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Abstract

F-manifolds are complex manifolds with a multiplication with unit on the holomorphic
tangent bundle with a certain integrability condition. Here, the local classification of
3-dimensional F-manifolds with or without Euler fields is pursued.
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1 Introduction

Boris Dubrovin defined and studied Frobenius manifolds [10,11]. A Frobenius man-
ifold is a complex manifold M with a holomorphic flat metric g and a holomorphic
commutative and associative multiplication o with unit e on the holomorphic tangent
bundle 7 M such that g(X oY, Z) = g(X, Y o Z) and such that locally a holomorphic
function ® (a potential) with g(X o Y, Z) = XY Z(®) for flat vector fields X, Y, Z
exists. Often one has additionally an Euler field E, a holomorphic vector field with
Lieg(o) = 1-o0and Lieg(g) = D - g for some D € C.

This seemingly purely differential geometric object has many different facets
and lies at the crossroads of very different mathematical areas, integrable systems,
meromorphic connections, singularity theory, quantum cohomology and thus mirror
symmetry. Boris Dubrovin explored many of these crossroads.

Manin and the second author defined the notion of an F-manifold [16]. It is a
complex manifold M with a holomorphic commutative and associative multiplication
o with a unit e on the holomorphic tangent bundle which satisfies the integrability
condition

Lieyoy (o) = X o Liey (o) + ¥ o Liex(o) for X, Y € O(TM). (1.1)

Here, an Euler field is a holomorphic vector field E with Lieg (o) =1 - o.

Frobenius manifolds are F-manifolds, and this is the original motivation for the
definition of F-manifolds. However, there are also F-manifolds which cannot be
enriched to Frobenius manifolds. The paper [9] starts with F-manifolds and studies
how and when they can be enriched to Frobenius manifolds. Crucial is the existence
of a certain bundle with a meromorphic connection (called (7 E)-structure in [9]) over
an F-manifold.

Slightly weaker, but almost as strong as a Frobenius manifold is the notion of
a flat F-manifold, which was defined by Manin [23]. It is an F-manifold with flat
connection D on TM with D(CM) = 0 and D(e) = 0, where C¥ is the Higgs field
from the multiplication, so CY = Xo:TM — TM for X € O(TM). Then, an
Euler field E is an Euler field of the F-manifold such that D4E : TM — T M (with
D,E : X — DxE)is a flat endomorphism.

Recently, flat F-manifolds with Euler fields were subject to work by Arsie and
Lorenzoni [2—4,22], Kato, Mano and Sekiguchi [18], Kawakami and Mano [19], Kon-
ishi, Minabe and Shiraishi [20,21]. They established such structures on orbit spaces
of complex reflection groups. And especially they observed a beautiful correspon-
dence between regular flat 3-dimensional F-manifolds and solutions of the Painlevé
equations of types VI, V and IV [4,18,19].

A regular F-manifoldis an F-manifold with Euler field such that the endomorphism
Eoon T M has everywhere for each eigenvalue only one Jordan block. This notion was
defined and studied by David and the second author [7]. The classification of germs
of regular F-manifolds is given in Theorem 1.3 in [7]: Each such germ is a product
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of irreducible such germs, and in each dimension, there is (up to isomorphism) only
one irreducible germ of a regular F-manifold. Furthermore, a small representative
of it is everywhere irreducible. However, the classification of generically regular F-
manifolds is an open and interesting problem, to which this paper contributes in the
case of dimension 3.

The second author studied F-manifolds in [15, ch. 1-5]. There he classified all
germs of 2-dimensional F-manifolds with or without Euler fields. This classification
is easy, see below. However, already the classification of the germs of 3-dimensional
F-manifolds is rich. It was not pursued systematically in [15] or anywhere else.

This paper aims at a systematic classification of germs of 3-dimensional F-
manifolds. It succeeds in the majority of the cases, but not in all cases. The classification
is up to isomorphism, i.e., up to isomorphisms of germs of complex manifolds, which
respect the multiplication.

In order to distinguish different cases, the 3-dimensional algebras over C have to
be listed.

Remarks 1.1 Here, the commutative and associative algebras with unit over C of
dimensions 1, 2 and 3 are listed. In dimension 1, the only algebra is C. In dimen-
sion 2, there exist up to isomorphism two algebras

PW = Clx]/(x?),
P® .—CeoC.

In dimension 3, there exist up to isomorphism four algebras,

0 = Clxy, 21/ (xf, x1x2, x),
0@ = Clx]/(x),

0¥ =CoClxl/)=Cea PV,
oW .=CeCaC.

A sum @?:1 C of 1-dimensional algebras is called semisimple, so C, P @ and Q(4) are

semisimple. The algebras C, PV, 0 and Q@ are irreducible. The decomposition
of each algebra into irreducible algebras is unique. The algebras C, PO p@, Q(z),
0® and Q™ are Gorenstein rings; Q! is not a Gorenstein ring. (The notations Q!
and Q(z) are opposite to those in [15, 5.5].)

Now let (M, o, e) be a connected 3-dimensional complex manifold with a com-
mutative and associative multiplication on 7 M with unit field e, but not necessarily
with (1.1). Choose local coordinates t = (¢, f2, t3), and denote by y = (y1, ¥2, ¥3)
the fiber coordinates on 7*M such that y; corresponds to the coordinate vector field
0j := d/0t;. Then, a := Z?:l y;dt; is the canonical 1-form on 7*M. The multi-

plication is given by 9; 0 9; = 22:1 afj . with coefficients aX. € Oy;. We suppose

)
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e = 01. The multiplication gives rise to the sheaf of ideals Zy; C O(T*M) with

3

Iy = (n —Lyiyy =y afyli,je {1,2,3}) corM),  (12)
k=1

and the complex space Ly C T*M which is as a set the zero set of Zy; and which
has the complex structure Or,, = (Or+*m/Iy)iL,, - The projection mg : Lyy — M
is flat and finite of degree 3. For each t € M, the points in 77, o) T;*M are the
simultaneous eigenvalues of all endomorphisms X|;0 : TM — T;M for X € T;M.
They correspond to the irreducible subalgebras of 7; M.

The numbering QU ..., 0¥ above was chosen so that for each j € {1, 2, 3, 4},
the subset | J,_ . {t € M | ;M = Q®}is empty or an analytic subvariety of M or equal

to M (Lemma 4.3 gives more precise statements). The algebra Q) with ;M = Q)
for generic t+ € M is called the generic type of M (M is connected). M is called
generically semisimple if the generic type is Q.

Ly is called analytic spectrum of (M, o, e). It encodes the multiplication and is
crucial for its understanding. The integrability condition (1.1) of an F-manifold is
equivalent to {Zps, Zps} C Zy, where {., .} is the Poisson bracket on O(T*M) [17]
(cited in Theorem 2.12). In the generically semisimple case, this is equivalent to
L;;g C T*M being Lagrange. This connects the generically semisimple F-manifolds
with the Lagrange fibrations and Lagrange maps of Arnold [1, ch. 18]. Givental’s paper
[13] on Lagrange maps contains implicitly many results and examples of generically
semisimple F-manifolds.

In the case of an F'-manifold, the integrability condition (1.1) implies that at a point
t € M such that 7; M decomposes into several irreducible algebras, also the germ of
the F'-manifold decomposes uniquely into a product of germs of F-manifolds, one for
each summand of T; M [15, Theorem 2.11] (cited in Theorem 2.5), and an Euler field
decomposes accordingly. Therefore in the classification of germs of F-manifolds, we
can restrict to the classification of the irreducible germs, which are the germs (M, 0)
such that Ty M is irreducible.

A rough distinction of classes is given by the isomorphism class ToM and the
generic type. It turns out, that in a germ of dimension < 3, only one or two types arise,
the type of ToM and the generic type. They may coincide. If they do not coincide, the
type of To M arises in codimension 1 or 2, most often in codimension 1.

The following table shows which examples, lemmas and theorems in this paper
concern which class of irreducible germs (M, 0) of F-manifolds of dimensions 1 or
2 or 3. It also indicates the parameters, functional or holomorphic or discrete, in the
families of F'-manifolds. It does not take into account the possible Euler fields. Though
the theorems do.

The results for dimension 1 and 2 are cited from [15], and they are easy. The
classification in dimension 3 is surprisingly rich. The cases with ToM = Q@ are
easier than those with ToM = QW In the two cases with ToM = QM) and generic
type O or 0™, we have no complete classification, but just some examples. The
reason is that then the integrability condition {Zs, Zps} C Zps is much more difficult
to control than in the cases with ToM = Q@ where we have Lemma 4.6.

i<j
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Table 1 Table of results

ToM Generic type
C C Lemma 2.6: 1 F-manifold A
P, pM Theorems 3.1, 3.2: 1 F-manifold N>
pM p@ Theorem 3.1: 1 series Ip(m), m € Zx3
oM oM Theorem 5.1: 1 functional parameter
oM 0@ Theorem 5.3 (b)+(c): 1 or 2 functional
parameters
o® 0@ Theorem 5.3 (a): 1 F-manifold
oM 0® no complete classification,
Lemma 5.7: one family of examples
0@ 0® Theorem 5.5: 1 series with parameter p € Zx»
oM oW no complete classification,

Theorem 6.3: a structural result,

Lemmas 6.4, 6.5 and Examples 6.7: examples
0® oW Examples 6.2: the ADE F-manifolds,

Theorem 6.3: a structural result,

Theorem 7.1: all other germs, namely

3 families with 1 discrete parameter p € Z>),

2 families with 2 discrete parameters p, g € Z>)

withg > p,

in all 5 families p — 1 holomorphic parameters

In Theorem 5.3 (c), the type of ToM arises in codimension 1 or 2. In all other cases
in Sects. 5 to 7, the type of ToM arises in codimension 1 or coincides with the generic
type.

Most not generically semisimple F-manifolds appear here for the first time. And
also most of the generically semisimple F'-manifolds, namely most of those in Theo-
rem 7.1 with TgyM = Q(z), are new. Their classification is linked to the classification
of germs of plane curves of multiplicity 3 (see the Remarks 7.3).

The germs with ToM = Q) and generic type Q® are related to certain germs of
Lagrange surfaces with embedding dimension 4 which are Cohen—Macaulay, but not
Gorenstein (Theorem 6.3 (d)). We do not have a classification of them.

Possibly the most interesting germs (M, 0) of 3-dimensional F-manifolds are the
generically semisimple germs with Euler field. Those with ToM = Q® are given in
Corollary 7.2.

Section 2 collects general facts on F-manifolds from [15]. Section 3 recalls the
classification of the 2-dimensional germs of F'-manifolds. Section 4 provides basic for-
mulas for 3-dimensional F'-manifolds, which are used in the proofs of the classification
results in Sects. 5, 6, and 7. Section 5 classifies the not generically semisimple germs
(except those with ToM = Q) and generic type Q). It proceeds by explicit coor-
dinate changes. Section 6 gives examples of generically semisimple F-manifolds and
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states the structural result Theorem 6.3 for the generically semisimple F-manifolds.
Section 7 classifies the generically semisimple germs with ToM = Q. Sections 6
and 7 work a lot with the analytic spectrum.

2 General facts on F-manifolds

F-manifolds were first defined in [16]. Their basic properties were developed in [15].
This section reviews the main basic properties from [15] and an additional fact from
[17].

Definition 2.1 [16] (a) An F-manifold (M, o, e) (without Euler field) is a holomorphic
manifold M with a holomorphic commutative and associative multiplication o on the
holomorphic tangent bundle 7M and with a global holomorphic vector field e €
Ty := O(T M) with eo = id (e is called a unit field), which satisfies the integrability
condition (1.1).

(b) Given an F-manifold (M, o, e), an Euler field on it is a global vector field
E € Ty with Lieg (o) = o.

Remark 2.2 The integrability condition (1.1) looks surprising at first sight. Though it
is natural from several points of view. Here are four of them.

(i) Theorem 2.12 rewrites condition (1.1) as a natural condition on the ideal giving

the analytic spectrum in T*M.

(i) Theorem 2.5 gives a decomposition result for germs of F-manifolds. Condition
(1.1) is crucial in its proof in [15].

(iii) The potentiality condition in a Frobenius manifold with holomorphic metric g
is equivalent to (1.1) plus the closedness of the 1-form (called coidentity) g (e, .)
[15, Theorem 2.15].

(iv) If the Higgs field of a (T E)-structure over a manifold M is primitive, it induces
on M the structure of an F-manifold with Euler field, see, e.g., [9].

Remark 2.3 [15, Proposition 2.10] If one has [ F-manifolds (My, ok, ex), k €
{1, ..., 1}, their product M = ]_[221 M. inherits a natural structure of an F-manifold
(M, @2:1 Ok, Zi:l (lift of e to M)). And if there are Euler fields Ey, then the sum
E = Zi:l (lift of Ey to M) is an Euler field on the product M.

Remark 2.4 A finite dimensional commutative and associative C-algebra A with unit
e € A decomposes uniquely into a direct sum A = @i: 1 Ax of local and irreducible
algebras Ay with units e; with e = Zi:l e and Ay, o Ay, = 0 for k1 # ko (of
course, the choice, which summand gets which label in {1, ..., [}, is arbitrary). This
is elementary (linear) algebra. The decomposition is obtained as the simultaneous
decomposition into generalized eigenspaces of all endomorphisms ao : A — A for
a € A (see,e.g., Lemma 2.1 in [15]). The algebra A is called semisimple if | = dim A
(sothen Ay = C - ¢ for all k).

Thanks to the condition (1.1), this pointwise decomposition extends in the case of
an F-manifold to a local decomposition, see Theorem 2.5. This is the first important
step in the local classification of F-manifolds.
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Theorem 2.5 [15, Theorem 2.11] Let ((M, to), o, e) be the germ at 10 of an F-
manifold.

(a) The decomposition of the algebra (T,o M, o|,0, e|,0) with unit into local algebras
extends into a canonical decomposition (M, 1°) = Hi:l (Mg, t%%) as a product
of germs of F-manifolds.

(b) If E is an Euler field of M, then E decomposes as E = Zi:l Ej with Ey (the
canonical lift of) an Euler field on Mj,.

Lemma 2.6 [15, Example 2.12 (i)] In dimension 1, (up to isomorphism) there is only
one germ of an F-manifold, the germ (M, 0) = (C, 0) with e = 9/9,,, where u is
the coordinate on C. Any Euler field on it has the shape E = (u1 + cy)e for some
Cl € C.

Definition 2.7 (a) Fixn € N = {1, 2, ..} and define the set of its partitions,

1(B)
Poi=3B=(B1, . Bip) | B €N, Bi = Biy1, ) Bi=n

i=1

For B, y € P, define

Bzy:ie= Fo (. A}~ AB}st.Bi= D> v
ieo~1(j)
B>y:<= B=yandB #y.

(b) Let (M, o, e) be an F-manifold of dimension n. Consider the map

P: M — P,, P(t) = {the partition of n by the dimensions
of the irreducible subalgebras of 7; M }

(c) An F-manifold is called generically semisimple if P(t) = (1,...,1) (&
[(P(t)) = n) for generic ¢ (In [15] such an F-manifold is called massive). An
F-manifold is called semisimple if it is semisimple at all points.

Lemma 2.8 Let (M, o, e) be an F-manifold of dimension n.

