingual embedding spaces (Ruder et al., 2019; Glavaš et al., 2019),

we facilitate cross-lingual debiasing transfer: we successfully debias embedding spaces in

target languages without bias speci�cations in those languages. Finally, to complement

the intrinsic analysis provided by our evaluation framework, we seek to understand the

e�ect of debiasing in a downstream evaluation focusing on NLI. To this end, we follow

Dev et al. (2020) and create a synthetic data set that tests the models’ for gender-biased

inferences. The least amount of biased inferences is produced by a model employing one

of the debiased spaces, but in many cases, the debiasing e�ects seem to be overwritten.
10

9
In contrast, debiasing models like GN-GloVe (Zhao et al., 2018b) integrate debiasing constraints into

objectives of embedding models like GloVe (Pennington et al., 2014). The downside of these approaches

is that they cannot be directly ported to other embedding models.
10

The code is available at https://github.com/umanlp/DEBIE.
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Initial T1
science, technology, physics, chemistry, Einstein, NASA, experiment,

astronomy

Initial T2 poetry, art, Shakespeare, dance, literature, novel, symphony, drama

InitialA1 brother, father, uncle, grandfather, son, he, his, him

InitialA2 sister, mother, aunt, grandmother, daughter, she, hers, her

Augmentation T1
automation, radiochemistry, test, biophysics, learning, electrodynamics,

biochemistry, astrophysics, astrometry

Augmentation T1
orchestra, artistry, dramaturgy, poesy, philharmonic, craft, untried, hop,

poem, dancing, dissertation, treatise

AugmentationA1
beget, buddy, forefather, man, nephew, own, himself, theirs, boy, crony,

cousin, grandpa, granddad

AugmentationA2
niece, girl, parent, grandma, granny, woman, theirs, sire, auntie, sibling,

herself, jealously, stepmother, wife

Table 8.7: Initial and augmented gender bias speci�cations. Test T8 from WEAT.

8.2.2 General Debiasing Framework

In what follows, we �rst formalize two types of bias speci�cations – implicit and explicit.

We then introduce new debiasing models: two operate on the implicit bias speci�cation

and the third on the explicit bias speci�cation. Finally, we show how to debias word

embeddings in a variety of target languages via cross-lingual embeddings.

Bias Speci�cations

An implicit bias specificationBI = (T1, T2) consists of two sets of target terms between

which a bias is expected to exist in the embedding space. For example, two sets of science

and art terms, T1 = {physics, chemistry, experiment} and T2 = {poetry, dance, drama}
constitute an implicit speci�cation of the gender bias. Strictly speaking,BI does not spec-

ify a bias directly – it merely speci�es two categories of concepts for which we implicitly

assume that there exists some set of reference termsA (e.g., male terms man, father and/or

female terms like woman, girl) with respect to which T1 and T2 exhibit di�erences. Most

existing debiasing models (Bolukbasi et al., 2016; Zhao et al., 2018b; Dev and Phillips,

2019; Manzini et al., 2019) operate onBI = (T1, T2), i.e., not requiring termsA.

An explicit bias specification BE de�nes, in addition to T1 and T2, one or more

attribute sets. We consider an explicit bias speci�cation with a single attribute set,BE =
(T1, T2, A) (as employed by our DebiasNet model),

11
and also with two (opposing)

attribute sets,BE = (T1, T2, A1, A2), as used in WEAT tests (Caliskan et al., 2017).

Augmentation of Bias Speci�cations. The initial bias speci�cation (BI orBE) com-

monly contains only a handful of words in each target and attribute set. These are com-

monly the most representative words of a category (e.g., man, boy, father to represent

the category male). However, in order to provide a �ner-grained bias speci�cation, we

11
The attribute setA can be any set of attributes towards which the bias is to be removed. In our experi-

ments, we joined the WEAT test speci�cation attribute setsA1 andA2.
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propose to augment each term set with synonyms and semantically similar words of the

initial terms. We therefore extract nearest neighbours of initial terms from an embed-

ding space specialized to accentuate true semantic similarity and attenuate other types

of semantic association (Faruqui et al., 2015; Vulić et al., 2018; Glavaš and Vulić, 2018,

inter alia). For the augmentation process, we rely on the recent state-of-the-art similarity

specialization method of Ponti et al. (2018): for more details, see the original work.

Given a bias speci�cationBI orBE and a similarity-specialized word vector space

Xsim, we augment each of the term sets in the speci�cation by retrieving the top k
most (cosine-)similar terms from Xsim for each of the initial terms.

12
Extending bias

speci�cation sets using a similarity-specialized word vector space – as opposed to a regular

distributional space – reduces the noisy augmentation stemming from the semantic

relatedness instead of true semantic similarity, as discussed in Section 4.1.
13

Table 8.7

illustrates the initial bias speci�cation and the corresponding augmentation (showing

k = 2 nearest neighbors, without the initial terms) for one explicitly de�ned gender bias.

Debiasing Models

We present three novel debiasing models, two of which operate on an implicit bias speci-

�cationBI = (T1, T2) and one on the explicit bias speci�cationBE = (T1, T2, A).

General Bias Direction Debiasing (GBDD) focuses onBI as a generalization of the

linear projection model proposed by Dev and Phillips (2019), itself, in turn, an extension

of the hard-debiasing model of Bolukbasi et al. (2016).

The model of Dev and Phillips (2019) requires a stricter bias speci�cation than our

BI : it requires T1 and T2 to be ordered lists of equal length L, so that the so-called

equivalence pairs {(t(l)1 , t
(l)
2 )}Ll=1 can be created. For instance, T1 ={man, father, boy}

and T2 ={woman, mother, girl} give rise to the following equivalence pairs: (man,

woman), (father, mother), and (boy, girl). For each equivalence pair (t
(l)
1 , t

(l)
2 ) they

compute the bias direction vector bl by subtracting the vector of term tl2 from the vector

of term t
(l)
1 . We �nd this bias speci�cation overly restrictive: it requires an additional

e�ort to create true equivalence pairs from T1 and T2 and it produces only L partial

bias direction vectors. In contrast, we propose to create one bias direction vector bij

for each pair (t
(i)
1 , t

(j)
2 ), t

(i)
1 ∈ T1, t

(j)
2 ∈ T2. If T1 and T2 truly specify categories that

are opposite in some regard (e.g., gender-wise), then any pair (t
(i)
1 , t

(j)
2 ) should induce a

meaningful partial bias direction vector. This way we also obtain a much larger number of

partial bias direction vectors (e.g.,L2
if T1 and T2 are of the same lengthL): this should

result in a more reliable general bias direction vector, computed as follows. We stack all

of the obtained bias direction vectors bij corresponding to pairs (t
(i)
1 , t

(j)
2 ), t

(i)
1 ∈ T1,

12
We discard nearest neighbors that are initially present in other sets of the same bias speci�cation: for

instance, if we retrieve an augmentation candidate woman for an initial T1 term man, woman will not be

added to T1 if it already exists in one of the target term sets T1, T2, or in any attribute setA.
13

We also considered using clean lexical knowledge from WordNet (Miller, 1995) directly, but this re-

sulted in much lower recall as well as less accurate augmentation candidates.
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t
(j)
2 ∈ T2 to form a bias direction matrix B. We then obtain the global bias direction

vector b as the top singular vector of B, i.e., as the �rst row of matrix V, where UΣV>

is the singular value decomposition of B. Let x be the `2-normalized d-dimensional

vector from a biased input vector space. Its debiased version is then computed as:

GBDD(x) = x− (x · b)b . (8.4)

In other words, the closer the vector x is to the global bias direction b, the more it is

bias-corrected (i.e., the larger portion of b is subtracted from x). Vectors orthogonal to

the bias direction b remain unchanged (zero dot-product with the bias vector b).

Bias Alignment Method (BAM). An alternative to computing a bias direction vector

b is to use target-term pairs (t
(i)
1 , t

(j)
2 ), t

(i)
1 ∈ T1, t

(j)
2 ∈ T2 to learn a projection of the

biased embedding space X ∈ Rd to itself that (approximately) aligns T1 and T2. The

idea behind this model stems from the research on projection-based CLWE spaces (see

also Section 8.1), where an orthogonal mapping between monolingual embedding spaces

is learned from a set of word translations (Smith et al., 2017; Glavaš et al., 2019).
14

Here, we use bias term pairs (t
(i)
1 , t

(j)
2 ) to learn the debiasing projection of X with

respect to itself. Let XT1 and XT2 be the matrices obtained by stacking the (biased) vec-

tors of left and right words of pairs (t
(i)
1 , t

(j)
2 ), respectively. We then learn the orthogonal

mapping matrix WX = UV>, where UΣV> is the singular value decomposition

of XT2X
>
T1

. Since WX is orthogonal, the projection X′ = XWX is isomorphic to

the original space X, and thus equally biased. However, the transformation (speci�ed

by WX) de�nes the angle and direction of debiasing. We obtain the debiased space by

averaging the original space X and the projected space X′:

BAM(X) =
1

2
(X + XWX) . (8.5)

Explicit Neural Debiasing (DebiasNet). The �nal model, dubbedDebiasNet (in

Tables referred to with its function abbreviation DBN), is the �rst neural model that

operates on an explicit bias speci�cationBE . It is inspired by previous work on seman-

tic specialization of static language representions (e.g., Vulić et al., 2018; Glavaš and

Vulić, 2018, inter alia), but instead of using linguistic constraints (e.g., synonyms), we

“specialize” the vector space by leveraging debiasing constraints.

Given a biased input space X and the speci�cation BE = (T1, T2, A), we learn a

debiasing function DBN(X; θ) that transforms the original space X to a debiased space

X′. As de�ned by the bias speci�cation, we aim for the terms from both sets T1 and T2

to be similarly close to the terms fromA in X′. For simplicity, we execute DBN(X; θ) as

a feed-forward neural network with non-linear activations. The training set for learning

the parameters θ consists of triples (t1 ∈ T1, t2 ∈ T2, a ∈ A). It is obtained as a full

14
Note that a self-consistent linear mapping W is the one o�ering consistent mapping from one space

to the other and back, x = W>Wx , i.e., W>W = I, thusW is orthogonal; an orthogonal projection

W (X′ = WX) preserves all distances in X, making X′
isomorphic to X.
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Cartesian productT1×T2×A. Let t1, t2 and a be the respective vectors of t1, t2, and a
from the input biased space X, and let t′1, t′2 and a′ be their “debiased” transformations:

t′1 = DBN(t1; θ), t′2 = DBN(t2; θ), and a′ = DBN(a; θ). For a training instance

(t1, t2, a), we then minimize the following loss functionLD:

LD =
(
cosd

(
t′1,a

′)− cosd
(
t′2,a

′))2 , (8.6)

where cosd(·, ·) refers to the cosine distance. The objective pushes the terms from the

two target sets T1 and T2 to be equidistant to the terms from the attribute setA. That

is, it is designed to speci�cally remove the explicit bias. By minimizing LD as the only

objective, the model would remove the bias, but it would also destroy the useful semantic

information in the input space. We thus couple the objectiveLD with the regularization

LR that prevents the debiased vectors from deviating too much from their original

estimates:

LR=cosd
(
t1, t

′
1

)
+ cosd

(
t2, t

′
2

)
+ cosd

(
a,a′

)
. (8.7)

The �nal loss is then J = LD + λLR, with λ as the regularization weight. The learned

function is then applied to the full input space: X′ = DBN(X; θ).

