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Abstract
F-manifolds are complexmanifoldswith amultiplicationwith unit on the holomorphic
tangent bundle with a certain integrability condition. Here, the local classification of
3-dimensional F-manifolds with or without Euler fields is pursued.
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1 Introduction

Boris Dubrovin defined and studied Frobenius manifolds [10,11]. A Frobenius man-
ifold is a complex manifold M with a holomorphic flat metric g and a holomorphic
commutative and associative multiplication ◦ with unit e on the holomorphic tangent
bundle T M such that g(X ◦Y , Z) = g(X ,Y ◦ Z) and such that locally a holomorphic
function � (a potential) with g(X ◦ Y , Z) = XY Z(�) for flat vector fields X ,Y , Z
exists. Often one has additionally an Euler field E , a holomorphic vector field with
LieE (◦) = 1 · ◦ and LieE (g) = D · g for some D ∈ C.

This seemingly purely differential geometric object has many different facets
and lies at the crossroads of very different mathematical areas, integrable systems,
meromorphic connections, singularity theory, quantum cohomology and thus mirror
symmetry. Boris Dubrovin explored many of these crossroads.

Manin and the second author defined the notion of an F-manifold [16]. It is a
complex manifold M with a holomorphic commutative and associative multiplication
◦ with a unit e on the holomorphic tangent bundle which satisfies the integrability
condition

LieX◦Y (◦) = X ◦ LieY (◦) + Y ◦ LieX (◦) for X ,Y ∈ O(T M). (1.1)

Here, an Euler field is a holomorphic vector field E with LieE (◦) = 1 · ◦.
Frobenius manifolds are F-manifolds, and this is the original motivation for the

definition of F-manifolds. However, there are also F-manifolds which cannot be
enriched to Frobenius manifolds. The paper [9] starts with F-manifolds and studies
how and when they can be enriched to Frobenius manifolds. Crucial is the existence
of a certain bundle with a meromorphic connection (called (T E)-structure in [9]) over
an F-manifold.

Slightly weaker, but almost as strong as a Frobenius manifold is the notion of
a flat F-manifold, which was defined by Manin [23]. It is an F-manifold with flat
connection D on T M with D(CM ) = 0 and D(e) = 0, where CM is the Higgs field
from the multiplication, so CM

X = X◦ : T M → T M for X ∈ O(T M). Then, an
Euler field E is an Euler field of the F-manifold such that D•E : T M → T M (with
D•E : X �→ DX E) is a flat endomorphism.

Recently, flat F-manifolds with Euler fields were subject to work by Arsie and
Lorenzoni [2–4,22], Kato, Mano and Sekiguchi [18], Kawakami andMano [19], Kon-
ishi, Minabe and Shiraishi [20,21]. They established such structures on orbit spaces
of complex reflection groups. And especially they observed a beautiful correspon-
dence between regular flat 3-dimensional F-manifolds and solutions of the Painlevé
equations of types VI, V and IV [4,18,19].

A regular F-manifold is an F-manifoldwithEuler field such that the endomorphism
E◦ on T M has everywhere for each eigenvalue only one Jordan block. This notionwas
defined and studied by David and the second author [7]. The classification of germs
of regular F-manifolds is given in Theorem 1.3 in [7]: Each such germ is a product
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of irreducible such germs, and in each dimension, there is (up to isomorphism) only
one irreducible germ of a regular F-manifold. Furthermore, a small representative
of it is everywhere irreducible. However, the classification of generically regular F-
manifolds is an open and interesting problem, to which this paper contributes in the
case of dimension 3.

The second author studied F-manifolds in [15, ch. 1–5]. There he classified all
germs of 2-dimensional F-manifolds with or without Euler fields. This classification
is easy, see below. However, already the classification of the germs of 3-dimensional
F-manifolds is rich. It was not pursued systematically in [15] or anywhere else.

This paper aims at a systematic classification of germs of 3-dimensional F-
manifolds. It succeeds in themajority of the cases, but not in all cases. The classification
is up to isomorphism, i.e., up to isomorphisms of germs of complex manifolds, which
respect the multiplication.

In order to distinguish different cases, the 3-dimensional algebras over C have to
be listed.

Remarks 1.1 Here, the commutative and associative algebras with unit over C of
dimensions 1, 2 and 3 are listed. In dimension 1, the only algebra is C. In dimen-
sion 2, there exist up to isomorphism two algebras

P(1) := C[x]/(x2),
P(2) := C ⊕ C.

In dimension 3, there exist up to isomorphism four algebras,

Q(1) := C[x1, x2]/(x21 , x1x2, x22 ),
Q(2) := C[x]/(x3),
Q(3) := C ⊕ C[x]/(x2) = C ⊕ P(1),

Q(4) := C ⊕ C ⊕ C.

Asum
⊕n

j=1 C of 1-dimensional algebras is called semisimple, soC, P(2) and Q(4) are

semisimple. The algebras C, P(1), Q(1) and Q(2) are irreducible. The decomposition
of each algebra into irreducible algebras is unique. The algebras C, P(1), P(2), Q(2),
Q(3) and Q(4) are Gorenstein rings; Q(1) is not a Gorenstein ring. (The notations Q(1)

and Q(2) are opposite to those in [15, 5.5].)

Now let (M, ◦, e) be a connected 3-dimensional complex manifold with a com-
mutative and associative multiplication on T M with unit field e, but not necessarily
with (1.1). Choose local coordinates t = (t1, t2, t3), and denote by y = (y1, y2, y3)
the fiber coordinates on T ∗M such that y j corresponds to the coordinate vector field
∂ j := ∂/∂t j . Then, α := ∑3

j=1 y jdt j is the canonical 1-form on T ∗M . The multi-

plication is given by ∂i ◦ ∂ j = ∑3
k=1 a

k
i j∂k with coefficients aki j ∈ OM . We suppose
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e = ∂1. The multiplication gives rise to the sheaf of ideals IM ⊂ O(T ∗M) with

IM :=
(

y1 − 1, yi y j −
3∑

k=1

aki j yk | i, j ∈ {1, 2, 3}
)

⊂ O(T ∗M), (1.2)

and the complex space LM ⊂ T ∗M which is as a set the zero set of IM and which
has the complex structure OLM = (OT ∗M/IM )|LM . The projection πL : LM → M
is flat and finite of degree 3. For each t ∈ M , the points in π−1

L (t) ⊂ T ∗
t M are the

simultaneous eigenvalues of all endomorphisms X |t◦ : Tt M → Tt M for X ∈ Tt M .
They correspond to the irreducible subalgebras of Tt M .

The numbering Q(1), ..., Q(4) above was chosen so that for each j ∈ {1, 2, 3, 4},
the subset

⋃
i≤ j {t ∈ M | Tt M ∼= Q(i)} is empty or an analytic subvariety ofM or equal

to M (Lemma 4.3 gives more precise statements). The algebra Q( j) with Tt M ∼= Q( j)

for generic t ∈ M is called the generic type of M (M is connected). M is called
generically semisimple if the generic type is Q(4).

LM is called analytic spectrum of (M, ◦, e). It encodes the multiplication and is
crucial for its understanding. The integrability condition (1.1) of an F-manifold is
equivalent to {IM , IM } ⊂ IM , where {., .} is the Poisson bracket on O(T ∗M) [17]
(cited in Theorem 2.12). In the generically semisimple case, this is equivalent to
Lreg
M ⊂ T ∗M being Lagrange. This connects the generically semisimple F-manifolds

with the Lagrange fibrations and Lagrangemaps ofArnold [1, ch. 18]. Givental’s paper
[13] on Lagrange maps contains implicitly many results and examples of generically
semisimple F-manifolds.

In the case of an F-manifold, the integrability condition (1.1) implies that at a point
t ∈ M such that Tt M decomposes into several irreducible algebras, also the germ of
the F-manifold decomposes uniquely into a product of germs of F-manifolds, one for
each summand of Tt M [15, Theorem 2.11] (cited in Theorem 2.5), and an Euler field
decomposes accordingly. Therefore in the classification of germs of F-manifolds, we
can restrict to the classification of the irreducible germs, which are the germs (M, 0)
such that T0M is irreducible.

A rough distinction of classes is given by the isomorphism class T0M and the
generic type. It turns out, that in a germ of dimension≤ 3, only one or two types arise,
the type of T0M and the generic type. They may coincide. If they do not coincide, the
type of T0M arises in codimension 1 or 2, most often in codimension 1.

The following table shows which examples, lemmas and theorems in this paper
concern which class of irreducible germs (M, 0) of F-manifolds of dimensions 1 or
2 or 3. It also indicates the parameters, functional or holomorphic or discrete, in the
families of F-manifolds. It does not take into account the possible Euler fields. Though
the theorems do.

The results for dimension 1 and 2 are cited from [15], and they are easy. The
classification in dimension 3 is surprisingly rich. The cases with T0M ∼= Q(2) are
easier than those with T0M ∼= Q(1). In the two cases with T0M ∼= Q(1) and generic
type Q(3) or Q(4), we have no complete classification, but just some examples. The
reason is that then the integrability condition {IM , IM } ⊂ IM is much more difficult
to control than in the cases with T0M ∼= Q(2), where we have Lemma 4.6.
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Table 1 Table of results

T0M Generic type

C C Lemma 2.6: 1 F-manifold A1

P(1), P(1) Theorems 3.1, 3.2: 1 F-manifoldN2

P(1) P(2) Theorem 3.1: 1 series I2(m), m ∈ Z≥3

Q(1) Q(1) Theorem 5.1: 1 functional parameter

Q(1) Q(2) Theorem 5.3 (b)+(c): 1 or 2 functional

parameters

Q(2) Q(2) Theorem 5.3 (a): 1 F-manifold

Q(1) Q(3) no complete classification,

Lemma 5.7: one family of examples

Q(2) Q(3) Theorem 5.5: 1 series with parameter p ∈ Z≥2

Q(1) Q(4) no complete classification,

Theorem 6.3: a structural result,

Lemmas 6.4, 6.5 and Examples 6.7: examples

Q(2) Q(4) Examples 6.2: the ADE F-manifolds,

Theorem 6.3: a structural result,

Theorem 7.1: all other germs, namely

3 families with 1 discrete parameter p ∈ Z≥2,

2 families with 2 discrete parameters p, q ∈ Z≥2

with q ≥ p,

in all 5 families p − 1 holomorphic parameters

In Theorem 5.3 (c), the type of T0M arises in codimension 1 or 2. In all other cases
in Sects. 5 to 7, the type of T0M arises in codimension 1 or coincides with the generic
type.

Most not generically semisimple F-manifolds appear here for the first time. And
also most of the generically semisimple F-manifolds, namely most of those in Theo-
rem 7.1 with T0M ∼= Q(2), are new. Their classification is linked to the classification
of germs of plane curves of multiplicity 3 (see the Remarks 7.3).

The germs with T0M ∼= Q(1) and generic type Q(4) are related to certain germs of
Lagrange surfaces with embedding dimension 4 which are Cohen–Macaulay, but not
Gorenstein (Theorem 6.3 (d)). We do not have a classification of them.

Possibly the most interesting germs (M, 0) of 3-dimensional F-manifolds are the
generically semisimple germs with Euler field. Those with T0M ∼= Q(2) are given in
Corollary 7.2.

Section 2 collects general facts on F-manifolds from [15]. Section 3 recalls the
classification of the 2-dimensional germs of F-manifolds. Section 4 provides basic for-
mulas for 3-dimensional F-manifolds, which are used in the proofs of the classification
results in Sects. 5, 6, and 7. Section 5 classifies the not generically semisimple germs
(except those with T0M ∼= Q(1) and generic type Q(3)). It proceeds by explicit coor-
dinate changes. Section 6 gives examples of generically semisimple F-manifolds and
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states the structural result Theorem 6.3 for the generically semisimple F-manifolds.
Section 7 classifies the generically semisimple germs with T0M ∼= Q(2). Sections 6
and 7 work a lot with the analytic spectrum.

2 General facts on F-manifolds

F-manifolds were first defined in [16]. Their basic properties were developed in [15].
This section reviews the main basic properties from [15] and an additional fact from
[17].

Definition 2.1 [16] (a)An F-manifold (M, ◦, e) (without Euler field) is a holomorphic
manifold M with a holomorphic commutative and associative multiplication ◦ on the
holomorphic tangent bundle T M and with a global holomorphic vector field e ∈
TM := O(T M) with e◦ = id (e is called a unit field), which satisfies the integrability
condition (1.1).

(b) Given an F-manifold (M, ◦, e), an Euler field on it is a global vector field
E ∈ TM with LieE (◦) = ◦.
Remark 2.2 The integrability condition (1.1) looks surprising at first sight. Though it
is natural from several points of view. Here are four of them.

(i) Theorem 2.12 rewrites condition (1.1) as a natural condition on the ideal giving
the analytic spectrum in T ∗M .

(ii) Theorem 2.5 gives a decomposition result for germs of F-manifolds. Condition
(1.1) is crucial in its proof in [15].

(iii) The potentiality condition in a Frobenius manifold with holomorphic metric g
is equivalent to (1.1) plus the closedness of the 1-form (called coidentity) g(e, .)
[15, Theorem 2.15].

(iv) If the Higgs field of a (T E)-structure over a manifold M is primitive, it induces
on M the structure of an F-manifold with Euler field, see, e.g., [9].

Remark 2.3 [15, Proposition 2.10] If one has l F-manifolds (Mk, ◦k, ek), k ∈
{1, ..., l}, their product M = ∏l

k=1 Mk inherits a natural structure of an F-manifold
(M,
⊕l

k=1 ◦k,∑l
k=1(lift of ek to M)). And if there are Euler fields Ek , then the sum

E =∑l
k=1(lift of Ek to M) is an Euler field on the product M .

Remark 2.4 A finite dimensional commutative and associative C-algebra A with unit
e ∈ A decomposes uniquely into a direct sum A =⊕l

k=1 Ak of local and irreducible
algebras Ak with units ek with e = ∑l

k=1 ek and Ak1 ◦ Ak2 = 0 for k1 �= k2 (of
course, the choice, which summand gets which label in {1, ..., l}, is arbitrary). This
is elementary (linear) algebra. The decomposition is obtained as the simultaneous
decomposition into generalized eigenspaces of all endomorphisms a◦ : A → A for
a ∈ A (see, e.g., Lemma 2.1 in [15]). The algebra A is called semisimple if l = dim A
(so then Ak = C · ek for all k).

Thanks to the condition (1.1), this pointwise decomposition extends in the case of
an F-manifold to a local decomposition, see Theorem 2.5. This is the first important
step in the local classification of F-manifolds.
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Theorem 2.5 [15, Theorem 2.11] Let ((M, t0), ◦, e) be the germ at t0 of an F-
manifold.

(a) The decomposition of the algebra (Tt0M, ◦|t0 , e|t0) with unit into local algebras
extends into a canonical decomposition (M, t0) = ∏l

k=1(Mk, t0,k) as a product
of germs of F-manifolds.

(b) If E is an Euler field of M, then E decomposes as E = ∑l
k=1 Ek with Ek (the

canonical lift of) an Euler field on Mk.

Lemma 2.6 [15, Example 2.12 (i)] In dimension 1, (up to isomorphism) there is only
one germ of an F-manifold, the germ (M, 0) = (C, 0) with e = ∂/∂u1 , where u1 is
the coordinate on C. Any Euler field on it has the shape E = (u1 + c1)e for some
c1 ∈ C.

Definition 2.7 (a) Fix n ∈ N = {1, 2, ..} and define the set of its partitions,

Pn :=
⎧
⎨

⎩
β = (β1, ..., βl(β)) | βi ∈ N, βi ≥ βi+1,

l(β)∑

i=1

βi = n

⎫
⎬

⎭
.

For β, γ ∈ Pn define

β ≥ γ : ⇐⇒ ∃ σ : {1, ..., l(γ )} → {1, ..., l(β)} s.t. β j =
∑

i∈σ−1( j)

γi ,

β > γ : ⇐⇒ β ≥ γ and β �= γ.

(b) Let (M, ◦, e) be an F-manifold of dimension n. Consider the map

P : M → Pn, P(t) := {the partition of n by the dimensions

of the irreducible subalgebras of Tt M}

(c) An F-manifold is called generically semisimple if P(t) = (1, ..., 1) (⇔
l(P(t)) = n) for generic t (In [15] such an F-manifold is called massive). An
F-manifold is called semisimple if it is semisimple at all points.

Lemma 2.8 Let (M, ◦, e) be an F-manifold of dimension n.

(a) [15, Proposition 2.5] For any β ∈ Pn, the set {t ∈ M | P(t) ≥ β} is an analytic
subset of M or empty.

(b) [15, Proposition2.6]Suppose that M is connected. Then, there is a uniquepartition
β0 ∈ Pn such that the set {t ∈ M | P(t) = β0} is open. Its complement is called
caustic and is denoted by K := {t ∈ M | P(t) �= β0}. The caustic is an analytic
hypersurface or empty. If t ∈ K, then P(t) > β0.

(c) By Theorem 2.5 and Lemma 2.6, a semisimple germ of an F-manifold is isomor-
phic to (Cn, 0) with coordinates u = (u1, ..., un) and partial units ek = ∂uk ,
which determine the multiplication by ek ◦ ek = ek and ek1 ◦ ek2 = 0 for k1 �= k2.
The global unit field is e = ∑n

k=1 ek . The semisimple germ of dimension n is

123



90 Page 8 of 50 A. Basalaev, C. Hertling

said to be of type An
1 . The coordinates uk or their shifts uk + ck for any constants

c1, .., cn ∈ C are Dubrovin’s canonical coordinates. Any Euler field on this F-
manifold has the shape E = ∑n

k=1(uk + ck)ek for some c1, ..., cn ∈ C. If an
Euler field E is fixed, the eigenvalues uk + ck of E◦ can be used as canonical
coordinates. This fixes their ambiguity.

A generically semisimple F-manifold M has canonical coordinates locally on M−
K, so there it can be described easily. A description near K is more difficult and more
interesting.

Three notions from the theory of isolated hypersurface singularities generalize to
F-manifolds, the μ-constant stratum, the modality, and simpleness.