(a) [15, Proposition 2.5] For any B € P,, the set {t € M | P(t) > B} is an analytic
subset of M or empty.

(b) [15,Proposition 2.6] Suppose that M is connected. Then, there is a unique partition
Bo € Py such that the set {t € M | P(t) = Bo} is open. Its complement is called
caustic and is denoted by KC := {t € M | P(t) # Bo}. The caustic is an analytic
hypersurface or empty. If t € IC, then P(t) > fo.

(c¢) By Theorem 2.5 and Lemma 2.6, a semisimple germ of an F-manifold is isomor-
phic to (C",0) with coordinates u = (uy, ..., u,) and partial units ey = 9y,,
which determine the multiplication by ey o ey = ey and ey, o ex, = 0 for k1 # ka.
The global unit field is e = Y _y_, ex. The semisimple germ of dimension n is
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said to be of type A'{. The coordinates uy, or their shifts uy + i for any constants
¢, .., ¢y € C are Dubrovin’s canonical coordinates. Any Euler field on this F-
manifold has the shape E = Zzzl(“k + cx)ex for some cy, ...,c, € C. If an
Euler field E is fixed, the eigenvalues uy + cx of Eo can be used as canonical
coordinates. This fixes their ambiguity.

A generically semisimple F-manifold M has canonical coordinates locally on M —
IC, so there it can be described easily. A description near K is more difficult and more
interesting.

Three notions from the theory of isolated hypersurface singularities generalize to
F-manifolds, the u-constant stratum, the modality, and simpleness.

Definition 2.9 Let (M, o, ¢) be an F-manifold.

(a) For p € M, the p-constant stratum of p is the subvariety S, (p) = {tr €
M| P(t) > P(p)}. The modality mod, (M, p) is

mod, (M, p) := dim(S,.(p), p) — (P (p)). 2.1)

(b) The F-manifold is simple if mod, (M, p) = 0 for any p € P. A simple F-
manifold is generically semisimple because for any F-manifold mod,, (M, p) =
n—1(By) forpe M — K.

The definition of the modality is motivated by the following. If (M, p) =

I—[lj(jl(p D(Mj, p) as a germ of an F-manifold with idempotent vector fields
€1, ..., el(P(p)), then Lie,; (o) = 0 - o, so the germs (M, q) for g in one integral
manifold of ey, ..., e;(p(p)) are isomorphic as germs of F-manifolds.

In the case of a generically semisimple F-manifold with Euler field, the Euler field

gives rise to a complementary result.

Theorem 2.10 [15, Corollary 4.16] Let (M, o, e, E) be a generically semisimple F -
manifold with Euler field. For any p € M, the set

{reM|((M,t),0,e, E) = (M, p),o,e, E)}

is discrete and closed in M.

All the information of an F-manifold is carried also by its analytic spectrum, which
will be introduced now.

Definition 2.11 Let (M, o, e) be a complex manifold of dimension n with a holomor-
phic commutative and associative multiplication o on the holomorphic tangent bundle
and with a unit field e. (For the moment, the condition (1.1) is not imposed.)

(a) We need some standard dataon 7*M: Letw : T*M — M denote the projection.
Let t = (t1,...,t,) be local coordinates on M, and define d; := 9/d#. Let
y = (1, ..., Yn) be the fiber coordinates on 7* M which correspond to (91, ..., d;).
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(b)

Then, the canonical 1-form « takes the shape Z?:l yidt;, and w = do is the
standard symplectic form. The Hamilton vector field of f € Or+yy is

Hfzi@.i_ﬂ.i), 22

The Poisson bracket {., .} on Or+ )y is defined by
{f. 8} :=Hf(g) =w(Hy, Hy) = —Hy(f). 2.3)

Define an ideal sheaf Zy; C Or+ys as follows. We choose coordinates #; and yg
as in part (a) and such that e; = 9;. Write

n
di0dj =) ald withaf; € Opy. (2.4)
k=1
Then
n
In = (yl - Lyiyj = Za{(jyk) C Or=y. (2.5)
k=1

The analytic spectrum (or spectral cover) Ly := Specany, (T M, o) C T*M of
(M, o, e) is as a set the set at which the functions in Zj; vanish. It is a complex
subspace of T*M with complex structure given by Or,,, = (Or+p/Iam)lL,,-

The analytic spectrum L, was studied in [15, 2.2 and 3.2]. Though, the following
result was missed there.

Theorem 2.12 [17,2.5 Theorem] A manifold (M, o, ) with holomorphic commutative
and associative multiplication o on the holomorphic tangent bundle and unit field e is
an F-manifold if and only if {Zpr, Ty} C Iy

Remarks 2.13 (i) The points in L) above a point t € M are the 1-forms, which

(i)

are the simultaneous eigenvalues for all multiplication endomorphisms in 7; M.
They are in 1-1 correspondence with the irreducible subalgebras of 7; M.

Let (M, o, ¢) be a complex manifold of dimension n with commutative and
associative multiplication on the holomorphic tangent bundle. The projection
|, : Ly — M is finite and flat of degree n. The map

a:TM—>7r*(’)(LM), Xl—)Ol(X)|LM, (26)
is an isomorphism of Oy-algebras. In this way, the multiplication on . O(L )
determines the multiplication on the tangent bundle. The value «(X)(y,t) € C

at a point (y, t) € Ly is the eigenvalue of Xo on the irreducible subalgebra of
T; M which corresponds to (y, ).
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(iii) In the case of a manifold with a multiplication and unit field, such that the mul-
tiplication is generically semisimple, the restriction Lps|p_ic of Ly to M — K
is obviously smooth with dim M sheets above M — K. Theorem 3.2 in [15] says
that then L is reduced everywhere, so also above Ly N7 |an4 x).

(iv) In this situation, {Zys, Zys} C Iy says that Ly, is at smooth points a Lagrange
submanifold of 7*M.

(v) However, in the case of a manifold with multiplication and unit field, such that
the multiplication is nowhere semisimple, the analytic spectrum L j; is nowhere
reduced. Then, Z)y is quite different from the reduced ideal v/Z;. Especially, the
conditions

{Iv.Iu) C Iy and {VIny.VIu} C VIn 2.7)

do not imply one another. The second condition in (2.7) is equivalent to the
condition that Lﬁf}d (the reduced space underlying L,s) is at smooth points a
Lagrange submanifold of 7*M. The examples 2.5.2 and 2.5.3 in [17] and the
examples below in Theorem 5.1 and Remark 5.2 (ii) with b, # 0 are examples
of F-manifolds (so {Zy, Ty} C Zp holds) with {«/Zy, vIu} ¢ ~Zm. The
example (withn = 4) in [9, 2.13 (v)] is an example of a manifold (M, o, e) with

{Zym, Iy} ¢ Iy and {ZIy, vVIMm} C NIy

We are mainly interested in the case of generically semisimple F-manifolds. There
the following result of Givental is relevant. The embedding dimension of a complex
space germ (X, 0) is the minimal number k € N U {0} such that an embedding
(X, 0) = (CF, 0) exists.

Theorem 2.14 [13, ch. 1.1] An n-dimensional germ (L,0) of a Lagrange variety
with embedding dimension embdim(L,0) = n 4+ k with k < n is a product of a
k-dimensional Lagrange germ (L', 0) withembdim(L’, 0) = 2k and a smooth (n—k)-
dimensional Lagrange germ (L”,0); here, the decomposition of (L, 0) corresponds
to a decomposition

((5,0), w) = ((5',0), @) x (($",0), ")
of the symplectic space germ (S, 0) which contains (L, 0).
Existence of an Euler field for a given F-manifold is a problem with many facets.
Some F-manifolds have many Euler fields, others few, others none. The cases of all 2-
and many 3-dimensional F-manifolds will be discussed in Sects. 3 to 7. We are mainly

interested in the generically semisimple F-manifolds. There the following holds.

Theorem 2.15 (a) [15, Theorem 3.3] Let (M, o, e) be a generically semisimple F -
manifold. A vector field E is an Euler field if and only if

d(a(E))|L;VeIg = O[|L;;g. (2.8)
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(b) [15, Lemma 3.4] Let M be a sufficiently small representative of an irreducible
germ (M, t%) of a generically semisimple F-manifold. For any ¢ € C, there is a
unique function F : (L, (yo, %) = (C, ¢) which is holomorphic on L;;g and
continuous on L (with value c at (yo, 19)) and which satisfies dF|L;;g =« |L;;g'

(c) The parts (a) and (b) imply that in the situation of (b), for any ¢ € C, there is
a unique Euler field E. on M — K such that for t — t° all eigenvalues of E o
tend to c. We have E. = E( 4 c - e. The characteristic polynomial of E.o extends
holomorphically to t° and has there the value (x — ¢)". The Euler field E, extends
holomorphically to M if and only if the function F in part (b) is holomorphic on
Ly.

Theorem 2.16 (d) will rephrase the question whether the function F in part (b) is
holomorphic on L. A special case will be singled out in Theorem 2.16 (e). Now we
consider the germ (S, 0) of an N-dimensional manifold and the germ (L, 0) C (S, 0)
of an n-dimensional reduced subvariety. H¢; (S, L, 0) denotes the cohomology of
the de Rham complex

Q5 0/{w € QF o |w|Lres = 0}, (2.9)

which was considered first by Givental [13, ch. 1.1].

Theorem 2.16 (a) [13, ch. 1.1]1If (L, 0) is quasihomogeneous then H,; (S, L,0) =
0.

(b) [26] If (S,0) = (CZ%,0) and (L,0) = (f~'(0),0) for a holomorphic func-
tion germ f : (C%,0) — (C,0) with an isolated singularity at 0, then
dim H}, (S, L,0) = . — 7, where

® = dim OCZ’O/(%) and 7 :=dim OCZ,O/(f’ 2—){1)

(c) [13, ch. 1.2] In the situation of (b), u > v <<= (L, 0) is not quasiho-
mogeneous. And if (L, 0) is not quasihomogeneous, then n € Qéﬂ,o satisfies
] € HS,; (C%, L,0) — {0} if dn = u(x1, x2)dx;dxo with u(0) # 0 (i.e., dnis a
volume form).

(d) [13, ch 1.1] In part (b) in Theorem 2.15, F is holomorphic on Ly if and only if
[@]l =0¢€ H.. (T*M, Ly, (y°,1%).

(e) In part (b) in Theorem 2.15, suppose that embdim(L s, (yo, %) < n + 1. Then,
(L, (yo, %) = (€1, 0) x (C, 0) where (C, 0) is the germ of a plane curve.
And then F is holomorphic on L if and only if (C, 0) is quasihomogeneous.

(f) A germ (M, %) of a simple F-manifold has a (holomorphic) Euler field.

Proof of the parts (e) and (f): (e) The first statement follows from Theorem 2.14, and
the decomposition is compatible with a decomposition of the symplectic germ
(T*M, (¥°,1%)). The second statement follows from the first statement and from
the parts (a), (c) and (d).
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(f) We canrestrict to an irreducible germ (M, 1% of a simple F-manifold. The caustic
K is a hypersurface. At a generic point p € K,

0 =dim(S,(p), p) —=I(P(p)) =n—1—=1(P(p)), sol(P(p))=n—1,

so P(p) = (2,1,...,1), and (M, to) is a product of n — 2 1-dimensional and
1 2-dimensional F-manifolds. They have Euler fields, so F is holomorphic on
M — K" However, codim K58 > 2,50 F is holomorphic on M, and the Euler
field Eqg from Theorem 2.15 extends to M. O

A generalization of the generically semisimple F-manifolds are the generically
regular F-manifolds.
Definition 2.17 [7, Definition 1.2] Let (M, o, e, E) be an F-manifold with Euler field.

(a) The Euler field is regular at a pointt € M if Eo|; : ;M — T;M 1is a regular
endomorphism, i.e., it has for each eigenvalue only one Jordan block.

(b) The F-manifold with Euler field (M, o, e, E) is called a [generically] regular
F-manifold if the Euler field is regular at all [respectively, at generic] points.

Theorem 1.3 in [7] provides a generalization of the canonical coordinates of a
semisimple F-manifold with Euler field to the case of a regular F'-manifold.

3 2-dimensional F-manifolds

The 2-dimensional germs of F-manifolds were classified in [15].

Theorem 3.1 [15, Theorem 4.7] In dimension 2, (up to isomorphism) the germs of
F-manifolds fall into three types:

(a) The semisimple germ (of type A%). See Lemma 2.8 (c) for it and for the Euler
fields on it.

(b) Irreducible germs, which (i.e., some holomorphic representatives of them) are at
generic points semisimple. They form a series Iy(m), m € Z>3. The germ of type
I>(m) can be given as follows.

(M, 0) = ((Cz, 0) with coordinates t = (¢1, t) and dy := Bitk’
e=201, hodr=1l"e. (3.1)
Any Euler field takes the shape
E= (1 +c)o + %tzaz for some ¢; € C. (3.2)

(c) An irreducible germ, such that the multiplication is everywhere irreducible. It is
called N, and it can be given as follows.

0
(M, 0) = (C?, 0) with coordinates 7 = (¢1, 1) and 9 := FY
k
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e=01], 0ro0d,=0. 3.3)
Any Euler field takes the shape

E = (t] +¢1)91 + g(t2)9y for some ¢y € C
and some function g(fp) € C{r}. 3.4)

However, in the case of A5, one has still freedom in the choice of the coordinate
12, and one can use this to put an Euler field into a normal form. This was not studied
in [15], but in [8].

Theorem 3.2 [8, Theorem 48] (a) The automorphism group of the germ N> of an
F-manifold is

Aut(N2) = Aut((M, 0), o, e, E)
={(t1, ) = (t1, f(122)) | f(12) € C{rz} with £(0) =0, f'(0) #0}.  (3.5)

(b) Let E bean Euler field on N>. Its orbit under the automorphism group Aut(N?3)
contains precisely one of the Euler fields in the following list,

E = +0)d + 0, (3.6)
E=(t+0)d, (3.7)
E = (11 + ¢)d1 + cot202, (3.8)
E=(t+0)d +5(1+cit5 Hd,, (3.9)

where c,c1 € C, co € C* and r € Z>».

N, with the Euler field E in (3.6) is regular (Definition 2.17). A with the Euler
field E in (3.8) or (3.9) is generically regular. A, with the Euler field in (3.7) is not
even generically regular.

4 Basic formulas for 3-dimensional F-manifolds

Notations 4.1 In Sects. 4 and 5, we consider a 3-dimensional complex manifold M
with a holomorphic commutative multiplication on the holomorphic tangent bundle
and with a unit field e (so eo = id) with Lie, (o) = 0. This last condition Lie,(c) = 0
is weaker than (and implied by) the integrability condition (1.1) of an F-manifold.
We do not suppose (1.1) at the beginning, though we suppose Lie, (o) = 0 from the
beginning.

