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Abstract
Firms that sell products over a limited selling season often have only imperfect infor-
mation about (a) the exact timing of that season, (b) the demand volume to expect, and
(c) the temporal distribution of demand over the selling season. Given these uncertain-
ties, firms must determine not only how much inventory to stock but also when to make
that inventory available to customers. We thus ask: What is a firm’s optimal inventory
quantity and timing for products sold during a stochastic selling season? Although the
newsvendor literature has developed a thorough understanding of the firm’s optimal
inventory quantity, it has failed to inform decision-makers about choosing the optimal
inventory timing. We address this issue by developing a theoretical model of a firm
that sells a product over a stochastic selling season, and we study how this firm should
choose its inventory timing and inventory quantity so as to maximize expected prof-
its. We also identify the effects of optimal inventory timing on the firm’s ability to
satisfy customer demand and show how early inventory timing can be detrimental to
customer service. Our core results imply three immediate recommendations for man-
agers. First, optimal inventory timing is an effective weapon for combating both high
inventory holding costs and high levels of uncertainty in the firm’s customer demand
pattern. Second, to be effective, a firm’s inventory timing must be carefully aligned
with the firm’s inventory quantity. Third, naïve decision rules (e.g., “earlier is better”)
may reduce not only the firm’s profits but also its capacity to serve customer demand.
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1 INTRODUCTION

Inventory management of crop protection chemicals (e.g.,
fungicides, herbicides, and insecticides) shares many of the
challenges associated with a classic newsvendor setting:
(i) strong seasonal demand, (ii) considerable demand uncer-
tainty, and (iii) long production lead times. Most crop protec-
tion chemicals are targeted at a particular phase of the crops’
maturation process and can therefore be applied only a few
weeks each year (see, e.g., Sainz Rozas et al., 2004; Vetsch &
Randall, 2004). In addition, the type of chemicals that farmers
must apply to their fields—as well as how much of them and
when—depends heavily on that season’s weather conditions
(Caseley, 1983; Frey et al., 1973; Van Alphen & Stoorvogel,
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2002). Hence farmers postpone the acquisition of their crop-
protecting chemicals until they can predict, with sufficient
precision, such factors as sunshine and precipitation levels;
thus the chemicals in question are not purchased until shortly
before their application. Exacerbating the uncertainty is that
fluctuating crop prices and changing environmental policies
can have a sizable effect on farmers’ incentives to invest (or
not) in yield-enhancing crop treatment (see, e.g., Böcker &
Finger, 2017, and the references therein). Overall, then, agro-
chemical manufacturers face significant demand uncertainty
and so are confronted with challenging inventory decisions.
Complicating the problem further is that production pro-
cesses for crop protection chemicals are, like those for phar-
maceuticals, complex and time consuming: the total lead time
of active ingredient synthesis, product formulation, and prod-
uct distribution can run as long as 18 months (Comhaire &
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Papier, 2015; Shah, 2005). It follows that agrochemical man-
ufacturers must make their inventory decisions well ahead of
their products’ selling seasons.

Given the foregoing description of the agrochemical mar-
ket (and the properties of crop protection chemicals), one
might be tempted to derive optimal inventory policies by
applying the classic newsvendor model. Upon closer inspec-
tion of the setting, however, it is evident that two assump-
tions of that model severely limit its applicability in this
context—similar limitations can be found for other products
whose sales follow climatic seasons and that must be prepro-
duced (e.g., lawn and gardening items, sun care products, and
nonfood specials at discount retailers). First, the newsvendor
model assumes that demand materializes at a single moment
in time; thus it abstracts from the extended period of time
characteristic of many selling seasons. In doing so, the model
ignores that customer demand may change over time—for
instance, there might be little demand at the start of the selling
season but strong demand at the end (or vice versa). Account-
ing for the customer demand pattern becomes relevant when a
firm is confronted with nonnegligible costs of holding inven-
tory, as is the case for agrochemical manufacturers. In the
agrochemical industry, contribution margins can differ widely
across products; and while inventory holding costs may only
have a minor impact on the profitability of high-margin prod-
ucts, the impact is substantial for low-margin products. For
instance, holding a product with a gross margin of 20% for 3
months even at a moderate monthly holding cost rate of 1%
erases a significant share of that product’s financial potential.
For other products, the situation is even worse: toxicity and
special storage requirements can lead to much higher inven-
tory holding cost rates.

