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This paper advocates programming high-performance code using partial evaluation. We present a clean-slate
programming system with a simple, annotation-based, online partial evaluator that operates on a CPS-style
intermediate representation. Our system exposes code generation for accelerators (vectorization/parallelization
for CPUs and GPUs) via compiler-known higher-order functions that can be subjected to partial evaluation.
This way, generic implementations can be instantiated with target-specific code at compile time.

In our experimental evaluation we present three extensive case studies from image processing, ray tracing,
and genome sequence alignment. We demonstrate that using partial evaluation, we obtain high-performance
implementations for CPUs and GPUs from one language and one code base in a generic way. The performance
of our codes is mostly within 10%, often closer to the performance of multi man-year, industry-grade, manually-
optimized expert codes that are considered to be among the top contenders in their fields.
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1 INTRODUCTION

Writing performance-critical software productively is still a challenging task because performance
usually conflicts genericity. Genericity makes programmers productive as it allows them to separate
their software into components that can be exchanged and reused independently from each other.
To achieve performance however, it is mandatory to instantiate the code with algorithmic variants
and parameters that stem from the application domain, and tailor the code towards the target
architecture. This requires pervasive changes to the code that destroy genericity.
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Fig. 1. The AnyDSL System

This instantiation process can in many cases be expressed as a partial evaluation (PE) of the
appropriate primitives. PE partitions the input of the program and its execution into two stages.
In the first stage, the program is partially evaluated on the static inputs (algorithmic variants,
parameter values, target-machine dependent code) to produce the residuum. In the second stage, the
residuum is fully evaluated on the actual, so-called dynamic inputs to produce the actual outputs.

PE has been extensively researched over the last decades (see Section 3 for a detailed discussion
of related work) and has successfully demonstrated its effectiveness. However, there is hardly a
programming system available that provides a built-in partial evaluator and is able to produce high-
performance code for modern architectures (including vectorization and GPU mapping). To quote
Augustsson [2010]: O, partial evaluator, where art thou? In practice, PE is usually “emulated” using
metaprogramming techniques (including deep embeddings of domain-specific languages (DSLs))
that have drawbacks over true PE that we discuss in more detail in Section 3.2.

It is hard to pinpoint why PE is not as widely adopted as its success in research suggests, but
among the reasons may be the following: Retrofitting an existing implementation of a mature
language like C++ with PE is overly complex and unpredictable. For example, the clang C++ compiler
has more than 250 different kinds of abstract syntax tree (AST) nodes that would have to be handled
by a partial evaluator. Performing PE further down on an intermediate representation (IR) like
LLVM [Lattner and Adve 2004] might be too unpredictable in the sense that it is not transparent to
the programmer if a feature of the source language is represented in the IR in such a way that it
can actually be partially evaluated. Some authors [e.g. Asai 2016] also claim that PE is hard to use
because it is not easy for the programmer to understand and control. However, it is not clear if this
relates to the difficulties we just discussed or to the inherent difficulties of metaprogramming in
general.

In this paper, we counter these problems by presenting a clean-slate design of a programming
system called AnyDSL' that is built for writing high-performance code using PE. Figure 1 overviews
AnyDSL’s components and its compilation flow. AnyDSL extends the continuation-passing style
(CPS)-based IR Thorin [Leif3a et al. 2015b] with a simple online partial evaluator. Thorin’s design is
minimalistic in the sense that its only constructs are continuations and so-called primops (primitive
operations, such as arithmetic operations, loads and stores, etc.). This reduces the variety of different
constructs the partial evaluator has to handle to a minimum. In fact, our partial evaluator reduces to
specializing continuations and performing standard optimizations (like constant folding, algebraic
simplifications, etc.). Unlike previous work [Leif’a et al. 2015a] on Thorin, our evaluator is entirely
driven by implicit and explicit annotations (in the style of Schism filters [Consel 1988]). This makes
PE predictable for the programmer because it eliminates the influence of the imprecision of static
analyses that guide other evaluators (see Section 3.1). AnyDSL’s front end Impala essentially is
syntactic sugar for Thorin, for example, providing direct-style functions in addition to continuations.

IThe name AnyDSL alludes to the first Futamura projection.
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Therefore, the “abstraction gap” between Impala and Thorin is rather narrow and the effects of PE
are more predictable for the programmer.

1.1 Contributions
In summary, this paper makes the following contributions:

e We present the design of the programming system AnyDSL that is built around a simple online
partial evaluator for the CPS IR Thorin. Because higher-order functions play a central role in
achieving genericity, our partial evaluator provides a default policy to specialize higher-order
functions with respect to their higher-order arguments. To provide more fine-grained control
over PE, our partial evaluator provides annotations in the form of filters (see Section 4).
Section 5 shows how specific code generation techniques such as vectorization or mapping to
GPUs are exposed as compiler-known higher-order functions. These functions can be treated
just as ordinary functions by the programmer as long as their higher-order arguments are
constant after PE (see Section 2 for an example). This is more flexible (and more elegant as
argued in Section 3.4) than pragma-based techniques like OpenMP or similar techniques that
rely on higher-order functions such as SYCL [Keryell et al. 2015].

Section 6 demonstrates that this simple design is sufficient to implement competitive high-

performance libraries in a generic way and discusses three non-trivial high-performance case

studies from different domains: image processing, ray tracing, and genome sequence alignment.

We show that all three applications:

— can be mapped to different target platforms (CPUs with vectorization and parallelization
as well as GPUs) by instantiating a target-independent, shared, generic implementation
base with target-specific code. Section 2 showcases this using a simplified version of the
image processing code.

— mostly perform within ~10% (with a ~20% outlier) and sometimes even outperform codes
that have been hand-optimized by experts over several years and are considered to be
among the top contenders in their respective field: Halide for image processing, Embree
(Intel) and OptiX (NVIDIA) for ray tracing, as well as SeqAn, Parasail and NVBIO for
sequence alignment.

- require only a little amount or even no PE annotations by the programmer. In fact, the
sequence alignment code has been written by a programmer that did not have a PE
background.

2 OVERVIEW

In this section, we give an overview of the writing style encouraged by our system for high-
performance code. Figure 2 shows the implementation of a simple image processing stencil code
(Section 6.1 discusses a more sophisticated implementation). The similarity to the introductory
example” of the DSL Halide [Ragan-Kelley et al. 2013] is intentional. The difference is that by using
PE, we can implement similar functionality® as a library without having to write a DSL compiler.

The code defines a 2D blur filter as a sequence of the 1D blur functions blur_x and blur_y
(Ix|e means Ax.e). Below its definition, three schedules for blur_y are constructed: seq, a simple
sequential one, opt, an optimized one that applies tiling, vectorization, and parallelization, as well
as gpu, a simple blocked schedule for GPUs. These schedules are just higher-order functions which
are passed to compute that executes a given loop schedule for a given operator op (blur_y in the
example). The for-expression is syntactic sugar for capturing a closure for the loop body and

Zsee http://halide-lang.org/
3We do not claim to be feature-compatible with Halide.
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let blur_x = |x, y| (img.get(x-1, y) + img.get(x, y) + img.get(x+1, y)) / 3;
let blur_y = |x, y| ( blur_x(x, y-1) + blur_x(x, y) + blur_x(x, y+1)) / 3
let seq = combine_xy(range, range);

let opt = tile(512, 32, vec(8), par(16));

let gpu = tile_cuda(32, 4);

compute (out_img_seq, seq, blur_y);
compute (out_img_opt, opt, blur_y);
compute (out_img_gpu, gpu, blur_y);

type BinOp = fn(i32, i32) -> i32;
type Loop1D = fn(i32, i32, fn(i32) -> ()) -> (O
type Loop2D = fn(i32, i32, i32, i32, fn(i32, i32) -> ) -> (;

fn compute(out: Img, loop: Loop2D, op: BinOp) -> BinOp {
for x, y in loop(@, @, img.width, img.height) {
out.set(x, y, op(x, y))
}
Ix, yl out.get(x, y)

fn combine_xy(loop_x: Loopl1D, loop_y: Loopl1D) -> Loop2D {
|xa, ya, xb, yb, f|
loop_y(ya, yb, |yl
loop_x(xa, xb, [x| f(x, y)))

fn tile(xs: 132, ys: 132, loop_x: Loopl1D, loop_y: Loopl1D) -> Loop2D {
|xa, ya, xb, yb, f|
loop_y (@, (yb-ya)/ys, |ly]|
range(lyxys+ya, (ly+1)*ys+ya, |[ry]|
range (0, (xb-xa)/xs, |rx|
loop_x(rxxxs+xa, (rx+1)*xs+xa, |1x| f(lx, ry)))))

fn tile_cuda(xs: i32, ys: i32) -> Loop2D {
|xa, ya, xb, yb, f| {
let (grid, block) = ((xb - xa, yb - ya, 1), (xs, ys, 1));
cuda(grid, block, || f(cuda_gid_x(), cuda_gid_y()))

fn @vec(vec_length: i32) -> Loopl1D { |a, b, f| vectorize(vec_length, a, b, f) }
fn @par (num_threads: i32) -> Loopl1D { |a, b, f| parallel(num_threads, a, b, f) }

Fig. 2. Blur in Impala mapped to different hardware

passing it to the in-expression (see Section 4.3). We call functions that are invokable like this
generators. The function combine_xy takes generators for the x- and y-direction and combines
them to a 2D generator; tile applies the generator for the y-direction, sets up a tiling loop, and
invokes the generator for the x-direction as innermost loop; tile_cuda defines the blocking for
data-parallel GPU execution using CUDA [Nickolls et al. 2008].