We work locally near a point p € M and suppose to have coordinates ¢ = (1, f2, 13)
with 9; = e and (M, p) = (C3,0) and coordinate vector fields dj = 0/0t;. Let
y = (y1, y2, ¥3) be the fiber coordinates on 7*M which correspond to 91, 2, 93.
Then, the canonical 1-form « takes the shape o = Z?:l yidt;.
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We write
9200y = d101 + dx0z + azds, 4.1
02003 = b101 + b2 + b303, 4.2)
93 003 = 101 + 202 + €303, 4.3)

with @, @2, as, b1, by, b3, €1, ¢2, & € Oy Many formulas take a simpler shape if we
rewrite the formulas above as follows,

(02 — b301) 0 (32 — b301) = a101 +ax(d2 — b391) +az(93 — b20y), (4.4)

(32 — b301) 0 (33 — b201) = b1 01, 4.5)

(93 — b201) 0 (33 — b201) = 101 + 2(32 — b301) + c3(03 — b201),  (4.6)

with a;, bj,c; € Opy. The condition Lie.(0) = 0 is equlvalent to aj, b], ¢j €

C{1y, 13}, so we suppose this from now on (and it also implies a1, az, by, 1,3 €
C{1tp, 13}). We denote

0;aj :=aj;, 9;bj :=bj;, d;cj :=cj;, and analogously for?ij,zj,?j. “4.7)

If s = (51,52, 53) is anotller system of coordinates on (M, p) with t = t(s) and

s =s(t)ands(p) = 0, write d; := 9/0s; for the coordinate vector fields of this system

of coordmates and write z = (z1, 22, z3) for the fiber coordinates which correspond
to 81 32, 33 Then

3 3
dl‘i=zajti'd5j, Zj:Zajti')’i- 4.8)

We suppose 51 = e = 9;. This is equivalent to #; (s) € (8;1 - s1 + C{s2, s3}) and also
tos;(t) € (8j1 - t1 + Cl{12, 13}). Often it is useful to make first a special coordinate
change of the type r, = 52, 13 = 53, 1] = 51 + T with t € C{#p, 13} = C{s2, s3}. Then

2=y, 2=0T -y1+y, 23=08T y1+y. 4.9

Lemma 4.2 In the situation of the Notations 4.1, the multiplication is associative if
and only if

ay = —azcs, by =azcy, c1 = —axcs. (4.10)
Proof Straightforward calculations with (4.4)—(4.6) of both sides of the equations

((82 — b301) 0 (32 — b391)) 0 (83 — b201)
= ((32 — b391) 0 (33 — b201)) o (32 — b301),
((82 — b301) 0 (03 — b201)) o (03 — b201)
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= ((33 — b201) 0 (33 — b2d1)) 0 (32 — b301).
O
The next lemma starts with M as in the Notations 4.1, but with associative multipli-
cation, and tells to which of the four algebras 0", 0@, 0® or 0™ in the Remarks

1.1 the algebra T; M for t € M is isomorphic.

Lemma4.3 Let (M, o, e) be as in the Notations 4.1 with coordinates t = (t1, b, 13),
and suppose that the multiplication o is associative. Define Ry, Ry, Ry € C{ty, t3} by

1 1 1
Ry :=a3c3 — 50%, Ry :=arcy — gcg, R3 :=a3cr — 56126‘3. 4.11)

For a pointt € M, the following statements hold.

M= 0" &= (2,03, c2.c3)(t) =0. 4.12)
M= Q® < (R, Ry, R3)(1) =0, (a3, c2)(t) #0. (4.13)
M = QP —= (9R; —4RiRy)(t) =0, (R1, Ry, R3)(1) #0.  (4.14)
M = QW —= (9R; — 4R Ry)(1) # 0. (4.15)
a3(t) #0 and (Ry, R3)(1) =0 = Ra(t) =0. (4.16)
c2(t) #0 and (Rp, R3)(t1) =0 = R;(t) =0. 4.17)

Proof Define
1
Y1 = 0y — b30] — §a281 and Y := 03 — bpd] — =c30;. (4.18)

One calculates

1 2
Yt = J@V1+Hasy — SR, (4.19)
1 1
Yoy = —3631#1 — gam + R301, (4.20)
02 1 2

Yy =Y + §C31/f2 — §R231, (4.21)

2
0=y + Ry + (Ga2R1 = azR3)di, (4.22)

2
o=w$+&m+%qm—q&m. (4.23)

The lack of a quadratic term wfz in (4.22) shows that the sum of the three eigenvalues
of Yo, : TM — T;M is zero for any t € M, and similarly for Y o |,. If M
is irreducible, then | o |; and ¥, o |; have only one eigenvalue, which is then zero.
Therefore, they are nilpotent, so Wf3|t = 0 and W§3|t =0, s0 (R, Ry, R3)(t) = 0.
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Vice versa, if (R1, Ry, R3)(t) = 0, then wf3|, = 0 and ¢§3|, =0, s0 Y o|; and
Y o |; are nilpotent, and T; M is an irreducible algebra. We proved

M =0V or M= Q% < (R, Ry, R3)(t) =0.

Suppose that 7; M is an irreducible algebra. If a3 (¢) # 0 then

(9 — b3 (1) = a3(t) ™! ((32 — b391)°% — ax(dr — b3dy) — 0131)(0,
2 .
so ThM = @(C-B;](t), and thus T,M = Q®,
=0

and in the same way c»(r) # O implies ;M = Q®. The other way round, if
(a3, c2)(t) = 0, then (Ry, Ry)(t) = 0 implies also (a2, c3)(t) = 0, and then
M= Q(l). This finishes the proof of (4.12) and (4.13).

Next we want to show (4.14). (4.22) and (4.23) generalize as follows for arbitrary
Y= MYy + Ay with A, Ay € Cin, 13}:

0=+ [RiA] — 3Rshiha + RoA3l - ¥

2 3 2 2
+ [(5612131 —asR3)\| — (§C3R1 —ayR3)A 1)
2 2 2 3
—(gasz —c3R3)A A5 + (§C3R2 — C2R3))\2:| - 01. (4.24)
A lengthy calculation shows that the discriminant of (4.24) is

4(coefficient of w)3 + 27 (coefficient of 81)2
= (OR? —4RRy) - 3(@3h] — aadiry + c3A3 —cad3)?. (4.25)

First suppose T;M = Q). Then, /|, has at most two different eigenvalues, and the
discriminant in (4.25) must vanish at z. Because 1| and A, € C{r,, 13} are arbitrary
and (a2, a3, ¢2, ¢3) # 0, this shows (9R3 — 4R Ry)(t) = 0. Vice versa, if (9RS —
4R R>)(t) = 0, then the discriminant in (4.25) vanishes at ¢ for any . Therefore,
Y o |; has at most two eigenvalues for any . This shows T; M 2 Q(4). Then, the
condition (Ry, Ry, R3) # Oyields ;M = 0. This proves (4.14).

(4.15) is a consequence of (4.12)—(4.14). The implications (4.16) and (4.17) are
trivial. O

Lemma4.4 Let (M, o, e) be as in the Notations 4.1 with coordinates t = (t1, tr, 13)
and fiber coordinates y = (y1, y2, ¥3) of T*M, and suppose that the multiplication
o is associative. With the result from Lemma 4.2, the ideal Ty C O(T*M) which
defines the analytic spectrum is

Im = (y1 — 1. Y2, Y23, ¥33), where
Y2 := (y2 — b3)(y2 — b3) +azcz — ax(y2 — b3) — az(y3 — b2),
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Y23 := (y2 — b3)(y3 — b2) — azca,
Y33 1= (33 — b2)(y3 — b2) +azcr — c2(y2 — b3) —c3(y3 — bo),  (4.26)

withaj, bj,c;j € Oy. Recall the notation in formula (4.7). Define

Ay := ax(—by + b3z + ax3) + az(—2c2 — ¢33) — azcz — azscs,
AdHal = 3 (—b33 + bay + ¢32) + c2(—2a33 — a) — cx3a3 — caz,
Az := —3byy + 3b33 + az — c32. 4.27)

Then

{yq1 —1,Y;;} =01Y;; (=0 because of ai, by, ¢k € C{t2, 13}),

(Y22, Y23} = Yoo[—2b20 + 2b33 + axz] +  Ya3lax + azz] + Y33lass]

+ (2 — b3) Az + (3 — bo)as Az + [—a3 A3 — azc3As),
{Y33, Y23} = Y33[—2b33 + 2b22 + c32] + Yasless + c2] + Yaolezz]

+ (3 — b AT — (32 — b3)e2 Az + [—2A2 + 242 A3,
(Y22, Y33} = Yoo[—2c22] +  Y23[2(—2b2s + 2b33 + a3 — c32)]

+ Y33[2a33] + (y2 — b3)[— AS“Y — c3A3]

+(y3 — b2)[A2 — az As]

+[—c3A2 + a2 A9 4 (axc3 + azer) Azl (4.28)

Therefore, (M, o, e) is an F-manifold if and only if

(az, a3, c2,c3) =0, (4.29)
or  (Az, A§" A3) = 0. (4.30)

The intersection of these two cases is the case (4.29) with additionally by, — b3z = 0.

Proof The calculation of the Poisson brackets in (4.28) is straightforward and leads to
the claimed formulas in (4.28). By Theorem 2.12, (M, o, e) is an F-manifold if and
only if {Zp, Zyy} C Iy, so if and only if

Ay = A9 = a3A3 = (2 A3 = c3A3 = ap A3 = 0. 4.31)

This leads to the two cases (4.29) and (4.30). O

Remark 4.5 In the case (4.30), the condition A3 = 0 can be used to make a specific
special coordinate change as in (4.9), namely we choose the new coordinates s =
(s1, 52, s3) such that

h=sy, B3=s3 t=s1+71, t€C{nn,r}with

1 1
0T = —b3y — gaz, 03T = —by — 36‘3. (4.32)
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With the notation 5} = d/9s; and with ¥r1, ¥ as in (4.18), we obtain

N=01=e, 0 =11, 03 =1,
~ 1 5 .1
82 _ b3a] — 82 + gazal’ 83 — bzal = 83 =+ 50331. (433)

Formula (4.24) in the proof of Lemma 4.4 tells that for any ¢ = A1y 4+ A2yp with
A1, Ay € C{ta, 13}, the sum of the eigenvalues of Yo is zero at any t € M.

If we call now the new coordinates againt = (1, 2, 13), the new and old coefficients
az, az, ¢, ¢3 coincide, and the new coefficients bgww), bg"ew), Aé”ew), (Ag”“l y(new)
A(new) b

3 ecome

1 , 1 .
bgnew) = —56127 bémw) = —503, Agmw) =0, (4.34)
1
Ag’e"’) = —03R| + 39232 = 2azcan — azxnes, (4.35)
dual\(new) _ _ l _ _
(431D = —0p Ry + Zarncy —2axcr — azen. (4.36)

In the case (4.30), we will often, but not always, assume that the coordinates t =
(11, 12, 13) have been chosen as in this remark.

If a germ (M, 0) of a 3-dimensional F-manifold satisfies ToM = Q@ or Q) or
0@, then life is easier than in the case ToM = Q1. The next lemma makes this
explicit in one way.

Lemma4.6 Let (M,0),0,¢e) be as in the Notations 4.1 with coordinates t =
(t1, 1, 13) with t(0) = 0 and fiber coordinates (y1, y2, y3) of T*M, and suppose
that the multiplication o is associative. Suppose ToM % Q. The coordinates t can
and will be chosen such that

C-31lo®C- 3200 ®C-35%0 = ToM. (4.37)

Then,
05° = g2 95>+ g1 92+ go - 01, (4.38)
O3 =hy- 95 +hy -2+ ho- 3, (4.39)

for suitable coefficients g2, g1, g0, h2, h1, hg € C{t2, 13}. We denote similarly to (4.7)
0igj =: gji» Oihj=:hj;.
The ideal Ty C Or+py which defines the analytic spectrum is

Iy = (y1 — 1,25, 7Z3), where
Zy = y; — gzy% — g1y2 — &0,
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Z3 = y3 — hoy3 — hiy, — ho. (4.40)
Then,

v —=1,Z;} =01Z; (=0because of g;, h; € C{12, 13}),
{Z3, 2o} = Z>[2820hs + (Bys + g2)hoo + 3h12]

+ y3192((g3 + 2g1)ha + gahy + 3ho) — g23] (4.41)
+ »2[(282281 + 2g02)h2 + (8281 + 380)h22 + g12h1

+2g1h12 — 2g2ho2 — g13] (4.42)
+ [2g2280h2 + g280h22 + go2h1 + 3goh12 — g1ho2 — go3). (4.43)

Therefore (M, 0), o, e) is a germ of an F-manifold if and only if the terms in square
brackets in (4.41)—(4.43) vanish.

Proof In each of the algebras Q) for j € {2, 3,4}, a generic element a satisfies
0V =C-1®C-a®C-a°? One can choose the coordinates ¢ on (M, 0) such that
01 = e and 02 ]o is such a generic element. This implies (4.37)—(4.40). The calculation
of {Z3, Z,} is straightforward. O

Corollary 4.7 Let géo), g%o), g(()o) € C{r} and hy, hy,hy € C{n, 13} be arbitrary.

There exist unique g2, g1, g0 € Clta, 13} such that g;li—0 = g(.o) and such that the
3-dimensional germ (M, Q) of a manifold with multiplication o on T M defined by
d1 = e, (4.38) and (4.39) is a germ of an F-manifold.

Proof The Cauchy—Kowalevski theorem in the following form [12, (1.31), (1.40),
(1.41)] will be applied (there the setting is real analytic, but the proofs and state-
ments hold also in the complex analytic setting): Given N € N and matrices
Ai, B € Myxn(Clsy, ..., Sm, ¥, X1, ..., XN }), there exists a unique vector

b e Mle((C{sl3 cees Sy y})

with

0P §m Ai( @)8¢ + B(s, y, ®)
- = [ S7 b ~ S’ 9 9
ay = iy as; Y
@(s,0) =0. (4.44)

. . 0 0 0
In our situation y =13, (Sl, X} Sm) = (tz)v d = (g2 _gé )7 81 _gi )1 80 _g(() ))l, and
A1, Az, Az and B come from the terms in (4.41)—(4.43) without g»3, g13, g03, more

precisely, (4.44) is here

3 ((g3 +281)h2 + g2h1 + 3ho)

9 g? (282281 + 2802)h2 + (8281 + 380)h22 + g12h1 (4.45)
2 +2g1h12 —2g2h02 ' ’

2g2080h2 + g280h22 + go2h1 + 3g0h12 — g1ho2
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The Cauchy—Kowalevski theorem tells that there exist unique g2, g1, go € C{12, 13}
such that g;|;;—0 = gﬁo) and such that the terms in (4.41)—(4.43) vanish. The multipli-
cation on 7'M which 1s defined by (4.38) and (4.39), is automatically associative. The
condition {Zys, Zps} C Iy is equivalent to the vanishing of the terms in (4.41)—(4.43).
By Theorem 2.12, ((M, 0), o, e) is an F-manifold if and only if {Zys, Zpyy} C Zpy. O

Remarks 4.8 (i) The corollary makes iteasy to construct a 3-dimensional germ (M, 0)
of an F-manifold. Arbitrary initial data g3, ¢\”, ¢\ € C{2} and ha, hy, ho €
C{r, 13} give a unique germ of an F-manifold. However, this approach does not
tell easily which properties such constructed F-manifolds have, which families
exist and what are their parameters.