Composing Debiasing Models. The presented models can be seamlessly composed

with one another. For example, given an explicit speci�cationBE , we can �rst explicitly

debias a distributional vector space X using DebiasNet. Afterwards, we can apply

either gbdd or BAM on the resulting vector space by deriving BI from BE (i.e., by

considering only T1 and T2): e.g., X′ = GBDD(DBN(X)).

Cross-Lingual Transfer of Debiasing

Cross-lingual language representations have been shown to be a viable solution for zero-

shot language transfer of NLP models (Ruder et al., 2019; Glavaš et al., 2019). Given a

source languageL1 with its monolingual distributional space XL1 and a target language

L2 with the space XL2, we can apply any L1 model trained on XL1 on the instances

from L2, given a matrix WCL that projects XL2 to XL1. From the plethora of cross-

lingual word embedding models (Smith et al., 2017; Lample et al., 2018; Artetxe et al.,

2018, inter alia), we opt for a supervised projection-based model (Smith et al., 2017) that

obtains WCL by solving the Procrustes problem (Schönemann, 1966) on the set of word

translation pairs. We analyzed spaces induced in this way in Section 8.1.
15

We select this

approach due to its simplicity and competitive zero-shot language transfer performance

on other NLP tasks (Glavaš et al., 2019). With the cross-lingual projection matrix WCL in

place, the debiasing of the space XL2 simply amounts to composing the projection with

the debiasing model inL1: for instance, for GBDD, X′L2 = GBDDL1(XL2WCL).

15
Note that we obtain the cross-lingual projectionWCL in the similar way as debiasing projectionWX

in BAM; but now the aligned matrices contain vectors (each from the respective language) corresponding

to word translation pairs (not pairs created from bias target sets as in BAM).
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8.2.3 Intrinsic Bias Evaluation

We now introduce the metrics for testing di�erent aspects of the debiased embedding

spaces and then outline two data sets used in our experiments.

Evaluation Aspects

We use three diverse tests to intrinsically measure the presence of explicit bias and two

tests that focus on the presence of implicit bias. Finally, we test the debiased vector spaces

for their ability to preserve the initial semantic information.

Word Embedding Association Test (WEAT). Explained in Subsection 8.1.3, WEAT,

which was introduced by Caliskan et al. (2017), tests an embedding space for the presence

of an explicit bias, given a test speci�cationBE=(T1, T2, A1, A2).
16

For details on the

computation of that measure, we refer the reader to the corresponding Subsection.

Embedding Coherence Test (ECT). Proposed by Dev and Phillips (2019), this test

quanti�es the amount of explicit bias according to a speci�cationBE=(T1, T2, A). Un-

like WEAT, it compares vectors of target sets T1 and T2 (averaged over the constituent

terms) with vectors from a single attribute set A. ECT �rst computes the mean vec-

tors as representations for the target term sets T1 and T2: µ1 = 1
|T1|
∑

t1∈T1 t1 and

µ2 = 1
|T2|
∑

t2∈T2 t2. Next, for both µ1 and µ1 it computes the (cosine) similarities

with vectors of all a ∈ A. The two resultant vectors of similarity scores, s1 (for T1) and

s2 (for T2) are used to obtain the �nal ECT score. It is the Spearman’s rank correlation

between the rank orders of s1 and s2 – the higher the correlation, the lower the bias.

Bias Analogy Test (BAT). Dev and Phillips (2019) proposed an analogy-based bias

test, dubbed Embedding Quality Test (EQT). However, EQT depends on WordNet

to extend the bias de�nition with synonyms and plurals of the bias speci�cation terms.

In contrast, we propose an alternative Bias Analogy Test (BAT) that relies only on the

speci�cationBE = (T1, T2, A1, A2). BAT works as follows: we �rst create all possible

biased analogies t1− t2 ≈ a1−a2 for (t1, t2, a1, a2) ∈ T1×T2×A1×A2. We then

create two query vectors from each analogy: q1 = t1− t2 + a2 and q2 = a1− t1 + t2

for each 4-tuple (t1, t2, a1, a2). We then rank the vectors in the vector space X according

to the Euclidean distance with each of the query vectors. In a biased space, we expect

the vector a1 to be ranked higher for the query q1 than the vectors of terms from the

opposing attribute setA2 (e.g., for a gender-biased space we expect woman to be ranked

higher than father or boy for the query man - programmer + homemaker). Also, a2

is expected to be more similar to q2 than vectors of A1 terms . The BAT score is the

percentage of cases where: (1) a1 is ranked higher than a term a′2 ∈ A2 \ {a2} for q1 and

(2) a2 is ranked higher than a term a′1 ∈ A1 \ {a1} for q2.

16
In the original work and in Subsection 8.1.3, the test term sets are denoted byX , Y ,A, andB, respec-

tively. We adapt the notation here (without restating the equations), to highlight the semantics of the target

and attribute term sets under the uni�ed notion of our framework.
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Implicit Bias Tests. Gonen and Goldberg (2019) recently suggested that the two sets of

target terms can still be clearly distinguished (with KMeans clustering, or in a supervised

manner with an SVM classi�er) from one another after applying debiasing procedures of

(Bolukbasi et al., 2016) and (Zhao et al., 2018b). We adopt their approach and test the

debiased spaces for the presence of implicit bias by clustering terms from T1 and T2 with

KMeans++, and by classifying them using an SVM with the RBF kernel: it is trained on

the vectors of terms from the augmentations of target sets. For each debiasing model, we

average the clustering and classi�cation scores over 20 independent runs.

Semantic Quality. All debiasing procedures change the topology of the input vector

space. We thus think that it is crucial to verify that the debiasing does not occur at

the expense of the semantic information encoded in the language representation space.

We test the debiased embedding spaces on two standard word similarity/relatedness

benchmarks: SimLex-999 (Hill et al., 2015) and WordSim-353 (Finkelstein et al., 2002).

Evaluation Data Sets

Our proposed framework is versatile as it enables the debiasing models to operate on

any bias speci�ed in the uni�edBI orBE format. To demonstrate this, we evaluate the

debiasing models on two di�erent bias speci�cations: tests T1 and T8 from the WEAT

data set (Caliskan et al., 2017). WEAT tests are given as explicit bias speci�cationsBE .

WEAT T8: Gender Bias Test. WEAT T8, shown in Table 8.7, encodes gender bias in

relation to a�nities towards science and art. T1 contains terms from the areas of science

and technology, whereas T2 contains art terms. The attribute sets contain male (A1) and

female (A2) terms. In a gender-biased vector space, the scienti�c targets are expected to

be more strongly associated with male attributes and artistic targets with female terms.

WEAT T1: Flowers vs. Insects. WEAT T1 speci�es another bias type: the di�erence

in sentiment humans attach to insects as opposed to flowers. Target sets contain di�erent

�owers (T1) and insect species (T2), and attribute sets contain universally positive (A1)

and negative (A2) terms. The full bias speci�cation of WEAT T1 is available in Part D.2

of the supplementary material. This test does not re�ect an unfair bias, which leads to

discrimination of human individuals, but demonstrates the versatility of our framework.

XWEAT. For evaluating the language transfer setup, we use bias speci�cations in target

languages other than English as our test data. Concretely, we use the test term sets T1

and T8 from XWEAT, which we presented in the previous Section. It was created by

translating the English (en) WEAT tests to six languages: German (de), Spanish (es),

Italian (it), Russian (ru), Croatian (hr), and Turkish (tr).
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Preprocessing and Training Setup

Augmented Bias Speci�cations. We �rst augment the bias speci�cations using a similarity-

specialized embedding space produced by Ponti et al. (2018)
17

based on the en fastText

embeddings (Bojanowski et al., 2017). For WEAT T8, we augment the target and attribute

lists with k = 4 nearest neighbours of each term. As the initial lists of WEAT T1 are

longer than those of T8, we use k = 2 with T1. We train all debiasing models using bias

speci�cations containing only the augmentation terms (i.e., without the initial bias test

speci�cation terms); we use the initial terms for testing.

Input Word Embeddings. We test the robustness of our debiasing models on three

di�erent static word embedding models trained on Wikipedia: CBOW (Mikolov et al.,

2013c), GloVe (Pennington et al., 2014), and fastText (FT; Bojanowski et al., 2017).

For the cross-lingual transfer, we induce a multilingual space spanning seven languages

(en + 6 targets) by projecting FT vectors of each target to the en space. Following an

established procedure (Glavaš et al., 2019), we learn projections WCL using automatically

compiled translations of the 5K most frequent en words.

Training Setup. ForGBDD and BAM there is a deterministic closed-form solution for

any given bias speci�cation. On the other hand, the hyperparameters of DebiasNet are

optimized via grid search and cross validation on the training set. The �nal DebiasNet

model uses 5 hidden layers with 300 units each and the weight λ is �xed to 0.2.

Results and Analysis

We �rst report debiasing results on three en distributional spaces, for the individual

models as well as for three composite models: GBDD ◦ BAM = GBDD(BAM(X)),

BAM ◦ GBDD, and GBDD ◦ DebiasNet. BAM and DebiasNet display similar

results and so does their composition. For brevity, we thus omit the scores of BAM ◦
DebiasNet. We also do not report the scores with DebiasNet ◦GBDD as its scores

were similar to its inverse composition GBDD ◦DebiasNet in our preliminary tests.

We then show the results for the cross-lingual debiasing transfer.

Biases of the Distributional Spaces. The main results are summarized in Tables 8.9

and 8.8. All three input distributional spaces generally exhibit explicit and implicit biases,

with CBOW displaying the lowest biases, both according to the WEAT tests (e.g., the

e�ect size is even insigni�cant with p < 0.05 for the gender bias test T8) and the implicit

bias tests of Gonen and Goldberg (2019). Interestingly – according to our BAT test, and

despite the original claims and examples from Bolukbasi et al. (2016) – the encoded biases

do not re�ect strongly in the analogy tests. Nonetheless, our debiasing methods in most

test settings manage to a�ect the input vector spaces by further reducing BAT scores.

