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NOTES AND COMMENTS

AUTOREGRESSIVE SPECTRAL ESTIMATES UNDER IGNORED
CHANGES IN THE MEAN
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Periodogram-based estimators of the spectral density are known to exhibit distorted behavior in neighborhoods of the origin
in case of so-called low frequency contamination, mimicking long-range dependence. This note quantifies the behavior of the
estimator based on autoregressive approximations of order increasing with the sample size. Not surprisingly, the autoregressive
spectral estimator is not consistent at the origin under ignored changes in the mean, but turns out to be consistent at non-zero
frequencies. We furthermore show how a specific trimming of the fitted long autoregression can be used to restore consistency
in the vicinity of the origin.
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1. MOTIVATION

The standard estimator of the spectral density of a stochastic process (assumed to be weakly stationary) relies on
smoothing the periodogram. It is however known since at least Künsch (1986) that trends, when not accounted
for, change the behavior of the periodogram in neighborhoods of the origin, inducing a spurious pole and thus
mimicking long-range dependence. More recently, Diebold and Inoue (2001), Granger and Hyung (2004), Haldrup
and Nielsen (2007), or Davidson and Sibbertsen (2005) discuss random mean components with infrequent changes,
while Perron and Qu (2007, 2010) analyze the periodogram in a two-component model with random level shifts
and long memory. Iacone (2010) and Qu (2011) work with slowly varying trend models, while McCloskey and
Perron (2013) assume both random level shifts and trends. Relatedly, Qu and Perron (2007) discuss methods of
break detection. All findings concur that changes in the location of a process, and more generally low-frequency
contamination, decisively affect the behavior of the periodogram near the origin.

The spectral density of a process may however be estimated using a number of alternative methods, for instance
by plugging in (quasi-) maximum likelihood estimators into a parametric expression of the spectral density, or by
semi-parametric approaches. (Also, there are alternative ways of reducing the variability of the raw periodogram,
for instance Bartlett’s method of averaged periodograms, 1950.) The semi-parametric autoregressive spectral esti-
mator analyzed under linearity by Berk (1974) is computationally convenient as it only requires fitting a so-called
long autoregression (i.e., of order going to infinity with the sample size); see also the recent analysis of Wang and
Politis (2021) under weaker assumptions.

We discuss here the behavior of the autoregressive spectral estimator when the process of interest has
time-varying mean. Building on results of Demetrescu and Hassler (2016), we quantify the behavior of the
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long-autoregression based spectral density estimator. Under ignored changes in the mean, the autoregressive
spectral estimator is not consistent at the origin, yet consistency is given at non-zero frequencies. To deal with the
inconsistency at the origin, we suggest a trimming-like procedure consisting in leaving out some of the estimated
autoregressive coefficients when computing the autoregressive spectral estimate, and show that such trimming
leads to consistency at all frequencies. Finally, we use a Monte Carlo simulation to illustrate our theoretical results
with regard to a series with a break in the mean that is ignored in the estimation. While, in general, the autoregres-
sive spectral density estimator does not exhibit the known jagged behavior of the periodogram when shifts in the
mean are ignored, the trimmed version of the autoregressive spectral density estimator works more reliably also
in the vicinity of the origin.

2. SETUP AND RESULT

Let the series yt be given by the usual component model

yt = mt + xt, t = 1,… ,T ,

where xt, t ∈ ℤ, is zero-mean stationary, and the mean mt is time-varying. We make the following technical
assumptions about this data generating process.

Assumption 1. Let xt =
∑

j≥0 bj𝜀t−j be an invertible linear process with 1-summable coefficients,
∑

j≥0 j||bj
|| < ∞,

and zero-mean i.i.d. errors with finite fourth-order moments.

The process xt thus possesses an infinite-order representation given by xt =
∑

j≥1 ajxt−j + 𝜀t, where the AR
coefficients aj are known to be 1-summable (Brillinger, 1975, p. 79); we note that

∑
j≥1 aj < 1 and that the auto-

covariances of xt, 𝛾h = Cov
[
xt, xt−h

]
= E

[
xtxt−h

]
, are also 1-summable. The assumption imposes short-range

dependence and allows xt to be, for example, a usual ARMA process. The mean component is taken to be piecewise
slowly varying in the following sense.