(i) The condition A3 = 0 in Lemma 4.4 corresponds to the first line of equation
(4.45). We can make a coordinate change as in Remark 4.5. In the case of an
F-manifold in Lemma 4.6, we can choose new coordinates s = (sy, 52, §3) such
that

th =s3,13 =53, 11 =51+t with t € C{£p, 13} with
1 1
ht = —382: Bt = —g((g% +2g1)h2 + g2h1 + 3ho),
52282+32‘L’~31, 53233+33T'31. (4.46)

If we now call the new coordinates again t = (1, 2, 13), the new coefficients
g}"ew) and h&"ew) satisfy gé"ew) =0and Zg{"ew)hénew) + Shénew) = 0. This says
that the sum of the eigenvalues of 9,0 is zero, and that the sum of the eigenvalues of
d30 is 0. The last statement follows from the facts that the sum of the eigenvalues
of hpdjo is 3 and that the sum of the eigenvalues of hzag% is 2hy g1, because

A HA34A3 = —2(hiAa+Arh3+A2As) forany A1, Ao, A3 € Cwith 33_ A = 0.

5 3-dimensional not generically semisimple F-manifolds

We want to classify all 3-dimensional germs of F-manifolds. The reducible ones are
products of 1- and 2-dimensional germs of F-manifolds by Theorem 2.5. Those are
classified in Lemma 2.6 and Theorem 3.1. The 3-dimensional reducible germs of F-
manifolds are A%, A1 L (m) form > 3 and A1 N>, and the Euler fields are as described
in Theorem 2.5, Lemma 2.6 and Theorem 3.2. It remains to classify the irreducible
germs (M, 0) of F-manifolds, i.e., those where To M is irreducible. We start with those
with ;M = QO forany r € M.

Theorem 5.1 Any 3-dimensional germ (M, 0) of an F-manifold with T, M = Q) for
allt € M can be given as follows:

(M, 0) = (C3, 0) with coordinates = (¢, t2, 13),
e =01, 957 =0y0 (83 — byd1) = (33 — brd1)* =0,
where b» is arbitrary in 1, C{1,, 13}. (CR))
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The ideal (9202) C Cta, t3} is up to coordinate changes an invariant of the germ of
an F-manifold. A vector field E = €10) + €202 + 203 with €1, €2, &3 € C{t1, 2, 13}
is an Euler field if and only if &1 € t; + C{12, 13}, €2, &3 € C{1p, 3} and

02(e1) = —b202(e2), 03(e1) = —&€202(b2) — 33(e3D2) + bo. (5.2)

Proof Let (M, 0), o, €) be a germ of an F-manifold with 7,M = QU foranyr € M.

We choose coordinates ¢t = (f1, tr, t3) with 1(0) = 0 and use the Notations 4.1

and Lemma 4.2. By Lemma 4.3, (a3, a2, c¢3,c2) = 0. We are in the case (4.29) in
Lemma 4.4. The F-manifold condition gives no constraint on by, b3 € C{1, t3}.

We make a specific special coordinate change as in (4.9), namely we choose the

new coordinates s = (s1, 52, 53) such that

h=s),13=s3,01 =s1+1 with t € C{rn, 13} with
0T = —b3, 3T+ by € hC{n, 13}. (5.3)

Then t exists and is unique. With the notation 5j := 9/0ds; we obtain

51 231 =e, 52232—17381, 53 283+33‘[-31,
93 — bpdy = 03 — (937 + b2d)). (5.4)

If we call now the new coordinates again ¢ = (1, 2, 13), the new coefficients b;"ew)

and bg"ew) are

b =0 and b =831 + by € ,Cn2, 13).
Now we want to show that the ideal (d,2) C C{#,, 13} is up to coordinate changes
an invariant of the germ of an F-manifold. We consider a coordinate change as in (4.8)

with z; = y, which implies 51 t; = 1 and 51 th = 51 t3 = 0. Then

7 = 521‘1 - Y1 +52t2 -» +52t3 -3,
73 = ity - y1 + 3tz - y2 + 9313 - y3.

70 — (521‘1 + 52t3 -by)y1 and z3 — (531‘1 + 53t3 - b2)y1 are nilpotent in O7+pr /a1, -
We need z; to be nilpotent, so the coordinate change satisfies

Dt = —ots - by.
And then
by := 3] + 0313 - by.
takes the role of b, for the new coordinates. A short calculation shows

Oaby = (92b2)(1(s5)) - (3313 - Doty — Dat3 - D312).
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The second factor is a unit. Therefore, the ideal (d25>) is up to coordinate changes an
invariant of the germ (M, 0) of the F'-manifold.

The constraint (5.2) for an Euler field E = 191 + €202 + €393 follows straightfor-
wardly from the explicit version

0=1[E, 0 00;]—[E,9]00; —[E, 0100 — 9 0, (5.5)

fori, j € {1, 2, 3} of the condition Lieg (o) = 1-o (where we assume the multiplication
to be as in (5.1)). O

Remarks 5.2 (i) The ideal (d2b2) C C{t, 13} up to coordinate changes is a rich
invariant. It shows that there is a functional parameter in the family of 3-
dimensional germs of F-manifolds with 7,M = Q1 forallt € M.

(i) Though all these germs except the one with b, = 0 have the unpleasant property

(VIm, vIm} € Ly Here /Iy = (y1 — 1, y2, y3 — ba} and
{y2, 3 — b2} = —02(b2),

and this is in v/Zys only if by = 0.

(iii) Therefore, the germ of an F-manifold with b, = 0 is the most important one of
those in Theorem 5.1. In the case b» = 0, the compatibility condition (5.2) for
the coefficients of the Euler field says ¢; € #; 4+ C. So, then 1 € #; + C, and
&2, €3 € C{ty, 13} are arbitrary.

(iv) Theorem 3.2 improved the classification of the Euler fields for A> in Theorem 3.1
(c) by exploiting coordinate changes which do not change the multiplication. We
expect that a similar reduction of Euler fields to normal forms is possible for the
case b = 0 in Theorem 5.1. However, we do not pursue it here.

Next we classify the irreducible germs (M, 0) of F-manifolds with T; M = Q(z) for
generic (or all) € M. Itis also surprisingly rich. There is also a functional parameter.

Theorem 5.3 The following three constructions give (up to isomorphism) all germs
(M, 0) of 3-dimensional F-manifolds with T;M = Q@ for generic t € M. The three
constructions do not overlap. m C C{ty, t3} denotes the maximal ideal.

(a) Up to isomorphism, there is only one germ of a 3-dimensional F-manifold with
M= Q(z) forallt € M. In suitable coordinates t = (t1, t2, 13), it looks as
follows.

(M,0) = (C3,0), e =3y, 85> =03, dpo0d3 =05 =0. (5.6)
An Euler field is a vector field of the shape

E = (t) +c1)d1 + €202 + (3,0 + 13(20262 — 1)) 33,
with ¢; € C, &2, €30 € C{12}. 5.7
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(b) Consider an arbitrary f € m — {0}. Then, (M,0) = (C3,0) with e = 3, and
with the multiplication given by

32 = f-03, hod3 =082 =0 (5.8)
is an F-manifold with T,M = Q® for generict € M. Here C x f~1(0) = {t €

M| T,M = QWY The ideal (f) C {m} is up to coordinate changes an invariant
of the germ of an F-manifold. An Euler field is a vector field of the shape

E = (11 + ¢1)31 + €20, + €303, (5.9)
with ¢; € C, g € Cl{n}, &3 € C{tp, 13}, and
0 = (202 +£393)(f) + f(202(e2) — 93(e3) — 1). (5.10)

(c) Consider arbitrary fi, f» € m with gcd(f1, f») = 1 and an arbitrary h €
C{tp, 13} — {0}. Define for (M, 0) = (C3,0) the vector field o := hf0> + hf103.
Then, (M, 0) with e = 01 and with the multiplication given by

052 = ffo, %003 = —fifr0, 35 = f3o, (.1

is an F-manifold with TiM = Q® for generict € M. Here {t € M |T;M =
0WY is equal to C x h=1(0) if h € m, and equal to C x {0} if h(0) # 0. Here,
0po0 = 3300 = 0. The ideals (f1, f») C m and (h) C C{t,, 13} are up to
coordinate changes invariants of the germ of an F-manifold. An Euler field is a
vector field of the shape

E = (11 + ¢1)91 + €202 + €303, (5.12)
with ¢; € C, ¢, &3 € C{tr, 13}, and
0 = 3h(e202 + £303)(f1) + f1(£202 + £303)(h)

+2 f102(2) — 3 f202(e3) — f103(€3) — f1, (5.13)
0 = 3h(e202 + €333)(f2) + f2(202 + €303)(h)
+2f203(e3) — 3f103(82) — f202(82) — fo. (5.14)

Proof Let ((M,0), o, €) be a germ of an F-manifold with T;M = Q® for generic
t € M. We choose coordinates t = (t1, t2, t3) with #(0) = 0. and use the Notations 4.1
and Lemma 4.2. By Lemma 4.3, (R, Rz, R3) = 0, but (a3, az, c3, ¢2) # 0. We are
in the case (4.30) in Lemma 4.4.

The coordinates can and will be chosen as in Remark 4.5. Therefore for 0,0 as well
as for 930, the sum of the eigenvalues is 0. As each algebra T; M is irreducible, in both
cases there is only one eigenvalue. Therefore, it is 0, and 9,0 and 930 are nilpotent.

For generic t, TM = Q(2), and at least one of dy|; and 93|; is not in the (1-
dimensional) socle of the algebra T; M. Suppose 92|, is not in the socle. Then, 92| o
d2]; # 0, butitisin the socle. Therefore, the section 9, 09, is # 0, and for anyr € M its
value LS in ~the socle of T; M (remark that O is in the socle). Write 9,009, = f202 + f103
with f1 s fz S (C{tz, 1}.

@ Springer



90 Page 24 of 50 A.Basalaev, C. Hertling

Recall that (C{tthg} is a factorial ring (e.g., [14, Theorem 1.16]). Divide out joint
factors of f1 and f> and obtain a section p := f>0>» + f103 with ged(f1, f») = 1.
Then foreacht € M — C x {0}, gcd(f1, f») = 1 implies that p|; # 0, and p|, is in the
socle of T; M. Therefore, any section o with g|; in the socle fort € M — (C x {0} has
the shape p = g - p with g € Opy—cx (0} = Om. Especially 892, 0y 003, 8 € Oy - p.

Now we consider two cases. In the 1st case, (f1, f2)(0) # (0, 0), and then we
suppose first f1(0) # 0, and then by multiplying o with a unit, we can arrange
f1 = 1. In the 2nd case (f1, f2)(0) = (0, 0).

1st case, f1 = 1: We make a coordinate change ¢ = ¢(s) with #; = 51, 13 = s3 and
tr = 1r(s2, $3) such that 53[2(5) = f2(t(s)). Then

52 = 52[2 . 82 +52t3 . 33 = 52t2 . 8Za
03 = 03ty - 0 + 13 - 03 = fr(t(s)) - p + 33 = p(t(s5)).

We call the new coordinates again t. Then, 93 = p. This shows (5.8) for a function
f e Cln, 13}.

In the case f(0) # 0, a coordinate change 1 = #(s) with #; = s1, 12 = 52 and
13 = 13(s2, s3) such that 9313 = f(#(s)) exists and gives

52 =0 +52t3 - 03, 53 = 53[3 -d3 with 53t3 € C{sy, s3}*,
952 = 852 = f(1(5)) - 83 = f(t(s))(D313) " - 33 = B3,

so we obtain (5.6).

In order to show that the ideal (f) up to coordinate changes is an invariant of the
germ (M, 0) of an F-manifold, we have to consider all coordinate ~changes which
respect the shape of (5.8). These are coordinate changes such that 93 is a multiple
by a unit of 03, and 320 is still mlpotent Thus, 11 = 51 and , = 12(s2, s3) such that
83t2 = 0,50t = t2(s2). Then, 821‘2 and 331‘3 are units in C{r,, 13}, and

Oy = Oaty - Oy + a3 - 33, 03 = O3t3 - 03,
= () (B363) 7 - f- 33, so f=(0)* (@) fE(s).

f and f~ generate the same ideal up to a coordinate change.

Now let (M, 0) be the germ of a manifold with the multiplication in (5.8) for some
f € C{tp, 131—{0} on T M. We have to show thatitis an F-manifold. With the notations
in (4.4)-(4.6), we have a3 = fanday = b, = b3 = ¢y = ¢c3 = a; = by = c1 and
therefore A, = Ag”“l = A3 = 0 in (4.27). Lemma 4.3 applies and shows that
M is an F-manifold. Also Lemma 4.4 applies, the vanishing of R;, R>, R3 and the
nonvanishing of a3 = f show T;M = Q® for generic t € M.

For the shape of the Euler field £ = €191 + €202 + €303, one has to study the
explicit version (5.5) of the condition Lieg (o) = 1 - o. The case (i, j) = (1, 1) gives
e, E] = eand ¢; € §;1 + C{tp, t3}. The cases (i, j) € {(2, 1), (3, 1)} give nothing.
The case (i, j) = (3, 3) gives d3&1 = 0. The case (i, j) = (2, 3) gives this again and
additionally dre1 + fd3er = 0. The case (i, j) = (2, 2) gives 20,1 — fozeo = 0 and
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(5.10). We obtain (5.9) and (5.10). The case f = 1 specializes this to (5.7). The parts
(a) and (b) are proved.
2nd case, f1, f>» € m: We have

352 =g1p, 02003 = gp, 3§2 = g3p forsome gi, g2, g3 € C{n, 13}.

One calculates

0=00p=(fr81+ fig2)p, so 0= frg1 + f182,
0=2030p="(f282+ f183)p, so 0= frgr+ f1g3.

As C{1p, t3} is a factorial ring and ged( f1, f>) = 1, this implies

(g1, €2, 83) = (hfE, —hfi fo, hf3) forsome h e Cit, 13).

We define o := h - p and obtain the multiplication in (5.11).

In order to show that the ideals (fi, f2) and (k) up to coordinate changes are
invariants of the germ M of an F-manifold, we have to consider all coordinate changes
which respect the shape of (5.11). The arguments above show that it is sufficient that
9p0 and 330 are nilpotent. Therefore, we consider a coordinate change which satisfies
t1 = sy and (12, 13) = (t2(s2, $3), 13(s2, 53)). Then,

(nit)(f29; + f183) = (unit) - p(t(s)) = § = frd2 + 173
= (f20212 + f10312)02 + (f20213 + f10313)03.

The equality (f2(z(s)), fi1(t(s))) = (fz, fl) of ideals follows. Consider the set {g €
C{r, 13} | 3 a vector field X with [e, X] = 0 and X o nilpotent and X°% = gp}. The
function & is a greatest common divisor of all functions g in this set. This property
is coordinate independent. Therefore, the ideal () up to coordinate changes is an
invariant of the germ (M, 0) of an F-manifold.