Definition 2.9 Let (M, ◦, e) be an F-manifold.

(a) For p ∈ M , the μ-constant stratum of p is the subvariety Sμ(p) := {t ∈
M | P(t) ≥ P(p)}. The modality modμ(M, p) is

modμ(M, p) := dim(Sμ(p), p) − l(P(p)). (2.1)

(b) The F-manifold is simple if modμ(M, p) = 0 for any p ∈ P . A simple F-
manifold is generically semisimple because for any F-manifold modμ(M, p) =
n − l(β0) for p ∈ M − K.

The definition of the modality is motivated by the following. If (M, p) =
∏l(P(p))

j=1 (Mj , p( j)) as a germ of an F-manifold with idempotent vector fields
e1, ..., el(P(p)), then Liee j (◦) = 0 · ◦, so the germs (M, q) for q in one integral
manifold of e1, ..., el(P(p)) are isomorphic as germs of F-manifolds.

In the case of a generically semisimple F-manifold with Euler field, the Euler field
gives rise to a complementary result.

Theorem 2.10 [15, Corollary 4.16] Let (M, ◦, e, E) be a generically semisimple F-
manifold with Euler field. For any p ∈ M, the set

{t ∈ M | ((M, t), ◦, e, E) ∼= ((M, p), ◦, e, E)}

is discrete and closed in M.

All the information of an F-manifold is carried also by its analytic spectrum, which
will be introduced now.

Definition 2.11 Let (M, ◦, e) be a complex manifold of dimension n with a holomor-
phic commutative and associative multiplication ◦ on the holomorphic tangent bundle
and with a unit field e. (For the moment, the condition (1.1) is not imposed.)

(a) We need some standard data on T ∗M : Let π : T ∗M → M denote the projection.
Let t = (t1, ..., tn) be local coordinates on M , and define ∂k := ∂/∂tk . Let
y = (y1, ..., yn) be the fiber coordinates on T ∗M which correspond to (∂1, ..., ∂n).
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Then, the canonical 1-form α takes the shape
∑n

i=1 yidti , and ω = dα is the
standard symplectic form. The Hamilton vector field of f ∈ OT ∗M is

H f =
n∑

k=1

(∂ f

∂tk
· ∂

∂ yk
− ∂ f

∂ yk
· ∂

∂tk

)
. (2.2)

The Poisson bracket {., .} on OT ∗M is defined by

{ f , g} := H f (g) = ω(H f , Hg) = −Hg( f ). (2.3)

(b) Define an ideal sheaf IM ⊂ OT ∗M as follows. We choose coordinates tk and yk
as in part (a) and such that e1 = ∂1. Write

∂i ◦ ∂ j =
n∑

k=1

aki j∂k with a
k
i j ∈ OM . (2.4)

Then

IM :=
(

y1 − 1, yi y j −
n∑

k=1

aki j yk

)

⊂ OT ∗M . (2.5)

The analytic spectrum (or spectral cover) LM := SpecanOM
(T M, ◦) ⊂ T ∗M of

(M, ◦, e) is as a set the set at which the functions in IM vanish. It is a complex
subspace of T ∗M with complex structure given by OLM = (OT ∗M/IM )|LM .

The analytic spectrum LM was studied in [15, 2.2 and 3.2]. Though, the following
result was missed there.

Theorem 2.12 [17, 2.5 Theorem]Amanifold (M, ◦, e)with holomorphic commutative
and associative multiplication ◦ on the holomorphic tangent bundle and unit field e is
an F-manifold if and only if {IM , IM } ⊂ IM.

Remarks 2.13 (i) The points in LM above a point t ∈ M are the 1-forms, which
are the simultaneous eigenvalues for all multiplication endomorphisms in Tt M .
They are in 1-1 correspondence with the irreducible subalgebras of Tt M .

(ii) Let (M, ◦, e) be a complex manifold of dimension n with commutative and
associative multiplication on the holomorphic tangent bundle. The projection
π |LM : LM → M is finite and flat of degree n. The map

a : TM → π∗O(LM ), X �→ α(X)|LM , (2.6)

is an isomorphism ofOM -algebras. In this way, the multiplication on π∗O(LM )

determines the multiplication on the tangent bundle. The value α(X)(y, t) ∈ C

at a point (y, t) ∈ LM is the eigenvalue of X◦ on the irreducible subalgebra of
Tt M which corresponds to (y, t).
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(iii) In the case of a manifold with a multiplication and unit field, such that the mul-
tiplication is generically semisimple, the restriction LM |M−K of LM to M − K
is obviously smooth with dim M sheets above M −K. Theorem 3.2 in [15] says
that then LM is reduced everywhere, so also above LM ∩ π |−1

LM
(K).

(iv) In this situation, {IM , IM } ⊂ IM says that LM is at smooth points a Lagrange
submanifold of T ∗M .

(v) However, in the case of a manifold with multiplication and unit field, such that
the multiplication is nowhere semisimple, the analytic spectrum LM is nowhere
reduced. Then, IM is quite different from the reduced ideal

√
IM . Especially, the

conditions

{IM , IM } ⊂ IM and {√IM ,
√
IM } ⊂ √IM (2.7)

do not imply one another. The second condition in (2.7) is equivalent to the
condition that Lred

M (the reduced space underlying LM ) is at smooth points a
Lagrange submanifold of T ∗M . The examples 2.5.2 and 2.5.3 in [17] and the
examples below in Theorem 5.1 and Remark 5.2 (ii) with b2 �= 0 are examples
of F-manifolds (so {IM , IM } ⊂ IM holds) with {√IM ,

√
IM } �⊂ √

IM . The
example (with n = 4) in [9, 2.13 (v)] is an example of a manifold (M, ◦, e) with
{IM , IM } �⊂ IM and {√IM ,

√
IM } ⊂ √

IM .

We are mainly interested in the case of generically semisimple F-manifolds. There
the following result of Givental is relevant. The embedding dimension of a complex
space germ (X , 0) is the minimal number k ∈ N ∪ {0} such that an embedding
(X , 0) ↪→ (Ck, 0) exists.

Theorem 2.14 [13, ch. 1.1] An n-dimensional germ (L, 0) of a Lagrange variety
with embedding dimension embdim(L, 0) = n + k with k < n is a product of a
k-dimensional Lagrange germ (L ′, 0)with embdim(L ′, 0) = 2k and a smooth (n−k)-
dimensional Lagrange germ (L ′′, 0); here, the decomposition of (L, 0) corresponds
to a decomposition

((S, 0), ω) ∼= ((S′, 0), ω′) × ((S′′, 0), ω′′)

of the symplectic space germ (S, 0) which contains (L, 0).

Existence of an Euler field for a given F-manifold is a problem with many facets.
Some F-manifolds have many Euler fields, others few, others none. The cases of all 2-
andmany 3-dimensional F-manifolds will be discussed in Sects. 3 to 7.We are mainly
interested in the generically semisimple F-manifolds. There the following holds.

Theorem 2.15 (a) [15, Theorem 3.3] Let (M, ◦, e) be a generically semisimple F-
manifold. A vector field E is an Euler field if and only if

d(a(E))|LregM
= α|LregM

. (2.8)
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(b) [15, Lemma 3.4] Let M be a sufficiently small representative of an irreducible
germ (M, t0) of a generically semisimple F-manifold. For any c ∈ C, there is a
unique function F : (L, (y0, t0)) → (C, c) which is holomorphic on Lreg

M and
continuous on L (with value c at (y0, t0)) and which satisfies dF |LregM

= α|LregM
.

(c) The parts (a) and (b) imply that in the situation of (b), for any c ∈ C, there is
a unique Euler field Ec on M − K such that for t → t0 all eigenvalues of Ec◦
tend to c. We have Ec = E0 + c · e. The characteristic polynomial of Ec◦ extends
holomorphically to t0 and has there the value (x −c)n. The Euler field Ec extends
holomorphically to M if and only if the function F in part (b) is holomorphic on
LM.

Theorem 2.16 (d) will rephrase the question whether the function F in part (b) is
holomorphic on LM . A special case will be singled out in Theorem 2.16 (e). Now we
consider the germ (S, 0) of an N -dimensional manifold and the germ (L, 0) ⊂ (S, 0)
of an n-dimensional reduced subvariety. H•

Giv(S, L, 0) denotes the cohomology of
the de Rham complex

(�•
S,0/{ω ∈ �•

S,0 | ω|Lreg = 0}, (2.9)

which was considered first by Givental [13, ch. 1.1].

Theorem 2.16 (a) [13, ch. 1.1] If (L, 0) is quasihomogeneous then H•
Giv(S, L, 0) =

0.
(b) [26] If (S, 0) = (C2, 0) and (L, 0) = ( f −1(0), 0) for a holomorphic func-

tion germ f : (C2, 0) → (C, 0) with an isolated singularity at 0, then
dim H1

Giv(S, L, 0) = μ − τ , where

μ := dimOC2,0/
( ∂ f

∂xi

)
and τ := dimOC2,0/

(
f ,

∂ f

∂xi

)
.

(c) [13, ch. 1.2] In the situation of (b), μ > τ ⇐⇒ (L, 0) is not quasiho-
mogeneous. And if (L, 0) is not quasihomogeneous, then η ∈ �1

C2,0
satisfies

[η] ∈ H1
Giv(C

2, L, 0) − {0} if dη = u(x1, x2)dx1dx2 with u(0) �= 0 (i.e., dη is a
volume form).

(d) [13, ch 1.1] In part (b) in Theorem 2.15, F is holomorphic on LM if and only if
[α] = 0 ∈ H1

Giv(T
∗M, LM , (y0, t0)).

(e) In part (b) in Theorem 2.15, suppose that embdim(LM , (y0, t0)) ≤ n + 1. Then,
(LM , (y0, t0)) ∼= (Cn−1, 0) × (C, 0) where (C, 0) is the germ of a plane curve.
And then F is holomorphic on L if and only if (C, 0) is quasihomogeneous.

(f) A germ (M, t0) of a simple F-manifold has a (holomorphic) Euler field.

Proof of the parts (e) and (f): (e) The first statement follows from Theorem 2.14, and
the decomposition is compatible with a decomposition of the symplectic germ
(T ∗M, (y0, t0)). The second statement follows from the first statement and from
the parts (a), (c) and (d).
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(f) We can restrict to an irreducible germ (M, t0) of a simple F-manifold. The caustic
K is a hypersurface. At a generic point p ∈ K,

0 = dim(Sμ(p), p) − l(P(p)) = n − 1 − l(P(p)), so l(P(p)) = n − 1,

so P(p) = (2, 1, ..., 1), and (M, t0) is a product of n − 2 1-dimensional and
1 2-dimensional F-manifolds. They have Euler fields, so F is holomorphic on
M −Ksing . However, codimKsing ≥ 2, so F is holomorphic on M , and the Euler
field E0 from Theorem 2.15 extends to M . ��

A generalization of the generically semisimple F-manifolds are the generically
regular F-manifolds.

Definition 2.17 [7, Definition 1.2] Let (M, ◦, e, E) be an F-manifold with Euler field.

(a) The Euler field is regular at a point t ∈ M if E ◦ |t : Tt M → Tt M is a regular
endomorphism, i.e., it has for each eigenvalue only one Jordan block.

(b) The F-manifold with Euler field (M, ◦, e, E) is called a [generically] regular
F-manifold if the Euler field is regular at all [respectively, at generic] points.

Theorem 1.3 in [7] provides a generalization of the canonical coordinates of a
semisimple F-manifold with Euler field to the case of a regular F-manifold.

3 2-dimensional F-manifolds

The 2-dimensional germs of F-manifolds were classified in [15].

Theorem 3.1 [15, Theorem 4.7] In dimension 2, (up to isomorphism) the germs of
F-manifolds fall into three types:

(a) The semisimple germ (of type A2
1). See Lemma 2.8 (c) for it and for the Euler

fields on it.
(b) Irreducible germs, which (i.e., some holomorphic representatives of them) are at

generic points semisimple. They form a series I2(m), m ∈ Z≥3. The germ of type
I2(m) can be given as follows.

(M, 0) = (C2, 0) with coordinates t = (t1, t2) and ∂k := ∂

∂tk
,

e = ∂1, ∂2 ◦ ∂2 = tm−2
2 e. (3.1)

Any Euler field takes the shape

E = (t1 + c1)∂1 + 2

m
t2∂2 for some c1 ∈ C. (3.2)

(c) An irreducible germ, such that the multiplication is everywhere irreducible. It is
called N2, and it can be given as follows.

(M, 0) = (C2, 0) with coordinates t = (t1, t2) and ∂k := ∂

∂tk
,
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e = ∂1, ∂2 ◦ ∂2 = 0. (3.3)

Any Euler field takes the shape

E = (t1 + c1)∂1 + g(t2)∂2 for some c1 ∈ C

and some function g(t2) ∈ C{t2}. (3.4)

However, in the case of N2, one has still freedom in the choice of the coordinate
t2, and one can use this to put an Euler field into a normal form. This was not studied
in [15], but in [8].

Theorem 3.2 [8, Theorem 48] (a) The automorphism group of the germ N2 of an
F-manifold is

Aut(N2) = Aut((M, 0), ◦, e, E)

= {(t1, t2) �→ (t1, f (t2)) | f (t2) ∈ C{t2} with f (0) = 0, f ′(0) �= 0}. (3.5)

(b) Let Ẽ be an Euler field onN2. Its orbit under the automorphism groupAut(N2)

contains precisely one of the Euler fields in the following list,

E = (t1 + c)∂1 + ∂2, (3.6)

E = (t1 + c)∂1, (3.7)

E = (t1 + c)∂1 + c0t2∂2, (3.8)

E = (t1 + c)∂1 + tr2 (1 + c1t
r−1
2 )∂2, , (3.9)

where c, c1 ∈ C, c0 ∈ C
∗ and r ∈ Z≥2.

N2 with the Euler field E in (3.6) is regular (Definition 2.17). N2 with the Euler
field E in (3.8) or (3.9) is generically regular. N2 with the Euler field in (3.7) is not
even generically regular.

4 Basic formulas for 3-dimensional F-manifolds

Notations 4.1 In Sects. 4 and 5, we consider a 3-dimensional complex manifold M
with a holomorphic commutative multiplication on the holomorphic tangent bundle
and with a unit field e (so e◦ = id) with Liee(◦) = 0. This last condition Liee(◦) = 0
is weaker than (and implied by) the integrability condition (1.1) of an F-manifold.
We do not suppose (1.1) at the beginning, though we suppose Liee(◦) = 0 from the
beginning.

Wework locally near a point p ∈ M and suppose to have coordinates t = (t1, t2, t3)
with ∂1 = e and (M, p) ∼= (C3, 0) and coordinate vector fields ∂ j = ∂/∂t j . Let
y = (y1, y2, y3) be the fiber coordinates on T ∗M which correspond to ∂1, ∂2, ∂3.
Then, the canonical 1-form α takes the shape α =∑3

i=1 yidti .

123



90 Page 14 of 50 A. Basalaev, C. Hertling

We write

∂2 ◦ ∂2 = ã1∂1 + ã2∂2 + a3∂3, (4.1)

∂2 ◦ ∂3 = b̃1∂1 + b2∂2 + b3∂3, (4.2)

∂3 ◦ ∂3 = c̃1∂1 + c2∂2 + c̃3∂3, (4.3)

with ã1, ã2, a3, b̃1, b2, b3, c̃1, c2, c̃3 ∈ OM . Many formulas take a simpler shape if we
rewrite the formulas above as follows,

(∂2 − b3∂1) ◦ (∂2 − b3∂1) = a1∂1 + a2(∂2 − b3∂1) + a3(∂3 − b2∂1), (4.4)

(∂2 − b3∂1) ◦ (∂3 − b2∂1) = b1∂1, (4.5)

(∂3 − b2∂1) ◦ (∂3 − b2∂1) = c1∂1 + c2(∂2 − b3∂1) + c3(∂3 − b2∂1), (4.6)

with a j , b j , c j ∈ OM . The condition Liee(◦) = 0 is equivalent to a j , b j , c j ∈
C{t2, t3}, so we suppose this from now on (and it also implies ã1, ã2, b̃1, c̃1, c̃3 ∈
C{t2, t3}). We denote

∂i a j := a ji , ∂i b j := b ji , ∂i c j := c ji , and analogously for ã j , b̃ j , c̃ j . (4.7)

If s = (s1, s2, s3) is another system of coordinates on (M, p) with t = t(s) and
s = s(t) and s(p) = 0,write ∂̃ j := ∂/∂s j for the coordinate vector fields of this system
of coordinates, and write z = (z1, z2, z3) for the fiber coordinates which correspond
to ∂̃1, ∂̃2, ∂̃3. Then

dti =
3∑

j=1

∂̃ j ti · ds j , z j =
3∑

i=1

∂̃ j ti · yi . (4.8)

We suppose ∂̃1 = e = ∂1. This is equivalent to ti (s) ∈ (δi1 · s1 + C{s2, s3}) and also
to s j (t) ∈ (δ j1 · t1 + C{t2, t3}). Often it is useful to make first a special coordinate
change of the type t2 = s2, t3 = s3, t1 = s1 + τ with τ ∈ C{t2, t3} = C{s2, s3}. Then

z1 = y1, z2 = ∂2τ · y1 + y2, z3 = ∂3τ · y1 + y3. (4.9)

Lemma 4.2 In the situation of the Notations 4.1, the multiplication is associative if
and only if

a1 = −a3c3, b1 = a3c2, c1 = −a2c2. (4.10)

Proof Straightforward calculations with (4.4)–(4.6) of both sides of the equations

(
(∂2 − b3∂1) ◦ (∂2 − b3∂1)

) ◦ (∂3 − b2∂1)

= ((∂2 − b3∂1) ◦ (∂3 − b2∂1)
) ◦ (∂2 − b3∂1),

(
(∂2 − b3∂1) ◦ (∂3 − b2∂1)

) ◦ (∂3 − b2∂1)
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= ((∂3 − b2∂1) ◦ (∂3 − b2∂1)
) ◦ (∂2 − b3∂1).