The optimized schedule opt uses two specific generators vec and par. These are both constructed
from two compiler-known generators vectorize and parallel. They do not have an implementa-
tion in Impala itself but are recognized by the compiler. The semantics of vectorize and parallel
is to execute body in a data-parallel (SPMD) way for the domain defined by the interval from a (in-
clusive) and b (exclusive). The generator vectorize triggers CPU vector code generation using
the region vectorizer (RV) [Moll and Hack 2018]; parallel spawns num_threads C++ threads or an
automatically balanced number of threads via Intel® Threading Building Blocks (TBB) [Reinders
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2007] if num_threads = 0. Similarly, the GPU schedule gpu utilizes the generator cuda, which trig-
gers GPU code generation in the compiler. It is important to understand that vectorize, parallel,
and cuda are no pragmas: They behave like any other function in the program. Most notably, they
can be captured in closures and passed around just like any other function.*

The code in Figure 2 extensively uses higher-order functions to enable genericity: Functions like
compute or combine_xy can be reused for different stencils or to build more complex pipelines
since compute returns again a BinOp. However, performance relies on PE of these higher-order
functions. Otherwise, compute’s parameter op remains which ends up having to call a closure for
every pixel! The partially evaluated code is competitive to the one Halide generates.

To produce this code, it is crucial that the programmer has a precise understanding and is in full
control of PE. Because partially evaluating higher-order functions with respect to their functions
is imperative to achieve performance, Impala automatically partially evaluates them based on a
comprehensive set of rules discussed in Section 4.3. For this reason, the code in Figure 2 does
hardly need explicit filters. Merely, vec and par must be forced to specialize such that the values
for vec_length and num_threads are propagated because these parameters are of zeroth order.

2.1 Relation to DSL Embedding

Halide is a deeply embedded DSL that uses C++ as host language. Halide language elements like tile
are in fact C++ methods that construct the AST of the embedded Halide program. Then, the Halide
compiler inspects this AST and generates high-performance code. In our setting, we do not need
a dedicated DSL compiler: The implementation of functions like tile, tile_cuda, combine_xy,
etc. constitute the code the Halide compiler would emit. For example, compute executes a pre-
constructed loop-schedule loop for a given operator op.

Put another way, PE of higher-order programs enables a specific kind of shallow DSL embed-
ding [Hudak 1998]. Following the tagless interpreter approach by Carette et al. [2007], the abstract
syntax of the embedded program is not represented as a tree of data but as a tree of closures.
Each closure constitutes the semantics of the particular language element. Partially evaluating
this closure tree corresponds to the first Futamura [1982] projection and leads to the same code
a syntax-directed compiler would have emitted. This enables the implementation of a DSL in a
library of higher-order functions. However, since our embedding approach is shallow, it is not
possible to perform a-posteriori program transformations of the embedded programs as permitted
by deep embedding approaches, such as Halide or Scala/LMS (see Section 3.3).

3 BACKGROUND AND RELATED WORK
3.1 Partial Evaluation

A common problem of PE is to decide which parts of the program should be specialized. In particular,
a partial evaluator which is too greedy might diverge even if the original program terminates for
all valid inputs—a phenomenon called induced divergence [Katz and Weise 1992]. The following
technique [Cook and Lammel 2011; Futamura 1999], which we also employ, avoids at least obvious
endless recursion: The evaluator keeps track of each specialized call site. If the evaluator now
needs to specialize a call again, it inserts a call to the already specialized function instead. However,
this technique will not prevent infinite expansion of count (@, d) if d is dynamic [Bondorf and
Jorgensen 1993]:

{fn count(i: 132, n: 1i32) -> i32 { if i < n { count(i+1, n) } else { i } }

4With the restriction that after PE, their higher-order arguments have to be constants.
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Due to the halting problem this dilemma can only be resolved via heuristics. For this reason, our
approach requires user annotations. This puts the programmer in total control over which parts of
the program should be specialized under which conditions.

The key idea is that the author of a function knows best when and how that function is to
be partially evaluated. Consider the power function in Figure 3d. The annotation @(e) delimits
PE filters. The filter ?n states that calls to pow shall be specialized to all arguments if n is a
constant. Now, when specializing a call pow(x', 4) the partial evaluator creates a specialization
by substituting all occurrences of x by x' and n by 4. To this end, the evaluator runs a series of
optimizations (propagating constants, arithmetic simplifications, folding branches, etc.). The result
will be let r = pow(x', 2); r * r which will again trigger specialization. The filter ensures
that this process terminates because pow’s termination only depends on n. Filters originate from
Schism [Consel 1988, 1993b] and have been used in other partial evaluators as well [Asai 2001].

One typically distinguishes between two flavors of PE: online and offline. Online PE [Cook and
Lammel 2011; Ruf 1993; Shali and Cook 2011] specializes a program on the fly and without prior
analysis. Offline PE on the other hand, first runs a so-called binding-time analysis (BTA) [Birkedal
and Welinder 1995; Bulyonkov 1993; Consel 1993a; Gengler and Rytz 1992; Jones 1995; Jones et al.
1989; Jorring and Scherlis 1986; Rytz and Gengler 1992] that identifies which parts of the program
can be static and which ones must remain dynamic. Then, the actual specializer runs. Filters can
either be used in an online evaluator (as we do) or in an offline one and instantiated during the
BTA.

As already discussed in Section 2.1, specializing an interpreter for its input, will result in a resi-
duum that is similar to the code a syntax-directed compiler would have emitted (the first Futamura
[1982] projection). If you specialize the partial evaluator for the partial evaluator, you will receive a
compiler generator (cogen). This is a program that converts an interpreter to an equivalent compiler
(the third Futamura [1982] projection); cogen’s output—the generating extension—is a program that
renders for any given static input a specialized program that is only parametric in the dynamic
inputs. In order to actually generate cogen, the specializer must be self-applicable—a requirement
which is hard to realize in practice [Gliick 2012]. However, when doing offline PE, it is not a big
deal to directly implement cogen [Birkedal and Welinder 1994]. This approach has the advantage
that the output language can be different from its input language while cogen itself may even be
written in a third language. Moreover, once the generating extension has been produced, it usually
performs much better than running an online evaluator. Nonetheless, the applications presented in
Section 6 were all compiled (including partially evaluated) within a few dozens of seconds.

Because of the inherent imprecision of static analyses, approaches that rely on BTA might
leave too much of the code dynamic. For example, an online evaluator like ours folds (23, x) to
use (42)—potentially enabling further PE of use:

fn f(@s: i32, d: i32) {
let x = if s == 23 { 42 } else { d };
use (x)

}

A straightforward BTA only knows that s is static but not what value and therefore merely infers
that x is dynamic. Furthermore, when dealing with higher-order programs as we do, a BTA requires
a control-flow analysis (CFA) [Midtgaard 2012; Nielson and Nielson 1992; Ruf and Weise 1992;
Shivers 1991] which might introduce even more imprecision. In addition, a CFA can be quite costly
depending on the desired precision. BTAs for imperative programs [Andersen 1994; Das et al. 1995;
Grant et al. 2000] have to deal with control-flow [Hornof and Noyé 2000] and pointers [Andersen
1993]. In addition, BTAs for object-oriented languages have to deal with dynamic dispatch and
class hierarchies [Schultz et al. 2003].
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let rec pow x n = function pow(x, n)
if n = @ then if n == @ then
L <1>. return 1
else if even n then elseif n % 2 == @ then
let r = pow x (n/2) local r=pow(x, n/2)
inr *r return “Lrl*[r]
else else
.<.~vx % .~(pow x (n-=1))>. return “[xJ]*[pow(x,n-1)1]
end
end
(a) MetaOCaml (b) Terra
def pow(x: Rep[Int], n: Int): Rep[Intl= { fn [@(?n) pow(x: i32, n: i32) -> i32 {
if (n == 0) { if n == 0 {
1 1
} else if (n % 2 == @) { } else if n % 2 == 0 {
val r = pow(x, n/2); let r = pow(x, n/2);
P &8 7 r *r
} else { } else {
X * pow(x, n-1) X * pow(x, n-1)
} 3
} 3
(c) Scala/LMS (d) Impala

Fig. 3. Specializing the power function to its exponent with metaprogramming and partial evaluation [adapted
from Leif}a et al. 2015a, Figure 3].

In order to fight induced divergence, a number of techniques have been suggested. Similix [Jor-
gensen 1998] and Schism [Consel 1993b] will not partially evaluate loops with a dynamic exit
condition. Some authors [e.g. Jones and Glenstrup 2002; Jones et al. 1993] suggest applying a
termination analysis to conservatively ensure termination of PE. Leifa et al. [2015a] propose to
partially evaluate everything until the evaluator hits the first dynamic conditional and resume
evaluation at the post-dominator. If further evaluation under this conditional is desired, a user
annotation can restart evaluation there. This approach does provably not induce divergence, unless
a user annotates a recursive call.