Now let (M, 0) be the germ of a manifold with the multiplication in (5.11) for
some f1, fo € m with ged(f1, f2) = 1 and for some i € C{z;, 13}. We have to show
that it is an F-manifold. One calculates immediately d, o 0 = 0 and d3 o 0 = 0, so
the section o is everywhere in the socle. Because of this and (5.11), dyo0 and 930 are
nilpotent. Calculation and comparison with (4.19)—(4.21) and Remark 4.5 give

1
352 = hfl fr00 + hfio3 = 50232 + a303,

1 1
D ody = —hfi f70 — hfl frd3 = —50332 - §a233,

1
B2 =hf30 +hfif103 = c2dh + 30303,
SO

an ‘ a3 ‘bz = —%C3‘b3 = —%az‘ [o) ‘ c3

3nfifa|nfi| —nfifs | —hfEfa |hf530f1 S

(5.15)
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Easy calculations show Ay = A‘zi"“l = A3 = 0for Ay, Ag”‘” and Az asin Lemma 4.3
(or, better, in Remark 4.5). Lemma 4.3 applies and shows that M is an F'-manifold. Also
Lemma 4.4 applies, the vanishing of Ry, Ry, R3 and the nonvanishing of as, az, ¢z, 3
show T;M = Q' for generic t € M.

For the shape of the Euler field E = €191 + €202 + €303, one has to study the
explicit version (5.5) of the condition Lieg (o) = 1 - o. The case (i, j) = (1, 1) gives
e, E] =eande; €1 +C{1, 13}. The cases (i, j) € {(2, 1), (3, 1)} give nothing. The
cases (i, j) € {(2,2),(2,3), (3, 3)} give with some tedious calculations d,e; = 0,
dze; =0, (5.13) and (5.14). Part (c) proved. O

Remarks 5.4 (i) The ideal (f) in part (b) and the ideals (f, f2) and (k) in part
(c) up to coordinate changes are rich invariants of the germ of an F-manifold.
They show that there is a functional parameter in the family of 3-dimensional
germs of F-manifolds with T,M = Q@ for generic r € M if ToM = Q.
This is surprising, as part (a) says that the F'-manifold is near points t € M with
T;M = Q@ unique up to isomorphism.

(ii) If in part (c) /2 is chosen in m, then & has a clear meaning, namely C x 2~1(0) =
{teM|T,M = QW)}. The meaning of the ideal (f1, f») is more subtle. It tells
how the rank 1 bundle of socles of the algebras ;M on M —{t € M | T;M = QV}
approaches 0.

(iii)) The case h(0) # 0 in Theorem 5.3 (c) is the only case in Sects. 5 to 7 of
an irreducible germ (M, 0) of an F-manifold where the type of ToM arises in
codimension 2. In all other cases, it arises in codimension 1 or is equal to the
generic type.

(iv) Inall three parts of Theorem 5.3, Zys O (v3, y3¥3. y2¥3. ¥3) and v/Zy = (y1 —
1, y2,y3), s0 here {v/Zu, vZu} C VI

(v) The F-manifold in part (a) with an Euler field E = (t; +c¢1)01 +&202 + €303 isa
regular F-manifold if and only if £2(0) # 0. In fact, up to the choice of ¢ € C,
there is only one regular germ of a 3-dimensional and everywhere irreducible F-
manifold [7, Theorem 1.3]. A germ (M, 0) of an F-manifold with ToyM = Q(l)
has no regular Euler field, because the socle of Q1 has dimension 2.

Next we classify the irreducible germs (M, 0) of F-manifolds with TyM = 0@
and T,M = Q® for generic 1 € M.

Theorem 5.5 The irreducible germs (M, 0) of F-manifolds with ToM = Q® and
;M = QO for generic t € M form a family with the only parameter p € Z». For
fixed p € Zsy, the germ of the F-manifold can be given as follows:

(M, 0) = (C3,0) with coordinates t = (1, 12, 13), € = 91,
052 = ¢? - 03, oty =100 By, 057 =12P % b,

with @ := p + 2p — 2/ 13 (5.16)

The causticis K = {t € M|t = 0} = {t € M|T;M = QP}. A vector field
E = €101+ €202+ €303 is an Euler field if and only if €1, €3 and 3 have the following

@ Springer



3-dimensional F-manifolds Page 27 of 50 90

shape, here ¢ € C and 3,0 € C{t2} are arbitrary,

& =1 +ci,
_ -2
ex=np (1 -t "3,
_ )
e3=e30+163p ' 2= p+Q2p -2t e30). (5.17)

The following Remarks 5.6 make the geometry of the F-manifolds in Theorem 5.5
more transparent. The proof of Theorem 5.5 will be given after these remarks and will
contain the proof of these remarks.

Remarks 5.6 Let ((M, 0), o, e) be one of the germs of F-manifolds in Theorem 5.5. On
M —IC, the bundle T M of algebras decomposes into the direct sum T M| yr_xc = Ta, ®
Ty, of bundles of algebras isomorphic to C, respectively, to C[x]/ (x2). Write o A
respectively, o | A, for the summands of a section o of T M| in T4, Tespectively,
in Tps,. Then,

(%217,)2 =0, 33]n; =0, (5.18)
Dla, =0 f -ela,, Bla, =03f -ela,, (5.19)

with f = + 157213,

sodaf =t g, baf =577 (5.20)

Also
3953 = by f - 052, (5.21)
& =hy- 852 with hy =g~ (5.22)

The Euler field has freedom in €39 € C{z;}. This is not obvious, but it is also not
surprising, as at t € M — K the germ of the F-manifold is A;\>, and the Euler fields
of N3 have a similar freedom, see (3.4). Though in the case of N3, one can normalize
the Euler fields by changing the variable #,, see Theorem 3.2. This is not possible here.
The functional freedom in €3 9 € C{#2} cannot be get rid of.

Proof of Theorem 5.5 and the Remarks 5.6: Let (M, 0) be a germ of a 3-dimensional F'-
manifold with ToM = Q® and T, M = Q® for generic t € M. Then the caustic K is
ahypersurfaceand C ={re M |T;M = OPVandM —K={te M|T,M = 0P}
The bundle 7 M|y decomposes into T4, ® Tas, as described in the Remarks 5.6,
and we write 0 = 0|4, + 0|/, for the summands of a section o of TM|p;_x.

Because of oM = Q®, Lemma 4.6 applies. We choose the coordinates ¢ as
in this lemma, so with (4.37)—(4.43) for suitable coefficients g2, g1, go, h2, h1, ho €
C{tp, 13}. Letm C ToM be the maximal ideal in Ty M. Refining (4.37), we can choose
the coordinates ¢ even such that

C-&lo®C-3%o=mcC oM,
C-d3)o=C- 035> =m’ C oM (5.23)
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holds. Then, #2(0) # 0 (and also g2(0) = g1(0) = go(0) = h1(0) = ho(0) = 0). In
the following, five coordinate changes will be made in order to reach the normal form
in Theorem 5.5.

The eigenvalue of d;|as,0 is a holomorphic function on M — K which extends
continuously and thus holomorphically to M. It can be written as #; + A with A €
C{n, 13}. We make a special coordinate change as in (4.9), namely we choose the new
coordinates s = (s1, 52, s3) such that

thh=s,13 =53, =51 +71 with 7€ (C{tz, t3} = (C{Sz, 53}
such that 9,7 = —A € C{#p, 13}.

We obtain
51 =01, 522324-82‘['81 =0y —A-01, 53=3z+331~3].

We call the new coordinates again ¢ and denote also the new coefficients again as
gj»hj. Now 03| a5, 0 is nilpotent. This implies g1 = go = 0 and d2|4, = g2 - €|a,.
The term in square brackets in line (4.42) in Lemma 4.6 vanishes because (M, 0) is
an F-manifold. Because of g = go = 0, it boils down to g202 = 0. Though g» # 0
because ;M = QO for generic 7. Therefore, 9,19 = 0. We make again a special
coordinate change as in (4.9), now with t € C{r3} such that 93t = —h¢. Then,

01 = 01,00 = d,03 = 03 + 937 - 01 = 33 — hody.

We call the new coordinates again ¢ and denote also the new coefficients again as
gj,hj.Now g; =go=ho=0.

~ We make a coordinate change t = #(s) with 11 = s1, 13 = s3 and 1, = 2(s) with
03t (s) = —h1(t(s)). Then,

81 = 01,00 = datr - 3, 03 = 0312 - O + D313 - 93 = I3 — h1 0.

Here, 52t2 is a unit. We call the new coordinates again ¢ and denote also the new
coefficients as g;, hj. Now g1 = go = hp = h1 = O and 93 = h282°2. And now
03|\, = 0 because 92| A, © is nilpotent.

The term in square brackets in line (4.41) in Lemma 4.6 vanishes. Here, it is
> (hzgg) — 03g2. Therefore, a function f € C{r,, 13} with

0f =g and 03f = hags = ha(92f)* (5.24)
exists. Here, f;—o has a zero of an order p € Z>, because g2(0) = 0.

A coordinate change t = f(s) with | = 51,13 = s3 and t, = 1(s2) € C{rp} exists
such that (after calling the new coordinates again ¢)

flz=0 = té’, so f= tzp + katéf with f; € C{s}.
k>1
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The equation 93 f = h (02 f )2 and h2(0) # 0 and p > 2 imply inductively f; €
t22P_2(C{t2} for all k > 1 and especially f| € 1‘221”_2 - C{t2}*. Therefore
P p—2 ..
f=t (1 +1t “t3-(aunitin (C{l‘z}).

We can and will change the coordinate 73 such that f = tzp 1+ tzp _2t3). Then,
g=0f =" p+@p -2 ) = t%P*Hp and &3 f = 13777, Now hj is
determined by 35 f = hy(9, f)? and is hy = ¢~

Now all statements in the Remarks 5.6 except those on the Euler field are shown.
The terms in the square brackets in (4.41)—(4.43) vanish. Therefore, we really have an
F-manifold. The multiplication is as in (5.16), because

3% = hy o5 = 9?85,
05° = 9205 = 19057,
8003 = hd5> = hogrds? = g203 = 1l i,
o o o 2p—2
932 = m305* = h3g305% = haglds = 1,7 0.

It remains to show the shape (5.17) of the Euler field £ = €191 + €202 + €303.
One has to study the explicit version (5.5) of the condition Lieg(o) = 1 - o. The
case (i, j) = (1, 1) just gives [e, E] = e and thus &; € &;; + C{tp, t3}. The cases
@i, Jj) € {2, 1), 3, 1)} give nothing. The case (i, j) = (3, 3) leads to 93(e1) = 0,
93¢7 = 0 and &2 = (2p — 2)"'1(1 — d3¢3). The cases (i, j) € {(2,2),(2,3)}
lead to d2e; = 0 and to equations which allow to relate €39 and €31 € C{r2} in

€3 = €3,0 1+ 13¢3,1. At the end one obtains (5.17). We leave the details to the reader.
O

We do not have a classification of the irreducible germs (M, 0) of F-manifolds
with ToM = Q) and T;M = Q® for generic t € M. The family of examples in the
next lemma shows that such germs exist.

Lemma 5.7 Fix a number p € Zs>. The manifold M = C3 with coordinates t =
(t1, ta, t3) and with the multiplication on T M given by e = 01 and

052 = pt? '8y, 3033 =0, 332 =0 (5.25)
is an F-manifold with caustic

K={teM|h=0={teM|T,M=0Q"}and
M—-K={teM|T;M= Q0. (5.26)

A vector field E is an Euler field if and only if

1
E =(t] +¢1)01 + —1hdr +e393, withcy € C, &3 € C{r3}. (5.27)
p
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Proof In the Notations 4.1, b = b3 = a3 = c; =c3 =0, a; = tf -1 Therefore,
Ay = A‘zi”“l = A3 = 0in Lemma 4.4, and we have an F-manifold. The statement on
IC is clear. The analytic spectrum is

Lu={00 e T" My =1 002 - pd ™) = vy =13 =0} (528)

The set which underlies Ly, is Lﬁfld ={(y,t) € T*M | (y1, y2,y3) = (1,0,0)} U
{(y, 1) €e T*M | (y1, y2, y3) = (1, ptzpfl , 0)}, so it has two components which meet
over KC. Therefore, ;M = Q) fort € M — K. For the proof of (5.27), one has to
study the explicit version (5.5) of the condition Lieg (o) = 1 - o. We leave the details
to the reader. O

6 Examples of 3-dimensional generically semisimple F-manifolds

A partial classification of irreducible germs (M, 0) of 3-dimensional generically
semisimple F-manifolds was undertaken in [15, ch. 5.5], there in Theorems 5.29
and 5.30. Theorem 5.29 in [15] gave basic facts on both cases, the case TyM = Q®
and the case ToM = QD). Theorem 5.30 classified completely those germs where
ToM = Q@ and where the germ (L y7, 1) of the analytic spectrum has 3 components.

Below we first describe in the Remarks 6.1 the strategy of the classification results
in this section and the next section. The Examples 6.2 rewrite the three distinguished
F-manifolds A3, B3 and H3. Theorem 6.3 is Theorem 5.29 from [15]. Lemma 6.4
and Lemma 6.5 give examples (M, 0) of generically semisimple F-manifolds with
ToM = QD We do not have a classification of all such germs. Lemma 6.4 is Theorem
5.32 from [15].

Remarks 6.1 (i) Let (M, 0) be an irreducible germ of a 3-dimensional generically
semisimple F-manifold with analytic spectrum (Ljs, A). Here and in the follow-
ing, we choose coordinates t = (t1, t2, t3) on (M, 0) such that (M, 0) = (C3,0)
and e = 9. Then, (y1, y2, y3) are the fiber coordinates on 7* M which correspond
to 01, d2, 03, and o = Z?:l y;dt; is the canonical 1-form. In the following, M
denotes a suitable (small) representative of (M, 0).

It turns out that often the best way to arrive at a normal form for ((M, 0), o, e)
is to control the function F : (Ly;, A) — (C, 0) from Theorem 2.15 (b). It is
holomorphic on L;,e[g and continuous on L, and it satisfies

dF'L;;g =0£|L'1“;g. (6.1)

We consider it as a 3-valued holomorphic function on M which is branched pre-
cisely over the caustic L C M. Locally on M — K it splits into three holomorphic
functions F(V, F® F®) We will use this notation without specifying a simply
connected region in M — K. This is imprecise, but not in a harmful way. With this
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(ii)

(iii)

notation, F determines L as follows (this rewrites (6.1)), locally on M — IC,

3
Ly = J{o.0) e T*"M | yi = ; F fori € {1,2,3}}. 6.2)
j=1

Let M) be a suitable neighborhood of 0 in the (z2, 13)-plane C2. It can be iden-
tified with the set of e-orbits of M. The condition Lie, (o) = 0 implies that the
multiplication, the caustic IC and the analytic spectrum Lj; are invariant under
the flow of e. As e = 9y, K induces a hypersurface ) ¢ M®),and F = 1; + f
where f is a 3-valued holomorphic function on M " which is branched along /C").
Locally on M) — K £ splits into three holomorphic functions £, 2 3,
The coefficients of the polynomials H;:l (x — f@)) and ]_[i’»:l(x — 3 fY) and
]_[321 (x — 33 f)) are univalued holomorphic functions on M) i.e., they are in
C{r, t3}. The last two polynomials are the characteristic polynomials of d,0 and
dzo.

The Euler field E = 101 + €202 + €393 on M — /C, which corresponds to F by
Theorem 2.15, is given by FU) = E(FD), ie., by

er=t1, f9 =& -fP +e3-05fY. (6.3)

&7 and &3 depend only on (f, 3), but often are meromorphic along ). If they
are in C{#p, 13}, then E extends from M — K to M.