17
Available at https://tinyurl.com/y273cuvk.
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Explicit Implicit SemQ

Model WEAT ECT BAT KM SVM SL WS

FT Distributional 1.30 73.5 41.0 100 100 38.2 73.8

GBDD 0.96 84.7 33.9 62.9 50.0 38.4 73.8

BAM 0.10* 71.8 38.4 99.8 100 37.7 70.4

DBN 0.05* 79.1 33.6 99.8 100 34.1 65.1

GBDD ◦ BAM 0.18* 94.4 38.7 65.1 65.3 37.7 70.2

BAM ◦GBDD 0.57* 90.3 34.6 60.1 50.0 36.4 72.6

GBDD ◦DBN 0.11* 81.5 37.4 65.8 50.3 33.9 64.6

CBOW Distributional 0.81* -24.0 45.6 90.6 93.4 34.7 59.4

GBDD 0.38* 50.9 43.4 59.5 50.0 34.8 59.8

BAM 0.14* 36.8 51.1 95.1 89.4 33.4 59.2

DBN 0.45* 4.7 57.5 97.4 98.4 33.9 52.2

GBDD ◦ BAM 0.00* 69.4 50.3 52.7 68.8 33.4 59.3

BAM ◦GBDD 0.09* 65.6 42.7 62.6 50.0 33.2 56.9

GBDD ◦DBN 0.38* -3.5 57.6 61.9 50.3 34.0 52.1

GloVe Distributional 1.28 84.1 36.3 100 100 36.9 60.5

GBDD 0.95 89.7 29.1 57.4 50.6 36.9 59.6

BAM 1.08 89.7 27.8 96 100 36.2 59.5

DBN 0.83* 81.5 30.8 100 100 35.9 58.6

GBDD ◦ BAM 0.98 94.7 25.8 63.6 79.1 36.6 59.3

BAM ◦GBDD 0.78* 97.1 36.9 53.9 50.0 36.3 59.2

GBDD ◦DBN 0.51* 97.4 28.2 59.5 50.0 35.8 58.4

Table 8.8: Main results on the WEAT T8 bias test term set for three en distributional

spaces debiased with our three models – GBDD, BAM, and DebiasNet (DBN) – and

their compositions. We quantify the explicit bias (Explicit): WEAT, ECT, and BAT

evaluation measures; implicit bias (Implicit): clustering with KMeans++ (KM) and

classi�cation with SVM; and the preservation of semantic quality (SemQ): word similarity

scores on SimLex-999 (SL) and WordSim-353 (WS). Asterisks (*) indicate insigni�cant

(α = 0.05) bias e�ect sizes for the WEAT evaluation measure.

Comparison of the Debiasing Models. While the results vary across the two WEAT

tests and evaluation metrics, GBDD emerges as the most robust model on average. It

attenuates the explicit bias while being the most successful in removing the bias implicitly:

the spaces debiased withGBDD completely confuse the KM clustering andSVM classi�er.

It also fully retains the useful semantic information: we do not observe drops on SL and

WS compared to the input distributional spaces. While GBDD outperforms BAM and

DebiasNet (DBN) on average according to ECT and BAT measures, it is not able to

fully remove the explicit gender bias (T8) according to the WEAT test.

Despite operating on an implicit speci�cationBI , BAM removes the explicit biases

much better than the implicit ones. DBN seems even better than BAM in removing the

explicit biases. This is not a surprise, since DBN is trained on an explicit bias speci�ca-

tion. However both DBN and BAM are unsuccessful in removing the implicit biases.

Moreover, DBN distorts the input space more than BAM, yielding substantial drops
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Explicit Implicit SemQ

Model WEAT ECT BAT KM SVM SL WS

FT Distributional 1.67 46.2 56.1 95.7 100 38.2 73.0

GBDD 0.08* 96.2 41.7 56.0 53.1 38.1 72.9

BAM 1.57 50.3 56.0 95.7 100 37.4 71.5

DBN 0.18* 79.8 45 95.7 100 35.09 68.6

GBDD ◦ BAM 0.42* 89.3 48.1 75.0 91.4 37.3 71.3

BAM ◦GBDD 0.07* 94.4 42.4 56.9 51.3 37.9 68.4

GBDD ◦DBN -0.08* 95.9 41.9 54.6 52.0 34.9 68.4

CBOW Distributional 1.13 78.1 50.2 62.6 93.9 34.7 59.4

GBDD -0.07* 90.7 41.1 55.7 51.9 34.7 59.4

BAM 0.44* 82.4 50.7 60.9 94.4 34.4 59.3

DBN 0.60 82.5 46 85.7 90.8 33.4 53.4

GBDD ◦ BAM -0.04* 91.3 48.7 60.7 68.1 34.5 59.2

BAM ◦GBDD -0.17* 89.2 45.3 55.6 51.1 33.2 57

GBDD ◦DBN -0.15* 90.5 41.3 55.4 52.6 33.4 53.3

GloVe Distributional 1.38 76.2 40.5 94.1 100 36.9 60.5

GBDD 0.44* 92.4 32.7 55.6 54.5 36.8 60.7

BAM 0.96 82.1 39.2 90.7 100 34.4 56.4

DBN 0.55 77.6 34.8 95.3 100 36.7 59.1

GBDD ◦ BAM 0.40* 90.7 36.5 57.7 76.5 34.2 56.4

BAM ◦GBDD 0.65 87.3 44.1 55.5 51.2 35.5 58.6

GBDD ◦DBN -0.03* 89.7 30.3 57.4 52.1 36.5 59.1

Table 8.9: Main results on the WEAT T1 bias test set for three en distributional spaces

debiased with three models – GBDD, BAM, and DebiasNet (DBN) – and their com-

positions. We quantify the explicit bias (Explicit): WEAT, ECT, and BAT evaluation

measures; implicit bias (Implicit): clustering with KMeans++ (KM) and classi�cation

with SVM; and the preservation of semantic quality (SemQ): word similarity scores on

SimLex-999 (SL) and WordSim-353 (WS). Asterisks (*) indicate insigni�cant (α = 0.05)

bias e�ects for the WEAT evaluation measure.

on SL and WS . The complementarity of the debiasing e�ects between GBDD, and

BAM or DBN are con�rmed by the performance of their compositions. All composition

models robustly remove both the explicit and implicit biases, also showing that there is

no “one model rules them all” solution to various debiasing aspects. GBDD ◦DBN most

e�ectively removes the implicit and explicit biases, but it inherits the undesirable semantic

distortions of DBN. On the other hand, BAM ◦GBDD o�ers solid bias removal while

for the most part retaining the semantic quality of the language representation space.

Di�erences between the Evaluation Measures. The three di�erent aspects included

in our evaluation framework complement each other: they all inform the selection of

the most appropriate debiasing model with respect to the desired application-speci�c

criteria. However, results of WEAT, ECT, and BAT are not always aligned. For example,

the CBOW space is unbiased according to the WEAT test, but extremely biased (negative
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de es it

Model W KM SL W KM SL W KM SL

FT Distributional 0.05* 98.3 40.7 1.16 99.8 – 0.10* 99.8 29.8

GBDD 0.15* 55.4 40.7 0.41* 60 – -0.28* 56.1 29.8

BAM -0.97 97.4 40.7 0.11* 99.0 – -0.70* 99.6 29

DBN -0.15* 97.4 36.2 0.76* 100 – -1.05 100 25.4

GBDD ◦ BAM 0.35* 57.6 35.9 0.78* 52.4 – -0.64* 60.1 25.0

BAM ◦GBDD -0.12* 56.3 40.8 0.05* 58 – -0.62* 57.9 29

GBDD ◦DBN -0.09* 54.4 37.3 0.11* 56.6 – -0.05* 58.9 27.1

ru hr tr

Model W KM SL W KM SL W KM SL

FT Distributional 0.37* 62 25.6 0.13* 98.6 32.7 1.72 99.3 –

GBDD 0.73* 62.4 25.8 0.54* 59.9 32.5 1.41 64.3 –

BAM -0.41* 74.4 25.1 -0.01* 93.5 32 1.49 98.8 –

DBN 0.31* 77.9 20.7 0.25* 99.9 25.3 1.54 100 –

GBDD ◦ BAM 0.77* 61.9 20.7 0.67* 67.5 25.1 1.29 62.5 –

BAM ◦GBDD 0.34* 56.8 24.8 0.52* 60.8 31.7 0.99 56.9 –

GBDD ◦DBN 0.59* 61.6 25.4 0.68* 75.4 29.4 1.27 62.4 –

Table 8.10: Results for the cross-lingual debiasing transfer on XWEAT T8 for six lan-

guages: de, es, it, ru, hr, and tr. The input word embeddings are fastText (FT) for

all target languages. W=WEAT; KM=KMeans++; SL=SimLex.
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Figure 8.1: The topology of a vector space before and after debiasing. Terms from WEAT

T8 test: T1 – science terms (blue), T2 – art terms (orange),A1 – male terms (green), and

A2 – female terms (red). (a) Distributional en FT vectors; (b) Debiased using GBDD.

correlation!) according to ECT. In contrast, GloVe vectors are biased according to

WEAT but not according to ECT (correlation of 0.84). These �ndings point to di�erent

bias aspects, accentuating the need for multiple, mutually complementary, bias measures.
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Cross-Lingual Transfer. The results in the cross-lingual debiasing transfer are shown

in Table 8.10. For brevity, we show only the results on XWEAT T8 (gender bias in terms

of science vs. art) and for a subset of the evaluation measures (one for each evaluation

aspect): WEAT (W), KMeans++ (KM), and SimLex-999 (SL).
18,19

We �rst con�rm the results from the previous Section: de, it, ru, and hr fastText

vectors do not exhibit signi�cant explicit gender bias (with respect to science vs. art),

according to the WEAT test. The explicit bias is, however, signi�cant in es and tr

distributional vectors. Implicit bias is clearly present in all distributional spaces except

ru. Debiasing models display similar properties as before: DBN reduces the explicit bias

more e�ectively than BAM and GBDD, but it semantically distorts the vectors; and only

GBDD successfully removes the implicit bias. None of the models fully removes the

explicit bias fortr (the lowest bias e�ect of 0.99 for BAM ◦GBDD is still signi�cant). We

suspect that this is a result of the lower-quality cross-lingual tr→en projection, which is

in line with the bilingual lexicon induction results from Glavaš et al. (2019).

For de and it, BAM and DebiasNet invert the direction of the bias: negative

WEAT scores mean that sciences are more correlated with female attributes and arts with

male attributes. We believe that this is the result of applying a (strong) bias correction

learned on a biased en space on the (explicitly) unbiased de and it spaces. The BAM

◦ GBDD composition seems most robust in the cross-lingual transfer setting – it suc-

cessfully removes both the explicit (if they exist) and implicit biases, while preserving the

useful semantic information (SL). These results indicate that we can attenuate or remove

biases in distributional vectors of languages for which (1) we do not require the initial

bias speci�cation and (2) we do not even need similarity-specialized word embeddings

used to augment the bias speci�cations for the target language.

Topology of Debiased Spaces. Finally, we qualitatively analyze the debiasing e�ects

suggested by the evaluation measures. To this end, we project the input and the debiased

embeddings into a two-dimensional space with principal component analysis (PCA),

and show the constellation of words from the initial bias speci�cation of WEAT T8

(Table 8.7) in Figure 8.1. In the original distributional space, the two target sets (science vs.

art) are clearly distinguishable from one another (implicit bias), and so are the male and

female attributes. The science terms are notably closer to the male terms and art terms

to the female terms (explicit bias). As we can see from the Figure, in the space produced

by GBDD, explicit and implicit biases are removed: the science and art terms cannot be

clearly separated and are roughly equidistant to the gender terms.