Assumption 2. The mean mt is given by mt = mt,T = 𝜈(t∕T), where 𝜈 (⋅) is piecewise Lipschitz continuous on
[0, 1] such that the discontinuities are interior points of [0, 1]. That is, for any interval (a, b) ⊂ [0, 1] which does
not include a discontinuity of 𝜈 (⋅), we have ||𝜈 (𝜏2

)
−𝜈

(
𝜏1

) || ≤ C ||𝜏2 − 𝜏1
|| for some constant C and 𝜏1, 𝜏2 ∈ (a, b).

This assumption allows for local smooth trends as well as sudden breaks, both of which are known to mimic
persistence if ignored. In fact, mt may even be stochastic, and independence of xt is not required; the essential
assumption is the piecewise smooth variation of 𝜈 (⋅).

Consider now the long-autoregression based estimator of the spectral density f (𝜆) = 1

2𝜋

∑
h∈ℤ 𝛾he−ih𝜆 ignoring

the potentially time-varying nature of the mean function mt, given by

f̂ (𝜆) = �̂�2

2𝜋 |||1 −
∑hT

j=1 âj,hT
eij𝜆|||2 ,

where âj,hT
are the coefficients from a misspecified least-squares autoregression of order hT (hT → ∞ under suitable

rate restrictions) with intercept only, and �̂�2 = 1

T−hT

∑T
t=hT+1 û2

t,hT
is the usual residual variance estimator, where

ût,hT
= yt − ĉ −

hT∑
j=1

âj,hT
yt−j.
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Let 𝚺hT
=

{
𝛾i−j

}
i,j=1,…,hT

and 𝚪hT
=

(
𝛾1,… , 𝛾hT

)′
with

{
𝛾h

}
h∈ℤ the autocovariance sequence of xt, and note that

the eigenvalues Λj of 𝚺hT
are uniformly bounded and bounded away from zero (see the fundamental theorem of

Grenander and Szegö given, for instance, in Brockwell and Davis, 1991, Theorem 4.5.3).
Denote by āhT

the coefficients of the best hT -order autoregressive projection of xt, where āhT
= 𝚺−1

hT
𝚪hT

. Let

furthermore ahT
=
(
a1,… , ahT

)′
stack the true autoregressive coefficients, and note that ‖‖ahT

− āhT
‖‖ → 0. In fact,

it follows from Poskitt (2007, Corollary 1 and Theorem 5) that ‖‖ahT
− āhT

‖‖ = o
(
h−1

T

)
under our assumptions.

Demetrescu and Hassler (2016) study the properties of the estimated autoregressive coefficients âj,hT
under

ignored changes in the mean. They find that ignoring the mean changes induces a particular form of second-order
bias. To quantify this bias, let

ãhT
= āhT

+ �̄�2

1 + �̄�2
𝜾
′
hT
𝚺−1

hT
𝜾hT

Σ−1
hT
𝜾hT

(
1 − 𝜾

′
hT

āhT

)
,

where �̄�2 = ∫ 1
0 𝜈2 (s) ds −

(
∫ 1

0 𝜈 (s) ds
)2

and 𝜾 is an hT -vector of ones. Note that �̄�2 = 0 whenever there are no

changes in the mean, such that ãhT
= āhT

in this case. Then, Proposition 3 of Demetrescu and Hassler (2016)
indicates that, as T , hT → ∞ with hT = O (T𝜅) for 0 < 𝜅 < 1∕4 and �̄�2 ≠ 0,

‖‖âhT
− ãhT

‖‖ = op

(
h−1∕2

T

)
but ‖‖ãhT

− āhT
‖‖ = Θ

(
h−1∕2

T

)
,

where bT = Θ(cT ) signifies that bT = O(cT ) and cT = O(bT ) simultaneously. Therefore, the fitted coefficients are
closer in a sense to ãhT

than to āhT
, and this affects f̂ as follows.