Now consider the case ToM = Q®. Denote by m C ToM the maximal ideal in
ToM. We can and will choose the coordinates ¢ such that

C-&hlo®C-d%o=mcC THM,
C- 8300 =C-85%g =m?* C TyM. 6.4)

Then
93 =hy- 352 +hy -0y +ho -0 (6.5)

for suitable coefficients hy, hy, hg € C{tp, 13} with h>(0) # 0, h1(0) = ho(0) =
0. These coefficients are determined by

KD =hy- D fIN2 +hy 00 fD + hy. (6.6)

Also write H;Zl (x =3 fD) = x3 — gox? — g1x — go with g2, g1, g0 € C{t2, 13}.
Then,

Ly ={(y,0) e T*M | y1 = 1,y3 = g2y3 + 812 + 20,
3 = hay3 + hiys + ho}. (6.7)
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Examples 6.2 Here, the F-manifolds Az, B3, H3 from Theorem 5.22 (i) in [15] will be
rewritten with the notions from the Remarks 6.1. They arise as complex orbit spaces of
the corresponding Coxeter groups. Their discriminants had been studied especially by
O.P. Shcherbak [24], and their Lagrange maps (which correspond to the F-manifold
structures by Theorem 3.16 in [15]) had been studied by Givental [13].

They are simple F-manifolds with Euler fields with positive weights. Their germs
(M, 0) at 0 are the only simple 3-dimensional germs of F-manifolds with ToM = Q®,
see Theorem 6.3 (b).

We use the notations from the Remarks 6.1. Though here we have F-manifolds
M = C3, not just germs. The following table gives for each of the three cases the
following data:

(i) a3-valued function & on C2 = M) (with coordinates (2, #3)) which is branched
along K. It is given by the equation of degree 3 which it satisfies. The equation
is denoted £ — g262 — g2 — go = 0 with g2, g1, go € Clt2, 13].
(i) A weight system (w1, wp, w3) € Q3>0-
(iii) The components of ), and which germs of an F-manifold are at generic points
of each component.

A3 Bj Hj
£ £+ 2&3 +1n [EE*+ 2st3 +n)]& - (2st3 +1)°
(wla w2, w3) (1, 1> 2) (la 3> 3) (1’ 3> 5)
K® 2 AyAy 2763 4328 =0 nh—1t3 27t + 32845
K" 2nd comp. — Hh=0: h(#A| | =0: LA,

The 3-valued function f on M) with F =t + f is

f=wén +wEn. (6.8)
The following identities are crucial. They will be proved below.

of=t of=¢" ©.9)

Because of them, the Euler field is £ = #1091 +w»1202 + w3393, and the multiplication
and the analytic spectrum are given as follows,

Ly ={(y,0)eT*M|yi=1,y3 =gvi+ gy +8g.y3 =y} (610

One sees L = C2 x C, where C is aplane curve, and C is smooth in the case A3, C has
two smooth components which intersect transversely in the case B3, and C has one
ordinary cusp in the case H3. We will prove now (6.9) and the claims on the caustic.

Proofof (6.9): Itis equivalenttod f = &dr, 4+&£2dr3. And this is equivalent to the claim
that L'® is Lagrange, i.e., a|, re is closed. And then [, o« =t + f as a 3-valued
M M
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function on M. In all three cases
df = wakdny + w3Edss + (wary + 2w3ér3)dé,
so in all three cases
(waty + 2w3én)dé = (1 — wp)édt 4 (1 — w3)éE2ds (6.11)

has to be shown.
The case Az: Use 0 = &3 + 2&13 + 1, to calculate

0 = £d(£ 4+ 2813 + 1) = (387 + 2£13)dE + 262d1; + £dn
= (—4&13 — 31)dE + 26%d13 + Edy,

which shows (6.11).
The case B3: Use 0 = £(£2 + 2£13 + 1) to calculate

0= Ed(EE? + 2863 + 1)) = (387 + 46713 + £n)dE + 263dr3 + £2dn
= (=283 — 261)dE + 283dns + £2dn

1
=2£.-n with 7= (=&t — tr)dE + £2dt3 + S&dn.

For (6.11), we need ) = 0. Here, & consists of one holomorphic function £ = 0 and
a 2-valued function £ 243 £ 0. For ¢V, 5 = 0 is trivial. For £¢2%3 5 = 0 follows
from 0 = 26 &3 .y as then we may divide by 2& 243,

The case H3: Use 0 = 53 — 2t + )2 to calculate

0=&d(E — (2134 1)%) = 36°dE — 262613 + 1)d(2E13 + 1)
— 2613+ 12) - (3(2gr3 +1)dE — 26d(2&1 + t2)>, thus

0 = 3213 + 12)dE — 26d(2E13 + 1)
= (2613 + 30)dE — 4E%dr3 — 2Edn,

which shows (6.11). O

Proof of the statements on the caustic: The case A3: The discriminant of x3 +2#3x 41
is4(2t3)3 +27t22 = 3’2t33 +27t22. Over generic points of the caustic (all except (71, 0, 0)
for #; € C) the multigerm of Ly has 2 smooth components, so there we have the germ
ArAj.

The case B3: The two components of Lj; meet over points with , = 0. Over
generic points of this component of 1, we have the germ /5(4)A . The discriminant
of x2 + 213X + tp is (2t3)2 — 4 = 4(t§ — 1p). Over generic components of this
component, the multigerm of L), has 2 smooth components, so there we have the
germ ArAj.

The case Hz: The discriminant of x> — (213x + 1)? is t23 (32t§’ + 27t>). The cusp
surface of Ly lies over the component with 7, = 0 of IC. So there we have the germ
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I, (5)A;. Over generic points of the component with 32t33 + 27ty = 0, the multigerm
Ly has 2 smooth components, so there we have the germ Ay A1. O

The following theorem is Theorem 5.29 from [15]. It gives basic facts on irreducible
germs of 3-dimensional F-manifolds with generically semisimple multiplication.

Theorem 6.3 [15, Theorem 5.29] Let (M, 0) be an irreducible germ of a 3-dimensional
generically semisimple F-manifold with analytic spectrum (Ly, M) C T*M.

(a) Suppose ToM = Q(z). Then, (L, X) has embedding dimension 3 or 4 and
(Ly, M) = (C2,0)x (C, 0) for a plane curve (C, 0) C (C2, 0) withmult(C, 0) <
3. The Euler field Eqo from Theorem 2.15 (¢) on M — K extends holomorphically
to M if and only if (C, 0) is quasihomogeneous.

(b) Suppose ToM = Q@ and (Ly, 1) = (C2,0) x (C,0) with mult(C, 0) < 3.
Then, (M, 0), o, e) is one of the germs Az, B3, H3.

(c) Suppose ToM = Q@ and (Ly, ) = (C2,0)x (C, 0) withmult(C, 0) = 3. Then,
the caustic K is a smooth surface and coincides with the p-constant stratum. That
means, TyM = 0@ for each q € K. The modality is mod, (M,0) = 1 (the
maximal possible) (recall Definition 2.9 (a)).

(d) Suppose ToM = Q). Then, (L, 1) has embedding dimension 5 and (L, 1) =
(C,0)x (L™, 0). Here, (L"), 0) is a Lagrange surface with embedding dimension
4. Its ring Oy  is a Cohen-Macaulay ring, but not a Gorenstein ring.

Sketch of the proof: (a) One chooses the coordinates (¢, 2, £3) as in (6.4). Then Ly,
is as in (6.7). Because of the equations y; = 1 and y3 = Ziz:O h;yé, (L, 2) has
embedding dimension < 4. Theorem 2.14 applies and gives (L7, A) = (C?, 0) x
(C, 0) for a plane curve C. The germ (C, 0) has multiplicity < 3 because the
projection wy : Ly — M is a branched covering of degree 3. The Euler field
E¢y from Theorem 2.15 (¢) on M — K extends to M if and only if (C, 0) is
quasihomogeneous because of Theorem 2.16 (e) and Theorem 2.15 (b)+(c).

(b) mult(C, 0) < 2 means that (C, 0) is either smooth or a double point or a cusp. In
the first two cases, one can apply the correspondence between F-manifolds and
hypersurface or boundary singularities [15, Theorem 5.6 and Theorem 5.14] and
the fact that A3, B3 and C3 are the only hypersurface or boundary singularities
with Milnor number 3. In the case of a cusp, results of Givental [13] are used, see
the proof of [15, Theorem 5.29].

(c) (C,0) has multiplicity 3. And the projection 7y : Ly — M is a branched
covering of degree 3. Together these facts imply that 7y, : Ly; — M is precisely
branched at the points of Lj; which correspond to (C2,0) x {0} in (CZ, 0) x
(C,0) = (Lpy, ). This implies all the statements.

(d) If the embedding dimension of (L, A) were < 4, then by Theorem 2.14
(Ly,2) = (C% x (C,0) fora plane curve, so then (Ljs, A) were a complete
intersection, and thus ToM = Q(z), a contradiction. Therefore, the embed-
ding dimension is 5 and by Theorem 2.14 (L, A) = (C, 0) x (L™, 0) where
(L™, 0) has embedding dimension 4. The ring Ort o is Cohen-Macaulay
because 7 : L) — M is finite and flat. It is not Gorenstein, because
ToM = QW is not Gorenstein. |
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The classification of germs (M, 0) of 3-dimensional generically semisimple F-
manifolds with ToM = Q) is not treated in this paper. Only one family of examples
from [15] and one other interesting example will be given now with all details, and a
family of examples in [18, 6.2-6.6] will be described without details.

Lemma 6.4 [15, Theorem 5.32] Fixtwo numbers p2, p3 € Z=>. The manifold M = C3
with coordinates t = (t1, t2, t3) and with the multiplication on T M given by e = 9;
and

° —1 o —1
B2 =patd? T 8y, Hody =0, 352 = p3t)* s (6.12)

is a simple (and thus generically semisimple) F-manifold with TyM = Q"D Its caustic
K has two components KV = {t € M |tp = 0} and K® = {t € M |13 = 0}. The
germ (M, 1) is of type AL, (2p2) fort € KV — C x {0} and of type A1, (2p3) for
t € K@ —C x {0}. A vector field E is an Euler field if and only if

1 1
E= (1 +c¢1)0 + —1p0p + —1303 withcy € C. (6.13)
P2 p3
Proof The analytic spectrum is

Ly={y,0)eT*M|y1=1,y02— pztfz_l) =yy3 =0,
—1
y3(y3 — p3td* ) = 0} (6.14)

The set which underlies L j; has three components LV, L® | L) with

LY ={(y,0) e T*M | (y1, y2, y3) = (1,0,0)},
L? = {(y,1) e T*M | (31, y2, y3) = (1, patl>~1, 0)},
L® ={(y,0) € T*M | (y1, y2, y3) = (1,0, p32* 1)}

The functions £ := 0, f® := 137, f® :=1]* on M satisfy
G - 1 Gy 4 ()
V= —ndh Y+ —nifV).
P2 p3

If one lifts £/ to L), the resulting function on L 7 is izt2 v+ %t3 y3, 50 a holomor-
phic function on Ly;. F :=t| + f satisfies all properties in the Remarks 6.1 (i)+(ii).
Therefore, (M, o, ) is an F-manifold, and the Euler field is as claimed.

L@ and L® meet only overt = 0, LD and L@ meet over KV, and LD and LB
meet over K. From their intersection multiplicities or from the coefficients of the
Euler field, one concludes that the germs of F-manifolds have the types A11>(2p2),
respectively, A I (2p3) at points of K1, respectively, K® not equal to C x {0} C M.
The stratification of M by the types of the germs of the F-manifolds shows that the
F-manifold is simple. O
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Also the following example is a simple F-manifold M = C3 with ToM = Q.
Its analytic spectrum is irreducible, and it is singular only in codimension 2.

Lemma 6.5 The manifold M = C3 with coordinates t = (11, 1, 13) and with the
multiplication on T M given by e = 91 and

1 n 9, 3 1 3 1
(02 — §t331) = Zt231 - §t3(32 - §t331) - §t2(33 + §t231),
(0 1t8) (8+1t8) 3tt8
_ - o - ——
2 = 5h01 3+ Shd) = nsdr,

(a+1ra)°2— 3z23 1:(3 1t8)+3t(8+1t8) (6.15)
3 22] —43] 232 231 223 22]7 .

is a simple (and thus generically semisimple) F-manifold with ToM = QM. The
Lagrange surface L") in T*M") with Ly, = C x LY is smooth outside 0. The
caustic K has 4 components. The corresponding 4 components of K ¢ M) are
the 4 lines through 0 which are together given by

0=1§ + 66315 — 315 (6.16)

The germ (M, t) is of type A1A fort € K — C x {0}. A vector field E is an Euler
field if and only if

1 1
E=({t +c1)o + Etzaz + 51‘333 with ¢; € C. (6.17)

Proof In the Notations 4.1 in (4.4)—(4.6),

’ ’ ) ,C2,C t ’ 1 ] 1 ’ 1 ’ 1 ’ 1 ’ 6~18

9 3 -3
(ar, b1, c1) = (Z 2, tht& Tt32> = (—asc3, ascp, —axcp).  (6.19)

Therefore the multiplication is associative. One checks easily that A», Ag”“l, and Az in
Lemma 4.4 vanish. Therefore (M, o, e¢) is an F-manifold. The function 9R§ —4R1R>
inLemma4.3ishere9R7 —4R| R, = %(té‘ +6¢3t2 —3t3). Therefore the F-manifold is
generically semisimple, and the caustic is given by (6.16). One checks also easily that
the explicit version (5.5) for Lieg (o) = 1-ois satisfied for £ as in (6.17). Therefore, E
is one Euler field. By Theorem 2.15 (b)+(c) and the irreducibility of the germ (M, 0),
the vector fields E + cje for ¢; € C are the only Euler fields on M.

The smoothness of L") outside 0 would imply together with the classification of
the 2-dimensional germs of F-manifolds that the germ (M, ¢) fort € K — C x {0}
is of type A1 Aj;. It remains to show that L) is smooth. For this, we reveal how the
F-manifold was constructed. Consider the coordinate change on 7*M ") with new
coordinates x = (xy, X2, X3, X4),

hHh=X1+X3, 13=X2 — X4, Y2 =2X2+ X4, Y3 = —X| + X3.
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In the new coordinates, the functions Y7, Y23 and Y33 in Lemma 4.4, which define
L), become

Yoo = (x3 — 3x1x3) — 3(x] — x2x4),
Ya3 = (x3 — 3x1x3) + (x] — x2x2),
Yo3 = —x1x + 3x3x4.

In the new coordinates on T*M ") = C*4, L) is the cone over the curve in I’ which
is defined in homogeneous coordinates by the vanishing of x12 — X2X4, x22 — 3x1x3
and x1x3 — 3x3x4. On the affine chart of P2 with x4 = 1, this is the twisted cubic
(x1 = (x1, x%, %xf)), which is smooth. On the affine chart of P3 with x3 = 1, this is
the smooth curve (x; +— (%x%, X2, éxg )) which is also a twisted cubic. The curve has
no points with x3 = x4 = 0. Therefore it is smooth. O

Remark 6.6 The second author is grateful to Paul Seidel who showed him in 2000 this
curve in 3 and explained that it is not a complete intersection, that it is a Legendre
curve with respect to the 1-form x;dx, — xpdx; — dx3 (in the affine chart with x4 = 1)
and that the cone over it in C* is smooth outside 0 and is Lagrange.