8.2.4 Argumentative Downstream Evaluation

Complementing our e�orts to intrinsically evaluate the e�ect of the proposed debiasing

methods, we conduct an additional evaluation focusing on argumentative downstream

e�ects, speci�cally on NLI (see Section 2.1.4). Our aim is to test models for the amount

18
We provide the full results, with all measures, and also on XWEAT T1 test in D.2.

19
We evaluate word similarities for de, it, ru, and hr on their respective SimLex data sets (Leviant and

Reichart, 2015; Mrkšić et al., 2017); there is no es and tr SimLex.
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of stereotypically biased inferences they produce (as discussed in Section 2.2.4). Here, we

focus on gender bias, aligned with our debiasing procedure based on WEAT T8.

Experimental Setup

We describe the experimental setup for our argumentative downstream evaluation.

Data. For training and optimizing our inference models, we employ the training and

validation portions of the SNLI data set (Bowman et al., 2015). The training set consists

of 550,152 human-written English premise-hypothesis pairs manually labeled according

to whether the premise entails the hypothesis. The task is to assign one out of three labels

to a prediction instance (entailment, contradiction, or neutral).

As debiasing language representations can disrupt the useful semantic information

encoded in those spaces (indicated by the intrinsic evaluation) and, consequently, reduce

the models’ e�ectiveness on actual argumentative downstream tasks, we employ three data

sets in order to evaluate our models: (1) we provide the scores achieved on the development

portions of SNLI (10,000 instances); (2) additionally, as in Chapter 4, we employ the

matched and mismatched portions of the MNLI (Williams et al., 2018) data set (MNLI-m

and MNLI-mm, 10,000 instances each); (3) �nally, and most importantly, we follow Dev

et al. (2020) and create a synthetic data set allowing us to measure occupational gender

bias (“Bias–NLI‘”). It consists of sentence pairs, for which the models should not assume

anything (hence, predict neutral). To this end, we start from the template

The <subject> <verb> a/an <object>

and sets of terms, which we use to �ll the slots. Verb and object slots are �lled with

common activities, e.g., “bought a car”. Entailment pairs are created by �lling the subject

slot for the same activity with an occupation term, e.g., “physician”, for the hypothesis

and a gender term, e.g., “man”, for the premise. Consider the following example:

Premise A gentleman owns a car.

Hypothesis A physician owns a car.

Label Neutral

As no information on whether the physician is male exists, the model clearly should

predict neutral. In total, we create 1,936,512 evaluation instances using the authors’ code.

Measures. Following Dev et al. (2020), we report the bias evaluation results in terms

of Fraction Neutral (FN), which corresponds to the fraction of sentence pairs for which

the model predicts neutral. LetM be the number of prediction instances, and let ei, ni,
and ci be the probabilities assigned to the entailment, neutral, and contradiction labels

for a sentence pair i. FN is then de�ned as follows:

FN =
1

M

M∑
i=1

1[ni = max{ei, ni, ci}], (8.8)

where 1[·] is an indicator. Higher FN scores indicate less bias. The SNLI, MNLI-m, and

MNLI-mm performances are reported in terms of accuracy.
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SNLI (Acc) MNLI-m (Acc) MNLI-mm (Acc) Bias–NLI (FN)

Distributional 0.715 0.426 0.700 0.551

GBDD 0.575 0.389 0.554 0.622

BAM 0.676 0.419 0.673 0.472

DebiasNet 0.504 0.379 0.489 0.571

GBDD ◦ BAM 0.547 0.378 0.549 0.480

BAM ◦GBDD 0.662 0.416 0.666 0.482

GBDD ◦DebiasNet 0.662 0.416 0.666 0.176

Table 8.11: Results on NLI obtained with original and gender-debiased FT en spaces –

GBDD, BAM, and DebiasNet – and their compositions. We report the development

set accuracy on SNLI, MNLI-m, and MNLI-mm and FN on Bias–NLI.

Models. Our focus is to assess the e�ect of debiasing the language representations on

the amount of biased inferences a model produces. To isolate this e�ect, we resort to a

simple CBOW model as published by Williams et al. (2018). In this model, each sentence

is represented as a sum over its word embeddings, i.e., for each prediction instance i, we

obtain two embeddings: one premise embedding pi and one hypothesis embedding hi.

We next compute the di�erence as well as the element-wise product of these embeddings

as premise-hypothesis combinations and concatenate them with the original embeddings

to obtain an instance representation gi: gi = pi
_hi

_(pi − hi)
_(pi � hi). Finally,

we feed gi into a 3-layer multi-layer perceptron with a simple softmax classi�er.

Training and Optimization. We train the model with original and debiased en FT

word embeddings with a batch size of 16 instances using the SNLI development set

accuracy as early stopping criterion (patience: 30, 000 steps). We optimize the models’

parameters using Adam (Kingma and Ba, 2015) and search for the best dropout rate

d ∈ {0.1, 0.2, 0.5} and the learning rate λ ∈ {0.0001, 0.0004}.

Results and Discussion

The results are depicted in Table 8.11. As it can be seen and as expected, the results on the

NLI benchmark data sets (SNLI, MNLI-m, and MNLI-mm) are generally lower than the

results obtained with transformer-based language representation models (e.g., Section 4.2).

Here, as already indicated by the inherent evaluation for semantic embedding quality

using SL and WS, the model employing the original distributional en space reaches

the best accuracies. We observe small to big drops of up to 21 percentage points in

downstream performance when employing the debiased spaces. These results highlight

the importance of coupling inherent evaluation protocols with downstream evaluations.

The FN scores computed on Bias–NLI are less conclusive: the smallest amount of biased

inferences is produced by the model employing the embeddings debiased for gender

bias using GBDD. For DebiasNet, the results also indicate lower bias than the original

distributional space. However, for the other “debiased” spaces, the amounts of bias seem

to be higher than the ones of the original space. We hypothesize that this could be due to

the following reasons: �rst, as also the rest of the models’ parameters, the embeddings
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are updated during the training. As we feed a non-negligible amount of training data

(550, 152 instances), the e�ect of the debiasing procedure may be overwritten. The

second reason for some of the “debiased” spaces exhibiting more measurable bias according

to Bias–NLI than the original space may be rooted in the bias speci�cations. In our

experiments, we simply employed the pre-existing bias speci�cations from WEAT T8,

which speci�es gender bias towards scienti�c or artistic terms, while Bias–NLI explicitly

tests for occupational gender bias. While these two aspects of gender bias, i.e., (a) science

vs. art and (b) occupations, are de�nitely interrelated, they are not perfectly aligned. We

think that this �nding indicates the importance of carefully designing employed bias

speci�cations based on the application and its envisioned deployment scenario.

8.2.5 Conclusion

We have introduced a general framework for debiasing distributional word vector spaces

by (1) formalizing the di�erences between implicit and explicit biases, (2) proposing three

new debiasing methods that deal with the two di�erent bias speci�cations, and (3) de-

signing a comprehensive evaluation framework for testing the (often complementary)

e�ects of debiasing. The proposed framework o�ers a systematized view on unfair human

biases encoded in word embeddings, and the main results indicate that our debiasing

methods can e�ectively attenuate biases in arbitrary static input distributional spaces and

can also be transferred to a variety of target languages. While in an additional argumenta-

tive downstream evaluation, the smallest amount of biased inferences is produced by a

model employing a debiased space, the results also indicate that the e�ects of debiasing

procedures may be overwritten with larger amounts of training data.

8.3 Further Ethical Considerations

Acknowledging the ethical dimension of the work presented in this Chapter, we point

the reader to the following limitations and potential implications: (i) gender is a spectrum,

and we fully acknowledge the importance of the inclusion of all gender identities, e.g.,

nonbinary, gender �uid, polygender, etc. in language technologies. The gender bias

speci�cations employed, however, follow a more classic notion re�ecting the discrepancy

between a single dominant and a single minoritized group. (ii) Similarly important is the

intersectionality (Crenshaw, 1989) of stereotyping due to the individual composition

and interaction of identity characteristics, e.g., social class and gender (Degaetano-Ortlieb,

2018). Due to its complexity, we do not address the topic in this work. (iii) Debiasing

technologies can, beyond their intended use, be used to increase bias. We think that this

aspect stresses our responsibility to reach out and to raise awareness w.r.t. the impact of

language technology among decision-makers and users, to establish a broader discourse,

and to include ethical aspects in data science curricula (Bender et al., 2020).

In this Chapter, we have focused on the issue of unfair stereotypical bias encoded in

distributional word vector spaces (C5). To this end, we �rst conducted the largest mul-

tidimensional analysis of explicit biases to-date and presented XWEAT, a translation

154



8. ETHICAL CONSIDERATIONS

of the Word Embedding Association Test (WEAT) test sets to six more languages (C4,

see Section 8.1). With DebIE, we then presented a general framework for implicit and

explicit debiasing of static language representations and also demonstrated the zero-shot

cross-lingual transfer of debiasing models. In the next and �nal Chapter, we summarize

and conclude on the work presented in this thesis.
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Conclusion

Computational argumentation, as one of the most exciting problems in arti�cial intelli-

gence, requires advanced natural language understanding capabilities. Towards solving

CA, the question of how to numerically represent the input text has been recognized as

one of the main bottlenecks. However, while the body of research works in computa-

tional argumentation and representation learning keeps growing continuously, preceding

work has failed to systematically analyze and account for the speci�c issues stemming

from the interplay of the two �elds. In this thesis, we have acknowledged the speci�c

importance of researching language representations for CA by identifying and addressing

a series of �ve challenges derived from inherent characteristics of argumentation:

(C1) External knowledge: the di�culty of argumentative understanding surpasses the one

of general NLU scenarios (Moens, 2018) and therefore requires advanced knowledge. In

particular, lexico-semantic, conceptual, common sense, and world knowledge are crucial

in argumentative reasoning. However, these types of knowledge are often underrep-

resented in language representations as they are either seldom made explicit in text or

only partially encoded by the semantic embedding models. For instance, due to their

distributional nature, language representation models con�ate together broader topical

relatedness and true semantic similarity. This can lead to errors in, for instance, Natu-

ral Language Inference (see Section 3.1). To complement the distributional knowledge

with knowledge from external sources, we conducted two case studies: (1) we proposed

LIBERT, a lexically informed extension to BERT’s pretraining framework (Devlin et al.,

2019), which allows for accentuating a lexico-semantic relationship. (2) As a more e�-

cient and, consequently, more ecological solution, we injected conceptual knowledge in

BERT using bottleneck adapters (see Chapter4). We demonstrated the e�ectiveness of

these approaches on argumentative reasoning instances, which require exactly the type of

knowledge which we injected from the external sources.