Proposition 1. Under Assumptions 1 and 2, the following hold true for h−1
T + hT∕T𝜅 → 0 for some 𝜅 ∈(0, 1∕4)

and �̄�2 ≠ 0.

(i) For 𝜆 ∈ [𝜀, 𝜋), ∀ 𝜀 ∈ (0, 𝜋), f̂ (𝜆)
p
→ f (𝜆) uniformly in 𝜆.

(ii) For 𝜆T → 0 such that 𝜆T = o
(
h−1

T

)
, h−2

T f̂ (𝜆T )
p
→ �̄�4

2𝜋𝜔2
> 0 where 𝜔2 = 2𝜋f (0) is the long-run variance of xt.

A long autoregression therefore leads to the correct limit for frequencies bounded away from zero. This is how-
ever not the case in neighborhoods of the origin, where f̂ diverges, spuriously indicating long-range dependence.
While item (i) is, to the best of our knowledge, new, the finding in (ii) is not very surprising and reflects the
well-documented dominance of low-frequency contamination on the behavior of the periodogram in the vicinity
of the origin.

The divergence rate of f̂ in the vicinity of the origin depends on the variation �̄�2 of the mean process, on the
signal-to-noise ratio �̄�2∕𝜔2, and on the order hT of the autoregressive approximation. In contrast, the behavior
of the autoregressive spectral density estimator for a genuine unit root process is different at the origin, where it
diverges at rate T2 (this follows from the T-consistency of the estimator of the unit root irrespective of the short-run
dynamics). It is worth stressing that the finding in (ii) parallels the quantification of the divergence rate at the
origin for the periodogram, given uniformly for all non-zero Fourier frequencies under different forms of level
shifts; see for example, the discussion in McCloskey (2013), McCloskey and Perron (2013) and also Christensen
and Varneskov (2017, Lemma 1). However, the rate of divergence of the periodogram-based estimator at Fourier
frequencies close to zero depends rather on the Fourier frequency (see also Perron and Qu, 2007, 2010).

It is of course unfortunate that no consistency is given at the zero frequency. Iacone (2010) modifies the average
periodogram estimator by trimming the lowest frequencies, which, for suitable choices of the trimming and band-
width parameters, leads to consistent estimation of the spectrum at the zero frequency as well. Along the same lines,
McCloskey (2013) allows for low-frequency contamination when estimating long memory stochastic volatility
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models, McCloskey and Hill (2017) analyze frequency-domain maximum likelihood estimation of ARMA and
GARCH models in the presence of changes in the mean, and Christensen and Varneskov (2017) study fractional
cointegration in a similar setup.

We take this as a motivation to suggest a trimming procedure in the time domain: rather than using all hT

estimated coefficients to construct an estimate of the spectral density, we suggest to restrict ourselves to the first
𝓁T < hT coefficients, and therefore compute

f̂tr(𝜆) =
�̂�2

2𝜋 |||1 −
∑𝓁T

j=1 âj,hT
eij𝜆|||2 ,

where 𝓁T → ∞, but at a slower rate than hT . Since essentially less autoregressive estimates are considered, the
impact of the ignored change in the mean on the sum of 𝓁T = o(hT ) terms âj,hT

eij𝜆 will diminish, such that consistent
estimation at the zero frequency becomes possible:

Figure 1. Average behavior of the autoregressive spectral density estimator over 104 Monte Carlo replications. The data
are generated using yt = mt + xt, t = 1, 2,… ,T where mt = 1.5 + 1.5I{t>T∕2}, xt = 𝜌xt−1 + 𝜀t + 𝜃𝜀t−1 where 𝜌 = 0.5,

𝜃 ∈ {−0.25, 0, 0.25} and 𝜀t ∼ i.i.d. (0, 1). Here, f (𝜆) is the theoretical spectral density of xt, f (𝜆) is the Monte Carlo average
of the spectral density estimator of xt resulting from an AR(hT ) regression of yt with hT = ⌊12 (T∕100)1∕4⌋ while f tr,𝛼(𝜆) is its

trimmed version with 𝓁T = ⌊h𝛼T⌋
wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. (2021)
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Corollary 1. Under the assumptions of Proposition 1, the following hold true.