While developing the benchmarks for this paper, one major insight on our previous work was
that—especially in larger codes—the effects of its termination heuristics were difficult to assess
for the programmer. Ultimately we realized that the fact that it guaranteed termination was less
important than the ability of the programmer to precisely anticipate what parts of the program are
partially evaluated. This gave rise to the filter-based PE approach described in this paper which
gives us more fine-grained control over the specialization process and turned out to scale to much
more complex applications.

In addition, PE has been used to optimistically optimize dynamic languages like JavaScript®,
Python, R, or Ruby [Fumero et al. 2017; Leopoldseder et al. 2018; Stadler et al. 2016; Wiirthinger
et al. 2017, 2013]. The implementation of the language consists of an interpreter that is aware of the
partial evaluator. This means that the programmer must annotate the interpreter in several ways.
For example: fields that are candidates for specialization, functions which should not be entered by
the evaluator, or the AST data structure such that the evaluator understands which fields are the
children of an AST node. After starting the interpreter for a given program, the runtime system
might detect after running several iterations of a “hot” loop that the iteration variable was always
an integer. Assumptions like these will be specialized by PE. The resulting code is then JIT-compiled
to machine code in order to speed up the execution of such “hot code regions”. Runtime checks

Ssee also https://prepack.io/
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are inserted to verify that the assumptions made still hold as the compiled version runs. If one of
these assumptions is no longer correct, the code must be deoptimized. This means that control is
transferred back to the interpreter.

3.2 Metaprogramming

There are various metaprogramming techniques varying from preprocessors, templates as in C+
or D, program generators® [e.g. Pronk et al. 2013; Rathgeber et al. 2017], JIT-compilation tech-
niques like PACXX [Haidl et al. 2016], quotation-based approaches like MetaML [Taha and Sheard
2000], MetaOCaml [Kiselyov 2014] (see Figure 3a), Terra [DeVito et al. 2013] (see Figure 3b),
or quasiquotation in Lisp [Bawden 1999], hygienic macro systems [Kohlbecker et al. 1986] like
Racket [Tobin-Hochstadt et al. 2011], to deep DSL embedding (see below). MetaML and MetaOCaml
stand out because unlike most other metaprogramming techniques their type systems ensure
soundness of the multi-stage execution.

One major difference of PE versus metaprogramming is that in metaprogramming, the residuum
shows up as a data structure in the metaprogram. For example, in MetaML the expression <42>
has type <int, 'a>('ais a free type variable as in ML). While this has the advantage that the
metaprogram can potentially analyze, rewrite, and optimize the residuum, it often gets in the way
of the programmer. Depending on what technique is being used, the programmer has to deal with
different languages in the meta and residual part (e.g. C++ templates vs. C++ core) or syntactically
intrusive quotation techniques that impede polyvariance, that is, make it hard to seamlessly move
and reuse code in the meta and residual part (consider Figure 3a and 3b). PE, however, typically
delivers polyvariance because PE does not—except for annotations like the ones presented in this
paper—materialize in the syntax (and semantics). If set up properly, partial evaluation followed by
full evaluation is equal to full evaluation alone. Hence, ignoring PE annotations seamlessly “moves”
the evaluation of a piece of code into the residual stage.

In a sense, metaprogramming means to manually implement the generating extension [Veld-
huizen 1998]. In fact, Asai et. al. [Asai 2016; Asai and Kameyama 2016] present a BTA to automati-
cally stage-annotate a MetaOCaml program.

3.3 DSL Embedding

Hudak [1998] was one of the first to embed a DSL into a host language in order to inherit much of
its infrastructure. Carette et al. [2007] suggested embedding a typed language by ordinary functions
instead of object terms. Based on this work, Hofer et al. [2008] have described a polymorphic em-
bedding that supports multiple interpretations including an optimizer as yet another interpretation.
Rompf and Odersky [2010] extend this work further to lightweight modular staging (LMS) (see
Figure 3c). LMS essentially uses Scala’s type system to express the binding time and therefore
requires the programmer to wrap all values that should appear in the residuum using the type
constructor Rep[T]. Overloading Scala’s language constructs gives the programmer the impression
to actually use a DSL [Chafi et al. 2010; DeVito et al. 2011; Sujeeth et al. 2011]. The residuum
can be in any desired language or a domain-specific program representation like Delite [Brown
et al. 2011]. Scala’s type inference minimizes the burden to stage-annotate many types via Rep[T]
vs. just T. This makes the type inference a local BTA [see also Palsberg and Schwartzbach 1994].
With LMS however, we would have to implement all boilerplate code to generate the residuum
for any data type not directly supported by LMS like Rep[BVH]—a type we use in the ray traversal.

®program in language A produces program text of language B
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Furthermore, polyvariance can only be achieved by introducing type variables for each desired
staging combination [Ofenbeck et al. 2017]:’
‘def sin_poly[R[_]: IRepl(l: R[Doublel]): R[Double] ‘

LMS is similar to Halide or Intel® Array Building Blocks (ArBB) [Newburn et al. 2011]. The DSL
embedding is achieved via a deep embedding (see Section 2.1). As with metaprogramming, deep
embeddings have the advantage that the programmer can manipulate the embedded program. But
deep embeddings also have their downsides [see Jovanovic et al. 2014, §1].

Shallowly embedded DSLs like HIPA® [Membarth et al. 2016] or SYCL, on the other hand, do
not have the cited downsides but usually rely on a modified compiler of the host language to
achieve performance. In this setting, the modified compiler recognizes domain-specific patterns and
manipulates the program representation. An alternative is to use PE in order to remove the overhead
of the shallow embedding [Hudak 1998; Leif3a et al. 2015a]. This way, the DSL implementer does
not have to modify a compiler. For this reason, our work follows this line of research.

3.4 Accelerator Support

Traditionally, programmers have to use dedicated programming environments like CUDA or
OpenCL [Stone et al. 2010] to write kernels for accelerators. As a result, it is difficult to share code
between the kernel language and the language of the host program. Furthermore, using two (or
more) different languages decreases programmer productivity as each language has its own syntax
and semantics.

There exist several technologies to tackle this issue. OpenACC?® provides pragma-based an-
notations similar to OpenMP’. These pragmas allow the programmer to mark a code region for
execution on the GPU. SYCL and PACXX [Haidl and Gorlatch 2014; Haidl et al. 2017] on the other,
are shallowly embedded DSLs for C++. Similar to Impala’s built-in higher-order functions, SYCL and
PACXX provide higher-order functions whose lambda expression arguments are offloaded onto an
accelerator.

All these approaches have in common that it is difficult to abstract from this offloading. Pragmas
are not first-class citizens of the language and cannot be passed to functions. Both SYCL and PACXX
require that the function is a lambda expression (a function literal); the programmer cannot pass
an arbitrary closure. However, AnyDSL only requires that the passed function is a literal after PE.
This will be the case due to the implicit filter annotations described in Section 4.3. So it is fine to
abstract from these built-ins as demonstrated in Section 2.

3.4.1 Algorithmic Skeletons. Algorithmic skeletons or parallel patterns represent algorithmic con-
cepts such as recursive divide & conquer, map, or reduce that appear in many algorithms and can
be implemented in a parallel way independent of the concrete algorithm [Cole 1988]. There exist
many frameworks that embrace parallel patterns like FastFlow [Aldinucci et al. 2011], Thrust [Bell
and Hoberock 2011], or SkelCL [Steuwer et al. 2011]. Some compiler IRs like Delite (see above) or
Lift [Hagedorn et al. 2018; Steuwer et al. 2017] make extensive use of parallel patterns to simplify
code analyses and transformations. Primitives like parallel or vectorize that AnyDSL provides,
can be seen as hardware-specific skeletons that expose certain features of the hardware to the
programmer. More high-level skeletons such as a pipeline or divide & conquer can be implemented
as a library using AnyDSL. Furthermore, by “carving out” the hardware-dependent part via higher-
order functions, the programmer can map the same code to different hardware. Along these lines,

7In this context polyvariance is also called stage polymorhphism. This programming technique even allows several levels of
interpreters to be collapsed like a meta-circular Lisp interpreter [Amin and Rompf 2018].

8see https://www.openacc.org/

9see https://www.openmp.org/
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the function tile in Section 2 can be considered as a parallel skeleton that provides tiled iteration
over a 2D regular grid.