(C2) Domain knowledge: argumentation occurs in a variety of domains of text, such as in

web debates and scienti�c publications. All these argumentative domains di�er in terms

of numerous aspects, e.g., in their genres and their topics. For instance, as a special case

of argumentation, scienti�c writing is complex, highly ritualized, and typically results in

long documents. Ideally, we would like to encode domain knowledge in order to improve
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the analysis of such arguments. However, given that semantic text embedding models, i.e.,

static and contextualized embedding models, are all based on the pretrain and �ne-tune

paradigm, there exists a trade-o� between larger and more noisy vs. smaller and more

homogeneous pretraining corpora (see Section 3.2). To further investigate this issue, we

have conducted a case study in which we compared domain-speci�c to general-purpose

word embeddings for the task of semantically classifying citations, main argumentative

tools in scienti�c writing (see Chapter 5). We have shown that we can outperform previous

methods with our approach and that considering pretraining corpus sizes is vital when

employing domain-speci�c language representations.

(C3) Complementarity of knowledge across tasks: given that argumentation is an extremely

complex phenomenon, its computational analysis is typically treated as consisting of a

variety of separate analysis tasks. For instance, scienti�c arguments, in which the authors

try to convince their peers to acknowledge the validity and merit of their work, can

be treated as being composed of di�erent rhetorical layers (scitorics), which usually

correspond to individual and isolated analysis tasks. We can analyze the �ne-grained

argumentative structure, citation contexts as dialogical links to the scienti�c discourse,

and the overall sentential discourse structure, which is modeled after style conventions

in the scienti�c domain (see Section 2.1.3). However, as these aspects all form together

an overall argument, these layers are interrelated and often dependent on each other.

Similar observations can be made in argument assessment: overall AQ, as discussed in

Section 2.1.1, is composed of interrelated dimensions and aspects, such as the logical and

the rhetorical quality of argumentation. In the past, scoring these dimensions has almost

exclusively been tackled as individual tasks, and the potential stemming from sharing

knowledge across all dimensions has received no attention. Exploiting those interrelations

for improving model performances is a known desideratum (see Section 3.3). We studied

the complementarity of knowledge across tasks in language representations for two

cases (see Chapter 6): (1) speci�cally tied to the analysis of scienti�c publications, we

created a �ne-grained argumentation annotation layer on top of the already existing

Dr. Inventor Corpus (Fisas et al., 2015, 2016) which allowed us to study the role of

argumentation in the rhetorical analysis of scienti�c arguments. Using an uncertainty-

based loss function, we controlled the amount each task propagates back to the underlying

language representation layer and demonstrated performance improvements on the

higher-level analysis tasks. (2) For studying the interrelations between overall argument

quality and theory-based argument quality dimensions, we presented GAQCorpus, the

largest corpus annotated with theory-based argument quality dimensions to date. We

exploited the interrelations between the quality dimensions in a �at and hierarchical

Multi-Task Learning (MTL) setting, thereby improving the accuracy of the models’

predictions. As our corpus covers multiple argumentative writing domains, we hereby

also paved the path for more advanced research on domain-speci�c argumentation (C2).

(C4) Multilinguality: argumentation exists, arguably, in all cultures and societies around

the globe. In order to foster inclusion and democratization of language technologies,

CA models should be readily available for multiple languages (see Sections 3.4 and 3.5).

As for resource-lean languages, large amounts of annotated data are often not available,

157



9. CONCLUSION

researchers typically resort to cross-lingual transfer (see Section 2.2.3). Here, the current

state-of-the-art relies on MMTs, which are pretrained in an unsupervised way on large

monolingual corpora in a variety of languages. After pretraining, they are �ne-tuned

on a target task in a resource-rich language, typically English, and, at prediction time,

the acquired task-speci�c knowledge can be unlocked for prediction in a target language

seen in the pretraining. When no annotated training instances in the target language

are employed, this scenario is called zero-shot transfer. However, its e�ectiveness varies

heavily across target languages: in Chapter 7, we have analyzed the sizes of the perfor-

mance gaps resulting in the zero-shot cross-lingual transfer and the factors that determine

this size. We demonstrated that for some cases, the performance gaps in multilingual

argumentative reasoning are huge. Next, in order to mitigate the issue, we have proposed

to move to inexpensive few-shot transfer and short annotation cycles, which results in

consistent performance improvements. Compared to ever-increasing model capacities

and pretraining corpora sizes, which is, obviously, not sustainable, our approach has

the advantage that it is more e�cient and thereby not only fosters inclusion but also

contributes to ecological language technologies.

(C5) Ethical considerations: considering ethical aspects is a moral imperative when it

comes to any technology given their potential for dual use (Jonas, 1984) and their im-

plications on humans and the environment during their development and in concrete

deployment scenarios (see Section 3.5). With our work on improving CA model per-

formances in multilingual scenarios, we have addressed the issue of exclusion of certain

user groups. Similarly, by proposing e�cient few-shot target-language �ne-tuning in

cross-lingual transfer and using e�ciently trainable adapter layers for external knowledge

injection, we have accounted for ecological implications. This stands in stark contrast to

the current trend of increasing model capacity, corpora sizes, and consequently, training

costs (see Section 4.2 and Chapter 7). Finally, our main focus concerning ethical aspects

has been the issue of unfair stereotypical biases, such as sexism and racism, encoded in

language representations (see Chapter 8): the direct interaction of CA systems with

humans in socio-technical deployment scenarios, and their “mimicking” of human rea-

soning, makes, in consideration of the human-automation bias, these systems particularly

prone to in�uence human decision making. Therefore, it is of utmost importance to be

able to measure and mitigate these biases, and consequently, ensure fairer CA models.

For enabling research on bias evaluation and mitigation in multiple languages, we have

translated the WEAT bias test sets (Caliskan et al., 2017) into six more languages and

conducted the largest analysis on unfair bias in distributional word vector spaces to date.

We then assembled a larger framework consisting of a collection of implicit and explicit

bias tests, which operate on the same kind of bias test speci�cations. Based on this, we

proposed three new bias mitigation techniques and demonstrated their e�ectiveness using

our evaluation framework. To complement this intrinsic analysis, we tested the e�ect of

employing original and debiased language representations in argumentative reasoning.

To summarize, in this thesis, we have acknowledged the importance of systematically

researching the intersection of language representations and CA. To this end, we have

identi�ed �ve fundamental challenges based on inherent characteristics of argumentation
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with the current state of semantic text embedding methods. We have described and

addressed each of those challenges in individual case studies employing downstream CA

applications and presented new corpora, measures, analyses, and methods. While we are

aware that we could only touch on the surface of these problems, we have made signi�cant

contributions towards solving the issues for paving the path towards e�ective, inclusive,

fair, and sustainable CA. We think that aiming for a holistic view is clearly desirable as it

opens new possibilities for interconnecting the problems and anticipating which aspects

are transferrable across the di�erent issues. As such, with GAQCorpus, we presented not

only the largest corpus annotated for theory-based AQ but also the only one, which allows

for cross-domain experiments, though in this thesis, we focused on sharing knowledge

across the AQ dimensions. As another example, we have proposed e�cient few-shot

target language �ne-tuning, which fosters inclusion as well as sustainability in CA.

The potential paths for future research based on our work are manifold. Therefore,

here, we outline only a few possible directions for each of the challenges:

with respect to external knowledge, we intend to study how to specialize contextual-

ized word embeddings for asynchronous lexico-semantic relations, such as hypernymy

and meronymy (C1). Moreover, relating to (C2) domain-speci�city, we intend to employ

GAQCorpus, which covers arguments from three domains of argumentative writing

((1) web debates, (2) CQA forums, (3) business review forums) annotated for AQ, for

further experiments on domain transferability with contextualized word embeddings.

To this end, we will initially start by conducting a comprehensive evaluation of domain

adaptation techniques as surveyed by Ramponi and Plank (2020), and then assemble a

broader benchmark of domain adaptation problems in CA. Further, for increasing e�ec-

tiveness when transferring knowledge across tasks, we intend to focus on understanding

in which scenarios the parallel vs. the sequential task transfer is particularly bene�cial

and whether and when performance can bene�t from combinations of both (C3). Next,

following up on our initial study on few-shot target-language �ne-tuning for cross-lingual

transfer (C4), we will investigate di�erent sampling strategies for selecting useful anno-

tation instances and also study active learning scenarios. Moreover, concerning ethical

considerations (C5), we aim to study bias and debiasing for conversational CA scenarios

and to employ e�cient and exchangeable adapter layers for this purpose. As we have

discussed in Section 8.3, in future work, we also need to account for the intersection-

ality of stereotyping due to the individual composition of identity characteristics and,

speci�cally with respect to gender bias, for all gender identities. Finally, we also like to

synthesize our research on the di�erent identi�ed challenges even more and study the

complementarity and interdependencies between the solutions we have proposed. For

instance, the injection of external linguistic knowledge for di�erent languages can lead to

improved cross-lingual transferability of the acquired knowledge.

As a scienti�c community developing these technologies, we are responsible for

ensuring e�ective, fair, inclusive, and sustainable CA. We hope that the work presented

in this thesis fuels and inspires more research towards achieving this goal.
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Appendix A

Published Resources

In the Table A.1, we provide an overview of the resources published with this thesis.

Chapter Resource Name Type Location Challenges

4.1 LIBERT Code https://github.com/anlausch/
LIBERT

C1

4.2 CN-Adapt Code https://github.com/Wluper/
Retrograph

C1

5 Scienti�c Embeddings Model https://github.com/anlausch/
scientific-domain-embeddings

C2

6.1 Argument Annotations Corpus http://data.dws.informatik.
uni-mannheim.de/sci-arg/
compiled_corpus.zip

C3, C2

6.1 Argument Analysis Code https://github.com/anlausch/
multitask_sciarg

C3, C2

6.1 MT for Scitorics Code https://github.com/anlausch/
sciarg_resource_analysis

C3, C2

6.2 GAQCorpus Corpus https://github.com/grammarly/
gaqcorpus

C3, C2

7 Zero2Hero Code https://github.com/anlausch/
CLZeroShotTransferLimitations

C4

8.1 XWEAT Corpus https://github.com/anlausch/
XWEAT

C4, C5

8.2 DebIE Code https://github.com/anlausch/
DEBIE

C5

Table A.1: Overview of all resources published in the context of this thesis.
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Appendix B

Experimental Details for

Section 6.2

B.1 Hyperparameter Optimization

Model Type Hyperparameter Values

SVR
Regularization c 0.001, 0.01, 0.1, 1.0, 10
Epsilon-tube speci�er ε 0.001, 0.01, 0.1, 1.0

BERT
Learning rate λ 2 · 10−5, 3 · 10−5

Number of epochs 3,4

Table B.1: Search values per model type and hyperparameter employed in the experiments.

For each experiment, we conducted a grid search on the corresponding development

portion of the employed training set. The search spaces are depicted in Table B.1.