Examples 6.7 Kawakami, Mano and Sekiguchi [18, section 6] found many flat F-
manifold structures on M = C> which are generically semisimple and which have
Euler fields with positive weights. Because the Euler fields have positive weights, they
are simple F-manifolds. They satisfy either ToM = Q® or TyM = Q.

They are related to algebraic solutions of the Painlevé VI equations. Some of them
are also given by Arsie and Lorenzoni [3, 5.2-5.4]. They are polynomial on M = C3
with flat coordinates t1, f», t3 with unit field ¢ = 9; and Euler field

E = 1101 + watr02 + w3303
with  wy, w3 € Q, 1> wy > w3 >0, 14+ w3 >2w,. (6.20)

If we write w = (1, wy, w3) and
3
diod; = alo. (6.21)
k=1

then af; € Clt1, 12, 13] with af; = a¥; = 8 i, and a coefficient af; with i, j € {2, 3}

has the weighted degree deg,, afj =1+ wy —w; —w; > 0. In the cases with
1 + w3 > 2wy, this implies af‘j(O) =0fori,j € {2,3}and k € {l1, 2, 3}. Therefore,
then ToM = QW These cases comprise the cases in 6.2 and 6.3 in [18] and 5.2 and
5.4 in [3], which are related to the complex reflection groups Go4 and G»7, and the
cases in 6.4-6.6 in [18], which are related to the free divisors Fp,, Fp, and Fg,, in
C3 which are defined there. The authors are grateful to a referee for pointing to these
examples.
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7 Partial classification of 3-dimensional generically semisimple
F-manifolds

The long Theorem 7.1 is the main result of this section. It gives normal forms for all
germs of generically semisimple F-manifolds with ToM = Q@ except A3, B3 and
Hj. Part (a) of it is essentially Theorem 5.30 in [15], but with some change in the
normal form. The parts (b)—(e) are new. Corollary 7.2 distinguishes those germs of
F-manifolds in Theorem 7.1 which have an Euler field. The germs of F-manifolds in
Theorem 7.1 are closely related to the germs of plane curves with multiplicity 3. The
Remarks 7.3 comment on this and make the cases in Theorem 7.1 more transparent.

Theorem 7.1 In the following, normal forms for all irreducible germs (M, 0)of 3-
dimensional generically semisimple F-manifolds with ToM = Q@ except Az, B3
and Hsz are listed by their data in the Remarks 6.1. Each isomorphism class of such
a germ is represented by a finite positive number of normal forms. The normal forms
split into 5 families with discrete and holomorphic parameters, with

family in (a) (b) (©) (d (©)
number of components of (L, 1) 3 2 2 1 1
discrete parameters p-q p p.q p p

with p,q € Zs> and q > p. There are always p — 1 holomorphic parameters
Vo, - ¥p—2) € CP~orinan open subset. We use the notations in the Remarks 6.1,
especially (M, 0) = (C3, 0) with coordinates t = (11, t2, 13). In all cases the caustic
is K = {t € M|t, = 0}. It coincides with the p-constant stratum. For t € K
T,M = Q®. Locally on M — K, the analytic spectrum is

3
L= (00 e T*M Iy = 1y2 = 02 f D, v = oy} + hiya + ho} (1.1)
j=1

with hy, hy, hg € C{ta, 13} as below, with h»(0) # 0, h1(0) = ho(0) = 0. The Euler
fieldon M — K is E = (t] + ¢1)931 + €202 + €393 with ¢; € C and &3, €3 as below.
Most often, €3 and E are meromorphic along IC (see Corollary 7.2 for the cases when
they are holomorphic on M ). The function

p—2

pi=1y" 1+ yith € Clta. 13) (7.2)
i=0

will always turn up in some ).

(@) (Y0, s ¥p—2) € C* x CP 2 withyy # 1if p = q,
then p € C{tp, 13}*, i.e., it is a unit in C{t, 13}, because yy # 0,
fW=0fP =2, fO=1tp,
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(b)

(c)

Ly = U§= 1 LY has 3 smooth components,

= (@ +0me) (@ +mEnd " —p) < Clos),
hy'hy = —pt? ™ by =0,

Euler field: &y = %l‘z, &3 = —%tzzfp((q — p+10d)(p)).

(Y0, -» Vp—2) € (C”_:, p € Clnz, 13},

FO =0, fO8 = Ty 0,

Ly = LW U L& has | smooth component LV and 1 singular component
L(2&3),

1 2 2 -1 %
ho= (G +p? =0+ p+60)e)?)  €Cla.nl,
hy'hy = =215 (1 + p + 1282)(p)), ho = 0,

. _ 1 _ 1 2-p.1
Euler field: ey = T t, €3 = T iy "((5 +1d)(p)).
(0, ..., Yp—2) € C* x CP~2, and thus o € C{nr, 13}%,

lig

Ly = LW U L% has 1 smooth component LV and 1 singular component
L(2&3),

—1 _ —1
hy = (Gt +0)©)  (p=5672 (Gt +000)(0)?) € Clia, ),
hy'h = —ptl T = 15N+ g+ 00 () ho = 0,
Euler field: &, = 11>, &3 = =177 (5 + g — p + n0) (p)).

(d) (Yo, ... ¥p—2) € CP7L, p € C{tr, 13},

1 2
o 3t
f:f(1&2&3)=t23 +377

Ly is irreducible,

h = (G472 =0+ 9G4 p i) € Clon )
hythy = -G+ p)THG + p + 2d) ()2

hy'ho = 265" (4 + )+ p+ 1) (o),

Euler field: & = %%ptz, 3 = —%—i,,fzz_p((% + 163,)(0)).

(e) (Y0, ., ¥p—2) € CP7L, p € Clta, 13,

4 2
1&2&3 3tp 3tp
[=f08 =g ot

Ly is irreducible,

h=(G+p?-2G+p G+ 1232)(/0))3)_1 € Cln, 1",
hy'hy = G4 p) N E A+ p 03 ()

hy'ho = 265" G + p) (& + p + 122 (0),

PSR — 1 2 b2
Euler field: eo = Tp b, €3 = T ty ((3 + 102)(p)).

Proof The proofs of the parts (a)—(e) are similar. Part (a) is essentially proved in [15],
though here we chose a different normal form than in [15]. The first steps in the
following proof hold for (a)—(e). We give all the details for part (b) and part (d). We
discuss differences and similarities for the parts (c), (e) and (a).
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We consider an irreducible germ (M, 0) of a 3-dimensional generically semisimple
F-manifold with ToM = Q®, which is not A3, B3 or Hz. Theorem 6.3 says that then
(L, A) = (C2,0) x (C, 0) where (C, 0) C (C2,0) is the germ of a plane curve with
multiplicity 3. And the caustic K is isomorphic to the image in M of the part of Ly,
which is isomorphic to (C2,0) x {0}, and K is a smooth surface in M.

The coordinates t = (1, t2, t3) can and will be chosen such that C = {t e M |1, =
0}.

(C, 0) has multiplicity 3, and therefore, it has either 3 smooth components or 1
smooth and 1 singular component or only 1 singular component. The corresponding
components of L, are called L), j € {1, 2, 3}, in the first case, LD and L&) i
the second case and Ly = L1%%%3) in the third case. The parts of the multivalued
function f which correspond to these components are called accordingly £/, f(2&3)
or fU&2&3),

Recall F = t1 4 f from the Notations 6.1. The coordinate #; can and will be chosen
(by a coordinate change as in (4.9)) such that

f(l) =0 in the cases with 3 or 2 components, (7.3)
FO 4+ @ 4 & =0 in the cases with 1 component. (7.4)

In fact, in all cases £V + f@® 4+ £ isunivalued, and #; can be chosen such that (7.4)
holds. Then, also 8, (f(V + f@ + @) =0and 33(f D + f@ + £3) = 0. We see
that this choice was already discussed in Remark 4.5. In the generically semisimple
case, the function F gives an alternative starting point for understanding this choice
of the coordinate #;.

In the cases with 1 component, we use this choice in (7.4), and there it gives

3
[Je =02/ =x* + gix +g0. s0g2=0. (7.5)
j=1

In the cases with 3 or 2 components, we prefer the choice in (7.3), as it makes there
the calculations easier. Then in the cases with 3 or 2 components, (6.6) for j = 1 gives
ho = 0 and

3
[[& =02/ =2 + gox® + g1x,  with
j=1
g2=—hfP =, g=0r? 0r0. (7.6)

(b) and (c) Now we turn to the cases where Lj; has 2 components, the smooth
component L and the singular component L% We have () = 0 and

1/2
&3 _ fz/ TP+ 20, (7.7
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with p; € C{tz, 13} — ,C{na, t3} and p2 € C{t, 13} — (2C{12, 13} — {0}). Here p1, 2
and p; € Zso are unique, and py € Zsq is unique if po # 0. If po = 0, we put
p2 = 0.

The branched covering ry, : Ly — M isbranchedonlyover K = {t € M |1, = 0}.
This implies two facts: First, LD and L@&3) intersect only over K, and second, the
branched covering 77 : L?%3 — M is branched only over K. The second fact tells
p1 € C{n, 13}, i.e., p is a unit, i.e., p1(0) # 0. If p; < po, this is sufficient also
for the first fact. Then, we are in the cases in (b). If p; > p», the first fact tells
p2 € C{tr, 13}*. Then, we are in the cases in (¢).

(b) Now we turn to the cases in (b), i.e., f() = Oand &3 asin (7.7) with p; < pa.
1

1
. 3+ 3+
Rename p := py. Then, 7, can and will be chosen such that #; p,ol =t " Then,
we write

1
I+
O =27yt (7.8)

for some p € C{ry, 13}. Next we will exploit (6.6) together with 4,(0) # 0 in order
to put p into a normal form by a good choice of 3, and to calculate & and A (recall
ho = 0 because of (6.6) for f() = 0). (6.6) gives

030 = 95 f O = hy - 0y f O (82 FO& 4 hz_lh1> (7.9)
_ 3+p2 14p 1+p —1
= hao([(D215 )7 + D (ty " p)(02(ty" " p) + b5 hy)]

1
o2 o) p) + h;lhl)]). (7.10)

The term in square brackets in the line (7.10) must vanish because of the half-integer
exponent of #,. This allows to calculate &, lhl = =20, (t2] tp p), see the formula in
part (b) in the theorem. And it simplifies the other summand,

1
03p = oty " (a1 0 = (3217 p)?)

2/, 1
= hotf (5 + P = (1 + p+ 032 (0)) (7.11)

S0 d3p = t2p_2 - (a unit in C{tp, 13}). This implies p € Z>>. And we can and will
choose 73 such that p is as in (7.2). Then, &> is determined by (7.11) with d3p = tzp_z.
The coefficients > and ¢3 of the Euler field are determined by (6.3) for f 2&3) a5

in (7.8) and (7.2):

t%+p_|_t1+p _ &) _ oo (&) e F&3)
5 , p=Ff =edhf +e303f

—1+p 2p—1

1
- 52((5 o T+ p+ t282)(p))l‘2p) + st (7.12)
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Comparison of the terms with half-integer exponents gives g2 = (% + p)~ 1. Then,
comparison of the terms with integer exponents gives &3.
Almost all steps in this reduction process to a normal form were unique. (7.7) was

1 1
the general ansatz. The choice of #, with tzj r p1 = tf P was unique up to a unit root
of order 1 4+ 2p. The choice of #3 was unique. Therefore, the isomorphism class of
(M, 0) is represented by up to 1 + 2p normal forms.
(c) Now we turn to the cases in (c), i.e., f) = 0 and f@%3 as in (7.7) with
p1 = p2- Rename g := p; and p := p,. Above we showed that p; and p; are units
in C{t2, t3}. We can and will choose , such that 7} p) = ). Then, we write

FO =7 1l (7.13)

for some p € C{t, t3}*. As in the proof of part (b), the next step is to exploit (6.6)
together with /,(0) # 0 in order to put p into a normal form by a good choice of 73,
and to calculate &5 and /. The calculation is similar to the calculation of (7.9) above.
It leads to d3p = tzp_z - (aunit in C{#2, 13}). This implies p € Z>>. And it allows to
choose 3 such that p is as in (7.2). We skip the details of the calculations. The results
are written in part (c) in the theorem. The fact that here p is a unit, implies yy € C*.
Also the calculation of the coefficients & and e3 of the Euler field is similar to the
calculation (7.12) above. Again we skip the details. The results are written in part (c)
in the theorem. The choice of #, was unique up to a unit root of order p. The choice
of 13 was unique. Therefore, the isomorphism class of (M, 0) is represented by up to
p normal forms.
(d) and (e) Now we turn to the cases where L, is irreducible. A priori we have

3+p $+p I+
f=t l;01-|-t23 2,02+12 P ps, (7.14)

with p1, 02, 03 € Cit, 13} — (2C{t2, 13} — {0}) and (p1,02) # (0,0). Now
Zi’:l f(j) = O tells p3 = 0. If p; # O then p; and p; € Zs( are unique, else
p1 = o00.If p» # 0 then p2 and py € Z=( are unique, else py = 00.

The branched covering ry, : Ly — M isbranchedonlyover = {t € M |1, = 0}.
If p1 < po, thisimplies p; € C{#, 13}*, and then we are in the cases in (d). If p; > py,
this implies pp € C{r, 13}*, and then we are in the cases in (e).

(d) Now we turn to the cases in (d), i.e., f is asin (7.14) with p3 = O and p; < p»
allld 01 € (C]{tz, 13}*. Rename p := pi. Then, #; can and will be chosen such that
13 tr pL=1; *P Then, we write

1 2
f=1"41"p, (7.15)

for some p € C{tp, 13}. As in the proofs of the parts (b) and (c), the next step is to
exploit (6.6) together with 4,(0) # 0 in order to put p into a normal form by a good
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choice of t3, and to calculate i, h; and hg. The calculation is as follows.

a3 = %f:ﬁu~«®ff+h;%ﬂbf+h;h0 (7.16)
= QQﬂ”Wf+hlm@a’”)] (7.17)

T [@a0e] T o)+ b3 a7 (7.18)
[2ay“*paza3+pp)4-h;1mq) (7.19)

The terms in square brackets in the lines (7.18) and (7.19) must vanish because of
the exponents in % + Z and Z of t,. This allows to calculate i, 1h0 and h, 1h1 =

1 2
— (0215 r )@t r 0))?, see the formulas in part (d) in the theorem. And it sim-
plifies the term in square brackets in the line (7.17),

3o = haty " (a1, )2 = ooty ) l(az(t*“’p)ﬁ)

= hzrg’*z((g +p)* - rz(§ + p)‘l((§ +p+nm)e)), (120

SO d3p = tffz - (aunit in C{12, t3}). This implies p € Z>>. And we can and will
choose #3 such that p is as in (7.2). Then, /5 is determined by (7.20) with 930 = p 2,

The coefficients ¢, and €3 of the Euler field are determined by (6.3) for f as in
(7.15) and (7.2):

ﬁw+€ﬂp—f—w%f+a%f

+ + —$+2
_@Q +m53”+« +p+mm@mf‘v+%53p.azn

Comparison of the terms with exponents in 3 + Z gives &y = (3 + p)~'to. Then,

comparlson of the terms with exponents in % + Z gives ¢3. The choice of 1, with

L+ 1+ . .
t23 ppl =t " was unique up to a unit root of order 1 4 3p. The choice of f3 was

unique. Therefore, the isomorphism class of (M, 0) is represented by up to 1 + 3p
normal forms.
(e) Now we turn to the cases in (e), i.e., f as in (7.15) with p; > p2 and ,02 €

C{tp, t3}*.Rename p := p;. Then, t, can and will be chosen such that t ,0 = t; +p

Then, we write

4
f=t "p+t; 7, (7.22)
for some p € C{ta, t3}. As in the proofs of the parts (b), (c) and (d), the next step is to
exploit (6.6) together with 4,(0) # 0 in order to put p into a normal form by a good

choice of 13, and to calculate /7, h1 and hq. The calculation is similar to the calculation
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of (7.16) above. It leads to d3p = tzp_2 - (aunit in C{#2, t3}). This implies p € Zx>».
Furthermore, it allows to choose 73 such that p is as in (7.2). We skip the details of the
calculations. The results are written in part (e) in the theorem. Also the calculation of
the coefficients &, and e3 of the Euler field is similar to the calculation (7.21) above.
Again we skip the details. The results are written in part (e) in the theorem. The choice
of #; was unique up to a unit root of order 2 + 3p. The choice of #3 was unique.
Therefore, the isomorphism class of (M, 0) is represented by up to 2 + 3p normal
forms.