��
The next lemma starts with M as in the Notations 4.1, but with associative multipli-

cation, and tells to which of the four algebras Q(1), Q(2), Q(3) or Q(4) in the Remarks
1.1 the algebra Tt M for t ∈ M is isomorphic.

Lemma 4.3 Let (M, ◦, e) be as in the Notations 4.1 with coordinates t = (t1, t2, t3),
and suppose that the multiplication ◦ is associative. Define R1, R2, R3 ∈ C{t2, t3} by

R1 := a3c3 − 1

3
a22 , R2 := a2c2 − 1

3
c23, R3 := a3c2 − 1

9
a2c3. (4.11)

For a point t ∈ M, the following statements hold.

Tt M ∼= Q(1) ⇐⇒ (a2, a3, c2, c3)(t) = 0. (4.12)

Tt M ∼= Q(2) ⇐⇒ (R1, R2, R3)(t) = 0, (a3, c2)(t) �= 0. (4.13)

Tt M ∼= Q(3) ⇐⇒ (9R2
3 − 4R1R2)(t) = 0, (R1, R2, R3)(t) �= 0. (4.14)

Tt M ∼= Q(4) ⇐⇒ (9R2
3 − 4R1R2)(t) �= 0. (4.15)

a3(t) �= 0 and (R1, R3)(t) = 0 ⇒ R2(t) = 0. (4.16)

c2(t) �= 0 and (R2, R3)(t) = 0 ⇒ R1(t) = 0. (4.17)

Proof Define

ψ1 := ∂2 − b3∂1 − 1

3
a2∂1 and ψ2 := ∂3 − b2∂1 − 1

3
c3∂1. (4.18)

One calculates

ψ◦2
1 = 1

3
a2ψ1 + a3ψ2 − 2

3
R1∂1, (4.19)

ψ1 ◦ ψ2 = −1

3
c3ψ1 − 1

3
a2ψ2 + R3∂1, (4.20)

ψ◦2
2 = c2ψ1 + 1

3
c3ψ2 − 2

3
R2∂1, (4.21)

0 = ψ◦3
1 + R1ψ1 + (

2

9
a2R1 − a3R3)∂1, (4.22)

0 = ψ◦3
2 + R2ψ2 + (

2

9
c3R2 − c2R3)∂1. (4.23)

The lack of a quadratic term ψ◦2
1 in (4.22) shows that the sum of the three eigenvalues

of ψ1 ◦ |t : Tt M → Tt M is zero for any t ∈ M , and similarly for ψ2 ◦ |t . If Tt M
is irreducible, then ψ1 ◦ |t and ψ2 ◦ |t have only one eigenvalue, which is then zero.
Therefore, they are nilpotent, so ψ◦3

1 |t = 0 and ψ◦3
2 |t = 0, so (R1, R2, R3)(t) = 0.
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Vice versa, if (R1, R2, R3)(t) = 0, then ψ◦3
1 |t = 0 and ψ◦3

2 |t = 0, so ψ1 ◦ |t and
ψ2 ◦ |t are nilpotent, and Tt M is an irreducible algebra. We proved

Tt M ∼= Q(1) or Tt M ∼= Q(2) ⇐⇒ (R1, R2, R3)(t) = 0.

Suppose that Tt M is an irreducible algebra. If a3(t) �= 0 then

(∂3 − b2∂1)(t) = a3(t)
−1
(
(∂2 − b3∂1)

◦2 − a2(∂2 − b3∂1) − a1∂1
)
(t),

so Tt M =
2⊕

j=0

C · ∂
◦ j
2 (t), and thus Tt M ∼= Q(2),

and in the same way c2(t) �= 0 implies Tt M ∼= Q(2). The other way round, if
(a3, c2)(t) = 0, then (R1, R2)(t) = 0 implies also (a2, c3)(t) = 0, and then
Tt M ∼= Q(1). This finishes the proof of (4.12) and (4.13).

Next we want to show (4.14). (4.22) and (4.23) generalize as follows for arbitrary
ψ := λ1ψ1 + λ2ψ2 with λ1, λ2 ∈ C{t2, t3}:

0 = ψ◦3 + [R1λ
2
1 − 3R3λ1λ2 + R2λ

2
2] · ψ

+
[
(
2

9
a2R1 − a3R3)λ

3
1 − (

2

3
c3R1 − a2R3)λ

2
1λ2

−(
2

3
a2R2 − c3R3)λ1λ

2
2 + (

2

9
c3R2 − c2R3)λ

3
2

]
· ∂1. (4.24)

A lengthy calculation shows that the discriminant of (4.24) is

4(coefficient of ψ)3 + 27(coefficient of ∂1)
2

= (9R2
3 − 4R1R2) · 3(a3λ31 − a2λ

2
1λ2 + c3λ1λ

2
2 − c2λ

3
2)

2. (4.25)

First suppose Tt M ∼= Q(3). Then, ψ |t has at most two different eigenvalues, and the
discriminant in (4.25) must vanish at t . Because λ1 and λ2 ∈ C{t2, t3} are arbitrary
and (a2, a3, c2, c3) �= 0, this shows (9R2

3 − 4R1R2)(t) = 0. Vice versa, if (9R2
3 −

4R1R2)(t) = 0, then the discriminant in (4.25) vanishes at t for any ψ . Therefore,
ψ ◦ |t has at most two eigenvalues for any ψ . This shows Tt M � Q(4). Then, the
condition (R1, R2, R3) �= 0 yields Tt M ∼= Q(3). This proves (4.14).

(4.15) is a consequence of (4.12)–(4.14). The implications (4.16) and (4.17) are
trivial. ��
Lemma 4.4 Let (M, ◦, e) be as in the Notations 4.1 with coordinates t = (t1, t2, t3)
and fiber coordinates y = (y1, y2, y3) of T ∗M, and suppose that the multiplication
◦ is associative. With the result from Lemma 4.2, the ideal IM ⊂ O(T ∗M) which
defines the analytic spectrum is

IM = (y1 − 1,Y22,Y23,Y33
)
, where

Y22 := (y2 − b3)(y2 − b3) + a3c3 − a2(y2 − b3) − a3(y3 − b2),
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Y23 := (y2 − b3)(y3 − b2) − a3c2,

Y33 := (y3 − b2)(y3 − b2) + a2c2 − c2(y2 − b3) − c3(y3 − b2), (4.26)

with a j , b j , c j ∈ OM. Recall the notation in formula (4.7). Define

A2 := a2(−b22 + b33 + a23) + a3(−2c22 − c33) − a32c2 − a33c3,

Adual
2 := c3(−b33 + b22 + c32) + c2(−2a33 − a22) − c23a3 − c22a2,

A3 := −3b22 + 3b33 + a23 − c32. (4.27)

Then

{y1 − 1,Yi j } = ∂1Yi j (= 0 because of ak, bk, ck ∈ C{t2, t3}),
{Y22,Y23} = Y22[−2b22 + 2b33 + a23] + Y23[a22 + a33] + Y33[a33]

+ (y2 − b3)A2 + (y3 − b2)a3A3 + [−a3A
dual
2 − a3c3A3],

{Y33,Y23} = Y33[−2b33 + 2b22 + c32] + Y23[c33 + c22] + Y22[c22]
+ (y3 − b2)A

dual
2 − (y2 − b3)c2A3 + [−c2A2 + c2a2A3],

{Y22,Y33} = Y22[−2c22] + Y23[2(−2b22 + 2b33 + a23 − c32)]
+Y33[2a33] + (y2 − b3)[−Adual

2 − c3A3]
+ (y3 − b2)[A2 − a2A3]
+ [−c3A2 + a2A

dual
2 + (a2c3 + a3c2)A3]. (4.28)

Therefore, (M, ◦, e) is an F-manifold if and only if

(a2, a3, c2, c3) = 0, (4.29)

or (A2, A
dual
2 , A3) = 0. (4.30)

The intersection of these two cases is the case (4.29) with additionally b22 − b33 = 0.

Proof The calculation of the Poisson brackets in (4.28) is straightforward and leads to
the claimed formulas in (4.28). By Theorem 2.12, (M, ◦, e) is an F-manifold if and
only if {IM , IM } ⊂ IM , so if and only if

A2 = Adual
2 = a3A3 = c2A3 = c3A3 = a2A3 = 0. (4.31)

This leads to the two cases (4.29) and (4.30). ��
Remark 4.5 In the case (4.30), the condition A3 = 0 can be used to make a specific
special coordinate change as in (4.9), namely we choose the new coordinates s =
(s1, s2, s3) such that

t2 = s2, t3 = s3, t1 = s1 + τ, τ ∈ C{t2, t3} with
∂2τ = −b3 − 1

3
a2, ∂3τ = −b2 − 1

3
c3. (4.32)
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With the notation ∂̃ j := ∂/∂s j and with ψ1, ψ2 as in (4.18), we obtain

∂̃1 = ∂1 = e, ∂̃2 = ψ1, ∂̃3 = ψ2,

∂2 − b3∂1 = ∂̃2 + 1

3
a2∂1, ∂3 − b2∂1 = ∂̃3 + 1

3
c3∂1. (4.33)

Formula (4.24) in the proof of Lemma 4.4 tells that for any ψ = λ1ψ1 + λ2ψ2 with
λ1, λ2 ∈ C{t2, t3}, the sum of the eigenvalues of ψ◦ is zero at any t ∈ M .

If we call now the new coordinates again t = (t1, t2, t3), the new and old coefficients
a2, a3, c2, c3 coincide, and the new coefficients b(new)

2 , b(new)
3 , A(new)

2 , (Adual
2 )(new),

A(new)
3 become

b(new)
3 = −1

3
a2, b(new)

2 = −1

3
c3, A(new)

3 = 0, (4.34)

A(new)
2 = −∂3R1 + 1

3
a2c32 − 2a3c22 − a32c2, (4.35)

(Adual
2 )(new) = −∂2R2 + 1

3
a23c3 − 2a33c2 − a3c23. (4.36)

In the case (4.30), we will often, but not always, assume that the coordinates t =
(t1, t2, t3) have been chosen as in this remark.

If a germ (M, 0) of a 3-dimensional F-manifold satisfies T0M ∼= Q(2) or Q(3) or
Q(4), then life is easier than in the case T0M ∼= Q(1). The next lemma makes this
explicit in one way.

Lemma 4.6 Let ((M, 0), ◦, e) be as in the Notations 4.1 with coordinates t =
(t1, t2, t3) with t(0) = 0 and fiber coordinates (y1, y2, y3) of T ∗M, and suppose
that the multiplication ◦ is associative. Suppose T0M � Q(1). The coordinates t can
and will be chosen such that

C · ∂1|0 ⊕ C · ∂2|0 ⊕ C · ∂◦2
2 |0 = T0M . (4.37)

Then,

∂◦3
2 = g2 · ∂◦2

2 + g1 · ∂2 + g0 · ∂1, (4.38)

∂3 = h2 · ∂◦2
2 + h1 · ∂2 + h0 · ∂1, (4.39)

for suitable coefficients g2, g1, g0, h2, h1, h0 ∈ C{t2, t3}. We denote similarly to (4.7)

∂i g j =: g ji , ∂i h j =: h ji .

The ideal IM ⊂ OT ∗M which defines the analytic spectrum is

IM = (y1 − 1, Z2, Z3), where

Z2 := y32 − g2y
2
2 − g1y2 − g0,
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Z3 := y3 − h2y
2
2 − h1y2 − h0. (4.40)

Then,

{y1 − 1, Z j } = ∂1Z j (= 0 because of gi , hi ∈ C{t2, t3}),
{Z3, Z2} = Z2[2g22h2 + (3y2 + g2)h22 + 3h12]

+ y22 [∂2((g22 + 2g1)h2 + g2h1 + 3h0) − g23] (4.41)

+ y2[(2g22g1 + 2g02)h2 + (g2g1 + 3g0)h22 + g12h1
+2g1h12 − 2g2h02 − g13] (4.42)

+ [2g22g0h2 + g2g0h22 + g02h1 + 3g0h12 − g1h02 − g03]. (4.43)

Therefore ((M, 0), ◦, e) is a germ of an F-manifold if and only if the terms in square
brackets in (4.41)–(4.43) vanish.

Proof In each of the algebras Q( j) for j ∈ {2, 3, 4}, a generic element a satisfies
Q( j) = C · 1⊕ C · a ⊕ C · a◦2. One can choose the coordinates t on (M, 0) such that
∂1 = e and ∂2|0 is such a generic element. This implies (4.37)–(4.40). The calculation
of {Z3, Z2} is straightforward. ��
Corollary 4.7 Let g(0)

2 , g(0)
1 , g(0)

0 ∈ C{t2} and h2, h1, h0 ∈ C{t2, t3} be arbitrary.

There exist unique g2, g1, g0 ∈ C{t2, t3} such that g j |t3=0 = g(0)
j and such that the

3-dimensional germ (M, 0) of a manifold with multiplication ◦ on T M defined by
∂1 = e, (4.38) and (4.39) is a germ of an F-manifold.

Proof The Cauchy–Kowalevski theorem in the following form [12, (1.31), (1.40),
(1.41)] will be applied (there the setting is real analytic, but the proofs and state-
ments hold also in the complex analytic setting): Given N ∈ N and matrices
Ai , B ∈ MN×N (C{s1, ..., sm, y, x1, ..., xN }), there exists a unique vector

� ∈ MN×1(C{s1, ..., sm, y})

with

∂�

∂ y
=

m∑

i=1

Ai (s, y,�)
∂�

∂si
+ B(s, y,�),

�(s, 0) = 0. (4.44)

In our situation y = t3, (s1, ..., sm) = (t2), � = (g2 − g(0)
2 , g1 − g(0)

1 , g0 − g(0)
0 )t , and

A1, A2, A3 and B come from the terms in (4.41)–(4.43) without g23, g13, g03, more
precisely, (4.44) is here

∂3

⎛

⎝
g2
g1
g0

⎞

⎠ =

⎛

⎜
⎜
⎝

∂2((g22 + 2g1)h2 + g2h1 + 3h0)
(2g22g1 + 2g02)h2 + (g2g1 + 3g0)h22 + g12h1

+2g1h12 − 2g2h02
2g22g0h2 + g2g0h22 + g02h1 + 3g0h12 − g1h02

⎞

⎟
⎟
⎠ . (4.45)
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The Cauchy–Kowalevski theorem tells that there exist unique g2, g1, g0 ∈ C{t2, t3}
such that g j |t3=0 = g(0)

j and such that the terms in (4.41)–(4.43) vanish. The multipli-
cation on T M which is defined by (4.38) and (4.39), is automatically associative. The
condition {IM , IM } ⊂ IM is equivalent to the vanishing of the terms in (4.41)–(4.43).
By Theorem 2.12, ((M, 0), ◦, e) is an F-manifold if and only if {IM , IM } ⊂ IM . ��
Remarks 4.8 (i) The corollarymakes it easy to construct a 3-dimensional germ (M, 0)

of an F-manifold. Arbitrary initial data g(0)
2 , g(0)

1 , g(0)
0 ∈ C{t2} and h2, h1, h0 ∈

C{t2, t3} give a unique germ of an F-manifold. However, this approach does not
tell easily which properties such constructed F-manifolds have, which families
exist and what are their parameters.

(ii) The condition A3 = 0 in Lemma 4.4 corresponds to the first line of equation
(4.45). We can make a coordinate change as in Remark 4.5. In the case of an
F-manifold in Lemma 4.6, we can choose new coordinates s = (s1, s2, s3) such
that

t2 = s2, t3 = s3, t1 = s1 + τ with τ ∈ C{t2, t3} with
∂2τ = −1

3
g2, ∂3τ = −1

3
((g22 + 2g1)h2 + g2h1 + 3h0),

∂̃2 = ∂2 + ∂2τ · ∂1, ∂̃3 = ∂3 + ∂3τ · ∂1. (4.46)

If we now call the new coordinates again t = (t1, t2, t3), the new coefficients
g(new)
j and h(new)

j satisfy g(new)
2 = 0 and 2g(new)

1 h(new)
2 + 3h(new)

0 = 0. This says
that the sumof the eigenvalues of ∂2◦ is zero, and that the sumof the eigenvalues of
∂3◦ is 0. The last statement follows from the facts that the sum of the eigenvalues
of h0∂1◦ is 3h0 and that the sum of the eigenvalues of h2∂◦2

2 ◦ is 2h2g1, because
λ21+λ22+λ23 = −2(λ1λ2+λ1λ3+λ2λ3) for anyλ1, λ2, λ3 ∈ Cwith

∑3
i=1 λi = 0.

5 3-dimensional not generically semisimple F-manifolds

We want to classify all 3-dimensional germs of F-manifolds. The reducible ones are
products of 1- and 2-dimensional germs of F-manifolds by Theorem 2.5. Those are
classified in Lemma 2.6 and Theorem 3.1. The 3-dimensional reducible germs of F-
manifolds are A3

1, A1 I2(m) form ≥ 3 and A1N2, and the Euler fields are as described
in Theorem 2.5, Lemma 2.6 and Theorem 3.2. It remains to classify the irreducible
germs (M, 0) of F-manifolds, i.e., those where T0M is irreducible.We start with those
with Tt M ∼= Q(1) for any t ∈ M .

Theorem 5.1 Any 3-dimensional germ (M, 0) of an F-manifold with Tt M ∼= Q(1) for
all t ∈ M can be given as follows:

(M, 0) = (C3, 0) with coordinates t = (t1, t2, t3),

e = ∂1, ∂◦2
2 = ∂2 ◦ (∂3 − b2∂1) = (∂3 − b2∂1)

◦2 = 0,

where b2 is arbitrary in t2C{t2, t3}. (5.1)
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The ideal (∂2b2) ⊂ C{t2, t3} is up to coordinate changes an invariant of the germ of
an F-manifold. A vector field E = ε1∂1 + ε2∂2 + ε2∂3 with ε1, ε2, ε3 ∈ C{t1, t2, t3}
is an Euler field if and only if ε1 ∈ t1 + C{t2, t3}, ε2, ε3 ∈ C{t2, t3} and

∂2(ε1) = −b2∂2(ε2), ∂3(ε1) = −ε2∂2(b2) − ∂3(ε3b2) + b2. (5.2)

Proof Let ((M, 0), ◦, e) be a germ of an F-manifold with Tt M ∼= Q(1) for any t ∈ M .
We choose coordinates t = (t1, t2, t3) with t(0) = 0 and use the Notations 4.1
and Lemma 4.2. By Lemma 4.3, (a3, a2, c3, c2) = 0. We are in the case (4.29) in
Lemma 4.4. The F-manifold condition gives no constraint on b2, b3 ∈ C{t2, t3}.