4 PARTIAL EVALUATION FILTERS
4.1 Basics

As we will see in Section 4.4 it is crucial to not always specialize all arguments if the callee
is recursive. In addition, only specializing performance-critical arguments and retaining other
parameters helps the programmer to prevent size explosion of the specialized code. Consequently,
each parameter p; of a function can be annotated with an expression e; which controls if the
corresponding parameter should be specialized to its associated argument at a given call site:

[fn f@Ce) pi: T1,

, @@n) Pn: Tw) -> R (B} |

An expression e; is an ordinary expression that may reference all parameters. Eliding the annotation
@(e;) means @(false). Additionally, the expression ?e yields true if e is a constant whereas $e
yields e but is never considered constant by ?$e. The partial evaluator evaluates at each call site
f(ai, ..., an) each argument’s corresponding expression e; to s; by substituting each p; with a;.
In doing so, the evaluator folds constants and applies various arithmetic simplifications via standard
term rewriting like a + 0 = a or a == a = true. If any s, yields true'’, the partial evaluator will
create a specialization f' of f where each p; is specialized to a; if s; is true. Again, the evaluator
will fold constants, apply arithmetic simplifications, and also fold branches during specialization.
Afterwards, the evaluator will rewrite the call such that it calls ' while eliding all a; which have
been specialized into f'. For example,

fn f(@(?a) a: i32, @(?2a) b: i32, @(b<5) c: i32) -> i32 { atb+c }
let (x, y) = ;

f(3, x, 5) + f(x, 3, x+y)

yields

let (x, y) = ;

fn f3x_(@(b<5) c: i32) -> i32 { 3+xtc }

fn f__xy(@(?a) a: i32, [@(?a) b: i32) -> i32 { a+b+(x+y) }
f3x_(5) + f__xy(x, 3)

In contrast to C++ templates and most other metaprogramming techniques, specialization is per-
formed in a polyvariant way. This means that each call site decides on its own which parameters
are specialized and which ones remain dynamic. Moreover, note that specialization isn’t limited to
constant expressions.

Often, functions that are only used and called once appear in the residuum, for example f3x_
or f__xy, if no other part of the program asked for them. However, the partial evaluator will
completely inline such calls (see Section 4.6). This means that all remaining arguments will be
specialized into that function while the call will be substituted with the resulting body.

As a shortcut, the programmer can put a condition in front of the signature. This condition is
combined via logical OR with every e;. Therefore, the following two functions are equivalent:

fn @C(e) f(@(Ce1) py: T1, ---

, @en) Pn: Tn) -> R {
fn f(@Ce1 | €) pr: T1, R

i
, @len | ) pPp: Tn) —> B

B
{B13

Furthermore, the programmer can simply write @ as syntactic sugar for @(true). Hence, the
following function will aways be specialized to its return continuation (see Section 4.2):

[fn @get_42() -> i32 { 42 } [

Finally, the programmer may force inlining of a call and ignore any filters of the callee: @@f (args).
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fn f(a: 132, b: i32) -> () { fn f(a: i32, b: i32, return: fn() -> !) -> ! {
for i in range(a, b) { fn body(i: i32, continue: fn() -> !) -> | {
if i == 23 { if i == 23 {
continue () continue ()
} else if i == 42 { } else if i == 42 {
break () break ()
} else if i == 97 { } else if i == 97 {
return() return()
3 3
g(continue); g(continue, G)
print (i) fn G() -> ! { print(i, P) 3}
3 fn P() -> ! { continue() }
3 }
fn break() -> ! { return() }
range(a, b, body, break)
}

(a) Direct-style Impala program (b) Desugared Impala program in CPS

Fig. 4. Direct style and CPS in Impala

4.2 Continuations

To allow library designers to provide non-trivial control-flow patterns, Impala embraces CPS. In
fact, Impala represents all control flow (including functions) as continuations; direct-style functions
and function calls are only syntactic sugar for their CPS counterparts. Figure 4 showcases Impala’s
desugared CPS representation of a for-expression that uses unstructured control flow. Note that
break, continue, and return are not actually keywords. Impala will usually name the return
parameter of a function “return” if the programmer uses direct style. However, when using a
for-expression, Impala names the return parameter of the passed continuation “continue”. This is
more appropriate for the semantic effect when calling this continuation. Additionally, continue will
not shadow the implicitly declared return parameter of the contained function. Similarly, break
denotes the return continuation that is passed to range when using the for-expression. This makes
break, continue, and return first-class citizens, which can be captured, invoked, or even passed
to other functions. This allows the library designer to build her own sophisticated generators while
still supporting (potentially multi-leveled) break and continue. However, application programmers
will hardly need explicit continuations beyond familiar break, continue, and return calls.

4.3 Automatic Annotations

In the case studies (Section 2 and Section 6) higher-order functions are a powerful tool to parame-
terize for algorithmic variants. Yet, one does not want to pay for costly closure allocation at runtime.
Instead of manually annotating all higher-order parameters with @, Impala automatically annotates
every higher-order parameter unless

(1) the parameter is of first-order,
(2) its continuation does not have other higher-order parameters (so it is a second-order contin-
uation), and
(3) its continuation does not have free variables (other than more continuations without free
variables).
This strategy transforms the program to control-flow form [Leif3a et al. 2015b]: All residual con-
tinuations will either be global functions (i.e. continuations with a return continuation), or basic
blocks (i.e. first-order continuations) that are nested inside them. This means that the resulting
residuum will not need costly closures at runtime. See the discussion of range in the next section
for an example.

ONote that s; may also be false or some symbolic expression like x < 5.
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fnl@(?a & ?b & ?s)unroll_step(a: i32, @b: i32, @s: i32, f: fn(i32)->0)) -> O {
if a < b { @@f(a); unroll_step(a+s, b, s, f) }

fn@(?a & ?b & ?s)unroll_step(a: i32, @b: i32, @s: i32, f: fn(i32)->(), return: fn()->!) ->
if a < b { @f(a); unroll_step(ats, b, s, f, return) } else { return() }

¥

fn @Qunroll (a: 132, b: i32, f: fn(i32)->()) -> () { unroll_step( a, b, 1, f) }
fn @range_step(a: 132, b: i32, s: i32, f: fn(i32)->()) -> () { unroll_step($a, b, s, f) }
fn [@range (a: 132, b: i32, f: fn(i32)->()) -> () { range_step( a, b, 1, f) }

Fig. 5. unroll, unroll_step, range, and range_step in Impala

4.4 Recursion and Static Arguments

When specializing f, all functions nested inside of its body are rewritten as well and all references
to these are updated accordingly. Free variables and hence functions not defined within f stay as
they are. For instance, in the following code both v and h appear free in f:

fn f(@a: i32, b: i32) -> i32 {
fn g(i: i32) -> i32 { a + i }
g(atb+v) + h(23)

}

fx, y)

Thus, PE yields a different g nested inside of fx_ and not f:

fn fx_(b: i32) -> i32 {
fn g(i: i32) -> i32 { x + i }
g(xtb+v) + h(23)

}

fx_(y)

But what happens for recursive calls? In general, when specializing f to f' all recursive uses are
considered free and thus are not rewritten. However, under certain conditions the partial evaluator
can rewrite a recursive call to call the new f' instead.

Consider the generator unroll in Figure 5 that iterates from a (inclusive) to b (exclusive) and
executes f each time. The second variant, which is just a desugared version of the first one, makes
the return continuation explicit. Note that the end b and the step s are explicitly annotated, whereas
the body f and return are implicitly annotated with @ (see Section 4.3). But these parameters are
just passed as corresponding arguments to the recursive call—called static arguments [de Santos
1995]. In particular, return is a static argument because the direct-style version is tail-recursive. If
in a recursive call, all specialized arguments are static, the partial evaluator will rewrite this call to
recursively call the specialization instead. Thus, the following code unfolds as follows (using r as
the return continuation):

range(o, 4, g, r)
--> range_step(0, 4, 1, g, r)
--> unroll_step($0, 4, 1, g, r)

Since $0 prevents the evaluator from inlining the whole call site according to unroll_step’s filter,
only b, s, f, and return are specialized to 4, 1, g, and r:

fn l@(?2a) unroll_step'(a i32) -> () {
if a<4 { l@@g(a); unroll_step'(a+1) } else { r() }

3}
unroll_step '(0)

Note that the recursive call within the specialization calls again unroll_step' because all special-
ized parameters were static arguments in that call:

unroll_step(a+1, 4, 1, g, return) = unroll_step'(a+1)
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If g is a constant, the evaluator will also inline g. The resulting residuum is then akin to a counting

loop in static single assignment (SSA) form [Kelsey 1995] because unroll_step' is of first order

and therefore a basic block; the parameter a acts as ¢-function with arguments @ and a+1.
Invoking unroll(@, 3, g) on the other hand yields a complete unrolling:

unroll(e, 3, g, r)
--> unroll_step(@, 3, 1, g, r)

--=> @@g (0); unroll_step(l, 3, 1, g, r)
== @Rg(0); @@g(1); unroll_step(2, 3, 1, g, r)
--> @@g (0); @@g(1); @@g(2); unroll_step(3, 3, 1, g, r)

--> @@g(0); eeg(1); eeg(2); r()

4.5 Summary

In contrast to quotation techniques or program generators, the programmer only needs to anno-
tate code that should be specialized at compile time. Higher-order parameters are automatically
annotated according to the strategy presented in Section 4.3. Only if the programmer desires to
specialize for non-function parameters, explicit annotations are required. In our case studies, we
found three typical scenarios:

(1) Small wrapper and helper functions can be forced to specialize with a simple @ (like unroll,
range_step, and range).

(2) For recursive functions, the programmer should inspect the recursive calls: It is always safe
to specialize static arguments (see Section 4.4).