Second, and even more problematic, the classic newsven-
dor model assumes that firms have perfect information about
the timing of customer demand—in other words, it assumes
that the demand timing is deterministic. As a result, the
newsvendor model yields a simple inventory timing crite-
rion: inventory should be made available just before demand
occurs. However, this simplistic rule does not work for prod-
ucts with climatic seasons as, for instance, in the agro-
chemical market. Because farmers adjust their purchase of
crop-protecting chemicals in response to a number of erratic
factors—including weather conditions as well as (volatile)
crop prices—the timing of their demand is uncertain from
the vendor’s perspective; hence agrochemical manufacturers
must make their inventory decisions in the context of great
uncertainty regarding demand timing and quantity (Bouma,
2003; Teasdale & Shirley, 1998). In order to manage these
uncertainties proactively, firms must carefully choose not
only their inventory quantity but also their inventory tim-
ing. Deriving the optimal inventory quantity and timing and
studying the interaction effects between these two decisions
are the aims of our study.

As for inventory timing, agrochemical manufacturers
could place a safe bet and decide to have next season’s inven-
tory ready immediately after the previous season ends. Yet
such an inventory policy is economically infeasible: man-

ufacturers would incur prohibitive inventory holding costs
because items would be held in stock for many months with-
out a single purchase. Also, because of highly complex pro-
duction processes, classic quick-response strategies in the
spirit of Fisher et al. (2001) can hardly be applied in this
context either. To save on holding costs, firms must therefore
choose an inventory timing that is much closer to the expected
start of the selling season; however, the later their inventory
becomes available, the higher is the risk of early customer
demand not being satisfied. So in their choice of inventory
timing, firms must strike a balance between reducing their
holding costs and increasing their risk of unserved demand.
Naturally, this trade-off also has immediate implications for
a product’s optimal inventory quantity.

The extant literature on inventory management for prod-
ucts with a limited selling season has more than adequately
addressed the topic of how best to choose an optimal inven-
tory quantity (see, e.g., Arrow et al., 1951; Cachon & Kök,
2007; Silver et al., 2017; Song et al., 2020). Yet it has failed
to inform decision-makers about how to choose the optimal
inventory timing, especially in the case of a stochastic sell-
ing season, and neither has it discussed the interaction effects
between a firm’s inventory timing and quantity decisions. We
seek to fill this research gap by developing a stylized model
that captures the basic trade-offs underlying the firm’s inven-
tory timing and inventory quantity decision. In short, our
model enables a systematic study of the firm’s optimal inven-
tory policy.

1.1 Our contributions

The theoretical model we develop yields two novel insights
concerning the management of inventories of products
for which there is a limited (and stochastic) selling
season.

First, we characterize an optimal inventory policy by deriv-
ing the firm’s optimal inventory timing and also its optimal
inventory quantity. We find that the latter reflects a timing-
adjusted critical fractile solution, whereas the former depends
on (a) the expected customer demand pattern and (b) the haz-
ard rate of the season’s starting time. In addition, our results
identify a nontrivial interaction between the firm’s quantity
and timing decisions. We also show how a firm can use its
inventory timing to manage inventory holding costs; thus the
firm, in essence, uses its timing decision to “steer” the effec-
tive profit margin of its products. It is this endogenization of
profit margins that allows the firm to sell its products prof-
itably even when faced with significant holding costs and
highly uncertain demand. We also quantify the effect of an
optimal inventory timing on a product’s profitability by con-
ducting a numerical analysis for a realistic range of parame-
ters: we find that optimal inventory timing increases expected
gross margins by 1–2%, on average, but that it can lead to an
increase of 9–10% for low-margin products.