We make a specific special coordinate change as in (4.9), namely we choose the
new coordinates s = (s1, s2, s3) such that

t2 = s2, t3 = s3, t1 = s1 + τ with τ ∈ C{t2, t3} with
∂2τ = −b3, ∂3τ + b2 ∈ t2C{t2, t3}. (5.3)

Then τ exists and is unique. With the notation ∂̃ j := ∂/∂s j we obtain

∂̃1 = ∂1 = e, ∂̃2 = ∂2 − b3∂1, ∂̃3 = ∂3 + ∂3τ · ∂1,

∂3 − b2∂1 = ∂̃3 − (∂3τ + b2∂1). (5.4)

If we call now the new coordinates again t = (t1, t2, t3), the new coefficients b(new)
2

and b(new)
3 are

b(new)
3 = 0 and b(new)

2 = ∂3τ + b2 ∈ t2C{t2, t3}.

Now we want to show that the ideal (∂2b2) ⊂ C{t2, t3} is up to coordinate changes
an invariant of the germ of an F-manifold.We consider a coordinate change as in (4.8)
with z1 = y1, which implies ∂̃1t1 = 1 and ∂̃1t2 = ∂̃1t3 = 0. Then

z2 = ∂̃2t1 · y1 + ∂̃2t2 · y2 + ∂̃2t3 · y3,
z3 = ∂̃3t1 · y1 + ∂̃3t2 · y2 + ∂̃3t3 · y3.

z2 − (̃∂2t1 + ∂̃2t3 · b2)y1 and z3 − (̃∂3t1 + ∂̃3t3 · b2)y1 are nilpotent inOT ∗M/IM |LM .
We need z2 to be nilpotent, so the coordinate change satisfies

∂̃2t1 = −∂̃2t3 · b2.

And then

b̃2 := ∂̃3t1 + ∂̃3t3 · b2.

takes the role of b2 for the new coordinates. A short calculation shows

∂̃2b̃2 = (∂2b2)(t(s)) · (̃∂3t3 · ∂̃2t2 − ∂̃2t3 · ∂̃3t2).
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The second factor is a unit. Therefore, the ideal (∂2b2) is up to coordinate changes an
invariant of the germ (M, 0) of the F-manifold.

The constraint (5.2) for an Euler field E = ε1∂1 + ε2∂2 + ε3∂3 follows straightfor-
wardly from the explicit version

0 = [E, ∂i ◦ ∂ j ] − [E, ∂i ] ◦ ∂ j − [E, ∂ j ] ◦ ∂i − ∂i ◦ ∂ j (5.5)

for i, j ∈ {1, 2, 3}of the conditionLieE (◦) = 1·◦ (wherewe assume themultiplication
to be as in (5.1)). ��
Remarks 5.2 (i) The ideal (∂2b2) ⊂ C{t2, t3} up to coordinate changes is a rich

invariant. It shows that there is a functional parameter in the family of 3-
dimensional germs of F-manifolds with Tt M ∼= Q(1) for all t ∈ M .

(ii) Though all these germs except the one with b2 = 0 have the unpleasant property
{√IM ,

√
IM } �⊂ √

IM : Here
√
IM = (y1 − 1, y2, y3 − b2} and

{y2, y3 − b2} = −∂2(b2),

and this is in
√
IM only if b2 = 0.

(iii) Therefore, the germ of an F-manifold with b2 = 0 is the most important one of
those in Theorem 5.1. In the case b2 = 0, the compatibility condition (5.2) for
the coefficients of the Euler field says ε1 ∈ t1 + C. So, then ε1 ∈ t1 + C, and
ε2, ε3 ∈ C{t2, t3} are arbitrary.

(iv) Theorem 3.2 improved the classification of the Euler fields forN2 in Theorem 3.1
(c) by exploiting coordinate changes which do not change the multiplication. We
expect that a similar reduction of Euler fields to normal forms is possible for the
case b2 = 0 in Theorem 5.1. However, we do not pursue it here.

Next we classify the irreducible germs (M, 0) of F-manifolds with Tt M ∼= Q(2) for
generic (or all) t ∈ M . It is also surprisingly rich. There is also a functional parameter.

Theorem 5.3 The following three constructions give (up to isomorphism) all germs
(M, 0) of 3-dimensional F-manifolds with Tt M ∼= Q(2) for generic t ∈ M. The three
constructions do not overlap. m ⊂ C{t2, t3} denotes the maximal ideal.
(a) Up to isomorphism, there is only one germ of a 3-dimensional F-manifold with

Tt M ∼= Q(2) for all t ∈ M. In suitable coordinates t = (t1, t2, t3), it looks as
follows.

(M, 0) = (C3, 0), e = ∂1, ∂◦2
2 = ∂3, ∂2 ◦ ∂3 = ∂◦2

3 = 0. (5.6)

An Euler field is a vector field of the shape

E = (t1 + c1)∂1 + ε2∂2 + (ε3,0 + t3(2∂2ε2 − 1))∂3,

with c1 ∈ C, ε2, ε3,0 ∈ C{t2}. (5.7)

123



3-dimensional F-manifolds Page 23 of 50 90

(b) Consider an arbitrary f ∈ m − {0}. Then, (M, 0) = (C3, 0) with e = ∂1 and
with the multiplication given by

∂◦2
2 = f · ∂3, ∂2 ◦ ∂3 = ∂◦2

3 = 0 (5.8)

is an F-manifold with Tt M ∼= Q(2) for generic t ∈ M. Here C × f −1(0) = {t ∈
M | Tt M ∼= Q(1)}. The ideal ( f ) ⊂ {m} is up to coordinate changes an invariant
of the germ of an F-manifold. An Euler field is a vector field of the shape

E = (t1 + c1)∂1 + ε2∂2 + ε3∂3, (5.9)

with c1 ∈ C, ε2 ∈ C{t2}, ε3 ∈ C{t2, t3}, and

0 = (ε2∂2 + ε3∂3)( f ) + f (2∂2(ε2) − ∂3(ε3) − 1). (5.10)

(c) Consider arbitrary f1, f2 ∈ m with gcd( f1, f2) = 1 and an arbitrary h ∈
C{t2, t3} − {0}. Define for (M, 0) = (C3, 0) the vector field σ := h f2∂2 + h f1∂3.
Then, (M, 0) with e = ∂1 and with the multiplication given by

∂◦2
2 = f 21 σ, ∂2 ◦ ∂3 = − f1 f2σ, ∂◦2

3 = f 22 σ, (5.11)

is an F-manifold with Tt M ∼= Q(2) for generic t ∈ M. Here {t ∈ M | Tt M ∼=
Q(1)} is equal to C × h−1(0) if h ∈ m, and equal to C × {0} if h(0) �= 0. Here,
∂2 ◦ σ = ∂3 ◦ σ = 0. The ideals ( f1, f2) ⊂ m and (h) ⊂ C{t2, t3} are up to
coordinate changes invariants of the germ of an F-manifold. An Euler field is a
vector field of the shape

E = (t1 + c1)∂1 + ε2∂2 + ε3∂3, (5.12)

with c1 ∈ C, ε2, ε3 ∈ C{t2, t3}, and

0 = 3h(ε2∂2 + ε3∂3)( f1) + f1(ε2∂2 + ε3∂3)(h)

+2 f1∂2(ε2) − 3 f2∂2(ε3) − f1∂3(ε3) − f1, (5.13)

0 = 3h(ε2∂2 + ε3∂3)( f2) + f2(ε2∂2 + ε3∂3)(h)

+2 f2∂3(ε3) − 3 f1∂3(ε2) − f2∂2(ε2) − f2. (5.14)

Proof Let ((M, 0), ◦, e) be a germ of an F-manifold with Tt M ∼= Q(2) for generic
t ∈ M . We choose coordinates t = (t1, t2, t3)with t(0) = 0. and use the Notations 4.1
and Lemma 4.2. By Lemma 4.3, (R1, R2, R3) = 0, but (a3, a2, c3, c2) �= 0. We are
in the case (4.30) in Lemma 4.4.

The coordinates can and will be chosen as in Remark 4.5. Therefore for ∂2◦ as well
as for ∂3◦, the sum of the eigenvalues is 0. As each algebra Tt M is irreducible, in both
cases there is only one eigenvalue. Therefore, it is 0, and ∂2◦ and ∂3◦ are nilpotent.

For generic t , Tt M ∼= Q(2), and at least one of ∂2|t and ∂3|t is not in the (1-
dimensional) socle of the algebra Tt M . Suppose ∂2|t is not in the socle. Then, ∂2|t ◦
∂2|t �= 0, but it is in the socle. Therefore, the section ∂2◦∂2 is �= 0, and for any t ∈ M its
value is in the socle of Tt M (remark that 0 is in the socle). Write ∂2 ◦∂2 = f̃2∂2+ f̃1∂3
with f̃1, f̃2 ∈ C{t2, t3}.
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Recall that C{t2, t3} is a factorial ring (e.g., [14, Theorem 1.16]). Divide out joint
factors of f̃1 and f̃2 and obtain a section ρ := f2∂2 + f1∂3 with gcd( f1, f2) = 1.
Then for each t ∈ M−C×{0}, gcd( f1, f2) = 1 implies that ρ|t �= 0, and ρ|t is in the
socle of Tt M . Therefore, any section ρ̃ with ρ̃|t in the socle for t ∈ M − C × {0} has
the shape ρ̃ = g ·ρ with g ∈ OM−C×{0} = OM . Especially ∂◦2

2 , ∂2 ◦∂3, ∂
◦2
3 ∈ OM ·ρ.

Now we consider two cases. In the 1st case, ( f1, f2)(0) �= (0, 0), and then we
suppose first f1(0) �= 0, and then by multiplying ρ with a unit, we can arrange
f1 = 1. In the 2nd case ( f1, f2)(0) = (0, 0).
1st case, f1 = 1: We make a coordinate change t = t(s) with t1 = s1, t3 = s3 and

t2 = t2(s2, s3) such that ∂̃3t2(s) = f2(t(s)). Then

∂̃2 = ∂̃2t2 · ∂2 + ∂̃2t3 · ∂3 = ∂̃2t2 · ∂2,

∂̃3 = ∂̃3t2 · ∂2 + ∂̃3t3 · ∂3 = f2(t(s)) · ∂2 + ∂3 = ρ(t(s)).

We call the new coordinates again t . Then, ∂3 = ρ. This shows (5.8) for a function
f ∈ C{t2, t3}.
In the case f (0) �= 0, a coordinate change t = t(s) with t1 = s1, t2 = s2 and

t3 = t3(s2, s3) such that ∂̃3t3 = f (t(s)) exists and gives

∂̃2 = ∂2 + ∂̃2t3 · ∂3, ∂̃3 = ∂̃3t3 · ∂3 with ∂̃3t3 ∈ C{s2, s3}∗,
∂̃◦2
2 = ∂◦2

2 = f (t(s)) · ∂3 = f (t(s))(̃∂3t3)
−1 · ∂̃3 = ∂̃3,

so we obtain (5.6).
In order to show that the ideal ( f ) up to coordinate changes is an invariant of the

germ (M, 0) of an F-manifold, we have to consider all coordinate changes which
respect the shape of (5.8). These are coordinate changes such that ∂̃3 is a multiple
by a unit of ∂3, and ∂̃2◦ is still nilpotent. Thus, t1 = s1 and t2 = t2(s2, s3) such that
∂̃3t2 = 0, so t2 = t2(s2). Then, ∂̃2t2 and ∂̃3t3 are units in C{t2, t3}, and

∂̃2 = ∂̃2t2 · ∂2 + ∂̃2t3 · ∂3, ∂̃3 = ∂̃3t3 · ∂3,

∂̃◦2
2 = (̃∂2t2)

2(̃∂3t3)
−1 · f · ∂̃3, so f̃ = (̃∂2t2)

2(̃∂3t3)
−1 · f (t(s)).

f and f̃ generate the same ideal up to a coordinate change.
Now let (M, 0) be the germ of a manifold with the multiplication in (5.8) for some

f ∈ C{t2, t3}−{0}on T M .Wehave to show that it is an F-manifold.With the notations
in (4.4)–(4.6), we have a3 = f and a2 = b2 = b3 = c2 = c3 = a1 = b1 = c1 and
therefore A2 = Adual

2 = A3 = 0 in (4.27). Lemma 4.3 applies and shows that
M is an F-manifold. Also Lemma 4.4 applies, the vanishing of R1, R2, R3 and the
nonvanishing of a3 = f show Tt M ∼= Q(2) for generic t ∈ M .

For the shape of the Euler field E = ε1∂1 + ε2∂2 + ε3∂3, one has to study the
explicit version (5.5) of the condition LieE (◦) = 1 · ◦. The case (i, j) = (1, 1) gives
[e, E] = e and ε j ∈ δ j1 + C{t2, t3}. The cases (i, j) ∈ {(2, 1), (3, 1)} give nothing.
The case (i, j) = (3, 3) gives ∂3ε1 = 0. The case (i, j) = (2, 3) gives this again and
additionally ∂2ε1 + f ∂3ε2 = 0. The case (i, j) = (2, 2) gives 2∂2ε1 − f ∂3ε2 = 0 and
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(5.10). We obtain (5.9) and (5.10). The case f = 1 specializes this to (5.7). The parts
(a) and (b) are proved.

2nd case, f1, f2 ∈ m: We have

∂◦2
2 = g1ρ, ∂2 ◦ ∂3 = g2ρ, ∂◦2

3 = g3ρ for some g1, g2, g3 ∈ C{t2, t3}.
One calculates

0 = ∂2 ◦ ρ = ( f2g1 + f1g2)ρ, so 0 = f2g1 + f1g2,

0 = ∂3 ◦ ρ = ( f2g2 + f1g3)ρ, so 0 = f2g2 + f1g3.

As C{t2, t3} is a factorial ring and gcd( f1, f2) = 1, this implies

(g1, g2, g3) = (h f 21 ,−h f1 f2, h f
2
2 ) for some h ∈ C{t2, t3}.

We define σ := h · ρ and obtain the multiplication in (5.11).
In order to show that the ideals ( f1, f2) and (h) up to coordinate changes are

invariants of the germM of an F-manifold, we have to consider all coordinate changes
which respect the shape of (5.11). The arguments above show that it is sufficient that
∂̃2◦ and ∂̃3◦ are nilpotent. Therefore, we consider a coordinate change which satisfies
t1 = s1 and (t2, t3) = (t2(s2, s3), t3(s2, s3)). Then,

(unit)( f2∂2 + f1∂3) = (unit) · ρ(t(s)) = ρ̃ = f̃2∂̃2 + f̃1∂̃3
= ( f̃2∂̃2t2 + f̃1∂̃3t2)∂2 + ( f̃2∂̃2t3 + f̃1∂̃3t3)∂3.

The equality ( f2(t(s)), f1(t(s))) = ( f̃2, f̃1) of ideals follows. Consider the set {g ∈
C{t2, t3} | ∃ a vector field X with [e, X ] = 0 and X ◦ nilpotent and X◦2 = gρ}. The
function h is a greatest common divisor of all functions g in this set. This property
is coordinate independent. Therefore, the ideal (h) up to coordinate changes is an
invariant of the germ (M, 0) of an F-manifold.

Now let (M, 0) be the germ of a manifold with the multiplication in (5.11) for
some f1, f2 ∈ m with gcd( f1, f2) = 1 and for some h ∈ C{t2, t3}. We have to show
that it is an F-manifold. One calculates immediately ∂2 ◦ σ = 0 and ∂3 ◦ σ = 0, so
the section σ is everywhere in the socle. Because of this and (5.11), ∂2◦ and ∂3◦ are
nilpotent. Calculation and comparison with (4.19)–(4.21) and Remark 4.5 give

∂◦2
2 = h f 21 f2∂2 + h f 31 ∂3 = 1

3
a2∂2 + a3∂3,

∂2 ◦ ∂3 = −h f1 f
2
2 ∂2 − h f 21 f2∂3 = −1

3
c3∂2 − 1

3
a2∂3,

∂◦2
2 = h f 32 ∂2 + h f1 f

2
2 ∂3 = c2∂2 + 1

3
c3∂3,

so

a2 a3 b2 = − 1
3c3 b3 = − 1

3a2 c2 c3
3h f 21 f2 h f 31 −h f1 f 22 −h f 21 f2 h f 32 3h f1 f 22

(5.15)

123



90 Page 26 of 50 A. Basalaev, C. Hertling

Easy calculations show A2 = Adual
2 = A3 = 0 for A2, Adual

2 and A3 as in Lemma 4.3
(or, better, inRemark 4.5). Lemma4.3 applies and shows thatM is an F-manifold.Also
Lemma 4.4 applies, the vanishing of R1, R2, R3 and the nonvanishing of a2, a3, c2, c3
show Tt M ∼= Q(2) for generic t ∈ M .

For the shape of the Euler field E = ε1∂1 + ε2∂2 + ε3∂3, one has to study the
explicit version (5.5) of the condition LieE (◦) = 1 · ◦. The case (i, j) = (1, 1) gives
[e, E] = e and ε j ∈ j1 +C{t2, t3}. The cases (i, j) ∈ {(2, 1), (3, 1)} give nothing. The
cases (i, j) ∈ {(2, 2), (2, 3), (3, 3)} give with some tedious calculations ∂2ε1 = 0,
∂3ε1 = 0, (5.13) and (5.14). Part (c) proved. ��

Remarks 5.4 (i) The ideal ( f ) in part (b) and the ideals ( f1, f2) and (h) in part
(c) up to coordinate changes are rich invariants of the germ of an F-manifold.
They show that there is a functional parameter in the family of 3-dimensional
germs of F-manifolds with Tt M ∼= Q(2) for generic t ∈ M if T0M ∼= Q(1).
This is surprising, as part (a) says that the F-manifold is near points t ∈ M with
Tt M ∼= Q(2) unique up to isomorphism.