(i) For 𝜆 ∈ [𝜀, 𝜋), ∀ 𝜀 ∈ (0, 𝜋), f̂tr(𝜆)
p
→ f (𝜆) uniformly in 𝜆.

(ii) For 𝜆T → 0 such that 𝜆T = o
(
h−1

T

)
and as 𝓁−1

T + 𝓁T∕hT → 0, f̂tr(𝜆T )
p
→ f (0).

Finally, given the connection between autoregressive spectrum estimation, long-run variance estimation, and
unit root testing, we note that these results could have important implications for implementation of unit root tests,
which are known to be biased under structural breaks, for example, Perron (1989, 1990); see Haldrup et al. (2013)
for a review.

3. MONTE CARLO EVIDENCE

The results in Proposition 1 and Corollary 1 are now illustrated in a small Monte Carlo experiment. Figure 1
compares the Monte Carlo average of three autoregressive spectral density estimators. Here, we consider the
initial estimator f̂ together with two variants of the trimmed autoregressive spectral estimator f̂tr, given by

Figure 2. Average behavior of the autoregressive spectral density estimator over 104 Monte Carlo replications. The data
are generated using yt = mt + xt, t = 1, 2,… ,T where mt = 1.5 + 0.5I{t>T∕2}, xt = 𝜌xt−1 + 𝜀t + 𝜃𝜀t−1 where 𝜌 = 0.5,

𝜃 ∈ {−0.25, 0, 0.25} and 𝜀t ∼ i.i.d. (0, 1). See Figure 1 for further details

J. Time Ser. Anal. (2021) © 2021 The Authors. wileyonlinelibrary.com/journal/jtsa
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𝓁T = ⌊h0.5
T ⌋ and 𝓁T = ⌊h0.9

T ⌋. The data generating process is ARMA(1,1) with various parameter values and unity
error variance, and exhibits a break in the mean, where the mean shift is of magnitude 1.5. We note how f̂ tends
to increase on average at low frequencies as T increases. As the persistence of xt increases, the distortions due to
the break in the mean become relatively less relevant. As suggested by Corollary 1, Figure 1 further shows that,
upon trimming with 𝓁T = ⌊h0.5

T ⌋, f̂tr(𝜆) is close to recovering f (𝜆) on average not only for 𝜆 away from the origin
but also for 𝜆 close to the origin. The estimation improves, though slowly as could perhaps be expected, when T
increases.

Figure 2 repeats the exercise with a smaller mean shift of magnitude 0.5. Here, the impact of the break is smaller,
and already the initial autoregressive spectral estimator f̂ works reasonably well in the vicinity of the origin. The
trimmed estimators behave even better, where trimming with 𝓁T = ⌊h0.5

T ⌋ is again of advantage, albeit less so than
in the case of a larger break.

4. CONCLUDING REMARKS

We discuss how an unattended mean shift induces a spurious pole in the estimated spectral density using a
long-autoregression of order hT . We furthermore establish that this pole diverges at the rate of h2

T . At non-zero
frequencies, consistency is however given. Then, we propose a trimmed version of the spectral density estimator
which is consistent in the vicinity of the origin as well. Finally, a small Monte Carlo experiment suggests that the
trimmed estimator performs well.
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APPENDIX PROOFS

Throughout, let 𝜾 be an hT -vector of ones and e𝜆,hT
=

(
ei𝜆,… , eihT𝜆

)′
, while C denotes a generic constant whose

value may change from occurrence to occurrence. We first state a useful result.

Lemma A1. Under the assumptions of Proposition 1, it holds true that

(i) [(i)] sup𝜆∈[𝜀;𝜋)
||𝜾′𝚺−1

hT
e𝜆,hT

|| = O(1) uniformly on [𝜀;𝜋) for any 𝜀 ∈ (0;𝜋);
(ii) maxj=1,…,hT

||qj
|| is bounded, where qj is the jth element of Σ−1

hT
𝜾.