(a) Now we turn to the cases in (a), the cases where L has 3 components. They
were treated in Theorem 5.30 in [15]. However, here we choose the normal forms a
bit differently.

The plane curve germs

(CY,0) := {2, 12) € (C,0) | y2 = 92/ (12, 0)) (7.23)

in the (y2, 12)-plane satisfy (L, A) = (C?, 0) x U?zl(C(j), 0) by the proof of Theo-
rem 6.3 (a). We choose their numbering such that the pair (C(1, C®)) has the highest
intersection number, which we call g — 1 forsome g € Zx». Then, the pairs (C M c (2))
and (C®, C®) have the same intersection number p — 1 for some p € Z>o with
P=q.

We have £V = 0 by (7.3) and

fO=d"pr, O =1p, (7.24)

with p1, p2 € Cltr, 13} — nC{1p, 13} and P1, P2 € N.

The branched covering ;. : Ly — M isbranchedonlyover = {t € M |1, = 0},
so the components L® and L) of L), intersect only over K. This and (L, 1) =
(C2,0) x U;zl(C(j), 0) shows p1, p» € C{t2, 3}*, p1 = p, p> = ¢, and in the case
p = q additionally p1(0) # p2(0).

t» can and will be chosen such that tf p1 = t2p . Then, we have

fY=0 @ =, V=i p, (7.25)

for some p € C{ty, 13}* with p(0) # 1 if p = g. As in the proofs of the parts (b)—(e),
the next step is to exploit (6.6) together with /5(0) # 0 in order to put p into a normal
form by a good choice of 3, and to calculate /1, and /1. The calculation is similar to
the calculations in (b)—(e), and, in fact, easier. It allows to choose #3 such that p is as in
(7.2). Then, hy and h are as in the theorem. Also the calculation of the Euler field is
similar to the calculations in (b)—(e). The numbering of LD L@ and LA was unique
up to a permutation of L) and L® if p < ¢ and arbitrary if p = ¢. The choice of
t> such that tzp 01 = tzp was unique up to a unit root of order p. The choice of 73 was
unique. Therefore, the isomorphism class of (M, 0) is represented by up to 2p or 6p
normal forms. O

Probably the most interesting of the F-manifolds in Theorem 7.1 are those where
the Euler field is holomorphic on M. The next corollary makes them explicit.
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Corollary 7.2 Eachirreducible germ (M, 0) of a 3-dimensional generically semisimple
F-manifold with ToyM = Q® and with (holomorphic) Euler field is isomorphic to
one of the germs Az, B3y or H3 or to a germ (M, (t1, 0, 13)) for suitable t| € C and
13 € C (or C* or C —{0; 1}) of one of the F-manifolds which are listed below. We use
the same notations as in Theorem 7.1. There are 7 families of F-manifolds. The family
in (a)(i) has no parameter, so there is a single F-manifold. The family in (a)(iii) has
one discrete and one holomorphic parameter yo. The other families have one discrete
parameter and no holomorphic parameter. The Euler field is E = t101 + €202 + €303
with g2, €3 as below.

family in (a)(@) (a)(ii) (a)(iii) (b) (© (V) (e)

number of comp. of (L s, A) 3 3 3 2 2 1 1
discrete parameter - q P p q P )4

(@) ()M =C?>x (C—{0:1}),(p=q=2,)
fO =0 f@ =22 O =2,
hy = (4t3(t5 — 1)~ hy 'hy = =20, hg = 0,
Euler field: eo = %tz, g3 =0.
(a) (i) M =C* x C*, (p=2,) q € ZLs3,
f(l) =0, f(2) = t22, f(3) = tgtg,
hy = (qr3) "N grstd > =27 by hy = =21, ho = 0,
Euler field: e» = %tz, &3 = —%t}
(a) (iii) M = C3, (p=gq,) p € Z=3, yo € C—{0; 1},
FO =0, fO =12, fO =+ 1),
hy = (pyo+ (p =2 25) " (pro — D) + (p — el *13)71,
hy'hy = —pt? ™' ho =0,
Euler field: eo = %tz, &3 = —pTth}
(b) M =C3, peZs,
fO =0, fFO& = tf*” +57 s,
hy = (3 +p)?—@p— D",
hy'hy = —22p — D"~ 2!3, ho = 0

Euler field: e, = —tz, &3 = —Tpt3

(c) M =C?xC* (p—z)q € L,
FD =0, FO&3) = t2 12,
= (4 +q)t3)—1(2 i)
hythy = =26 — Y4+ 9265773, ho = 0,
Euler field: ¢y = 2t2, &3 = 2(6] - %)f&
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(d) M=C pels
f = pUeY Z 1 20
hzz((§+p>2—(g+p>—1<(2p i)
hy'h = =G+ @p - 97",
hy 'ho = =23 + p)2p — )r”’ *n,
Euler field: ¢y = %lTptg, &3 = —T;tg

(e) M =C3 pelsx,
f= fassdy) - 2p— 3t +t3+P,
= (G4 -Geprep- )
m'h=-G+pT2p -7,

_ 3 2
hy'ho = =2G + p)2p — 1713,
4
. _ 1 — _P=3
Euler field: e, = T+r i, €3 £ 13.

Proof The shape of the Euler field in Theorem 6.3 tells precisely under which condi-
tions it is holomorphic. The conditions are as follows.

(@ p=2or(p=qgandy; =..=y, 3=0).
®) (o=-..=yp-3=0.

() p=2.

d y=..=yp-3=0.

@© vw=..=yp,3=0.

In all cases, we consider germs also at points with 73 # 0, and therefore we can
replace y,_> +13 by 3 in p. A condition on y,_5 (to be in C* or C — {0; 1}) translates
into a condition on #3. This gives all statements in the corollary. O

Remarks 7.3 (i) The classification in Theorem 7.1 of 3-dimensional germs (M, 0)
of generically semisimple F-manifolds with TyM = Q@ which are different
from A3, B3, H3 is precise, but not so transparent. It becomes more transparent if
one takes a closer look at the reduced plane curve germs (C, 0) with (L, A) =
(C?,0) x (C, 0). By Theorem 6.3, they have multiplicity 3. And by Corollary 4.7,
all reduced plane curve germs (C, 0) with multiplicity 3 appear.

(i) Each reduced plane curve germ has a topological type. See [14, 3.4] for its defini-
tion. An old result of Brauner and Zariski (see, e.g., [ 14, Lemma 3.31 + Proposition
3.41 + Theorem 3.42]) is that the topological type of a reduced plane curve germ
is determined by the topological types of the irreducible components and by their
intersection numbers. And the topological type of an irreducible plane curve germ
is determined by its Puiseux pairs (see, e.g., [14, 3.4] for their definition). The
topological types of reduced plane curve germs of multiplicity 3 can be described
and listed as follows. In all cases, the number p € Zx» and, if it exists, also the
number g € Z>; are topological invariants.

@ Springer



3-dimensional F-manifolds Page 47 of 50 90

(iii)

(iv)

v)

(a) 3 smooth curve germs CV, C® € with intersection multiplicities i (C(!,
C=p—1,i(CH,CP)=¢qg—1,i(CP,CcP)=p—1for p,q € Z>»
with g > p.

(b) 1 smooth germ CV and one germ C?&3) of type A, p—2 (namely with normal
form xlzp -4 x%) with the maximal possible intersection number 2p — 1 =
i(Ch, ¥,

(c) 1 smooth germ CV and one germ C %3 of type A2 with an even inter-
section number i (CD, CC&)) =2p —2forq, p € Z=o with g > p.

(d) 1 irreducible germ with the only Puiseux pair (3p — 2,3), so with a
parametrization (x +— (x, an3p_2 anx"3)) with a,, € C and azp—2 # 0.

(e) 1 irreducible germ with the only Puiseux pair 3p — 1,3), so with a
parametrization (x — (x, an3p71 a,x3)) with a, € C and azp—1 # 0.

One sees that the cases (a)—(e) correspond precisely to the cases (a)—(e) in The-
orem 7.1. There the curve (C, 0) is the zero set of the polynomial ]_[5’: 12 —
9 fP)15=0) € Clya, 2]

The following topological types contain quasihomogeneous plane curve germs
(C, 0): all in (b), (d) and (e); those in (a) with p = 2 or p = ¢; those in (c) with
p = 2. This fits to the cases in Corollary 7.2. The topological types in (a) with
p = g > 3 contain a 1-parameter family of quasihomogeneous curves (up to
coordinate changes). This gives the holomorphic parameter yq in Corollary 7.2
(a) (iii).

In all cases in Theorem 7.1, there are p — 1 holomorphic parameters (yp, y1, ..,
Yp—3, ¥p—2 +13) for the germs of F-manifolds. Here, the last parameter y,,_> +13
is an internal parameter, it is the parameter of the 1-dimensional p-constant
stratum. The other parameters (yo, ..., ¥p—3) (for p > 3; no other parameter for
p = 2) catch the isomorphism class of the plane curve germ (C, 0) and the choice
of a symplectic structure on the germ (C2, 0) of the (y2, f2)-plane. This is the
choice of a volume form, i.e., a form udy,ds, withu € C{y,, t,}*. In[15, Remark
5.31], the 3 types of parameters are rephrased as follows.

(o) moduli for the complex structure of the germ (C, 0),

(B) moduli for the Lagrange structure of (C, 0) or, equivalently, for the sym-
plectic structure of (C2,0) > (C, 0),

(y) moduli for the Lagrange fibration.

Here we have only one parameter of type (y), the internal parameter y, > +
3. Remarkably, the sum of the numbers of parameters of types («) and (B) is
constant, it is p — 2. This is remarkable, as the number of parameters of type («)
depends on the plane curve germ (C, 0) with which one starts. It has the shape
7(C, 0) — b'°P, where b'°P € N is a topological invariant and the Tjurina number
7(C, 0) was defined in Theorem 2.16 (b) and is not a topological invariant. Though
by Theorem 2.16 (b)+(c), the number of parameters of type (8) compensates this,
as it is precisely u — 7(C, 0) = dim H(l;l.v((Cz, C, 0). So the sum of the numbers
of parameters of types (a) and (B) is u — b'°P. Here this number is p — 2.

The same number p — b'°P is also the number of parameters of right equivalence
classes of plane curve germs with fixed topological type. Here, the right equiva-
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(vi)

(vii)

lence class is the class up to holomorphic coordinate changes. This follows from
the fact that u — t(C, 0) is also the difference of the dimensions of the base space
of a universal unfolding of a function germ for (C, 0) and of a semiuniversal
deformation of (C, 0). However, for a given reduced plane curve germ (C, 0),
there is no canonical relation between the choice of a volume form on (C2, 0) and
the choice of a function germ f : (CZ,0) — (C, 0) with (f~'(0),0) = (C, 0).
Here, the normal forms in Theorem 7.1 are misleading. In all topological types
which contain quasihomogeneous curves (up to coordinate changes), the following
holds (and probably it holds also for the other topological types in (a) and (c)): The
parameters (0, ..., ¥p—3) in ]_[321 (2 — Bzf(j)ltFo) are also the parameters for
the right equivalence classes. Furthermore, if they are fixed, the internal parameter
¥p—2 + t3 does not change the right equivalence class. Both statements follow by
inspection of the curves and a description of the p-constant stratum in a universal
unfolding of a quasihomogeneous singularity in [25].

The property in (vi), that the internal parameter y,_» + f3 does not change the
right equivalence class, is a lucky coincidence of the chosen normal forms. It is
easy to construct a concrete description of a germ of an F-manifold in Theorem
7.1 where this does not hold. Start with a plane curve germ (C, Q) which is
not quasihomogeneous (up to coordinate changes) and choose function germs
¢ = 0and g, ¢\” € Cfn} such that (C,0) = {(y2, 1) € (C2,0)|y3 —
Z?:o gl.(o) té = 0}. The system of partial differential equations

9 (&) _ ( 2802 + g12t2 + 281 )
80 gty +380 + 381812 )

is obtained from (4.45) by inserting (g2, ha, h1, ho) = (0, 1, 12, —%gl). By the
theorem of Cauchy—Kowalevski (cited in the proof of Corollary 4.7), it has a
unique solution with initial values (g1, g0)l=0 = (g}o), g(go)). By construction,
(g2, 81, 80, h2, h1, ho) = (0, g1, go, 1, 12, —%gl) solve (4.45). We obtain a germ
of an F-manifold with go = 0. It is isomorphic to a germ in Theorem 7.1. Now

Lemma 4.6 gives
Hz,(Z2) = Z3 - [2g22h2 + By2 + g2)hoa + 3hip]l = Z,-3. (7.26)

The plane curve germs (C (tg), 0) := (Zz|t3=t§)’1(0) are isomorphic for all tg,
but the function germs Z2|t3=t§) are not right equivalent for different tg , because

Z3|;,=0 18 not quasihomogeneous (up to coordinate changes) and because of
(7.26).

Remark 7.4 1In [6], 3-dimensional Frobenius manifolds with Euler fields £ = #1101 +
%tz d> were constructed which enrich the following three F-manifolds with Euler
fields:

(i) The F-manifold M = C3 in Theorem 5.3 (a) with ;M = Q@ forallr € M

and with Euler field E as in (5.7) with g5 = % and g3 = 0.
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(ii) The F-manifold M = C3 in Theorem 5.5 for p = 2 (so the first one in the series)
with ToM = Q@ and T, M = Q® for generic t € M and with Euler field as in
(5.10) with e3.0 = 0.

(iii) The F-manifold M = C? x H which is the universal covering of the F-manifold
C%x(C—{0; 1})in Corollary 7.2 (a)(i) (so the one with p = ¢ = 2inTheorem 7.1
(a)) with the Euler field as above (which is here unique up to adding a multiple
of e).

Natural questions are now which other F-manifolds in this paper can be enriched to
Frobenius manifolds or flat F-manifolds, and with which Euler fields, and in how
many ways.
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