(ii) If in part (c) h is chosen inm, then h has a clear meaning, namely C × h−1(0) =
{t ∈ M | Tt M ∼= Q(1)}. The meaning of the ideal ( f1, f2) is more subtle. It tells
how the rank1bundle of socles of the algebras Tt M onM−{t ∈ M | Tt M ∼= Q(1)}
approaches 0.

(iii) The case h(0) �= 0 in Theorem 5.3 (c) is the only case in Sects. 5 to 7 of
an irreducible germ (M, 0) of an F-manifold where the type of T0M arises in
codimension 2. In all other cases, it arises in codimension 1 or is equal to the
generic type.

(iv) In all three parts of Theorem 5.3, IM ⊃ (y32 , y
2
2 y3, y2y

2
3 , y

3
3) and

√
IM = (y1 −

1, y2, y3), so here {√IM ,
√
IM } ⊂ √

IM .

(v) The F-manifold in part (a) with an Euler field E = (t1 + c1)∂1 + ε2∂2 + ε3∂3 is a
regular F-manifold if and only if ε2(0) �= 0. In fact, up to the choice of c1 ∈ C,
there is only one regular germ of a 3-dimensional and everywhere irreducible F-
manifold [7, Theorem 1.3]. A germ (M, 0) of an F-manifold with T0M ∼= Q(1)

has no regular Euler field, because the socle of Q(1) has dimension 2.

Next we classify the irreducible germs (M, 0) of F-manifolds with T0M ∼= Q(2)

and Tt M ∼= Q(3) for generic t ∈ M .

Theorem 5.5 The irreducible germs (M, 0) of F-manifolds with T0M ∼= Q(2) and
Tt M ∼= Q(3) for generic t ∈ M form a family with the only parameter p ∈ Z≥2. For
fixed p ∈ Z≥2, the germ of the F-manifold can be given as follows:

(M, 0) = (C3, 0) with coordinates t = (t1, t2, t3), e = ∂1,

∂◦2
2 = ϕ2 · ∂3, ∂2 ◦ ∂3 = t p−2

2 ϕ · ∂3, ∂◦2
3 = t2p−2

2 · ∂3,

with ϕ := p + (2p − 2)t p−2
2 t3. (5.16)

The caustic is K = {t ∈ M | t2 = 0} = {t ∈ M | Tt M ∼= Q(2)}. A vector field
E = ε1∂1 +ε2∂2 +ε3∂3 is an Euler field if and only if ε1, ε2 and ε3 have the following
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shape, here c1 ∈ C and ε3,0 ∈ C{t2} are arbitrary,

ε1 = t1 + c1,

ε2 = t2 p
−1(1 − t p−2

2 ε3,0),

ε3 = ε3,0 + t3 p
−1(2 − p + (2p − 2)t p−2

2 ε3,0). (5.17)

The following Remarks 5.6 make the geometry of the F-manifolds in Theorem 5.5
more transparent. The proof of Theorem 5.5 will be given after these remarks and will
contain the proof of these remarks.

Remarks 5.6 Let ((M, 0), ◦, e) be one of the germs of F-manifolds in Theorem5.5.On
M−K, the bundle T M of algebras decomposes into the direct sum T M |M−K = TA1⊕
TN2 of bundles of algebras isomorphic to C, respectively, to C[x]/(x2). Write σ |A1 ,
respectively, σ |N2 for the summands of a section σ of T M |M−K in TA1 , respectively,
in TN2 . Then,

(∂2|N2)
◦2 = 0, ∂3|N2 = 0, (5.18)

∂2|A1 = ∂2 f · e|A1 , ∂3|A1 = ∂3 f · e|A1 , (5.19)

with f = t p2 + t2p−2
2 t3,

so ∂2 f = t p−1
2 ϕ, ∂3 f = t2p−2

2 . (5.20)

Also

∂◦3
2 = ∂2 f · ∂◦2

2 , (5.21)

∂3 = h2 · ∂◦2
2 with h2 = ϕ−2. (5.22)

The Euler field has freedom in ε3,0 ∈ C{t2}. This is not obvious, but it is also not
surprising, as at t ∈ M −K the germ of the F-manifold is A1N2, and the Euler fields
ofN2 have a similar freedom, see (3.4). Though in the case ofN2, one can normalize
the Euler fields by changing the variable t2, see Theorem 3.2. This is not possible here.
The functional freedom in ε3,0 ∈ C{t2} cannot be get rid of.
Proof of Theorem 5.5 and the Remarks 5.6: Let (M, 0) be a germ of a 3-dimensional F-
manifold with T0M ∼= Q(2) and Tt M ∼= Q(3) for generic t ∈ M . Then the causticK is
a hypersurface andK = {t ∈ M | Tt M ∼= Q(2)} and M −K = {t ∈ M | Tt M ∼= Q(3)}.
The bundle T M |M−K decomposes into TA1 ⊕ TN2 as described in the Remarks 5.6,
and we write σ = σ |A1 + σ |N2 for the summands of a section σ of T M |M−K.

Because of T0M ∼= Q(2), Lemma 4.6 applies. We choose the coordinates t as
in this lemma, so with (4.37)–(4.43) for suitable coefficients g2, g1, g0, h2, h1, h0 ∈
C{t2, t3}. Letm ⊂ T0M be the maximal ideal in T0M . Refining (4.37), we can choose
the coordinates t even such that

C · ∂2|0 ⊕ C · ∂◦2
2 |0 = m ⊂ T0M,

C · ∂3|0 = C · ∂◦2
2 = m3 ⊂ T0M (5.23)
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holds. Then, h2(0) �= 0 (and also g2(0) = g1(0) = g0(0) = h1(0) = h0(0) = 0). In
the following, five coordinate changes will be made in order to reach the normal form
in Theorem 5.5.

The eigenvalue of ∂2|N2◦ is a holomorphic function on M − K which extends
continuously and thus holomorphically to M . It can be written as t1 + λ with λ ∈
C{t2, t3}. We make a special coordinate change as in (4.9), namely we choose the new
coordinates s = (s1, s2, s3) such that

t2 = s2, t3 = s3, t1 = s1 + τ with τ ∈ C{t2, t3} = C{s2, s3}
such that ∂2τ = −λ ∈ C{t2, t3}.

We obtain

∂̃1 = ∂1, ∂̃2 = ∂2 + ∂2τ · ∂1 = ∂2 − λ · ∂1, ∂̃3 = ∂2 + ∂3τ · ∂1.

We call the new coordinates again t and denote also the new coefficients again as
g j , h j . Now ∂2|N2◦ is nilpotent. This implies g1 = g0 = 0 and ∂2|A1 = g2 · e|A1 .

The term in square brackets in line (4.42) in Lemma 4.6 vanishes because (M, 0) is
an F-manifold. Because of g1 = g0 = 0, it boils down to g2h02 = 0. Though g2 �= 0
because Tt M ∼= Q(3) for generic t . Therefore, ∂2h0 = 0. We make again a special
coordinate change as in (4.9), now with τ ∈ C{t3} such that ∂3τ = −h0. Then,

∂̃1 = ∂1, ∂̃2 = ∂2, ∂̃3 = ∂3 + ∂3τ · ∂1 = ∂3 − h0∂1.

We call the new coordinates again t and denote also the new coefficients again as
g j , h j . Now g1 = g0 = h0 = 0.

We make a coordinate change t = t(s) with t1 = s1, t3 = s3 and t2 = t2(s) with
∂̃3t2(s) = −h1(t(s)). Then,

∂̃1 = ∂1, ∂̃2 = ∂̃2t2 · ∂2, ∂̃3 = ∂̃3t2 · ∂2 + ∂̃3t3 · ∂3 = ∂3 − h1∂2.

Here, ∂̃2t2 is a unit. We call the new coordinates again t and denote also the new
coefficients as g j , h j . Now g1 = g0 = h0 = h1 = 0 and ∂3 = h2∂◦2

2 . And now
∂3|N2 = 0 because ∂2|N2◦ is nilpotent.

The term in square brackets in line (4.41) in Lemma 4.6 vanishes. Here, it is
∂2(h2g22) − ∂3g2. Therefore, a function f ∈ C{t2, t3} with

∂2 f = g2 and ∂3 f = h2g
2
2 = h2(∂2 f )

2 (5.24)

exists. Here, f |t3=0 has a zero of an order p ∈ Z≥2 because g2(0) = 0.
A coordinate change t = t(s) with t1 = s1, t3 = s3 and t2 = t2(s2) ∈ C{t2} exists

such that (after calling the new coordinates again t)

f |t3=0 = t p2 , so f = t p2 +
∑

k≥1

fk t
k
3 with fk ∈ C{t2}.
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The equation ∂3 f = h2(∂2 f )2 and h2(0) �= 0 and p ≥ 2 imply inductively fk ∈
t2p−2
2 C{t2} for all k ≥ 1 and especially f1 ∈ t2p−2

2 · C{t2}∗. Therefore

f = t p2

(
1 + t p−2

2 t3 · (a unit in C{t2}
)
.

We can and will change the coordinate t3 such that f = t p2 (1 + t p−2
2 t3). Then,

g2 = ∂2 f = t p−1
2 (p + (2p − 2)t p−2

2 t3) = t p−1
2 ϕ and ∂3 f = t2p−2

2 . Now h2 is
determined by ∂3 f = h2(∂2 f )2 and is h2 = ϕ−2.

Now all statements in the Remarks 5.6 except those on the Euler field are shown.
The terms in the square brackets in (4.41)–(4.43) vanish. Therefore, we really have an
F-manifold. The multiplication is as in (5.16), because

∂◦2
2 = h−1

2 ∂3 = ϕ2∂3,

∂◦3
2 = g2∂

◦2
2 = t p−1

2 ϕ∂◦2
2 ,

∂2 ◦ ∂3 = h2∂
◦3
2 = h2g2∂

◦2
2 = g2∂3 = t p−1

2 ϕ∂3,

∂◦2
3 = h22∂

◦4
2 = h22g

2
2∂

◦2
2 = h2g

2
2∂3 = t2p−2

2 ∂3.

It remains to show the shape (5.17) of the Euler field E = ε1∂1 + ε2∂2 + ε3∂3.
One has to study the explicit version (5.5) of the condition LieE (◦) = 1 · ◦. The
case (i, j) = (1, 1) just gives [e, E] = e and thus ε j ∈ δ1 j + C{t2, t3}. The cases
(i, j) ∈ {(2, 1), (3, 1)} give nothing. The case (i, j) = (3, 3) leads to ∂3(ε1) = 0,
∂3ε2 = 0 and ε2 = (2p − 2)−1t2(1 − ∂3ε3). The cases (i, j) ∈ {(2, 2), (2, 3)}
lead to ∂2ε1 = 0 and to equations which allow to relate ε3,0 and ε3,1 ∈ C{t2} in
ε3 = ε3,0 + t3ε3,1. At the end one obtains (5.17). We leave the details to the reader.

��
We do not have a classification of the irreducible germs (M, 0) of F-manifolds

with T0M ∼= Q(1) and Tt M ∼= Q(3) for generic t ∈ M . The family of examples in the
next lemma shows that such germs exist.

Lemma 5.7 Fix a number p ∈ Z≥2. The manifold M = C
3 with coordinates t =

(t1, t2, t3) and with the multiplication on T M given by e = ∂1 and

∂◦2
2 = pt p−1

2 · ∂2, ∂2 ◦ ∂3 = 0, ∂◦2
3 = 0 (5.25)

is an F-manifold with caustic

K = {t ∈ M | t2 = 0} = {t ∈ M | Tt M ∼= Q(1)} and
M − K = {t ∈ M | Tt M ∼= Q(3)}. (5.26)

A vector field E is an Euler field if and only if

E = (t1 + c1)∂1 + 1

p
t2∂2 + ε3∂3, with c1 ∈ C, ε3 ∈ C{t3}. (5.27)
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Proof In the Notations 4.1, b2 = b3 = a3 = c2 = c3 = 0, a2 = t p−1
2 . Therefore,

A2 = Adual
2 = A3 = 0 in Lemma 4.4, and we have an F-manifold. The statement on

K is clear. The analytic spectrum is

LM =
{
(y, t) ∈ T ∗M | y1 = 1, y2(y2 − pt p−1

2 ) = y2y3 = y23 = 0
}

. (5.28)

The set which underlies LM is Lred
M = {(y, t) ∈ T ∗M | (y1, y2, y3) = (1, 0, 0)} ∪

{(y, t) ∈ T ∗M | (y1, y2, y3) = (1, pt p−1
2 , 0)}, so it has two components which meet

over K. Therefore, Tt M ∼= Q(3) for t ∈ M − K. For the proof of (5.27), one has to
study the explicit version (5.5) of the condition LieE (◦) = 1 · ◦. We leave the details
to the reader. ��

6 Examples of 3-dimensional generically semisimple F-manifolds

A partial classification of irreducible germs (M, 0) of 3-dimensional generically
semisimple F-manifolds was undertaken in [15, ch. 5.5], there in Theorems 5.29
and 5.30. Theorem 5.29 in [15] gave basic facts on both cases, the case T0M ∼= Q(2)

and the case T0M ∼= Q(1). Theorem 5.30 classified completely those germs where
T0M ∼= Q(2) and where the germ (LM , λ) of the analytic spectrum has 3 components.

Below we first describe in the Remarks 6.1 the strategy of the classification results
in this section and the next section. The Examples 6.2 rewrite the three distinguished
F-manifolds A3, B3 and H3. Theorem 6.3 is Theorem 5.29 from [15]. Lemma 6.4
and Lemma 6.5 give examples (M, 0) of generically semisimple F-manifolds with
T0M ∼= Q(1).We do not have a classification of all such germs. Lemma 6.4 is Theorem
5.32 from [15].

Remarks 6.1 (i) Let (M, 0) be an irreducible germ of a 3-dimensional generically
semisimple F-manifold with analytic spectrum (LM , λ). Here and in the follow-
ing, we choose coordinates t = (t1, t2, t3) on (M, 0) such that (M, 0) ∼= (C3, 0)
and e = ∂1. Then, (y1, y2, y3) are the fiber coordinates on T ∗M which correspond
to ∂1, ∂2, ∂3, and α = ∑3

i=1 yidti is the canonical 1-form. In the following, M
denotes a suitable (small) representative of (M, 0).
It turns out that often the best way to arrive at a normal form for ((M, 0), ◦, e)
is to control the function F : (LM , λ) → (C, 0) from Theorem 2.15 (b). It is
holomorphic on Lreg

M and continuous on L , and it satisfies

dF |LregM
= α|LregM

. (6.1)

We consider it as a 3-valued holomorphic function on M which is branched pre-
cisely over the causticK ⊂ M . Locally on M −K it splits into three holomorphic
functions F (1), F (2), F (3). We will use this notation without specifying a simply
connected region in M −K. This is imprecise, but not in a harmful way. With this
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notation, F determines LM as follows (this rewrites (6.1)), locally on M − K,

LM =
3⋃

j=1

{(y, t) ∈ T ∗M | yi = ∂i F
( j) for i ∈ {1, 2, 3}}. (6.2)

Let M (r) be a suitable neighborhood of 0 in the (t2, t3)-plane C
2. It can be iden-

tified with the set of e-orbits of M . The condition Liee(◦) = 0 implies that the
multiplication, the caustic K and the analytic spectrum LM are invariant under
the flow of e. As e = ∂1,K induces a hypersurface K(r) ⊂ M (r), and F = t1 + f
where f is a 3-valued holomorphic function onM (r) which is branched alongK(r).
Locally onM (r)−K(r), f splits into three holomorphic functions f (1), f (2), f (3).
The coefficients of the polynomials

∏3
j=1(x − f ( j)) and

∏3
j=1(x − ∂2 f ( j)) and

∏3
j=1(x − ∂3 f ( j)) are univalued holomorphic functions on M (r), i.e., they are in

C{t2, t3}. The last two polynomials are the characteristic polynomials of ∂2◦ and
∂3◦.

(ii) The Euler field E = ε1∂1 + ε2∂2 + ε3∂3 on M − K, which corresponds to F by
Theorem 2.15, is given by F ( j) = E(F ( j)), i.e., by

ε1 = t1, f ( j) = ε2 · ∂2 f
( j) + ε3 · ∂3 f

( j). (6.3)

ε2 and ε3 depend only on (t2, t3), but often are meromorphic along K(r). If they
are in C{t2, t3}, then E extends from M − K to M .

(iii) Now consider the case T0M ∼= Q(2). Denote by m ⊂ T0M the maximal ideal in
T0M . We can and will choose the coordinates t such that

C · ∂2|0 ⊕ C · ∂◦2
2 |0 = m ⊂ T0M,

C · ∂3|0 = C · ∂◦2
2 |0 = m2 ⊂ T0M . (6.4)

Then

∂3 = h2 · ∂◦2
2 + h1 · ∂2 + h0 · ∂1 (6.5)

for suitable coefficients h2, h1, h0 ∈ C{t2, t3} with h2(0) �= 0, h1(0) = h0(0) =
0. These coefficients are determined by

∂3 f
( j) = h2 · (∂2 f

( j))2 + h1 · ∂2 f
( j) + h0. (6.6)

Also write
∏3

j=1(x−∂2 f ( j)) = x3−g2x2−g1x−g0 with g2, g1, g0 ∈ C{t2, t3}.
Then,

LM = {(y, t) ∈ T ∗M | y1 = 1, y32 = g2y
2
2 + g1y2 + g0,

y3 = h2y
2
2 + h1y2 + h0}. (6.7)
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Examples 6.2 Here, the F-manifolds A3, B3, H3 from Theorem 5.22 (i) in [15] will be
rewritten with the notions from the Remarks 6.1. They arise as complex orbit spaces of
the corresponding Coxeter groups. Their discriminants had been studied especially by
O.P. Shcherbak [24], and their Lagrange maps (which correspond to the F-manifold
structures by Theorem 3.16 in [15]) had been studied by Givental [13].