Proof of Lemma A1. (i) Define the hT × hT circulant matrix 𝚺(s)
hT

,

𝚺(s)
hT

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛾0 𝛾1 𝛾2 · · · 𝛾2 𝛾1

𝛾1 𝛾0 𝛾1 · · · 𝛾3 𝛾2

𝛾2 𝛾1 𝛾0 · · · 𝛾4 𝛾3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝛾2 𝛾3 𝛾4 · · · 𝛾0 𝛾1

𝛾1 𝛾2 𝛾3 · · · 𝛾1 𝛾0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

Consider the case when hT is odd. The eigenvector matrix, PhT
, of 𝚺(s)

hT
can then be written as (see chapter 4 of

Brockwell and Davis, 1991)

PhT
=
[

c′0 c′1 s′1 · · · c′[hT∕2] s′[hT∕2]
]′
,

where c0 =
1√
hT
𝜾
′
hT

, and, with 𝜔j =
2𝜋j

hT
for j = 1, 2,… , [hT∕2],

cj =
√

2√
hT

[
1, cos𝜔j, cos 2𝜔j,… , cos(hT − 1)𝜔j

]
,

sj =
√

2√
hT

[
0, sin𝜔j, sin 2𝜔j,… , sin(hT − 1)𝜔j

]
.
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Furthermore, with

DhT
= diag

{
f (0) , f

(
𝜔1

)
, f

(
𝜔1

)
,… , f

(
𝜔[hT∕2]

)
, f

(
𝜔[hT∕2]

)}
,

we have using Brockwell and Davis (1991, Proposition 4.5.2) that the components of RhT
= PhT

𝚺hT
P′

hT
−2𝜋DhT

converge to zero uniformly. Write then

𝚺hT
= 2𝜋P′

hT
DhT

PhT
+ P′

hT
RhT

PhT
.

From the proof of Proposition 4.5.2 in Brockwell and Davis (1991) we learn that the components of RhT

are bounded by C

hT

∑[hT∕2]
j=1 j|𝛾j| and C

∑∞
j=[hT∕2] |𝛾j| for some constant C > 0. Using the 1-summability of the

autocovariances, both of these terms turn out to be uniformly bounded by Ch−1
T . This in turn implies that the

components of PhT
RhT

P′
hT

are uniformly bounded by Ch−1
T . Since the eigenvalues of 𝚺hT

are bounded and
bounded away from zero, we have that

𝜾
′𝚺−1

hT
e𝜆,hT

= 1
2𝜋

𝜾
′P′

hT
D−1

hT
PhT

e𝜆,hT
+ 𝜾

′e𝜆,hT
O
(
h−1

T

)
.

For 𝜆 away from 0 and 𝜋 it hence holds that 𝜾′e𝜆,hT
O
(
h−1

T

)
= O (1); furthermore, since 𝜾

′cj = 0 and 𝜾
′sj =

√
2√

hT

we obtain

1
2𝜋

𝜾
′P′

hT
D−1

hT
PhT

e𝜆,hT
= 1

2𝜋f (0)
ei𝜆

(
1 − eihT𝜆

)
1 − ei𝜆

+ 2i
2𝜋hT

[hT∕2]∑
j=1

1

4f
(
𝜔j

) csc

(
𝜋j

hT

− 𝜆

2

)
csc

(
𝜋j

hT

+ 𝜆

2

)
×
(

sin

(
2𝜋(hT − 1)j

hT

)
sin((hT + 1)𝜆)

+ sin (𝜆)
(

sin

(
2𝜋j

hT

)
− 2 cos

(
2𝜋j

hT

))
+ sin(2𝜆)

)
+ 2

2𝜋hT

[hT∕2]∑
j=1

1

4f
(
𝜔j

) csc

(
𝜋j

hT

− 𝜆

2

)
csc

(
𝜋j

hT

+ 𝜆

2

)
×
(

cos(𝜆)
(

sin

(
2𝜋j

hT

)
− 2 cos

(
2𝜋j

hT

)
+ 2 cos(𝜆)

)
+ sin

(
2𝜋(hT − 1)j

hT

)
cos((hT + 1)𝜆)

)
.