B.2 Full Experimental Results for RQ2–RQ4

We list the full experimental results on GAQCorpus with respect to RQ2–RQ4.
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B. EXPERIMENTAL DETAILS FOR SECTION 6.2

CQA forums Debate Forums Review Forums

Model Crowd Expert Mix Crowd Expert Mix Crowd Expert Mix

Overall

Arg length 0.498 0.236 0.406 0.542 0.232 0.420 0.486 0.190 0.365

SVRtfidf 0.381 0.323 0.389 0.299 0.179 0.265 0.446 0.340 0.450

SVRembd 0.323 0.180 0.278 0.467 0.239 0.388 0.223 0.227 0.265

WachsmuthCFS 0.550 0.340 0.492 0.524 0.264 0.432 0.619 0.342 0.533

BERT ST 0.681 0.498 0.652 0.575 0.346 0.511 0.611 0.450 0.605

Cogency

Arg length 0.502 0.227 0.420 0.574 0.225 0.437 0.491 0.125 0.340

SVRtfidf 0.449 0.330 0.444 0.295 0.164 0.257 0.409 0.264 0.384

SVRembd 0.301 0.154 0.261 0.404 0.196 0.333 0.264 -0.059 0.103

WachsmuthCFS 0.565 0.311 0.503 0.548 0.232 0.429 0.611 0.223 0.464

BERT ST 0.623 0.405 0.587 0.556 0.337 0.503 0.618 0.359 0.554

E�ectiveness

Arg length 0.475 0.237 0.390 0.502 0.225 0.399 0.425 0.251 0.372

SVRtfidf 0.432 0.313 0.411 0.141 0.074 0.120 0.354 0.253 0.340

SVRembd 0.328 0.204 0.293 0.456 0.264 0.403 0.186 0.144 0.187

WachsmuthCFS 0.555 0.393 0.523 0.528 0.281 0.450 0.567 0.246 0.432

BERT ST 0.596 0.509 0.612 0.548 0.405 0.542 0.639 0.370 0.555

Reasonableness

Arg length 0.480 0.245 0.396 0.535 0.170 0.377 0.496 0.241 0.405

SVRtfidf 0.466 0.364 0.457 0.292 0.153 0.247 0.435 0.345 0.452

SVRembd 0.411 0.278 0.379 0.393 0.096 0.258 0.205 0.191 0.234

WachsmuthCFS 0.543 0.326 0.476 .549 0.192 0.399 0.524 0.261 0.432

BERT ST 0.696 0.512 0.665 0.544 0.222 0.418 0.556 0.484 0.609

Table B.2: Pearson correlations of our model predictions with the annotation scores for

the four AQ dimensions on the three di�erent test annotations (Crowd, Expert, Mix)

when training on in-domain data. Numbers in bold indicate best performances.

CQA forums Debate Forums Review Forums

Model Crowd Expert Mix Crowd Expert Mix Crowd Expert Mix

Overall

BERT ST 0.681 0.498 0.652 0.575 0.346 0.511 0.611 0.450 0.605

BERTMTflat 0.671 0.535 0.667 0.607 0.362 0.537 0.534 0.478 0.588

BERTMThier 0.668 0.528 0.661 0.480 0.393 0.494 0.563 0.465 0.593

Cogency

BERT ST 0.623 0.405 0.587 0.556 0.337 0.503 0.618 0.359 0.554

BERTMTflat 0.651 0.457 0.633 0.622 0.343 0.541 0.533 0.440 0.561

BERTMThier 0.650 0.468 0.638 0.476 0.353 0.474 0.559 0.388 0.541

E�ectiveness

BERT ST 0.596 0.509 0.612 0.548 0.405 0.542 0.639 0.370 0.555

BERTMTflat 0.663 0.549 0.671 0.599 0.408 0.570 0.522 0.389 0.514

BERTMThier 0.656 0.552 0.670 0.477 0.443 0.532 0.466 0.388 0.486

Reasonableness

BERT ST 0.696 0.512 0.665 0.544 0.222 0.418 0.556 0.484 0.609

BERTMTflat 0.672 0.499 0.644 0.587 0.273 0.473 0.550 0.489 0.610

BERTMThier 0.660 0.478 0.626 0.445 0.280 0.408 0.555 0.488 0.611

Table B.3: Pearson correlations of our model predictions with the annotation scores. We

compare single-task versus multi-task learning setups training on in-domain data only.
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B. EXPERIMENTAL DETAILS FOR SECTION 6.2

CQA forums Debate Forums Review Forums

Model Crowd Expert Mix Crowd Expert Mix Crowd Expert Mix

Overall

Best in-domain 0.681 0.535 0.667 0.607 0.362 0.537 0.619 0.478 0.605

BERT ST 0.693 0.530 0.676 0.571 0.401 0.545 0.650 0.409 0.596

BERTMTflat 0.697 0.535 0.681 0.574 0.425 0.562 0.678 0.443 0.633

BERTMThier 0.680 0.522 0.665 0.576 0.424 0.562 0.618 0.469 0.622

Cogency

Best in-domain 0.651 0.468 0.638 0.622 0.353 0.541 0.618 0.440 0.561

BERT ST 0.639 0.426 0.608 0.540 0.367 0.515 0.601 0.386 0.563

BERTMTflat 0.673 0.472 0.653 0.560 0.392 0.542 0.610 0.391 0.570

BERTMThier 0.662 0.455 0.638 0.573 0.397 0.552 0.577 0.465 0.599

E�ectiveness

Best in-domain 0.656 0.552 0.671 0.599 0.443 0.570 0.639 0.389 0.555

BERT ST 0.664 0.574 0.686 0.544 0.492 0.598 0.711 0.387 0.601

BERTMTflat 0.676 0.536 0.670 0.569 0.444 0.578 0.683 0.409 0.603

BERTMThier 0.657 0.523 0.653 0.573 0.462 0.592 0.644 0.396 0.576

Reasonableness

Best in-domain 0.696 0.512 0.665 0.587 0.280 0.473 0.556 0.489 0.611

BERT ST 0.658 0.495 0.635 0.550 0.320 0.487 0.616 0.437 0.603

BERTMTflat 0.691 0.503 0.657 0.538 0.328 0.486 0.667 0.443 0.631

BERTMThier 0.665 0.485 0.633 0.554 0.312 0.483 0.642 0.476 0.643

Table B.4: Pearson correlations with the annotation scores when training on the joint

training sets of all domains. We compare with the best result of the in-domain setting.
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Appendix C

Experimental Details for

Chapter 7

C.1 Reproducibility

We �rst provide details on where to obtain datasets and code used in this work.

Codebase MMT Vocab Params URL

HF Trans. – – – https://github.com/huggingface/transformers
mBERT 119K 125M https://huggingface.co/

bert-base-multilingual-cased
XLM-R 250K 125M https://huggingface.co/xlm-roberta-base

Table C.1: Links to codebases and pretrained models used in this work. We built our

models directly on top of the HuggingFace (HF) Transformers library.

Task Dataset URL

Natural Language Inference XNLI https://github.com/facebookresearch/XNLI
Question Answering XQuAD https://github.com/deepmind/xquad

Table C.2: Links to the datasets used in our work.

Code and Dependencies. Our code directly builds on top of the HuggingFace Trans-

formers framework (Wolf et al., 2019). We provide links to all code dependencies and to

the pretrained models we used in Table C.1.

Datasets. Table C.2 provides links to all datasets that we used in our study.
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C. EXPERIMENTAL DETAILS FOR CHAPTER 7

C.2 Full Per-Language Few-Shot Results

We show full per-language few-shot transfer results for mBERT and XLM-R in Tables

C.3 and C.4, respectively.

XNLI fr es el bg ru tr ar vi th zh hi sw ur de

0 75.05 74.71 68.68 69.50 69.34 62.18 65.53 70.88 54.69 69.26 61.50 49.84 59.38 72.34

10 75.09 73.62 67.04 69.35 69.80 61.86 65.56 69.26 55.30 70.89 61.92 51.79 59.28 71.63

50 74.60 73.91 66.44 68.37 69.05 60.99 64.63 70.29 51.17 71.32 60.08 49.95 58.83 71.43

100 73.85 73.50 65.67 68.47 70.24 60.13 64.93 69.59 51.68 71.46 60.01 48.96 58.78 71.60

500 75.36 74.97 68.04 71.03 70.59 63.21 66.71 72.38 58.12 72.81 64.06 52.26 61.15 73.09

1000 76.20 76.24 68.73 71.73 71.41 65.01 67.04 72.35 59.19 73.47 64.75 52.47 62.38 73.21

XQuAD zh vi tr th ru hi es el de ar

0 48.14 49.02 36.90 27.84 51.86 42.47 54.48 42.90 56.22 46.40

2 48.93 50.50 40.87 39.43 51.07 44.19 56.14 46.46 56.66 46.99

4 49.72 51.38 40.22 41.24 51.33 45.90 56.62 47.25 56.38 46.57

6 50.81 50.81 41.59 44.04 51.20 46.81 57.14 47.16 56.40 47.45

8 51.53 51.29 41.99 45.28 51.29 47.10 57.45 47.95 57.07 48.21

10 50.87 51.57 42.55 46.05 52.05 48.06 57.03 48.60 57.29 47.82

Table C.3: Detailed per-language few-shot language results for XNLI and XQuAD with

mBERT for di�erent number of target-language data instances k.

XNLI fr es el bg ru tr ar vi th zh hi sw ur de

0 78.16 78.44 75.39 77.68 75.25 72.99 71.28 74.59 72.00 73.21 70.02 64.03 66.93 76.45

10 77.96 78.67 75.77 78.11 76.32 73.31 71.75 75.17 73.18 74.53 69.23 64.09 68.32 77.32

50 78.69 79.81 76.13 77.57 76.16 73.96 71.20 75.01 71.74 74.47 69.84 61.98 68.06 77.60

100 79.37 78.87 76.28 77.58 77.42 73.31 71.40 74.83 71.94 74.10 70.54 61.55 67.63 77.84

200 79.29 79.84 77.01 78.94 77.54 74.81 73.22 76.52 73.91 76.37 71.54 64.00 68.98 78.42

500 79.65 79.95 77.34 79.09 77.78 74.08 73.6 77.22 74.32 77.03 71.75 65.37 68.85 78.71

1000 79.91 80.29 77.39 79.39 77.80 74.92 74.26 77.34 74.80 77.26 72.83 66.77 69.84 78.91

XQuAD zh vi tr th ru hi es el de ar

0 46.29 52.84 53.82 57.64 57.10 49.67 57.97 56.77 56.33 48.36

2 47.16 52.86 52.84 60.96 55.39 50.20 57.51 55.37 57.05 47.97

4 48.06 53.43 51.88 61.57 54.21 50.28 57.62 55.68 56.72 49.00

6 52.29 53.41 53.03 62.97 55.48 50.85 57.88 55.37 57.16 49.10

8 57.88 53.49 52.47 63.73 55.87 50.96 58.25 55.83 57.05 50.09

10 60.22 53.28 52.36 64.02 55.79 51.38 57.90 56.11 57.47 49.30

Table C.4: Detailed per-language few-shot language results for XNLI and XQuAD with

XLM-R for di�erent number of target-language data instances k.
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Appendix D

Experimental Details for

Chapter 8

D.1 Experimental Details for Section 8.1

For completeness, we report detailed results on bias e�ects for each of the six XWEAT

tests and bilingual word embedding spaces for all 21 language pairs. Tables D.1 to D.6

show bias e�ects for XWEAT tests T1, T2, and T6–T9.