(3) Only if an unfolding of the recursion is desired, the programmer needs to determine which
parameters actually contribute to the termination of the algorithm and specify an appropriate
filter (as for power and unroll_step).

4.6 Implementation

We implemented this partial evaluator in C++ on top of Thorin. The evaluator mainly consists of two
parts: one component instantiates for each call site the given filter and checks which parameters
need to be specialized (~200 lines of code (LoC)); the second component is the actual specializer
(~250 LoC). It appropriately specializes the called function while performing the static argument
transformation (see Section 4.4).

As already mentioned, the partial evaluator will always inline a sole call to a function. This is
important, as it ensures that the programmer actually experiences the behavior expected from his
filters. Suppose, in the following example, that termination of PE depends among other things on
propagating the constant 42 to use:

fn @get_42(return: fn(i32) -> !) -> ! { return(42) }
get_42(|res| use(res, k))

Without additional inlining the constant gets stuck in the return continuation and is not propagated

to use:
‘(Ires: i32| use(res)) (42) ‘

Note that the return continuation will always be unique when CPS-translating a direct-style
program and, hence, will be subject to inlining after PE. Only when programming with explicit
continuations can the programmer reuse the same return continuation more than once:

let k = |x| g
if cond { get_42(k) } else { get_42(k) }

Inlining these calls would potentially cause code explosion because k can be an arbitrarily large

program. If this is the desired behavior, the programmer can provide a proper filter for k.
Unfortunately, specialization may create continuations that later become unreachable. Whether

a function needs to be inlined, may thus depend on an unreachable code elimination (UCE). But
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inlining in turn opens up opportunities for further PE. Due to this interaction, the partial evaluator
is hooked into Thorin’s optimizer (~50 LoC). First, common optimizations (including UCE) are
performed. Then, the partial evaluator runs for a constant number of steps. These two steps are run
in a fixed-point loop, which terminates as soon as the evaluator has nothing left to do.

In addition, Thorin already applies constant folding, various arithmetic simplifications, a simple
common subexpression elimination (CSE), and a simple UCE on the fly during construction of the
IR nodes. This vastly decreases the number of iterations in the fixed-point loops.

Previous filter-based partial evaluators (see Section 3.1) distinguish between complete inlining
and specialization of parameters. With our automatic inlining strategy, we found this differentiation
to be unnecessary.

4.6.1 Mutable State and Compound Data Structures. Before PE, an SSA-construction phase [Braun
et al. 2013] translates all mutable variables whose addresses are not taken into functional variables
that are non-destructively updated. Unlike common imperative IRs like LLVM, this is also performed
for compound data structures: tuples, structs, and arrays. By doing this, the partial evaluator does
not have to evaluate side effects in order to deal with these variables.

Destructive updates on heap-allocated data structures or variables whose addresses are taken are
ignored by the evaluator. Nevertheless, this strategy was sufficient for the applications presented
in Section 6.

5 ACCELERATOR SUPPORT

Section 2 demonstrates how code generation can be triggered for various accelerators via compiler-
known higher-order functions. For this, the compiler needs to massage the code to match the
expected format of each accelerator so that the code can be executed by the runtime.

5.1 Parallel

For data-parallel execution on the thread level, Thorin provides the parallel function that applies
its body B over the range defined by a and b:

for i in parallel(num_threads, a, b) { array(i) = f(x); }
parallel (num_threads, a, b, [i: i32| { array(i) = f(x); 3});

If num_threads = 0, the runtime will map the execution to the parallel, work-stealing scheduling
framework TBB:

void anydsl_parallel_for(int a, int b, voidx args, void (*fun)(voidx, int)) {
tbb::parallel_for(tbb::blocked_range<int>(a, b), [=] (auto& range) {
for (int i = range.begin(); i < range.end(); ++i) fun(args, i);
s
3

Note, that the signature of fun is different from B’s signature. For this reason, Thorin closure-
converts B:!!

parallel(a, b, [|i: i32| { array(i) = f(x); });
--> parallel(a, b, |closure: &(), i: i32]| {
let (array, x) = *bitcast[&(&mut[i32], i32)](closure);
array (i) = f(x);
38

Other functions like f used within B do not need any further consideration. When emitting code
for parallel, Thorin emits a call to anydsl_parallel_for instead. Similarly, AnyDSL utilizes
C++ threads, if the programmer asked for a specific number of threads.

11 Actually, this transformation is performed on Thorin. The presented code is pseudo-code.
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5.2 Vectorize

AnyDSL uses the LLVM-based vectorizer RV. It performs best on whole functions without free
variables. Therefore, Thorin applies lambda lifting [Johnsson 1985] to eliminate them:'!

vectorize(vec_length, a, b, align, |i: i32| array(i) = f(x))
--> vectorize(vec_length, a, b, align, |i: i32, array: &mut[i32], x: i32]| array(i) = f(x));

For performance reasons, Thorin tries to inline all functions like f beforehand to get rid of free
functions within the passed function B. Then, Thorin employs RV to vectorize B to B_simd. By
doing this, Thorin tells RV that the loop counter i is continuous and a multiple of align. This
implies a mod align = 0 and b mod align = 0. All other parameters (the former free variables)
are marked as uniform'? with an alignment of align. Finally, Thorin replaces the call to vectorize
by an appropriate loop:'!

‘for i in range_step(a, b, vec_length) { B_simd(i, array, x); 1} ‘

The programmer is responsible for ensuring that the alignment assumptions actually hold.
These constraints allow aggressive optimizations within RV for maximal performance. All memory
allocations in AnyDSL already fulfill these alignment constraints. If the alignment requirements
for the loop bounds are uncertain at compile-time, the programmer can dissect a given loop into a
prologue, an epilogue, and a vectorized, appropriately aligned loop:
fn [@vec(vec_length: i32, a: 132, b: i32, align: i32, body: fn(i32) -> ()) -> () {

if b - a < vec_length * simd_threshold {
range(a, b, body);
} else {
let (vec_a, vec_b) = (round_up(a, vec_length), round_up(b-vec_length+1, vec_length));
range (a, vec_a, body);
for i in vectorize(vec_length, vec_a, vec_b, align) { @@body(i); 3}
range(vec_b, b, body);

3

Similarly, the programmer can implement other abstractions to guarantee the proper alignment of
other free variables that might occur inside body.

5.3 GPUs

GPU programs cannot have free variables. For this reason, Thorin also applies lambda lifting to
eliminate them:"’

cuda(device, grid, block, |i: 132| array(i) = f(x));
--> cuda(device, grid, block, |i: i32, array: &mut[i32], x: i32]| array(i) = f(x));

Thorin then creates a new module that contains the lifted version of the passed function as well
as transitively all the functions used in it. In the example above, Thorin imports f and potentially
other functions. By doing this, Thorin guarantees that the new module does not contain any free
functions. Afterwards, Thorin translates the new module to a CUDA program:

__device__ int f(int x) { }
__global__ void lambda(int* array, int x) { }

The call to cuda in the original module is appropriately rewritten to call the following runtime
function:

void anydsl_launch_kernel (DevId device, const char* file, const charx kernel, const uintx grid
const uint* block, void** args, const uint* sizes, const Typex types, uint num);

The generated CUDA program is passed to file while the name of the kernel to be launched is
specified via kernel; device specifies the target device for multi-GPU systems; grid and block
correspond to the original cuda call in Impala; args, sizes, types, and num encode the signature

12This means that the value is the same for all SIMD lanes.
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of the kernel function. Similarly, AnyDSL supports OpenCL, NVVM", and AMDGPU'* code
generation.

5.3.1 Memory Management and Address Spaces. Memory management is done explicitly using
runtime-provided functions. This allows a greater flexibility in the design of domain-specific
libraries: Domain knowledge can be leveraged to decide when to allocate and deallocate memory.
For accelerators, memory can reside in different address spaces: global, shared, private. This can be
manually annotated by the user as a part of the pointer type:

let gmem: &mut global [i32]
let smem: &mut shared [i32]

alloc_cuda( );
reserve_shared( bk

If the user doesn’t specify an address space, a generic address space is inferred.

6 EVALUATION

In this section, we introduce different domain-specific libraries developed using our framework.
We show that:

e from the same code base, we can target both CPUs and GPUs,
e we can specialize the data layout and algorithmic variants, and
e we get good performance compared to state-of-the-art, hand-tuned implementations.

Furthermore, we speculate that our implementations tend to be smaller and more concise although
we do not present hard scientific evidence to corroborate this claim. The reason is that while our
implementations are more than toy examples, they are still prototypes and do not provide all the
features of the implementations we compare against.

6.1 Image Processing

Section 2 already discusses how to implement a simple blur filter and map this code to various
hardware platforms. For the sake of presentation, that code is simple. It does not contain tech-
niques for boundary handling and caching temporary results in memory, which are important for
performance.