Given the restriction on 𝜆, | csc
(

𝜋j

hT
− 𝜆

2

)
csc

(
𝜋j

hT
+ 𝜆

2

) | > 𝜖 > 0. Therefore 1

2𝜋
𝜾
′P′

hT
D−1

hT
PhT

e𝜆,hT
= O (1). The

result follows analogously for the case of even hT .

(ii) Making use of 𝚺hT
= 2𝜋P′

hT
DhT

PhT
+ P′

hT
RhT

PhT
and noting again that each element of RhT

is uniformly

bounded by Ch−1
T , we shall just analyze the behavior of the jth row sum of P′

hT
D−1

hT
PhT

, say q1,j. Since c′j𝜾 = 0
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and s′j𝜾 =
√

2√
hT

we obtain

|q1,j| = |||||||
1

hTf (0)
+ 2

hT

[hT∕2]∑
k=1

cos
(
(j − 1) 2𝜋k

hT

)
f
(
𝜔k

) |||||||
≤

1
hTf (0)

+ 2C
hT

[hT∕2]∑
k=1

|||||cos

(
(j − 1) 2𝜋k

hT

)|||||
= O (1)

uniformly in j since ∫ 1∕2
0 | cos (2𝜋 (j − 1) x) |dx ≤ 1

2
.

Proof of Proposition 1. Note first that �̂�2
p
→ 𝜎2 follows immediately by extending Proposition 2 in Demetrescu

and Hassler (2016) to AR infinity models; we omit the details to save space. Then, examine the denominator of
the fitted transfer function,

1 −
hT∑
j=1

âj,hT
eij𝜆 = 1 − ā′

hT
e𝜆,hT

−
(
âhT

− ãhT

)′
e𝜆,hT

−
(
ãhT

− āhT

)′
e𝜆,hT

.

Irrespective of 𝜆, we have ‖‖e𝜆,hT
‖‖ = h1∕2

T and therefore

|| (âhT
− ãhT

)′
e𝜆,hT

|| ≤ ‖‖âhT
− ãhT

‖‖‖‖e𝜆,hT
‖‖ = op(1).

(i) For any 𝜆 ∈ [𝜀, 𝜋), we may write

(
ãhT

− āhT

)′
e𝜆,hT

=
�̄�2

(
1 − 𝜾

′
hT

āhT

)
1 + �̄�2

𝜾
′
hT
𝚺−1

hT
𝜾hT

𝜾
′
hT
𝚺−1

hT
e𝜆,hT

,

where we know from Lemma A1(i) that 𝜾′𝚺−1
hT

e𝜆,hT
= O(1) uniformly for 𝜆 ∈ [𝜀, 𝜋) for any 𝜀 ∈ (0, 𝜋). The

expression
�̄�2

(
1−𝜾′ āhT

)
1+�̄�2

𝜾
′𝚺−1

hT
𝜾

does not depend on 𝜆, and is O
(
h−1

T

)
since ||𝜾′āhT

|| ≤ ||𝜾′ahT
|| + h

1∕2

T
‖‖ahT

− āhT
‖‖ = O(1),

while 𝜾
′𝚺−1

hT
𝜾 ≥ hT min1≤j≤hT

Λ−1
j with the eigenvalues Λj of 𝚺hT

being positive, leading to

|| (ãhT
− ahT

)′
e𝜆,hT

|| ≤ C
�̄�2||1 − 𝜾

′ahT
||

1 + �̄�2
𝜾
′𝚺−1

hT
𝜾

= o (1) .

Summing up, we have uniformly on 𝜆 ∈ [𝜀, 𝜋)

1 −
hT∑
j=1

âj,hT
eij𝜆 = 1 − ā′

hT
e𝜆,hT

+ op(1).
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The desired denominator of the transfer function is given by

1 −
∑
j≥0

aje
ij𝜆 = 1 − ā′

hT
e𝜆,hT

+
∑
j>hT

aje
ij𝜆 +

(
āhT

− ahT

)′
e𝜆,hT

.