XW1 en de es it hr ru tr

en – 1.28 1.63 1.62 1.59 1.49 1.32

de 1.55 – 1.28 1.45 1.41 1.03 1.29

es 1.45 1.25 – 1.28 1.21 1.31 1.09

it 1.18 1.10 1.28 – 1.29 0.61 1.09

hr 1.57 1.62 1.59 1.62 – 1.62 1.63

ru 1.41 1.12 1.20 1.38 1.46 – 1.29

tr 1.23 1.21 1.06 1.26 1.24 1.04 –

Table D.1: XWEAT T1 e�ect sizes for cross-lingual embedding spaces. Rows denote the

target set language, column the attribute set language.

XW2 en de es it hr ru tr

en – 1.35 1.51 1.48 1.60 1.56 1.15

de 1.37 – 1.25 1.19 1.31 1.47 1.16

es 1.55 1.50 – 1.53 1.50 1.57 1.22

it 1.54 1.37 1.28 – 1.47 1.39 1.27

hr 1.19 1.25 0.72 1.09 – 1.26 0.81

ru 1.46 1.26 1.23 1.08 1.13 – 0.71

tr 1.29 1.44 1.21 1.4 1.25 1.57 –

Table D.2: XWEAT T2 e�ect sizes for cross-lingual embedding spaces. Rows denote the

target set language, column the attribute set language.
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XW6 en de es it hr ru tr

en – 1.77 1.81 1.88 1.83 1.78 1.89

de 1.82 – 1.77 1.85 1.84 1.74 1.86

es 1.71 0.95 – 1.81 1.80 1.61 1.50

it 1.76 1.58 1.70 – 1.72 1.77 1.76

hr 1.68 1.65 1.66 1.43 – 1.74 1.73

ru 1.86 1.74 1.74 1.82 1.86 – 1.80

tr 1.90 1.66 1.77 1.82 1.77 1.55 –

Table D.3: XWEAT T6 e�ect sizes for cross-lingual embedding spaces. Rows denote the

target set language, column the attribute set language.

XW7 en de es it hr ru tr

en – 0.34* 1.36 1.33 0.26* 0.46* 0.49*

de 1.51 – 1.60 1.42 0.23* 1.33 -0.62*

es 1.63 0.24* – 1.26 0.60* 1.29 1.55

it 1.12 0.65* 1.01 – 0.51* -0.20* -1.08

hr 1.46 0.94 0.95 1.27 – 0.62* 0.00*

ru 1.19 -0.51* 1.30 1.09 0.81* – -0.79*

tr 1.22 0.07* 0.81* 1.30 -0.23* -0.48* –

Table D.4: XWEAT T7 e�ect sizes for cross-lingual embedding spaces. Rows denote the

target set language, column the attribute set language.

XW8 en de es it hr ru tr

en – 0.68* 1.49 1.01 -0.38* -0.06* 0.71*

de 1.17 – 1.43 1.10 -0.09* 1.06 1.16

es 1.13 -0.69* – 0.61* -0.19* 0.67* -0.18*

it 0.75* -0.76* 0.87 – -0.18* -0.52* 0.04*

hr 1.36 0.42* 0.92 0.76* – -0.16* 0.90

ru 1.09 -0.84* 0.96 0.99 0.19* – 1.00

tr 0.93 0.06* 1.49 1.21 -0.47* -0.43* –

Table D.5: XWEAT T8 e�ect sizes for cross-lingual embedding spaces. Rows denote the

target set language, column the attribute set language.

XW9 en de es it hr ru tr

en – 1.12 1.66 1.61 -0.59* 1.76 1.65

de 1.74 – 1.68 1.66 -1.39 1.46 1.57

es 1.64 1.48 – 1.79 -1.34 1.75 1.37

it 1.62 0.19* 1.47 – -1.63 1.87 1.74

hr 1.54 1.89 1.87 0.96* – 1.73 1.59

ru 1.82 1.54 1.64 1.72 -0.84* – 0.80*

tr 1.88 0.98* 1.88 1.70 -1.80 0.58* –

Table D.6: XWEAT T9 e�ect sizes for cross-lingual embedding spaces. Rows denote the

target set language, column the attribute set language.
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D.2 Experimental Details for Section 8.2

D.2.1 Full Experimental Results

We provide the complete experimental results of the cross-lingual debiasing transfer.

DE ES

Explicit Implicit SemQ Explicit Implicit SemQ

Model WEAT ECT BAT KM SVM SL WS WEAT ECT BAT KM SVM SL WS

W1 Distributional 1.36 41.7 59.9 98.9 75.7 40.7 68.0 1.47 61.8 48.1 100 57.5 – –

GBDD 0.42* 77.7 48.2 90.5 51 40.7 68.1 0.56 89.4 34.4 96.8 50.3 – –

BAM 1.39 50.6 54 95 94.3 39 64.5 1.12 62.9 42.2 97.7 95.3 – –

DN 0.42* 48.1 48.3 98.9 53 39.9 61.9 0.96 55.8 41.6 97.7 34.4 – –

GBDD ◦ BAM 0.61 81.1 44.3 93.2 88.4 39.1 64.7 0.56 76.4 38.2 98.4 77 – –

BAM ◦GBDD 0.75 74.3 52.4 90.8 50 40.8 64.9 0.48* 85.3 42.8 94.1 49.5 – –

GBDD ◦DN 0.30* 82.8 45.7 86.6 42.9 39.6 61.9 0.69 75.1 38 96.2 38.3 – –

W8 Distributional 0.05* 34.1 37.2 98.3 50 40.7 68 1.16 67.8 36.4 99.8 50 – –

GBDD 0.15* 85.3 30.5 55.4 50 40.7 67.7 0.41* 70.9 31.1 60 50 – –

BAM -0.97 41.5 33.6 97.4 100 40.7 65.8 0.11* 70.9 34.4 99 100 – –

DN -0.1* 67.1 37.4 97.4 50 36.2 62 0.76* 74 48.1 100 50 – –

GBDD ◦ BAM -0.12* 83.2 35.2 56.3 50 40.8 65.6 0.05* 83.7 33.1 58 50 – –

BAM ◦GBDD -0.09* 84.4 28.5 54.4 50 37.3 66.7 0.11* 85.9 28.1 56.6 50 – –

GBDD ◦DN 0.35* 73.4 35.7 57.6 50 35.9 61.1 0.78* 88.5 46.4 52.4 50 – –

Table D.7: Complete cross-lingual debiasing transfer results for transfer to German (de)

Spanish (es). Results obtained on the XWEAT T1 and T8 tests of respective languages.

IT RU

Explicit Implicit SemQ Explicit Implicit SemQ

Model WEAT ECT BAT KM SVM SL WS WEAT ECT BAT KM SVM SL WS

W1 Distributional 1.28 57.7 57.2 97 54.8 29.8 64.2 1.28 57.6 43.5 96.7 54.3 25.6 59.2

GBDD 0.02* 81.8 44 77.3 51.1 29.8 64 0.67 79.8 35.3 93.5 49.9 25.4 59

BAM 1.35 54 55.5 95.9 95.6 27.3 62.2 1.20 66 44.4 94.4 94.3 24.2 55.5

DN 0.53 62.8 51.9 99.8 55.5 25.7 58.5 0.44* 57.7 42.7 96.5 56.3 24.3 52.6

GBDD ◦ BAM 0.44* 70.9 51.4 87.7 86.2 27.3 62.2 0.6 80.7 40.1 93.5 89 24.2 55.4

BAM ◦GBDD 0.29* 76.5 48.6 73.4 50.2 28.2 62.4 0.65 80.2 37.7 92.8 49.6 25 56.3

GBDD ◦DN 0.2* 83.5 48 88.1 57.6 25.8 58.3 0.36* 75 40.7 91.1 52.4 24.1 52.5

W8 Distributional 0.10* 92.5 25.9 99.8 50 29.8 64.2 0.37* 49.9 32.1 62 50 25.6 59.2

GBDD -0.28* 86.4 25.9 56.1 50 29.8 63.4 0.73* 49.5 32 62.4 50 25.8 58.3

BAM -0.70* 57.4 23 99.6 100 29 61 -0.41* 44.6 25.9 74.4 100 25.1 56.8

DN -1.05 40.7 14.1 100 50 25.4 57.7 0.31* 46.8 35.5 77.9 50 20.7 56.9

GBDD ◦ BAM -0.62* 67 23.1 57.9 50 29 60 0.34* 72.7 30.8 56.8 50 24.8 55.8

BAM ◦GBDD -0.05* 82.3 28.9 58.9 50 27.1 60.2 0.59* 83.7 31 61.6 50 25.4 57.5

GBDD ◦DN -0.64* 51.2 18.7 60.1 50 25 56.7 0.77* 69.7 38.3 61.9 50 20.7 55.1

Table D.8: Complete cross-lingual debiasing transfer results for transfer to Italian (it) and

Russian (ru). Results obtained on the XWEAT T1 and T8 tests of respective languages.

D.2.2 Bias Speci�cations

We provide the full term sets of the bias speci�cations and their augmentations for di�er-

ent k employed in our study in Tables D.10 and D.11.
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HR TR

Explicit Implicit SemQ Explicit Implicit SemQ

Model WEAT ECT BAT KM SVM SL WS WEAT ECT BAT KM SVM SL WS

W1 Distributional 1.45 56.3 63.4 57 51.7 32.7 – 1.21 69.6 47.9 86.3 50.6 – –

GBDD 0.85 81.2 60.5 63.2 49.8 32.8 – 0.64 83.9 40.9 79.7 51.4 – –

BAM 1.35 50.8 63.8 59.5 90.5 31.2 – 0.89 64.8 39.1 84.3 90.6 – –

DN 0.86 74.8 67.2 87.4 35.8 28.4 – 0.78 73.3 36.9 88.1 58.3 – –

GBDD ◦ BAM 0.82 63.6 57.1 55.1 77.5 31.3 – 0.19* 80 34.5 72 73.2 – –

BAM ◦GBDD 0.71 86.8 63 68.7 50 30.9 – 0.76 82.3 53 75 51.1 – –

GBDD ◦DN 0.56* 85.9 65.5 61.4 44 28.5 – 0.63 81.5 33 74.7 54.9 – –

W8 Distributional 0.13* 53.2 39.4 98.6 50 32.7 – 1.72 39.6 64.5 99.3 50 – –

GBDD 0.54* 59.7 40.2 59.9 50 32.5 – 1.41 71.9 66.5 64.3 50 – –

BAM -0.01* 30.3 41.1 93.5 100 32 – 1.49 62.1 59.5 98.8 100 – –

DN 0.25* 81.7 52.8 99.9 50 25.3 – 1.54 44.6 65.5 100 50 – –

GBDD ◦ BAM 0.52* 73.8 47 60.8 50 31.7 – 0.99 85.3 56 56.9 50 – –

BAM ◦GBDD 0.68* 60.9 44.5 75.4 50 29.4 – 1.27 59.3 76 62.4 50 – –

GBDD ◦DN 0.67* 88.5 56.6 67.5 50 25.1 – 1.29 86.7 65 62.5 50 – –

Table D.9: Complete cross-lingual debiasing transfer results for Croatian (hr) and Turk-

ish (tr). Results obtained on the XWEAT T1 and T8 tests of respective languages.
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k=0