To specify such more sophisticated schedules, we use a function similar to Halide’s produce_root
that splices the computation of one loop schedule loop1 into the computation of another loop
schedule loop2. The results of the loop1 schedule are stored to temporary memory. In case the
loop2 schedule needs neighboring pixels, loop1 will also be scheduled for those pixels so that all
required data is available. produce_root provides a schedule that can be fed to the tile function
introduced earlier. This way, we generate a tiled schedule that fuses the computation of two stencils
cached in temporary memory.

fn produce_root(loopl: Schedule, loop2: Schedule) -> Schedule {
|read, xa, ya, xb, yb, write| {

let tmp = S
for x, y, val in loopl(read, ) { write_tmp(x, y, val); }
for x, y, val in loop2(read_tmp, ) { write (x, y, val); }

}
3
let blur_x_loop
let blur_y_loop
let inner_tile
let outer_tile
let schedule

combine_xy(vec(8), range, blur_x);
combine_xy(vec(8), range, blur_y);
produce_root (blur_x_loop, blur_y_loop);
par (0);

tile (256, 32, inner_tile, outer_tile);

Bsee https://llvm.org/docs/NVPTXUsage.html and https://docs.nvidia.com/cuda/nvvm-ir-spec/
14see http://llvm.org/docs/ AMDGPUUsage html
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CPU GPU

Ours Halide Ours Halide

Blur 1.99 (+12%) 177 1422 (+7%) 1331
Harris Corner 1.14 (+37%)  0.83  8.39 (+44%)  5.83

Fig. 6. Median pixel throughput in Gpixels/s (giga pixels per second, higher is better) for the blur filter of
Figure 2 on 132 pixel type and the Harris corner detector for £32 pixel type, both for an image of 4096 x 4096
pixels. CPU execution on a Skylake i7 6700K and GPU execution on a GeForce GTX 970. The execution time
on the GPU for Halide are the average numbers reported by nvprof.

This schedule describes the same strategy as in the original Halide paper [Ragan-Kelley et al. 2012].
However, it does not consider boundary handling and results in out-of-bounds memory accesses
when applied to the whole image. A simple technique to handle boundaries is to clamp the indices
of every access. However, this leads to many redundant clamp operations. For this reason, we
introduce a function handle_boundaries. This function generates a schedule that is parametric in
its read and write functions and deals with the given boundary. As soon as the partial evaluator
specializes the schedule, iterate_regions will be unrolled: this will only generate the boundary
handling needed in the current region. In particular, no boundary handling will be generated in the
vast inner region of the image.

fn handle_boundaries(boundary: Boundary, xstep, ystep, loop: Schedule) -> Schedule {
|read, xa, ya, xb, yb, write| {
for x1, xu, yl, yu, region in iterate_regions( ) {
let boundary_read = boundary(region, read);
loop(boundary_read, x1, yl, x1, yl, write);

3
}
handle_boundaries(clamp(img), 256, 32, schedule);

Similar to Halide, we provide a function tile_cuda_at that generates a fused CUDA schedule
for two stencils. This results in a single kernel with the intermediate result stored to shared memory.
Passing this schedule to handle_boundaries will generate one GPU kernel per image region with
specialized boundary handling.

6.1.1  Discussion. To compare our generated code with Halide, we use the same schedule for Halide
and our framework. We implement the same schedule as in the original Halide paper and apply
boundary handling as described. We compare against a recent Halide version that specializes
boundary handling internally as we do. As a more involved example, we implement the Harris
corner detector [Harris and Stephens 1988] using the same schedule as provided in the Halide
repository. For the Harris corner detector we use in total 7 functions to describe computations,
which are wired in 8 statements using calls to the computation functions, and scheduled using 5
statements. Figure 6 compares the execution times of the blur filter and the Harris corner detector
compared to Halide. For both applications, the final schedule on the CPU parallelizes the outermost
loop using TBB to all available cores and vectorizes the inner loops. We get slightly faster execution
times for the blur filter (~10%) and significantly faster execution times for the Harris corner detector
(~40%).

The Harris corner detector implementation in Halide takes about the same LoC as our imple-
mentation (70 LoC). Our implementation relies on a library that provides primitives for scheduling
iterations, boundary handling, and helper data structures for images and stencils. These can be
reused for other image processing pipelines and correspond to less than 400 LoC.
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In contrast, Halide is a full-blown DSL compiler (more than 100 kLoC) that of course provides
way more features than our prototype. So, comparing lines of code is not adequate. In Halide,
scheduling, boundary handling, etc. is implemented in the code generator. By using PE we leverage
the first Futamura projection (as discussed in Section 2) and get around writing a specific DSL
compiler. For accelerator mapping, we benefit from the functionality in Thorin that is reusable for
other domain-specific libraries.

In comparison to the image processing library we presented in our previous work [Leif3a et al.
2015a], the library presented in this section is completely written from scratch. The old library is
only capable of applying a single stencil, given by a matrix of coefficients, to the image. The library
presented here allows for building more complex image processing pipelines (such as the Harris
corner detector) by decoupling the pipeline from the schedule—in a way similar to Halide. For this
to be possible, the programmer must also be able to apply more complex functions than coefficient
matrices to the image. To achieve this, we abstract from coefficient matrices to operators that are
represented by functions. Accordingly, the scheduling functions have to be general enough to take
this into account. We also made the scheduling functions more general and modular. For example,
tile can now take the schedule for the inner and outer loop as higher-order arguments in contrast
to our earlier work where these schedules were fixed to parallel and vectorize.

6.2 Ray Tracing

Physically accurate rendering methods usually rely on ray tracing to perform visibility queries. Ray
traversal algorithms take a ray and a 3D scene, and return the closest intersection, if any. These
algorithms traverse an acceleration data structure, traditionally hierarchical, such as a Kd-tree or a
Bounding Volume Hierarchy (BVH). In order to get the best possible performance, kernel developers
rewrite the entire algorithm for every possible combination of architecture and traversal variant.
With common programming environments such as C++ this is necessary to achieve performance: The
programmer has complete control over the generated code, can optimize, fine-tune, and vectorize
the kernels manually.

Using AnyDSL, we demonstrate that this is not necessary. We have implemented a set of BVH ray
traversal kernels that cover all but one of the variants implemented in state-of-the-art libraries. A
BVH traversal kernel depends on several components: The traversal loop, the intersection routines,
and the data layouts (in particular, the optimal BVH arity may vary from platform to platform). In
Impala, we implemented three different traversal loop schemes (packet, single, and hybrid), a set of
intersection routines (ray-box and ray-triangle), and three BVH data layouts (binary, quaternary,
and octonary). At compile-time, these components can be combined to form an implementation
that is optimized for a specific use case.

On the CPU, vectorization is performed using vectorize (see Section 5.2). Previous work [Pérard-
Gayot et al. 2017] was using type inference to vectorize kernels, and thus was not able to express
complex traversal algorithms. Our kernels additionally use the parallel function (see Section 5.1)
to distribute the work among CPU cores.

In our setting, there are two different ways to vectorize the traversal: Traversing several rays
(a packet) at the same time, or traversing a single ray with a wide BVH. Packet traversal is the
simplest variant because vectorization is triggered from the outside:

for i in vectorize(vector_width, @, num_rays) {
let ray = load_ray(i);

}

In the single-ray variant, the intersection routine gets vectorized. The rest of the logic, however,
remains scalar:
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let mut hit : [Hit * vector_width];

for i in vectorize(vector_width, @, bvh.arity) {
let child = node.child(i);
hit(i) = intersect_ray_box(ray, child);

}

The packet and single-ray traversal loops are combined to form a hybrid variant, which switches
between the two loops depending on the SIMD utilization.

In order to improve traversal performance, the nodes of the tree are sorted by their distance from
the origin of the ray, so that the leaves containing the closest intersection are found first. There
might not be any good choice of traversal order, as child nodes may overlap, or, in the case of the
packet traversal, rays might disagree on the order. For this reason, the packet traversal only uses a
simple heuristic. Conversely, the single-ray variant uses a sorting network to find a good order.
Using PE, we specialize a sorting network for every possible number of intersections:

for i in unroll(@, bvh.arity + 1) {
if i == bvh.arity || num_intersections == i {
sorting_network(i, |p, ql| { if stack.dist(p) < stack.dist(q) { stack.swap(p, q) } });
}
}

The sorting network is parametric in its compare & swap function and provides appropriate filters
to recursively unfold it:

fn @bose_nelson_sort(n: i32, cmp_swp: fn(i32, i32) -> ()) -> (O {
fn l@(?2n) p_star(i: i32, n: i32) -> () { }
fn @(?n1 & ?n2) p_bracket(il: i32, nl1: i32, i2: i32, n2: i32) -> () { 3
p_star (@, n)

3

Because i, the counter of the unrolled loop, is known at compile time, the sorting network can be
specialized by the compiler. Additionally, since the sorting networks are provided as higher-order
functions, we can select the best-performing network at compile-time, depending on the BVH arity:

‘let sorting_network = match bvh.arity { 4 => bose_nelson_sort, 8 => batcher_sort };

The GPU version of the traversal loop uses the cuda function (see Section 5.3) to generate
accelerator-specific code:

let (grid, block) = ((num_rays, 1, 1), (64, 1, 1));
for cuda(grid, block) {

let id = cuda_gidx();

if id > num_rays { continue() }

let ray = load_ray(id);

3

During execution, the runtime system offloads the kernel to the GPU and runs it transparently.
The user of our ray-tracing library only has to configure a traversal loop in order to generate the
variant of his choice:

cpu_traverse_single(
vectorize_avx2(),
make_rayl_layout(rays, hits),
make_bvh4 (xbvh),
false,
ray_count,
1