Since the series
∑

aj of autoregressive coefficients is 1-summable,

sup
𝜆∈[0,1]

||||||
∑
j>hT

aje
ij𝜆

|||||| ≤ sup
𝜆∈[0,1],j∈ℤ

||eij𝜆||∑
j>hT

||aj
|| → 0,

and the desired result follows given that ‖‖ahT
− āhT

‖‖ = o
(

h−1∕2
T

)
and ‖‖e𝜆,hT

‖‖ = O
(

h1∕2
T

)
.

(ii) Moving on to 𝜆T → 0, it is more convenient to write

1 −
hT∑
j=1

âj,hT
eij𝜆T = 1 − ã′

hT
e𝜆T ,hT

−
(
âhT

− ãhT

)′
e𝜆T ,hT

and we only have to discuss the behavior of 1 − ã′
hT

e𝜆T ,hT
. To this end, write the exponentials as

eij𝜆T =
∞∑

k=0

1
k!

(
ij𝜆T

)k = 1 + ij𝜆T

( ∞∑
𝓁=0

1
(𝓁 + 1)!

(
ij𝜆T

)𝓁)
= 1 + ij𝜆T𝜉j𝜆

where

||𝜉j𝜆
|| ≤ ∞∑

𝓁=0

1
𝓁!

|||(ij𝜆T

)𝓁||| = exp
(||j𝜆T

||) = O(1),

uniformly in j ≤ hT for 𝜆T = o
(
h−1

T

)
. Then,

1 − ã′
hT

e𝜆T ,hT
= 1 − ã′

hT
𝜾 + i𝜆T

hT∑
j=1

j𝜉j𝜆ãj,hT
,

where ||||||
hT∑
j=1

j𝜉j𝜆ãj,hT

|||||| ≤
hT∑
j=1

j||aj
|| + ||||||

hT∑
j=1

j
(
ãj,hT

− aj

)||||||
≤ hT

hT∑
j=1

||aj
|| + ‖‖ (1,… , hT

)′ ‖‖‖‖ãhT
− ahT

‖‖
= O

(
hT

)
,

since aj are 1-summable and ‖‖ (1,… , hT

)′ ‖‖ = O
(

h3∕2
T

)
. Now

‖‖ãhT
− ahT

‖‖ ≤ ‖‖ãhT
− āhT

‖‖ + ‖‖āhT
− ahT

‖‖ = Op

(
h−1∕2

T

)
+ op

(
h−1∕2

T

)
.
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Therefore, i𝜆
∑hT

j=1 j𝜉j𝜆ãj,hT
= O

(
hT𝜆T

)
, such that, for 𝜆T = o

(
h−1

T

)
,

1 − ã′
hT

e𝜆T ,hT
= 1 − ã′

hT
𝜾 + o (1) .

Analyzing 1 − ã′
hT
𝜾hT

, we have that

1 − ã′
hT
𝜾 =

(
1 − 𝜾

′āhT

)(
1 − �̄�2

1 + �̄�2
𝜾
′𝚺−1

hT
𝜾

𝜾
′Σ−1

hT
𝜾

)

=
1 − 𝜾

′āhT

1 + �̄�2
𝜾
′𝚺−1

hT
𝜾

,

where 1 − 𝜾
′āhT

= 1 − 𝜾
′ahT

+ o(1) is bounded away from zero and 𝜾
′𝚺−1

hT
𝜾 ≥ hT min1≤j≤hT

Λ−1
j .

Therefore, we have for f̂ in a neighborhood of the origin

1
h2

T

f̂ (𝜆T )
p
→

𝜎2�̄�4

2𝜋
(
1 −

∑
j≥1 aj

)2

(
lim h−1

T 𝜾
′𝚺−1

hT
𝜾

)2
.

Given that lim h−1
T 𝜾

′𝚺−1
hT
𝜾 = 1

2𝜋f (0)
and f (0) = 𝜎2

2𝜋(1−∑j≥1 aj)2 , the limit of 1

h2
T

f̂ (𝜆) reads 𝜎2�̄�4

2𝜋
(

𝜎2

2𝜋f (0)

) ( 1

2𝜋f (0)

)2
= �̄�4

4𝜋2f (0)
as

required.