T1
aster clover hyacinth marigold poppy azalea crocus iris orchid rose blue-bell da�odil lilac pansy tulip buttercup daisy lily

peony violet carnation gladiola magnolia petunia zinnia

T2
ant caterpillar flea locust spider bedbug centipede fly maggot tarantula bee cockroach gnat mosquito termite beetle cricket

hornet moth wasp blackfly dragonfly horsefly roach weevil

A1
caress freedom health love peace cheer friend heaven loyal pleasure diamond gentle honest lucky rainbow diploma gift

honor miracle sunrise family happy laughter paradise vacation

A2
abuse crash filth murder sickness accident death grief poison stink assault disaster hatred pollute tragedy divorce jail

poverty ugly cancer kill rotten vomit agony prison

k=2

T1

glovers gladiolus nance crowfoot meadowsweet dianthus pinkish dolly poppies cyclamen tulips sapphire azaleas wisteria

camellia asters trefoil sissy olive penstemon candlewood prunella primula mauve opium buddleja taupe magenta veronica

hyacinths magnolias watercress minaj cowslip lilies tulipa orchis da�odils scarlet jasmine faggot marigolds orchids

T2

caterpillars gnats termites avenger ants bumblebee arachnid sticking cricketing flit tarantulas pyralidae harrier millipede

centipedes mosquitos vermin worm cockroaches locusts wasps insect snook larva scoot gracillariidae weevils grasshopper

undershot fathead whitefly louse batsman dragonflies

A1

donation liberty tranquility fortunate mild laugh diamonds holiday truthful endowment untried fitness colleague

credentials lineage gurgling honour faithful cheerfulness auspicious a�ection prism genuine esteem moonlight newfound

vacations gem eden peacefulness gladden wellness partner glad cuddle cherish joy liege diplomas phenomenon fondle

autonomy prodigy tickled enjoyment clement utopia tribe

A2

misuse collision stench destitution demise anguish annihilate estrangement illness incarcerate sorrow mistreat infection

destroy separation slaughter antipathy penitentiary smash regurgitate malady misery decease dirt calamity

impoverishment spew stinking toxin enmity imprison tainted massacre gaol sinister horrible defile contaminate reek

prostate catastrophe crud casualty mishap leukemia invasion misadventure onslaught

k=3

T1

faggot cornflower meadowsweet cowslip camellia cress weeknd orchidaceae watercress trefoil pinkish magnoliaceae

orchids lilies dianthus hyacinths primula willowherb da�odils mauve penstemon azaleas fleabane magenta wisteria jessie

licorice lilacs polly peonies magnolias candlewood amaranthus jasmine opium bluish poppies sapphire orchis sissy

buddleja tangerine olive clovers marigolds lavender dandelions tulipa taupe tulips poof crowfoot gladiolus prunella

dandelion veronica dolly asters cyclamen scarlet minaj nance

T2

projected avenger grasshopper vermin scamper worm cockroaches fathead harrier batsman weevils snook whitefly bug

noctuidae scorpion mayfly tarantulas louse roaches cricketing bumblebee gnats curculionidae arachnid mosquitoes wasps

dragonflies scoot termites larva millipede corsair flit gracillariidae locusts wicket hive insect caterpillars mosquitos

parasitoid undershot sticking centipedes ants pyralidae fleas

A1

fortunate colleague auspicious peacefulness untried jewel propitious cherish joy truthful stunner hug dearest partner

comrade honour gladden glad bliss delight encourage mild eden laugh moonlight genuine tickled joyful diamonds gem

gratuity sabbatical enjoyment lineage endowment liberty certificate newfound liege wellness gurgling credentials clement

utopia autonomy faithful tribe chuckle vacations prism holiday serenity sincere phenomenon diplomas homage rainbows

donation cuddle welfare tranquility a�ection allegiant independency tranquil prodigy esteem fondle cheerfulness ancestry

fitness untested

A2

severance reek imprison onslaught surly destroy massacre invasion complaint spew dirt casualty heartbreak slaying

stinking catastrophe penitentiary demise slaughter privation toxin illness impoverishment annihilate calamity

contaminate separation collision outrage grime stench disgorge mishap collide hate regurgitate crud misuse malady

contagion sinister infection smash attack leukemia tumour tainted anguish defile stinky ailment gaol decease extinguish

enmity sorrow misadventure expiration pollutes antipathy estrangement misery incarcerate horrible prostate destitution

mistreat

k=4

T1

scarlet bluebell cornflower delphinium fleabane amaranthus dianthus chromatic poof peonies orchidaceae orchis azaleas

mauve tangerine nance tulipa camellia taupe willowherb hyacinths minaj periwinkle helianthemum poppies lilies cress

magnolias macklemore dolly sissy sapphire orchids buddleja licorice jasmine faggot tulips lavender opium dandelion

weeknd wisteria cowslip prunella thyme alfalfa lilacs da�odils magnoliaceae pinkish watercress crowfoot veronica

primula carrie bluish cryptanthus trefoil asters jessie polly olive clovers meadowsweet fuchsia penstemon candlewood

marigolds dandelions cyclamen snowberry purplish sassafras gladiolus epiphyte magenta

T2

caterpillars wasps corsair whitefly insect bumblebee bowler noctuidae yellowjacket mayfly curculionidae cockroaches

dragonflies avenger mulligan pilotless roundworm undershot protruding grasshopper crambidae damselfly louse

projected cricketing vermin parasitoid tarantulas wicket sticking scorpion gnats hellcat mosquitoes sawfly hive arachnid

larva locusts centipedes snook batsman weevils dart flit bug fleas gracillariidae harrier burrowing scamper roaches

hickory mosquitos scoot tractor fathead worm bumblebees millipede pyralidae termites leafhopper ants

A1

independency rhombus daybreak endowment enliven vacationing cheerful tribe partner privilege truthful rainbows gem

gratification gratuity a�ection phenomenon delight untried daydream mirth fondle tranquility prism gladden enjoyment

esteem stunner certificate genuine holiday glad sabbatical encourage autonomy cherish baccalaureate favorable

credentials donation tranquil fitness wellness mild reverence hug benefaction gracious diplomas ancestry nirvana staunch

chuckle vacations cuddle marvel propitious liege gurgling serenity peacefulness honour kiss allegiant utopia welfare

sincere clement jewel eden fortunate faithful joyful prodigy moonlight homage diamonds tickled laugh dearest sidekick

colleague untested bliss cheerfulness lineage liberty parentage idolize calmness authentic comrade joy auspicious

newfound wellbeing

A2

stinky protest mistreat sorrow disease maltreatment taint remand horrible casualty contaminate smash misery misuse

annihilate imprison crud raid grime pollutes contagion barf infection hate decease slaughter destroy calamity sinister

breakup expiration enmity carnage hideous demise regurgitate stench tainted outrage stockade dying separation invasion

shatter antipathy happening extinguish privation spew tumour ailment complaint attack destitution exterminate rancid

massacre impoverishment slaying heartache misfortune incarcerate disgorge surly malady catastrophe onslaught collide

misadventure defile gaol prostate dirt penitentiary anguish dearth animosity muck heartbreak reek severance

contamination collision estrangement illness leukemia tumor mishap toxin stinking

Table D.10: Bias speci�cation of WEAT T1: sentiment attached to �owers (T1) vs. insects

(T2). Original terms from Caliskan et al. (2017) and augmented list for di�erent k.

216



D. EXPERIMENTAL DETAILS FOR CHAPTER 8

k=0

T1 science technology physics chemistry Einstein NASA experiment astronomy

T2 poetry art Shakespeare dance literature novel symphony drama

A1 brother father uncle grandfather son he his him

A2 sister mother aunt grandmother daughter she hers her

k=2

T1
automation radiochemistry test biophysics learning electrodynamics biochemistry astrophysics erudition astrometry

technologies experimentation

T2 orchestra artistry dramaturgy poesy philharmonic craft untried hop poem dancing dissertation treatise new dramatics

A1 beget buddy forefather man nephew own himself theirs boy helium crony cousin grandpa granddad herself

A2 niece girl parent grandma granny woman theirs sire auntie sibling herself jealously stepmother wife

k=3

T1
technologies biochemistry astrophysics engineering electrodynamics radiochemistry astronomer erudition education

automation biophysics chromodynamics research learning experimentation test astrometry biology

T2
groundbreaking craftsmanship dissertation new literatures dramatization philharmonic sinfonietta artistry untried

poems dramaturgy dancing dramatics poem poesy craft hop treatise orchestra waltz

A1
granddad granddaddy man helium grandpa own himself forefather themself kinsman theirs sire beget boy buddy herself

comrade who crony nephew grandson cousin

A2
sire beget stepmother aunty parent woman grandma herself own stepsister female girl jealously sibling auntie theirs

granny niece wife

k=4

T1

physicists test electrochemistry automation engineering biophysics education learning chromodynamics technologies

radiochemistry examination biology technological astronomer astrophysics experimentation biochemistry research lore

electrodynamics astrobiology astrometry erudition

T2

dramaturgy monograph untried dances poesy dissertation craftsmanship orchestra treatise skill waltz poem literatures

dramatization poems theatre dancing newfound hop artistry new verse craft philharmonic concerto groundbreaking

dramatics sinfonietta

A1
grandad theirs grandson buddy themself stepbrother forefather ironically crony granddaddy grandpa sidekick boy heir

granddad cousin who male man sire parent beget kinsman nephew herself own comrade himself helium

A2
auntie fiance theirs female stepmother grandma woman procreate stepsister widow aunty grandmothers mimi granny

sibling wife sire parent beget niece herself own girl jealously siblings

k=5

T1

experimentation lore research chromodynamics astrobiology technological technologies physicists education investigation

engineering examination radiochemistry biology astrophysics astrology chemistries learning biochemistry

electrochemistry biophysics astronomer test scholarship electrodynamics biotechnology erudition automation astrometry

T2

new untried literatures rhyme sinfonietta monograph philharmonic hop expertise craft dancing theater dances newfound

artistry dramatics untested writing orchestra dramatization poesy craftsmanship dramaturgy jitterbug theatre treatise

concerto poem orchestral verse poems waltz dissertation groundbreaking skill

A1

granddad crony its granddaddy male helium herself forefather heir granduncle own sidekick grandson comrade

grandfathers sire nephew man stepbrother grandad theirs cousin who hesitates themself parent grandpa kinsman

ironically himself boy buddy spawn beget

A2

female wife kinswoman girl herself stepsisters stepsister grandmothers own granny stepmother a�ections woman sire

spouse lady theirs fiance aunty procreate progenitor parent jealously sisters siblings niece widow mimi auntie matriarch

sibling grandma beget

Table D.11: Bias speci�cation of WEAT T8: female vs. male attributes attached to science

(T1) vs. art (T2). Original terms and augmented list for di�erent k.
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