They are simple F-manifolds with Euler fields with positive weights. Their germs
(M, 0) at 0 are the only simple 3-dimensional germsof F-manifoldswithT0M ∼= Q(2),
see Theorem 6.3 (b).

We use the notations from the Remarks 6.1. Though here we have F-manifolds
M = C

3, not just germs. The following table gives for each of the three cases the
following data:

(i) a 3-valued function ξ onC
2 = M (r) (with coordinates (t2, t3)) which is branched

alongK(r). It is given by the equation of degree 3 which it satisfies. The equation
is denoted ξ3 − g2ξ2 − g2ξ − g0 = 0 with g2, g1, g0 ∈ C[t2, t3].

(ii) A weight system (w1, w2, w3) ∈ Q
3
>0.

(iii) The components ofK(r), and which germs of an F-manifold are at generic points
of each component.

A3 B3 H3

ξ ξ3 + 2ξ t3 + t2 ξ(ξ2 + 2ξ t3 + t2) ξ3 − (2ξ t3 + t2)2

(w1, w2, w3) (1, 3
4 ,

1
2 ) (1, 2

3 ,
1
3 ) (1, 3

5 ,
1
5 )

K(r) : A2A1 27t22 + 32t33 = 0 t2 − t23 27t2 + 32t33
K(r) 2nd comp. − t2 = 0 : I2(4)A1 t2 = 0 : I2(5)A1

The 3-valued function f on M (r) with F = t1 + f is

f = w2ξ t2 + w3ξ
2t3. (6.8)

The following identities are crucial. They will be proved below.

∂2 f = ξ, ∂3 f = ξ2. (6.9)

Because of them, the Euler field is E = t1∂1+w2t2∂2+w3t3∂3, and the multiplication
and the analytic spectrum are given as follows,

LM = {(y, t) ∈ T ∗M | y1 = 1, y32 = g2y
2
2 + g1y2 + g0, y3 = y22 }. (6.10)

One sees L ∼= C
2×C , whereC is a plane curve, andC is smooth in the case A3,C has

two smooth components which intersect transversely in the case B3, and C has one
ordinary cusp in the case H3. We will prove now (6.9) and the claims on the caustic.

Proof of (6.9): It is equivalent to d f = ξdt2+ξ2dt3. And this is equivalent to the claim
that Lreg

M is Lagrange, i.e., α|LregM
is closed. And then

∫
LM

α = t1 + f as a 3-valued
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function on M . In all three cases

d f = w2ξdt2 + w3ξ
2dt3 + (w2t2 + 2w3ξ t3)dξ,

so in all three cases

(w2t2 + 2w3ξ t3)dξ = (1 − w2)ξdt2 + (1 − w3)ξ
2dt3 (6.11)

has to be shown.
The case A3: Use 0 = ξ3 + 2ξ t3 + t2 to calculate

0 = ξd(ξ3 + 2ξ t3 + t2) = (3ξ3 + 2ξ t3)dξ + 2ξ2dt3 + ξdt2
= (−4ξ t3 − 3t2)dξ + 2ξ2dt3 + ξdt2,

which shows (6.11).
The case B3: Use 0 = ξ(ξ2 + 2ξ t3 + t2) to calculate

0 = ξd(ξ(ξ2 + 2ξ t3 + t2)) = (3ξ3 + 4ξ2t3 + ξ t2)dξ + 2ξ3dt3 + ξ2dt2
= (−2ξ2t3 − 2ξ t2)dξ + 2ξ3dt3 + ξ2dt2

= 2ξ · η with η := (−ξ t3 − t2)dξ + ξ2dt3 + 1

2
ξdt2.

For (6.11), we need η = 0. Here, ξ consists of one holomorphic function ξ (1) = 0 and
a 2-valued function ξ (2&3) �= 0. For ξ (1), η = 0 is trivial. For ξ (2&3), η = 0 follows
from 0 = 2ξ (2&3) · η, as then we may divide by 2ξ (2&3).

The case H3: Use 0 = ξ3 − (2ξ t3 + t2)2 to calculate

0 = ξd(ξ3 − (2ξ t3 + t2)
2) = 3ξ3dξ − 2ξ(2ξ t3 + t2)d(2ξ t3 + t2)

= (2ξ t3 + t2) ·
(
3(2ξ t3 + t2)dξ − 2ξd(2ξ t3 + t2)

)
, thus

0 = 3(2ξ t3 + t2)dξ − 2ξd(2ξ t3 + t2)

= (2ξ t3 + 3t2)dξ − 4ξ2dt3 − 2ξdt2,

which shows (6.11). ��
Proof of the statements on the caustic: The case A3: The discriminant of x3+2t3x+ t2
is 4(2t3)3+27t22 = 32t33 +27t22 . Over generic points of the caustic (all except (t1, 0, 0)
for t1 ∈ C) the multigerm of LM has 2 smooth components, so there we have the germ
A2A1.

The case B3: The two components of LM meet over points with t2 = 0. Over
generic points of this component of K, we have the germ I2(4)A1. The discriminant
of x2 + 2t3x + t2 is (2t3)2 − 4t2 = 4(t23 − t2). Over generic components of this
component, the multigerm of LM has 2 smooth components, so there we have the
germ A2A1.

The case H3: The discriminant of x3 − (2t3x + t2)2 is t32 (32t33 + 27t2). The cusp
surface of LM lies over the component with t2 = 0 of K. So there we have the germ
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I2(5)A1. Over generic points of the component with 32t33 + 27t2 = 0, the multigerm
LM has 2 smooth components, so there we have the germ A2A1. ��

The following theorem is Theorem 5.29 from [15]. It gives basic facts on irreducible
germs of 3-dimensional F-manifolds with generically semisimple multiplication.

Theorem 6.3 [15, Theorem5.29]Let (M, 0) be an irreducible germof a 3-dimensional
generically semisimple F-manifold with analytic spectrum (LM , λ) ⊂ T ∗M.

(a) Suppose T0M ∼= Q(2). Then, (LM , λ) has embedding dimension 3 or 4 and
(LM , λ) ∼= (C2, 0)×(C, 0) for a plane curve (C, 0) ⊂ (C2, 0)withmult(C, 0) ≤
3. The Euler field E0 from Theorem 2.15 (c) on M − K extends holomorphically
to M if and only if (C, 0) is quasihomogeneous.

(b) Suppose T0M ∼= Q(2) and (LM , λ) ∼= (C2, 0) × (C, 0) with mult(C, 0) < 3.
Then, ((M, 0), ◦, e) is one of the germs A3, B3, H3.

(c) Suppose T0M ∼= Q(2) and (LM , λ) ∼= (C2, 0)×(C, 0)withmult(C, 0) = 3. Then,
the causticK is a smooth surface and coincides with theμ-constant stratum. That
means, TqM ∼= Q(2) for each q ∈ K. The modality is modμ(M, 0) = 1 (the
maximal possible) (recall Definition 2.9 (a)).

(d) Suppose T0M ∼= Q(1). Then, (LM , λ) has embedding dimension 5 and (LM , λ) ∼=
(C, 0)×(L(r), 0). Here, (L(r), 0) is a Lagrange surfacewith embedding dimension
4. Its ring OL(r),0 is a Cohen–Macaulay ring, but not a Gorenstein ring.

Sketch of the proof: (a) One chooses the coordinates (t1, t2, t3) as in (6.4). Then LM

is as in (6.7). Because of the equations y1 = 1 and y3 =∑2
i=0 hi y

i
2, (LM , λ) has

embedding dimension≤ 4. Theorem 2.14 applies and gives (LM , λ) ∼= (C2, 0)×
(C, 0) for a plane curve C . The germ (C, 0) has multiplicity ≤ 3 because the
projection πL : LM → M is a branched covering of degree 3. The Euler field
E0 from Theorem 2.15 (c) on M − K extends to M if and only if (C, 0) is
quasihomogeneous because of Theorem 2.16 (e) and Theorem 2.15 (b)+(c).

(b) mult(C, 0) ≤ 2 means that (C, 0) is either smooth or a double point or a cusp. In
the first two cases, one can apply the correspondence between F-manifolds and
hypersurface or boundary singularities [15, Theorem 5.6 and Theorem 5.14] and
the fact that A3, B3 and C3 are the only hypersurface or boundary singularities
with Milnor number 3. In the case of a cusp, results of Givental [13] are used, see
the proof of [15, Theorem 5.29].

(c) (C, 0) has multiplicity 3. And the projection πL : LM → M is a branched
covering of degree 3. Together these facts imply that πL : LM → M is precisely
branched at the points of LM which correspond to (C2, 0) × {0} in (C2, 0) ×
(C, 0) ∼= (LM , λ). This implies all the statements.

(d) If the embedding dimension of (LM , λ) were ≤ 4, then by Theorem 2.14
(LM , λ) ∼= (C2) × (C, 0) for a plane curve, so then (LM , λ) were a complete
intersection, and thus T0M ∼= Q(2), a contradiction. Therefore, the embed-
ding dimension is 5 and by Theorem 2.14 (LM , λ) ∼= (C, 0) × (L(r), 0) where
(L(r), 0) has embedding dimension 4. The ring OL(r),0 is Cohen–Macaulay
because π(r) : L(r) → M (r) is finite and flat. It is not Gorenstein, because
T0M ∼= Q(1) is not Gorenstein. ��
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The classification of germs (M, 0) of 3-dimensional generically semisimple F-
manifolds with T0M ∼= Q(1) is not treated in this paper. Only one family of examples
from [15] and one other interesting example will be given now with all details, and a
family of examples in [18, 6.2–6.6] will be described without details.

Lemma 6.4 [15,Theorem5.32]Fix twonumbers p2, p3 ∈ Z≥2. Themanifold M = C
3

with coordinates t = (t1, t2, t3) and with the multiplication on T M given by e = ∂1
and

∂◦2
2 = p2t

p2−1
2 · ∂2, ∂2 ◦ ∂3 = 0, ∂◦2

3 = p3t
p3−1
3 ∂3 (6.12)

is a simple (and thus generically semisimple) F-manifoldwith T0M ∼= Q(1). Its caustic
K has two components K(1) = {t ∈ M | t2 = 0} and K(2) = {t ∈ M | t3 = 0}. The
germ (M, t) is of type A1 I2(2p2) for t ∈ K(1) − C × {0} and of type A1 I2(2p3) for
t ∈ K(2) − C × {0}. A vector field E is an Euler field if and only if

E = (t1 + c1)∂1 + 1

p2
t2∂2 + 1

p3
t3∂3 with c1 ∈ C. (6.13)

Proof The analytic spectrum is

LM = {(y, t) ∈ T ∗M | y1 = 1, y2(y2 − p2t
p2−1
2 ) = y2y3 = 0,

y3(y3 − p3t
p3−1
3 ) = 0}. (6.14)

The set which underlies LM has three components L(1), L(2), L(3) with

L(1) = {(y, t) ∈ T ∗M | (y1, y2, y3) = (1, 0, 0)},
L(2) = {(y, t) ∈ T ∗M | (y1, y2, y3) = (1, p2t

p2−1
2 , 0)},

L(3) = {(y, t) ∈ T ∗M | (y1, y2, y3) = (1, 0, p3t
p3−1
3 )}.

The functions f (1) := 0, f (2) := t p22 , f (3) := t p33 on M satisfy

f ( j) = 1

p2
t2∂2 f

( j) + 1

p3
t3∂3 f

( j).

If one lifts f ( j) to L( j), the resulting function on LM is 1
p2
t2y2+ 1

p3
t3y3, so a holomor-

phic function on LM . F := t1 + f satisfies all properties in the Remarks 6.1 (i)+(ii).
Therefore, (M, ◦, e) is an F-manifold, and the Euler field is as claimed.

L(2) and L(3) meet only over t = 0, L(1) and L(2) meet overK(1), and L(1) and L(3)

meet over K(2). From their intersection multiplicities or from the coefficients of the
Euler field, one concludes that the germs of F-manifolds have the types A1 I2(2p2),
respectively, A2 I2(2p3) at points ofK(1), respectively,K(2) not equal toC×{0} ⊂ M .
The stratification of M by the types of the germs of the F-manifolds shows that the
F-manifold is simple. ��
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Also the following example is a simple F-manifold M = C
3 with T0M ∼= Q(1).

Its analytic spectrum is irreducible, and it is singular only in codimension 2.

Lemma 6.5 The manifold M = C
3 with coordinates t = (t1, t2, t3) and with the

multiplication on T M given by e = ∂1 and

(∂2 − 1

2
t3∂1)

◦2 = 9

4
t22 ∂1 − 3

2
t3(∂2 − 1

2
t3∂1) − 3

2
t2(∂3 + 1

2
t2∂1),

(∂2 − 1

2
t3∂1) ◦ (∂3 + 1

2
t2∂1) = 3

4
t2t3∂1,

(∂3 + 1

2
t2∂1)

◦2 = −3

4
t23 ∂1 − 1

2
t3(∂2 − 1

2
t3∂1) + 3

2
t2(∂3 + 1

2
t2∂1), (6.15)

is a simple (and thus generically semisimple) F-manifold with T0M ∼= Q(1). The
Lagrange surface L(r) in T ∗M (r) with LM ∼= C × L(r) is smooth outside 0. The
caustic K has 4 components. The corresponding 4 components of K(r) ⊂ M (r) are
the 4 lines through 0 which are together given by

0 = t43 + 6t22 t
2
3 − 3t42 . (6.16)

The germ (M, t) is of type A1A2 for t ∈ K − C × {0}. A vector field E is an Euler
field if and only if

E = (t1 + c1)∂1 + 1

2
t2∂2 + 1

2
t3∂3 with c1 ∈ C. (6.17)

Proof In the Notations 4.1 in (4.4)–(4.6),

(a2, a3, b2, b3, c2, c3) =
(−3

2
t3,

−3

2
t2,

−1

2
t2,

1

2
t3,

−1

2
t3,

3

2
t2

)

, (6.18)

(a1, b1, c1) =
(
9

4
t22 ,

3

4
t2t3,

−3

4
t23

)

= (−a3c3, a3c2,−a2c2). (6.19)

Therefore themultiplication is associative. One checks easily that A2, Adual
2 , and A3 in

Lemma 4.4 vanish. Therefore (M, ◦, e) is an F-manifold. The function 9R2
3 −4R1R2

in Lemma 4.3 is here 9R2
3−4R1R2 = 9

4 (t
4
3 +6t22 t

2
3 −3t42 ). Therefore the F-manifold is

generically semisimple, and the caustic is given by (6.16). One checks also easily that
the explicit version (5.5) for LieE (◦) = 1·◦ is satisfied for E as in (6.17). Therefore, E
is one Euler field. By Theorem 2.15 (b)+(c) and the irreducibility of the germ (M, 0),
the vector fields E + c1e for c1 ∈ C are the only Euler fields on M .

The smoothness of L(r) outside 0 would imply together with the classification of
the 2-dimensional germs of F-manifolds that the germ (M, t) for t ∈ K − C × {0}
is of type A1A2. It remains to show that L(r) is smooth. For this, we reveal how the
F-manifold was constructed. Consider the coordinate change on T ∗M (r) with new
coordinates x = (x1, x2, x3, x4),

t2 = x1 + x3, t3 = x2 − x4, y2 = x2 + x4, y3 = −x1 + x3.
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In the new coordinates, the functions Y22,Y23 and Y33 in Lemma 4.4, which define
L(r), become

Y22 = (x22 − 3x1x3) − 3(x21 − x2x4),

Y33 = (x22 − 3x1x3) + (x21 − x2x4),

Y23 = −x1x2 + 3x3x4.

In the new coordinates on T ∗M (r) ∼= C
4, L(r) is the cone over the curve in P

3 which
is defined in homogeneous coordinates by the vanishing of x21 − x2x4, x22 − 3x1x3
and x1x2 − 3x3x4. On the affine chart of P

3 with x4 = 1, this is the twisted cubic
(x1 �→ (x1, x21 ,

1
3 x

3
1)), which is smooth. On the affine chart of P

3 with x3 = 1, this is
the smooth curve (x2 �→ ( 13 x

2
2 , x2,

1
9 x

3
2)) which is also a twisted cubic. The curve has

no points with x3 = x4 = 0. Therefore it is smooth. ��
Remark 6.6 The second author is grateful to Paul Seidel who showed him in 2000 this
curve in P

3 and explained that it is not a complete intersection, that it is a Legendre
curve with respect to the 1-form x1dx2 − x2dx1 −dx3 (in the affine chart with x4 = 1)
and that the cone over it in C

4 is smooth outside 0 and is Lagrange.

Examples 6.7 Kawakami, Mano and Sekiguchi [18, section 6] found many flat F-
manifold structures on M = C

3 which are generically semisimple and which have
Euler fields with positive weights. Because the Euler fields have positive weights, they
are simple F-manifolds. They satisfy either T0M ∼= Q(2) or T0M ∼= Q(1).

They are related to algebraic solutions of the Painlevé VI equations. Some of them
are also given by Arsie and Lorenzoni [3, 5.2–5.4]. They are polynomial on M = C

3

with flat coordinates t1, t2, t3 with unit field e = ∂1 and Euler field

E = t1∂1 + w2t2∂2 + w3t3∂3
with w2, w3 ∈ Q, 1 > w2 ≥ w3 > 0, 1 + w3 ≥ 2w2. (6.20)

If we write w = (1, w2, w3) and

∂i ◦ ∂ j =
3∑

k=1

aki j∂k, (6.21)

then aki j ∈ C[t1, t2, t3] with ak1 j = akj1 = δ jk , and a coefficient aki j with i, j ∈ {2, 3}
has the weighted degree degw aki j = 1 + wk − wi − w j ≥ 0. In the cases with

1 + w3 > 2w2, this implies aki j (0) = 0 for i, j ∈ {2, 3} and k ∈ {1, 2, 3}. Therefore,
then T0M ∼= Q(1). These cases comprise the cases in 6.2 and 6.3 in [18] and 5.2 and
5.4 in [3], which are related to the complex reflection groups G24 and G27, and the
cases in 6.4–6.6 in [18], which are related to the free divisors FB6, FH2 and FE14 in
C
3 which are defined there. The authors are grateful to a referee for pointing to these

examples.
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7 Partial classification of 3-dimensional generically semisimple
F-manifolds

The long Theorem 7.1 is the main result of this section. It gives normal forms for all
germs of generically semisimple F-manifolds with T0M ∼= Q(2), except A3, B3 and
H3. Part (a) of it is essentially Theorem 5.30 in [15], but with some change in the
normal form. The parts (b)–(e) are new. Corollary 7.2 distinguishes those germs of
F-manifolds in Theorem 7.1 which have an Euler field. The germs of F-manifolds in
Theorem 7.1 are closely related to the germs of plane curves with multiplicity 3. The
Remarks 7.3 comment on this and make the cases in Theorem 7.1 more transparent.