Proof of Corollary 1. (i) Write

1 −
𝓁T∑
j=1

âj,hT
eij𝜆 = 1 −

hT∑
j=1

âj,hT
eij𝜆 +

hT∑
j=𝓁T+1

âj,hT
eij𝜆,

such that it suffices to show that
∑hT

j=𝓁T+1 âj,hT
eij𝜆 = op(1). To this end, write

hT∑
j=𝓁T+1

âj,hT
eij𝜆 =

hT∑
j=𝓁T+1

aje
ij𝜆 +

hT∑
j=𝓁T+1

(
âj,hT

− ãj,hT

)
eij𝜆

+
hT∑

j=𝓁T+1

(
āj,hT

− aj

)
eij𝜆 +

hT∑
j=𝓁T+1

(
ãj,hT

− āj,hT

)
eij𝜆,

where the first summand on the r.h.s. vanishes by 1-summability of the true autoregressive coefficients, and
the absolute values of the second and the third are bounded by terms ‖‖âhT

− ãhT
‖‖‖‖e𝜆,hT

‖‖ and ‖‖āhT
−ahT

‖‖‖‖e𝜆,hT
‖‖

respectively, which are shown to vanish in the proof of Proposition 1(i). Then,

hT∑
j=𝓁T+1

(
ãj,hT

− āj,hT

)
eij𝜆 =

(
ãhT

− āhT

)′
e𝜆,hT

−
𝓁T∑
j=1

(
ãj,hT

− āj,hT

)
eij𝜆,
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where the first summand on the r.h.s. is shown to vanish in the proof of Proposition 1(i). To conclude, note that

ãj,hT
= āj,hT

+
�̄�2

(
1 − 𝜾

′āhT

)
1 + �̄�2

𝜾
′𝚺−1

hT
𝜾

qj,

where qj is the inner product of the jth row of Σ−1
hT

and 𝜾, and maxj=1,…,hT
||qj

|| is bounded by Lemma A1(ii).
Therefore, uniformly in j,

ãj,hT
− āj,hT

= O(h−1
T )

such that
∑𝓁T

j=1

(
ãj,hT

− āj,hT

)
eij𝜆 = O

(
𝓁T∕hT

)
= o(1) as required.

(ii) Write analogously to the proof of Proposition 1(ii)

1 −
𝓁T∑
j=1

âj,hT
eij𝜆T = 1 −

𝓁T∑
j=1

ãj,hT
eij𝜆T −

𝓁T∑
j=1

(
âj,hT

− ãj,hT

)
eij𝜆T ,

where ||||||
𝓁T∑
j=1

(
âj,hT

− ãj,hT

)
eij𝜆T

|||||| ≤
√√√√ 𝓁T∑

j=1

(
âj,hT

− ãj,hT

)2
𝓁T∑
j=1

|eij𝜆T |2 ≤ ‖â − ã‖ ‖‖e𝜆T ,hT
‖‖ = op(1).

Using the same approximation for the exponential, eij𝜆T = 1 + ij𝜆T𝜉j𝜆 with 𝜉j𝜆 = O(1), we obtain similarly

1 −
𝓁T∑
j=1

ãj,hT
eij𝜆T = 1 −

𝓁T∑
j=1

ãj,hT
+ o(1).

To conclude, recall from the proof of item (i) of this corollary that

ãj,hT
− āj,hT

= O(h−1
T ),

such that
∑𝓁T

j=1 ãj,hT
=
∑𝓁T

j=1 āj,hT
+ O

(
𝓁T∕hT

)
and

1 −
𝓁T∑
j=1

âj,hT
eij𝜆 = 1 −

𝓁T∑
j=1

āj,hT
+ op(1),

as required.

wileyonlinelibrary.com/journal/jtsa © 2021 The Authors. J. Time Ser. Anal. (2021)
Journal of Time Series Analysis published by John Wiley & Sons Ltd. DOI: 10.1111/jtsa.12612