DE

The functions vectorize_avx2, make_ray1_layout, and make_bvh4 return a structure containing
functions that are used within each traversal loop. For instance, make_ray1_layout returns a value
of the following type:
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BVH4 BVHS

Primary AO Diffuse Primary AO Diffuse

Scene Ours  Embree  Ours Embree Ours Embree Ours Embree  Ours Embree Ours Embree

Sponza 3473 (-4%) 3635 7634 (+8%) 70.66 9.78(-12%) 11.07  34.84 (-4%) 36.40 76.73 (+13%) 67.81 11.46 (-10%) 12.74
Crown 10251 (+5%) 97.86 40.28(-9%) 44.26 19.48 (-12%) 2220  95.48 (+6%) 89.92 42.12 (-5%) 44.25 21.04(-9%) 23.16
San-Miguel 22.06 (-4%) 23.04 13.82(-13%) 1591 6.46 (-12%) 7.33 18.74 (-2%) 19.13 1477 (-10%) 1632 6.98 (-8%) 7.62
Powerplant 49.34 (-3%) 50.63 102.89 (+8%) 95.42 11.86 (-15%) 13.88  43.02 (-4%) 44.82 98.10 (+11%) 88.04 13.29 (-9%) 14.66

(a) CPU: Skylake i7 6700K

BVH4 BVH2
Primary AO Diffuse Primary AO Diffuse
Scene Vec.  Scalar Vec. Scalar  Vec. Scalar Ours Aila et al. Ours Aila et al. Ours Aila et al.

Sponza  2.75 (+100%) 1.38 5.36 (+101%) 2.66 0.95 (-5%) 1.00  330.41 (-2%) 336.50 884.33(-2%) 899.62 123.46 (-9%) 135.80
Crown 9.82 (+69%) 5.80 3.65(+21%) 3.01 1.87 (-2%) 1.91 69541 (-11%) 77852 315.09 (-14%) 366.28 133.85(-19%) 165.71
San-Miguel 2.07 (+94%) 1.07 1.49 (+14%) 1.31 0.72 (-8%) 0.78 181.67 (-5%) 190.78 132.85(-7%) 142.13 54.06 (-15%) 63.40
Powerplant 4.44 (+71%) 2.59 8.19 (+102%) 4.06 1.09 (-11%) 1.23  465.42 (-12%) 528.21 998.02 (-4%) 1040.93 13857 (-11%) 155.57

(b) CPU: Cortex-A53 (c) GPU: GeForce GTX Titan X (Maxwell)

Fig. 7. Performance of our traversal kernels on different architectures, in Mrays/s (mega rays per second,
higher is better). Speed-ups (slow-downs) with respect to the reference are indicated in parentheses. On CPUs
(GPUs), we perform 10 (100) warmup iterations and report the average of 50 (500) runs. Primary rays start
from the camera, AO rays compute Ambient Occlusion, and Diffuse rays compute purely diffuse reflections.

struct RaylLayout {
packet_size: i32,
input: fn(i32, i32) -> Ray,
output: fn(i32, i32, Hit) -> ()

}

We implement different ray layouts by specifying a packet size and providing different functions
for the members input and output.

6.2.1 Discussion. We compared the performance of our kernels with state-of-the-art, manually
optimized traversal implementations: Embree [Wald et al. 2014], a CPU-centric library designed by
Intel, and on the GPU, the work of Aila et al. [Aila and Laine 2009; Aila et al. 2012], used within
the OptiX [Parker et al. 2010] library developed by NVIDIA. On the CPU, profiling indicates that
most of the performance difference can be attributed to excessive register spilling, and as a result,
increased memory traffic. This difference is likely to even up as the various LLVM backends that
are used by Impala mature. We also measured the performance of our packet traversal kernel on an
ARM CPU, and use the scalar (non-vectorized) variant of our own kernels as a reference, due to the
lack of highly-optimized ray-tracing libraries on this architecture. The results in Figure 7 show
that our generated code is mostly within ~10% (with a ~20% outlier) of the two reference libraries,
and sometimes performs better. On the ARM architecture, packet tracing can speed the code up
to 2X, but slowdowns are to be expected for diffuse rays, due to their incoherent nature.

Overall, we achieve greater portability and flexibility than existing libraries by defining an
embedded traversal kernel description language. In fact, Embree is written with vector intrinsics
and implements every intersection routine twice: Once for single rays, and once for packets of
rays. This situation is clearly not optimal, since intersection routines represent 22% of the total
number of lines of code in Embree. Using AnyDSL, intersection routines are only implemented once,
and get auto-vectorized by RV. Additionally, OptiX and Embree are two completely incompatible
code bases, written in two different languages (CUDA and C++, respectively). Our implementation
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does not suffer from these issues: From a single code base, we target three different platforms.
Maintaining and extending our code is also simpler, since platforms share most of the logic.

6.3 Genome Sequence Alignment

Sequence alignment is a fundamental task in bioinformatics that is mainly used for DNA sequence
matching. Optimal sequence alignments can be computed using dynamic programming (DP)
algorithms like the widely-used Smith-Waterman algorithm. Because such sequences are usually
quite long, there is a broad interest in high-performance sequence-alignment implementations.
In practice, different variants of sequence alignment are of interest. Sometimes only the score of
the alignment is required, sometimes the optimal alignment itself needs to be reconstructed. This
choice and the underlying hardware (CPU vs. GPU) require the usage of different DP algorithms.
Finally, the computation of the DP matrix should be parameterizable with different kinds of cost
functions.

We use AnyDSL to implement AnySeq, a library to map the alignment construction and score
computation to CPUs (using multi-threading and vectorization) as well as to GPUs. The algorithm
can be parameterized and optimized for different hardware platforms and use cases. This is achieved
through function composition, mostly in the form of providing behavior-controlling functions as
arguments of higher-order functions.

DP algorithms for sequence alignment usually solve the problem of finding an optimal alignment
for two input sequences S = (s153 ... $,) and Q = (q192 ... ¢m) by recursively solving three smaller
subproblems. For each pair (s;, g;) of characters one has to decide if these characters should be
aligned or if a gap should be introduced with respect to either one of the input sequences.

In case of optimal local alignments one looks for the best scoring alignment starting at any
position (s;, ¢;) and ending at any other position (s, q;) with i < k < n,j < | < m. Global
alignments start at position (1, 1) and end at position (n, m). In case of semi-global alignments, gaps
at the beginning and at the end are not penalized.

The optimal alignment score at position (i, j) is given by the recurrence relation:

H(i,j) = max{H(i — 1,j — 1) + o(si, q;), E(i, j), F(i, j), v}

where o is the substitution function. For local alignment, v has to be set to 0, for global alignment
it must be set to —oo. In case of a linear gap penalty g we set E(i,j) = H(i — 1, j) — g and F(i, j) =
H(i, j — 1) — g. In case of affine gap penalties, where a gap of length k is penalized with G, + k - G,
we need two additional auxiliary DP matrices E and F:

E(l’.]) = maX{E(l - 13]) - GOs H(l - 1’.]) - Ge - GO}
F(l’J) = maX{F(l’] - 1) - GO, H(ls_] - 1) - Ge - GO}

Initialization of the first rows and columns of H, E, and F—as well as in what cell(s) to look for
the optimal score—depends on whether the alignment shall be global, local, or semi-global. In case
of computing an optimal local alignment, we look for the best scoring alignment starting at any
position (g;, s;) and ending at any other position (sk, q;) withi < k < n,j < [ < m. The parameter v
has to be set to 0 in order to ensure that scores will always be positive. Global alignments always
start at position (1, 1) and end at position (n, m), meaning that the optimal score can be found
in cell H(n, m). The parameter v has to be set to —co so that scores are unbounded. In case of
semi-global alignments, gaps at the beginning and at the end are not penalized, which leads to the
same initialization as for local alignments). The optimal score can be found in the last row (i = n)
or the last column (j = m) of H.

Note that score-only computations can be performed in linear space and quadratic time with
respect to the length of the alignment targets. Actual alignments producing this value can be
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constructed by tracing back the predecessor information in the DP matrices. In order to avoid
quadratic space consumption (which is prohibitive for long DNA strings), the traceback procedure
can be implemented in linear space by a divide-and-conquer approach [Hirschberg 1975] that
recursively determines optimal midpoints of the DP matrix (at the cost of at most doubling the
amount of computed DP cells).

Each cell of H depends on three neighboring cells, which means that relaxing them in parallel
can be done along minor diagonals. When relaxing all cells in a submatrix row of H, only the
subproblem scores for the row above and one column left of the current cell are needed. If we want
to compute submatrices in parallel, the first row and first column of a submatrix must have been
computed earlier and the last row and last column must be kept available for the computation of
subsequent submatrices (to the right of and below the current one).

6.3.1  Modularization. With the help of higher-order functions, we obtain algorithmic variants.
Scoring schemes, memory access, and iteration strategies are all encapsulated in functions that
can be interchanged. These functions are often grouped into descriptively named structs to make
parametrization more convenient and the resulting code more expressive.