Theorem 7.1 In the following, normal forms for all irreducible germs (M, 0)of 3-
dimensional generically semisimple F-manifolds with T0M ∼= Q(2) except A3, B3
and H3 are listed by their data in the Remarks 6.1. Each isomorphism class of such
a germ is represented by a finite positive number of normal forms. The normal forms
split into 5 families with discrete and holomorphic parameters, with

family in (a) (b) (c) (d) (e)

number of components of (LM , λ) 3 2 2 1 1
discrete parameters p, q p p, q p p

with p, q ∈ Z≥2 and q ≥ p. There are always p − 1 holomorphic parameters
(γ0, ..., γp−2) ∈ C

p−1 or in an open subset. We use the notations in the Remarks 6.1,
especially (M, 0) = (C3, 0) with coordinates t = (t1, t2, t3). In all cases the caustic
is K = {t ∈ M | t2 = 0}. It coincides with the μ-constant stratum. For t ∈ K
Tt M ∼= Q(2). Locally on M − K, the analytic spectrum is

LM =
3⋃

j=1

{(y, t) ∈ T ∗M | y1 = 1, y2 = ∂2 f
( j), y3 = h2y

2
2 + h1y2 + h0} (7.1)

with h2, h1, h0 ∈ C{t2, t3} as below, with h2(0) �= 0, h1(0) = h0(0) = 0. The Euler
field on M − K is E = (t1 + c1)∂1 + ε2∂2 + ε3∂3 with c1 ∈ C and ε2, ε3 as below.
Most often, ε3 and E are meromorphic alongK (see Corollary 7.2 for the cases when
they are holomorphic on M). The function

ρ := t p−2
2 t3 +

p−2∑

i=0

γi t
i
2 ∈ C{t2, t3} (7.2)

will always turn up in some f ( j).

(a) (γ0, ..., γp−2) ∈ C
∗ × C

p−2 with γ0 �= 1 if p = q,
then ρ ∈ C{t2, t3}∗, i.e., it is a unit in C{t2, t3}, because γ0 �= 0,
f (1) = 0, f (2) = t p2 , f

(3) = tq2 · ρ,
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LM =⋃3
j=1 L

( j) has 3 smooth components,

h2 =
(
(q + t2∂2)(ρ)

)−1(
((q + t2∂2)(ρ))tq−p

2 − p
)−1 ∈ C{t2, t3}∗,

h−1
2 h1 = −pt p−1

2 , h0 = 0,

Euler field: ε2 = 1
p t2, ε3 = − 1

p t
2−p
2 ((q − p + t2∂2)(ρ)).

(b) (γ0, ..., γp−2) ∈ C
p−1, ρ ∈ C{t2, t3},

f (1) = 0, f (2&3) = t
1
2+p
2 + t1+p

2 · ρ,
LM = L(1) ∪ L(2&3) has 1 smooth component L(1) and 1 singular component
L(2&3),

h2 =
(
( 12 + p)2 − t2((1 + p + t2∂2)(ρ))2

)−1 ∈ C{t2, t3}∗,
h−1
2 h1 = −2t p2 ((1 + p + t2∂2)(ρ)), h0 = 0,

Euler field: ε2 = 1
1
2+p

t2, ε3 = − 1
1
2+p

t2−p
2 (( 12 + t2∂2)(ρ)).

(c) (γ0, ..., γp−2) ∈ C
∗ × C

p−2, and thus ρ ∈ C{t2, t3}∗,
f (1) = 0, f (2&3) = t

1
2+q
2 · ρ + t p2 ,

LM = L(1) ∪ L(2&3) has 1 smooth component L(1) and 1 singular component
L(2&3),

h2 =
(
( 12+q+t2∂2)(ρ)

)−1(
p− 1

p t
1+2(q−p)
2 (( 12+q+t2∂2)(ρ))2

)−1 ∈ C{t2, t3}∗,
h−1
2 h1 = −pt p−1

2 − 1
p t

2q−p
2 (( 12 + q + t2∂2)(ρ))2, h0 = 0,

Euler field: ε2 = 1
p t2, ε3 = − 1

p t
2−p
2 (( 12 + q − p + t2∂2)(ρ)).

(d) (γ0, ..., γp−2) ∈ C
p−1, ρ ∈ C{t2, t3},

f = f (1&2&3) = t
1
3+p
2 + t

2
3+p
2 · ρ,

LM is irreducible,

h2 =
(
( 13 + p)2 − t2(

1
3 + p)−1(( 23 + p + t2∂2)(ρ))3

)−1 ∈ C{t2, t3}∗,
h−1
2 h1 = −t p2 ( 13 + p)−1(( 23 + p + t2∂2)(ρ))2,

h−1
2 h0 = −2t2p−1

2 ( 13 + p)(( 23 + p + t2∂2)(ρ)),

Euler field: ε2 = 1
1
3+p

t2, ε3 = − 1
1
3+p

t2−p
2 (( 13 + t2∂2)(ρ)).

(e) (γ0, ..., γp−2) ∈ C
p−1, ρ ∈ C{t2, t3},

f = f (1&2&3) = t
4
3+p
2 · ρ + t

2
3+p
2 ,

LM is irreducible,

h2 =
(
( 23 + p)2 − t22 ( 23 + p)−1(( 43 + p + t2∂2)(ρ))3

)−1 ∈ C{t2, t3}∗,
h−1
2 h1 = −t p+1

2 ( 23 + p)−1(( 43 + p + t2∂2)(ρ))2,

h−1
2 h0 = −2t2p2 ( 23 + p)(( 43 + p + t2∂2)(ρ)),

Euler field: ε2 = 1
2
3+p

t2, ε3 = − 1
2
3+p

t2−p
2 (( 23 + t2∂2)(ρ)).

Proof The proofs of the parts (a)–(e) are similar. Part (a) is essentially proved in [15],
though here we chose a different normal form than in [15]. The first steps in the
following proof hold for (a)–(e). We give all the details for part (b) and part (d). We
discuss differences and similarities for the parts (c), (e) and (a).
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We consider an irreducible germ (M, 0) of a 3-dimensional generically semisimple
F-manifold with T0M ∼= Q(2), which is not A3, B3 or H3. Theorem 6.3 says that then
(LM , λ) ∼= (C2, 0)× (C, 0) where (C, 0) ⊂ (C2, 0) is the germ of a plane curve with
multiplicity 3. And the caustic K is isomorphic to the image in M of the part of LM

which is isomorphic to (C2, 0) × {0}, and K is a smooth surface in M .
The coordinates t = (t1, t2, t3) can and will be chosen such thatK = {t ∈ M | t2 =

0}.
(C, 0) has multiplicity 3, and therefore, it has either 3 smooth components or 1

smooth and 1 singular component or only 1 singular component. The corresponding
components of LM are called L( j), j ∈ {1, 2, 3}, in the first case, L(1) and L(2&3) in
the second case and LM = L(1&2&3) in the third case. The parts of the multivalued
function f which correspond to these components are called accordingly f ( j), f (2&3)

or f (1&2&3).
Recall F = t1+ f from the Notations 6.1. The coordinate t1 can and will be chosen

(by a coordinate change as in (4.9)) such that

f (1) = 0 in the cases with 3 or 2 components, (7.3)

f (1) + f (2) + f (3) = 0 in the cases with 1 component. (7.4)

In fact, in all cases f (1) + f (2) + f (3) is univalued, and t1 can be chosen such that (7.4)
holds. Then, also ∂2( f (1) + f (2) + f (3)) = 0 and ∂3( f (1) + f (2) + f (3)) = 0. We see
that this choice was already discussed in Remark 4.5. In the generically semisimple
case, the function F gives an alternative starting point for understanding this choice
of the coordinate t1.

In the cases with 1 component, we use this choice in (7.4), and there it gives

3∏

j=1

(x − ∂2 f
( j)) = x3 + g1x + g0, so g2 = 0. (7.5)

In the cases with 3 or 2 components, we prefer the choice in (7.3), as it makes there
the calculations easier. Then in the cases with 3 or 2 components, (6.6) for j = 1 gives
h0 = 0 and

3∏

j=1

(x − ∂2 f
( j)) = x3 + g2x

2 + g1x, with

g2 = −∂2 f
(2) − ∂2 f

(3), g1 = ∂2 f
(2) · ∂2 f

(3). (7.6)

(b) and (c) Now we turn to the cases where LM has 2 components, the smooth
component L(1) and the singular component L(2&3). We have f (1) = 0 and

f (2&3) = t1/2+p1
2 ρ1 + t p22 ρ2, (7.7)
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with ρ1 ∈ C{t2, t3} − t2C{t2, t3} and ρ2 ∈ C{t2, t3} − (t2C{t2, t3} − {0}). Here ρ1, ρ2
and p1 ∈ Z≥0 are unique, and p2 ∈ Z≥0 is unique if ρ2 �= 0. If ρ2 = 0, we put
p2 := ∞.

The branched coveringπL : LM → M is branched only overK = {t ∈ M | t2 = 0}.
This implies two facts: First, L(1) and L(2&3) intersect only over K, and second, the
branched covering πL : L(2&3) → M is branched only over K. The second fact tells
ρ1 ∈ C{t2, t3}∗, i.e., ρ1 is a unit, i.e., ρ1(0) �= 0. If p1 < p2, this is sufficient also
for the first fact. Then, we are in the cases in (b). If p1 ≥ p2, the first fact tells
ρ2 ∈ C{t2, t3}∗. Then, we are in the cases in (c).

(b)Nowwe turn to the cases in (b), i.e., f (1) = 0 and f (2&3) as in (7.7)with p1 < p2.

Rename p := p1. Then, t2 can and will be chosen such that t
1
2+p
2 ρ1 = t

1
2+p
2 . Then,

we write

f (2&3) = t
1
2+p
2 + t1+p

2 ρ (7.8)

for some ρ ∈ C{t2, t3}. Next we will exploit (6.6) together with h2(0) �= 0 in order
to put ρ into a normal form by a good choice of t3, and to calculate h2 and h1 (recall
h0 = 0 because of (6.6) for f (1) = 0). (6.6) gives

t1+p
2 ∂3ρ = ∂3 f

(2&3) = h2 · ∂2 f
(2&3) ·

(
∂2 f

(2&3) + h−1
2 h1
)

(7.9)

= h2
([

(∂2t
1
2+p
2 )2 + ∂2(t

1+p
2 ρ)(∂2(t

1+p
2 ρ) + h−1

2 h1)
]

+[∂2t
1
2+p
2 (2∂2(t

1+p
2 ρ) + h−1

2 h1)
])

. (7.10)

The term in square brackets in the line (7.10) must vanish because of the half-integer
exponent of t2. This allows to calculate h−1

2 h1 = −2∂2(t
1+p
2 ρ), see the formula in

part (b) in the theorem. And it simplifies the other summand,

∂3ρ = h2t
−1−p
2

(
(∂2t

1
2+p
2 )2 − (∂2(t

1+p
2 ρ))2

)

= h2t
p−2
2

(
(
1

2
+ p)2 − t2((1 + p + t2∂2)(ρ))2

)
, (7.11)

so ∂3ρ = t p−2
2 · (a unit in C{t2, t3}). This implies p ∈ Z≥2. And we can and will

choose t3 such that ρ is as in (7.2). Then, h2 is determined by (7.11) with ∂3ρ = t p−2
2 .

The coefficients ε2 and ε3 of the Euler field are determined by (6.3) for f (2&3) as
in (7.8) and (7.2):

t
1
2+p
2 + t1+p

2 ρ = f (2&3) = ε2∂2 f
(2&3) + ε3∂3 f

(2&3)

= ε2

(
(
1

2
+ p)t

− 1
2+p

2 + ((1 + p + t2∂2)(ρ))t p2

)
+ ε3t

2p−1
2 . (7.12)

123



90 Page 42 of 50 A. Basalaev, C. Hertling

Comparison of the terms with half-integer exponents gives ε2 = ( 12 + p)−1t2. Then,
comparison of the terms with integer exponents gives ε3.

Almost all steps in this reduction process to a normal form were unique. (7.7) was

the general ansatz. The choice of t2 with t
1
2+p
2 ρ1 = t

1
2+p
2 was unique up to a unit root

of order 1 + 2p. The choice of t3 was unique. Therefore, the isomorphism class of
(M, 0) is represented by up to 1 + 2p normal forms.

(c) Now we turn to the cases in (c), i.e., f (1) = 0 and f (2&3) as in (7.7) with
p1 ≥ p2. Rename q := p1 and p := p2. Above we showed that ρ1 and ρ2 are units
in C{t2, t3}. We can and will choose t2 such that t p2 ρ2 = t p2 . Then, we write

f (2&3) = t
1
2+q
2 ρ + t p2 (7.13)

for some ρ ∈ C{t2, t3}∗. As in the proof of part (b), the next step is to exploit (6.6)
together with h2(0) �= 0 in order to put ρ into a normal form by a good choice of t3,
and to calculate h2 and h1. The calculation is similar to the calculation of (7.9) above.
It leads to ∂3ρ = t p−2

2 · (a unit in C{t2, t3}). This implies p ∈ Z≥2. And it allows to
choose t3 such that ρ is as in (7.2). We skip the details of the calculations. The results
are written in part (c) in the theorem. The fact that here ρ is a unit, implies γ0 ∈ C

∗.
Also the calculation of the coefficients ε2 and ε3 of the Euler field is similar to the
calculation (7.12) above. Again we skip the details. The results are written in part (c)
in the theorem. The choice of t2 was unique up to a unit root of order p. The choice
of t3 was unique. Therefore, the isomorphism class of (M, 0) is represented by up to
p normal forms.

(d) and (e) Now we turn to the cases where LM is irreducible. A priori we have

f = t
1
3+p1
2 ρ1 + t

2
3+p2
2 ρ2 + t1+p3

2 ρ3, (7.14)

with ρ1, ρ2, ρ3 ∈ C{t2, t3} − (t2C{t2, t3} − {0}) and (ρ1, ρ2) �= (0, 0). Now∑3
j=1 f ( j) = 0 tells ρ3 = 0. If ρ1 �= 0 then ρ1 and p1 ∈ Z≥0 are unique, else

p1 := ∞. If ρ2 �= 0 then ρ2 and p2 ∈ Z≥0 are unique, else p2 := ∞.
The branched coveringπL : LM → M is branched only overK = {t ∈ M | t2 = 0}.

If p1 ≤ p2, this implies ρ1 ∈ C{t2, t3}∗, and then we are in the cases in (d). If p1 > p2,
this implies ρ2 ∈ C{t2, t3}∗, and then we are in the cases in (e).

(d) Now we turn to the cases in (d), i.e., f is as in (7.14) with ρ3 = 0 and p1 ≤ p2
and ρ1 ∈ C{t2, t3}∗. Rename p := p1. Then, t2 can and will be chosen such that

t
1
3+p
2 ρ1 = t

1
3+p
2 . Then, we write

f = t
1
3+p
2 + t

2
3+p
2 ρ, (7.15)

for some ρ ∈ C{t2, t3}. As in the proofs of the parts (b) and (c), the next step is to
exploit (6.6) together with h2(0) �= 0 in order to put ρ into a normal form by a good
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choice of t3, and to calculate h2, h1 and h0. The calculation is as follows.

t
2
3+p
2 ∂3ρ = ∂3 f = h2 ·

(
(∂2 f )

2 + h−1
2 h1∂2 f + h−1

2 h0
)

(7.16)

= h2
([

(∂2t
1
3+p
2 )2 + h−1

2 h1∂2(t
2
3+p
2 ρ)

]
(7.17)

+ [(∂2(t
2
3+p
2 ρ))2 + h−1

2 h1∂2t
1
3+p
2

]
(7.18)

+ [2∂2t
1
3+p
2 ∂2(t

2
3+p
2 ρ) + h−1

2 h0
])

(7.19)

The terms in square brackets in the lines (7.18) and (7.19) must vanish because of
the exponents in 1

3 + Z and Z of t2. This allows to calculate h−1
2 h0 and h−1

2 h1 =
−(∂2t

1
3+p
2 )−1(∂2(t

2
3+p
2 ρ))2, see the formulas in part (d) in the theorem. And it sim-

plifies the term in square brackets in the line (7.17),

∂3ρ = h2t
− 2

3−p
2

(
(∂2t

1
3+p
2 )2 − (∂2t

1
3+p
2 )−1(∂2(t

2
3+p
2 ρ))3

)

= h2t
p−2
2

(
(
1

3
+ p)2 − t2(

1

3
+ p)−1((

2

3
+ p + t2∂2)(ρ))3

)
, (7.20)

so ∂3ρ = t p−2
2 · (a unit in C{t2, t3}). This implies p ∈ Z≥2. And we can and will

choose t3 such that ρ is as in (7.2). Then, h2 is determined by (7.20) with ∂3ρ = t p−2
2 .

The coefficients ε2 and ε3 of the Euler field are determined by (6.3) for f as in
(7.15) and (7.2):

t
1
3+p
2 + t

2
3+p
2 ρ = f = ε2∂2 f + ε3∂3 f

= ε2

(
(
1

3
+ p)t

− 2
3+p

2 + ((
2

3
+ p + t2∂2)(ρ))t

− 1
3+p

2

)
+ ε3t

− 4
3+2p

2 . (7.21)

Comparison of the terms with exponents in 1
3 + Z gives ε2 = ( 13 + p)−1t2. Then,

comparison of the terms with exponents in 2
3 + Z gives ε3. The choice of t2 with

t
1
3+p
2 ρ1 = t

1
3+p
2 was unique up to a unit root of order 1 + 3p. The choice of t3 was

unique. Therefore, the isomorphism class of (M, 0) is represented by up to 1 + 3p
normal forms.