Efficient scalar CPU implementations need radically different iteration and blocking schemes than
efficient SIMD-vectorized CPU implementations or efficient GPU code. This in turn leads to different
data access patterns and data storage requirements (memory alignment, RAM vs. VideoRAM, GPU
shared memory, etc.). A key idea of our design is the usage of data accessor objects for decoupling
data access from the actual data storage strategy.

For example, while the resulting data indexing schemes may differ, the underlying relaxation
equations can stay the same. It is thus desirable to decouple these two aspects of the algorithm.
The basic recurrence relation for one DP matrix cell update can be encoded in one function, which
in this example is the one used for global alignments:

fn relax_global(scoring: Scoring,
prev: PrevScores,
next: CharPair
) -> NextStep {
let mut res = NextStep{score: scoring.subst(prev,next), predc: PRED_NO_GAP };
let sgap = scoring.gap_s(prev,next);
if sgap > res.score {
res.score = sgap;
res.predc = PRED_SKIP_S;
}
let qgap = scoring.gap_q(prev,next);
if qgap > res.score {
res.score = qgap;
res.predc = PRED_SKIP_Q;

res

Member functions of type PrevScores can be used to access scoring information of the three
ancestral subproblems. If no gap should be introduced, the scoring substitution function is used
to determine the cost. In case of affine gap penalties the functions gap_s and gap_q will access
the auxiliary matrix elements from E and F, for linear penalties they return a constant. Objects of
type NextStep store the maximum score for the current cell and what previous subproblem was
chosen as ancestor. The ancestor information encoded in res. predc is sometimes needed for the
innermost level of the traceback since recursion on subsequences is only done if the subsequence
sizes exceed a hardware-specific threshold. Whether any of the functions accesses main memory,
GPU memory, or simply returns a constant is determined based on the algorithm parametrization
at compile time. The relaxation order (which for the recursive traceback is reversed for half of the
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Fig. 8. (a) Tiled relaxation: cells marked light gray need to be communicated to the currently active, black
blocks. Dark gray cells need to be stored for the blocks on the next diagonal. Blocks on diagonals can be
relaxed in parallel as indicated by the numbers. (b) Left: division of DP matrix into stripes shown for the
case of [ = 4 vector lanes. Only part B needs all vector lanes. Right: the black vector x marks the currently
active diagonal, u (dark gray), v (light gray) and w (hatched) contain the values of the ancestral subproblems.
(c) GPU: Values of the cells in gray and hatched cells are located in shared memory. Light gray indicates
values still needed for the current tile. Dark gray indicates values needed for the next stripe (re-use memory
previously claimed by initialization cells that are no longer needed). The circles indicate values that need to
be written to global memory after the current tile has been completed.

DP matrix) and subproblem sizes are also determined based on algorithmic parameters and the
target hardware platform.

Access to the values of previously computed subproblems as well as to the input sequence
characters is also abstracted by function calls. This makes it possible to vary intermediate result
storage strategies, indexing, and blocking schemes independently from other parts of the algorithm:

struct MutableSequence {

len: fn() -> Index, at: fn(Index) -> Char,
write: fn(Index,Char) -> (), release: fn() -> ()
3
struct Scores {
prev: fn() -> PrevScores, at: fn(IndexPair) -> Score,
update: fn(IndexPair, Score) -> (), release: fn() -> ()
3

Indexing/blocking schemes are defined by generators that can be used in GPU-specific code blocks
as well as CPU code.

6.3.2 CPU Parallelization. We compute the values of different DP submatrix blocks concurrently
with ¢t CPU threads, relaxing DP matrix cells in parallel along diagonals. In the non-vectorized
version, cells within a block will be relaxed in row major order whereas submatrix blocks on a
diagonal will be relaxed in parallel (see Figure 8a). We have decoupled indexing schemes from most
of the other aspects of the alignment algorithms by means of generator functions. Also, if tiles
are to be processed serially or in parallel is determined with special generator functions called
schedules.

A second level of CPU parallelization can be achieved by SIMD vectorization. We partition the
DP matrix into tiles that are processed in parallel along diagonals as described before. Each tile is
computed by one CPU thread and further divided into stripes of height I along the first dimension
which corresponds to the input sequence Q. The stripe heights are set to the number of SIMD
vector lanes. If the size of the input sequence Q is not a multiple of /, we simply pad it with dummy
characters whose substitution score is 0.

Parallelization is done over diagonals within a stripe as shown in Figure 8b. We have to distinguish
three cases, labeled A, B, and C in the left part of the figure. In both cases A and C, some vector
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CPU GPU
Ours SeqAn Parasail Ours NVBIO
Score onl linear 11.9 (-3%) 12.3 n/a 148 (+10%) 135
Y affine  10.8(-8%)  11.8 110 133(3%) 136
linear 8.1 (-9%) 8.9 n/a 112 (+5%) 107
Traceback  re 77(+11%) n/a 69 106 (+4%) 102

Fig. 9. Median runtime performance in GCUPS (giga cell updates per second, higher is better) for aligning
pairs of six DNA sequences with 4.4 to 50 million characters. CPU execution on two Xeon E5-2683v4 CPUs
with 32 threads and GPU execution on a Titan Xp.

lanes are not needed. All three cases are handled separately to avoid bounds checking which would
introduce branch divergence.

To avoid the substitution score lookup for each cell of H we use precomputed profiles for the
sequence Q. For a local stripe at global position (i, j) the profile stores the substitution scores of the
characters in range gq;...q;;;—1 with any other character from the alphabet 3.

At any given time [ values of matrices H, E, and F and the substitution scores from the current
profile are accessed simultaneously. Figure 8b sketches how the values in H are accessed using four
vectors. For each diagonal, the vectors u, v, w contain the values of the ancestral subproblems and
the results of the current diagonal will be written to x. In the next step we setu = w, v =x, w = x
and shuffle w one position up. Similar schemes can be used for the other matrices.

6.3.3 GPU Parallelization. In the GPU variant the host starts a GPU kernel for each diagonal of tiles.
The kernel uses a one-dimensional grid of thread-blocks where each block computes one matrix
tile. Each tile is further divided into stripes which are computed in sequence by a thread-block.
Within a stripe, threads compute diagonals in parallel. As in the vectorized CPU code, we divide
the function that computes one stripe into three parts in order to avoid branch divergence.

Again, data accessors are used to manage memory buffers that can now point to global or block-
local shared GPU memory. In order to enable coalesced memory access we have to use memory
access patterns different from the CPU code. Since memory access is abstracted by functions, it is
easy to exchange access schemes for the CPU and the GPU code. Device-independent code, like the
core relaxation function, remains the same, because it only calls those memory access functions to
read and write values.

Before starting a block of threads, the segments of the input sequences that are needed for the
current tile are stored in block-local shared memory. The values of the row immediately above the
current stripe are needed to access ancestral problems. Also, the values in the bottom-most row of
the current stripe will be needed by the next stripe. Since we are relaxing in diagonals along the
stripe, we re-use the memory cells with the values of the uppermost row that are no longer needed
and store the results of the last row in them. The buffer needed for this does also reside in shared
memory. This way, we can compute all stripes within a tile in succession without starting a new
kernel. The last row and column of the current tile are always written back to global memory (see
Figure 8c).

6.3.4 Discussion. We compare the execution time of our implementation against three state-of-
the-art, high-performance sequence alignment libraries: SeqAn [Déring et al. 2008] 2.3.0, Parasail
[Daily 2016] 2.0, and NVBIO [Pantaleoni and Subtil 2014] 1.1. These libraries contain manually
tuned SIMD or CUDA codes in contrast to the unified codebase of our Impala implementation that
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utilizes the built-in vectorize, parallel, and cuda generators. Figure 9 reports median execution
times per pair alignment.

The performance of our implementation closely matches that of SeqAn, Parasail, and NVBIO. At
the same time our code base is smaller and was developed over the course of weeks whereas the
other libraries have been fine-tuned over the course of several years.

It is also worth noting that retrofitting libraries like SeqAn with GPU parallelization is notoriously
difficult since almost all aspects of such a complex library need to be adapted to support different
data layouts and blocking schemes. This requires also the usage of another infrastructure such as
nvce to compile CUDA code.

The development of AnySeq was greatly simplified by being able to support different hardware
architectures within one unified programming environment. Additional glue and setup code that is
usually required to interface CPU code with GPU kernels could be mainly reduced to writing data
accessors. Also, to achieve the same level of genericity in C++ one would usually need to write a
substantial amount of involved and hard to diagnose template code while we only needed to write
regular functions in Impala.

7 CONCLUSIONS

This paper presents a novel system for programming high-performance libraries using PE. We
present the design and implementation of a simple online partial evaluator that is implemented
on a CPS-based IR. A cornerstone of this system is to expose accelerator code generation by
compiler-known higher-order functions. Via PE, target-independent code can be instantiated
with target-specific kernels. We demonstrate that the simple design of our system is sufficient to
build high-performance applications that compile to CPUs and GPUs from the same code base.
Their performance is mostly within 10% to the performance of multi man-year, industry-grade,
manually-optimized expert codes that are considered to be among the top contenders in their fields.
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