(e) Now we turn to the cases in (e), i.e., f as in (7.15) with p1 > p2 and ρ2 ∈
C{t2, t3}∗. Rename p := p2. Then, t2 can andwill be chosen such that t

2
3+p
2 ρ2 = t

2
3+p
2 .

Then, we write

f = t
4
3+p
2 ρ + t

2
3+p
2 , (7.22)

for some ρ ∈ C{t2, t3}. As in the proofs of the parts (b), (c) and (d), the next step is to
exploit (6.6) together with h2(0) �= 0 in order to put ρ into a normal form by a good
choice of t3, and to calculate h2, h1 and h0. The calculation is similar to the calculation
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of (7.16) above. It leads to ∂3ρ = t p−2
2 · (a unit in C{t2, t3}). This implies p ∈ Z≥2.

Furthermore, it allows to choose t3 such that ρ is as in (7.2). We skip the details of the
calculations. The results are written in part (e) in the theorem. Also the calculation of
the coefficients ε2 and ε3 of the Euler field is similar to the calculation (7.21) above.
Again we skip the details. The results are written in part (e) in the theorem. The choice
of t2 was unique up to a unit root of order 2 + 3p. The choice of t3 was unique.
Therefore, the isomorphism class of (M, 0) is represented by up to 2 + 3p normal
forms.

(a) Now we turn to the cases in (a), the cases where L has 3 components. They
were treated in Theorem 5.30 in [15]. However, here we choose the normal forms a
bit differently.

The plane curve germs

(C ( j), 0) := {(y2, t2) ∈ (C2, 0) | y2 = ∂2 f
( j)(t2, 0)} (7.23)

in the (y2, t2)-plane satisfy (L, λ) ∼= (C2, 0) ×⋃3
j=1(C

( j), 0) by the proof of Theo-

rem 6.3 (a). We choose their numbering such that the pair (C (1),C (3)) has the highest
intersection number,whichwe callq−1 for someq ∈ Z≥2. Then, the pairs (C (1),C (2))

and (C (2),C (3)) have the same intersection number p − 1 for some p ∈ Z≥2 with
p ≤ q.

We have f (1) = 0 by (7.3) and

f (2) = t p12 ρ1, f (3) = t p22 ρ2, (7.24)

with ρ1, ρ2 ∈ C{t2, t3} − t2C{t2, t3} and p1, p2 ∈ N.
The branched coveringπL : LM → M is branched only overK = {t ∈ M | t2 = 0},

so the components L(i) and L( j) of LM intersect only over K. This and (L, λ) ∼=
(C2, 0) ×⋃3

j=1(C
( j), 0) shows ρ1, ρ2 ∈ C{t2, t3}∗, p1 = p, p2 = q, and in the case

p = q additionally ρ1(0) �= ρ2(0).
t2 can and will be chosen such that t p2 ρ1 = t p2 . Then, we have

f (1) = 0, f (2) = t p2 , f (3) = tq2 · ρ, (7.25)

for some ρ ∈ C{t2, t3}∗ with ρ(0) �= 1 if p = q. As in the proofs of the parts (b)–(e),
the next step is to exploit (6.6) together with h2(0) �= 0 in order to put ρ into a normal
form by a good choice of t3, and to calculate h2 and h1. The calculation is similar to
the calculations in (b)–(e), and, in fact, easier. It allows to choose t3 such that ρ is as in
(7.2). Then, h2 and h1 are as in the theorem. Also the calculation of the Euler field is
similar to the calculations in (b)–(e). The numbering of L(1), L(2) and L(3) was unique
up to a permutation of L(1) and L(3) if p < q and arbitrary if p = q. The choice of
t2 such that t p2 ρ1 = t p2 was unique up to a unit root of order p. The choice of t3 was
unique. Therefore, the isomorphism class of (M, 0) is represented by up to 2p or 6p
normal forms. ��

Probably the most interesting of the F-manifolds in Theorem 7.1 are those where
the Euler field is holomorphic on M . The next corollary makes them explicit.
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Corollary 7.2 Each irreducible germ (M̃, 0)of a3-dimensional generically semisimple
F-manifold with T0M̃ ∼= Q(2) and with (holomorphic) Euler field is isomorphic to
one of the germs A3, B3 or H3 or to a germ (M, (t1, 0, t3)) for suitable t1 ∈ C and
t3 ∈ C (or C

∗ or C −{0; 1}) of one of the F-manifolds which are listed below. We use
the same notations as in Theorem 7.1. There are 7 families of F-manifolds. The family
in (a)(i) has no parameter, so there is a single F-manifold. The family in (a)(iii) has
one discrete and one holomorphic parameter γ0. The other families have one discrete
parameter and no holomorphic parameter. The Euler field is E = t1∂1 + ε2∂2 + ε3∂3
with ε2, ε3 as below.

family in (a)(i) (a)(ii) (a)(iii) (b) (c) (d) (e)

number of comp. of (LM , λ) 3 3 3 2 2 1 1
discrete parameter – q p p q p p

(a) (i) M = C
2 × (C − {0; 1}), (p = q = 2,)

f (1) = 0, f (2) = t22 , f
(3) = t22 t3,

h2 = (4t3(t3 − 1))−1, h−1
2 h1 = −2t2, h0 = 0,

Euler field: ε2 = 1
2 t2, ε3 = 0.

(a) (ii) M = C
2 × C

∗, (p = 2,) q ∈ Z≥3,
f (1) = 0, f (2) = t22 , f

(3) = tq2 t3,

h2 = (qt3)−1(qt3t
q−2
2 − 2)−1, h−1

2 h1 = −2t2, h0 = 0,
Euler field: ε2 = 1

2 t2, ε3 = − q−2
2 t3.

(a) (iii) M = C
3, (p = q,) p ∈ Z≥3, γ0 ∈ C − {0; 1},

f (1) = 0, f (2) = t p2 , f
(3) = t p2 (γ0 + t p−2

2 t3),

h2 = (pγ0 + (p − 2)t p−2
2 t3)−1(p(γ0 − 1) + (p − 2)t p−2

2 t3)−1,

h−1
2 h1 = −pt p−1

2 , h0 = 0,
Euler field: ε2 = 1

p t2, ε3 = − p−2
p t3.

(b) M = C
3, p ∈ Z≥2,

f (1) = 0, f (2&3) = t
1
2+p
2 + t2p−1

2 t3,

h2 = (( 12 + p)2 − (2p − 1)2t2p−3
2 t23 )−1,

h−1
2 h1 = −2(2p − 1)t2p−2

2 t3, h0 = 0,

Euler field: ε2 = 1
1
2+p

t2, ε3 = − p− 3
2

1
2+p

t3.

(c) M = C
2 × C

∗, (p = 2,) q ∈ Z≥2,

f (1) = 0, f (2&3) = t
1
2+q
2 t3 + t22 ,

h2 = (( 12 + q)t3)−1
(
2 − 1

2 (
1
2 + q)2t2q−3

2 t23

)−1
,

h−1
2 h1 = −2t2 − 1

2 (
1
2 + q)2t2q−2

2 t23 , h0 = 0,
Euler field: ε2 = 1

2 t2, ε3 = − 1
2 (q − 3

2 )t3.
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(d) M = C
3, p ∈ Z≥2,

f = f (1&2&3) = t
1
3+p
2 + t

2p− 4
3

2 t3,

h2 =
(
( 13 + p)2 − ( 13 + p)−1((2p − 4

3 )
3t3p−5
2 t33

)−1
,

h−1
2 h1 = −( 13 + p)−1(2p − 4

3 )
2t3p−4
2 t23 ,

h−1
2 h0 = −2( 13 + p)(2p − 4

3 )t
3p−3
2 t3,

Euler field: ε2 = 1
1
3+p

t2, ε3 = − p− 5
3

1
3+p

t3.

(e) M = C
3, p ∈ Z≥2,

f = f (1&2&3) = t
2p− 2

3
2 t3 + t

2
3+p
2 ,

h2 =
(
( 23 + p)2 − ( 23 + p)−1(2p − 2

3 )
3t3p−4
2 t33

)−1
,

h−1
2 h1 = −( 23 + p)−1(2p − 2

3 )
2t3p−3
2 t23 ,

h−1
2 h0 = −2( 23 + p)(2p − 2

3 )t
3p−2
2 t3,

Euler field: ε2 = 1
2
3+p

t2, ε3 = − p− 4
3

2
3+p

t3.

Proof The shape of the Euler field in Theorem 6.3 tells precisely under which condi-
tions it is holomorphic. The conditions are as follows.

(a) p = 2 or (p = q and γ1 = ... = γp−3 = 0).
(b) (γ0 = ... = γp−3 = 0.
(c) p = 2.
(d) γ0 = ... = γp−3 = 0.
(e) γ0 = ... = γp−3 = 0.

In all cases, we consider germs also at points with t3 �= 0, and therefore we can
replace γp−2 + t3 by t3 in ρ. A condition on γp−2 (to be in C

∗ or C−{0; 1}) translates
into a condition on t3. This gives all statements in the corollary. ��

Remarks 7.3 (i) The classification in Theorem 7.1 of 3-dimensional germs (M, 0)
of generically semisimple F-manifolds with T0M ∼= Q(2) which are different
from A3, B3, H3 is precise, but not so transparent. It becomes more transparent if
one takes a closer look at the reduced plane curve germs (C, 0) with (LM , λ) ∼=
(C2, 0)× (C, 0). By Theorem 6.3, they have multiplicity 3. And by Corollary 4.7,
all reduced plane curve germs (C, 0) with multiplicity 3 appear.

(ii) Each reduced plane curve germ has a topological type. See [14, 3.4] for its defini-
tion.An old result ofBrauner andZariski (see, e.g., [14, Lemma3.31+Proposition
3.41 + Theorem 3.42]) is that the topological type of a reduced plane curve germ
is determined by the topological types of the irreducible components and by their
intersection numbers. And the topological type of an irreducible plane curve germ
is determined by its Puiseux pairs (see, e.g., [14, 3.4] for their definition). The
topological types of reduced plane curve germs of multiplicity 3 can be described
and listed as follows. In all cases, the number p ∈ Z≥2 and, if it exists, also the
number q ∈ Z≥2 are topological invariants.
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(a) 3 smooth curve germs C (1),C (2),C (3) with intersection multiplicities i(C (1),

C (2)) = p − 1, i(C (1),C (3)) = q − 1, i(C (2),C (3)) = p − 1 for p, q ∈ Z≥2
with q ≥ p.

(b) 1 smooth germ C (1) and one germ C (2&3) of type A2p−2 (namely with normal

form x2p−1
1 + x22 ) with the maximal possible intersection number 2p − 1 =

i(C (1),C2&3)).
(c) 1 smooth germ C (1) and one germ C (2&3) of type A2q−2 with an even inter-

section number i(C (1),C (2&3)) = 2p − 2 for q, p ∈ Z≥2 with q ≥ p.
(d) 1 irreducible germ with the only Puiseux pair (3p − 2, 3), so with a

parametrization (x �→ (x,
∑

n≥3p−2 anx
n/3)) with an ∈ C and a3p−2 �= 0.

(e) 1 irreducible germ with the only Puiseux pair (3p − 1, 3), so with a
parametrization (x �→ (x,

∑
n≥3p−1 anx

n/3)) with an ∈ C and a3p−1 �= 0.

One sees that the cases (a)–(e) correspond precisely to the cases (a)–(e) in The-
orem 7.1. There the curve (C, 0) is the zero set of the polynomial

∏3
j=1(y2 −

∂2 f ( j)|t3=0) ∈ C[y2, t2].
(iii) The following topological types contain quasihomogeneous plane curve germs

(C, 0): all in (b), (d) and (e); those in (a) with p = 2 or p = q; those in (c) with
p = 2. This fits to the cases in Corollary 7.2. The topological types in (a) with
p = q ≥ 3 contain a 1-parameter family of quasihomogeneous curves (up to
coordinate changes). This gives the holomorphic parameter γ0 in Corollary 7.2
(a) (iii).

(iv) In all cases in Theorem 7.1, there are p − 1 holomorphic parameters (γ0, γ1, ...,

γp−3, γp−2+ t3) for the germs of F-manifolds. Here, the last parameter γp−2+ t3
is an internal parameter, it is the parameter of the 1-dimensional μ-constant
stratum. The other parameters (γ0, ..., γp−3) (for p ≥ 3; no other parameter for
p = 2) catch the isomorphism class of the plane curve germ (C, 0) and the choice
of a symplectic structure on the germ (C2, 0) of the (y2, t2)-plane. This is the
choice of a volume form, i.e., a form udy2dt2 with u ∈ C{y2, t2}∗. In [15, Remark
5.31], the 3 types of parameters are rephrased as follows.

(α) moduli for the complex structure of the germ (C, 0),
(β) moduli for the Lagrange structure of (C, 0) or, equivalently, for the sym-
plectic structure of (C2, 0) ⊃ (C, 0),
(γ ) moduli for the Lagrange fibration.

Here we have only one parameter of type (γ ), the internal parameter γp−2 +
t3. Remarkably, the sum of the numbers of parameters of types (α) and (β) is
constant, it is p − 2. This is remarkable, as the number of parameters of type (α)

depends on the plane curve germ (C, 0) with which one starts. It has the shape
τ(C, 0)− btop, where btop ∈ N is a topological invariant and the Tjurina number
τ(C, 0)was defined in Theorem2.16 (b) and is not a topological invariant. Though
by Theorem 2.16 (b)+(c), the number of parameters of type (β) compensates this,
as it is precisely μ − τ(C, 0) = dim H1

Giv(C
2,C, 0). So the sum of the numbers

of parameters of types (α) and (β) is μ − btop. Here this number is p − 2.
(v) The same number μ − btop is also the number of parameters of right equivalence

classes of plane curve germs with fixed topological type. Here, the right equiva-
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lence class is the class up to holomorphic coordinate changes. This follows from
the fact that μ− τ(C, 0) is also the difference of the dimensions of the base space
of a universal unfolding of a function germ for (C, 0) and of a semiuniversal
deformation of (C, 0). However, for a given reduced plane curve germ (C, 0),
there is no canonical relation between the choice of a volume form on (C2, 0) and
the choice of a function germ f : (C2, 0) → (C, 0) with ( f −1(0), 0) = (C, 0).

(vi) Here, the normal forms in Theorem 7.1 are misleading. In all topological types
which contain quasihomogeneous curves (up to coordinate changes), the following
holds (and probably it holds also for the other topological types in (a) and (c)): The
parameters (γ0, ..., γp−3) in

∏3
j=1(y2 − ∂2 f ( j)|t3=0) are also the parameters for

the right equivalence classes. Furthermore, if they are fixed, the internal parameter
γp−2 + t3 does not change the right equivalence class. Both statements follow by
inspection of the curves and a description of the μ-constant stratum in a universal
unfolding of a quasihomogeneous singularity in [25].

(vii) The property in (vi), that the internal parameter γp−2 + t3 does not change the
right equivalence class, is a lucky coincidence of the chosen normal forms. It is
easy to construct a concrete description of a germ of an F-manifold in Theorem
7.1 where this does not hold. Start with a plane curve germ (C, 0) which is
not quasihomogeneous (up to coordinate changes) and choose function germs
g(0)
2 := 0 and g(0)

1 , g(0)
0 ∈ C{t2} such that (C, 0) ∼= {(y2, t2) ∈ (C2, 0) | y32 −

∑2
i=0 g

(0)
i t i2 = 0}. The system of partial differential equations

∂3

(
g1
g0

)

=
(

2g02 + g12t2 + 2g1
g02t2 + 3g0 + 2

3g1g12

)

.

is obtained from (4.45) by inserting (g2, h2, h1, h0) = (0, 1, t2,− 2
3g1). By the

theorem of Cauchy–Kowalevski (cited in the proof of Corollary 4.7), it has a
unique solution with initial values (g1, g0)|t3=0 = (g(0)

1 , g(0)
0 ). By construction,

(g2, g1, g0, h2, h1, h0) = (0, g1, g0, 1, t2,− 2
3g1) solve (4.45). We obtain a germ

of an F-manifold with g2 = 0. It is isomorphic to a germ in Theorem 7.1. Now
Lemma 4.6 gives

HZ3(Z2) = Z2 · [2g22h2 + (3y2 + g2)h22 + 3h12] = Z2 · 3. (7.26)

The plane curve germs (C(t03 ), 0) := (Z2|t3=t03
)−1(0) are isomorphic for all t03 ,

but the function germs Z2|t3=t03
are not right equivalent for different t03 , because

Z2|t3=0 is not quasihomogeneous (up to coordinate changes) and because of
(7.26).

Remark 7.4 In [6], 3-dimensional Frobenius manifolds with Euler fields E = t1∂1 +
1
2 t2∂2 were constructed which enrich the following three F-manifolds with Euler
fields:

(i) The F-manifold M = C
3 in Theorem 5.3 (a) with Tt M ∼= Q(2) for all t ∈ M

and with Euler field E as in (5.7) with ε2 = 1
2 and ε3,0 = 0.
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(ii) The F-manifold M = C
3 in Theorem 5.5 for p = 2 (so the first one in the series)

with T0M ∼= Q(2) and Tt M ∼= Q(3) for generic t ∈ M and with Euler field as in
(5.10) with ε3,0 = 0.

(iii) The F-manifold M̃ = C
2 ×H which is the universal covering of the F-manifold

C
2×(C−{0; 1}) inCorollary 7.2 (a)(i) (so the onewith p = q = 2 inTheorem7.1

(a)) with the Euler field as above (which is here unique up to adding a multiple
of e).

Natural questions are now which other F-manifolds in this paper can be enriched to
Frobenius manifolds or flat F-manifolds, and with which Euler fields, and in how
many ways.
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