Second, we disentangle the performance implications of
an optimally chosen inventory timing. More specifically,
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we identify the conditions under which, with a later
inventory timing, the firm not only increases its prof-
its but also improves customer service—even though the
risk of missing early season demand increases. The rea-
son for this rather surprising result is the existence of sub-
tle interaction effects between the firm’s inventory tim-
ing and quantity decisions. With a later inventory timing,
the firm increases (decreases) its effective underage (over-
age) costs because it saves on inventory holding costs; this
altered cost structure may lead the firm to stock more items
and thereby allow it to satisfy more demand. Our anal-
ysis reveals that this interaction effect is most prominent
when inventory holding costs and demand uncertainty are
significant.

Our main insights suggest a set of key managerial guide-
lines. First, the findings presented here underscore that man-
agers should choose their inventory timing carefully. Being
overly hasty and always offering inventories early on is not
necessarily a wise strategy; in fact, such a naïve decision rule
may well reduce profits as well as customer service. Second,
managers should realize that their inventory timing flexibil-
ity is an effective tool with which to combat high inventory
holding costs and high levels of uncertainty about customer
demand patterns. It is ultimately a product’s inventory timing
that determines whether or not that product will be profitably
sold. Last, managers should carefully align their inventory
quantity and timing decisions and thus consider them jointly
in their planning process.

1.2 Related literature

Inventory management for products that have uncertain cus-
tomer demand patterns is a topic of long-standing academic
interest (Arrow et al., 1951; Petruzzi & Dada, 1999; Ravin-
dran, 1972; Silver et al., 2017; Whitin, 1955). The central
question addressed by this stream of literature is as follows:
How much inventory should be stocked so that uncertain
future customer demand is best satisfied? Given the impor-
tance of this question for virtually every product, schol-
ars have devised a wide range of answers regarding many
different product and market environments; for an excel-
lent overview of the extant research, see Axsäter (2015).
Most closely related to our work is the classic newsven-
dor literature on inventory management for products with
a limited selling season. In essence, that model character-
izes the optimal inventory quantity for a firm selling a sin-
gle product with probabilistic demand over a single selling
season (Porteus, 1990). This model has been extended to
enhance its practical applicability by incorporating additional
pricing decisions (Cachon & Kök, 2007; Petruzzi & Dada,
1999; Raz & Porteus, 2006; Salinger & Ampudia, 2011),
different risk attitudes (Chen et al., 2009; Eeckhoudt et al.,
1995), varying degrees of demand information (Ben-Tal et al.,
2013; Perakis & Roels, 2008), the benefits of quick-response
strategies (Cachon & Swinney, 2011; Iyer & Bergen, 1997;

Milner & Kouvelis, 2005), and the impact of different inven-
tory financing options (Gaur & Seshadri, 2005; Kouvelis &
Zhao, 2012).

The extension with the greatest bearing on our study exam-
ines the value of postponing production in a newsvendor con-
text (e.g., Anupindi & Jiang, 2008; Iyer et al., 2003; Ülkü
et al., 2005; Van Mieghem & Dada, 1999). This stream of
literature studies the optimal starting time for a firm’s inven-
tory production, with a later production leading to more accu-
rate demand forecasts yet also to higher production costs.
Research has extended initial findings to discuss the appli-
cability of different mechanisms for updating demand fore-
casts (Boyaci & Özer, 2010; Oh & Özer, 2013; T. Wang et al.,
2012), the role of production lead times (Y. Wang & Tomlin,
2009), and the impact of multiple sales opportunities (Song
& Zipkin, 2012). We concur with these papers’ argument that
a firm’s production (or inventory) timing is a critical decision
for effective inventory management; however, we extend—
and complement—previous research by analyzing a practi-
cally relevant yet overlooked trade-off. In particular, the pri-
mary reason for a later inventory timing may not always be
the acquisition of more precise demand information; rather,
such timing serves as a tool for reducing high inventory hold-
ing costs while hedging against uncertainty in the demand
pattern of customers. Of course, a firm’s cost structure also
interacts with the firm’s ability to wait for advanced demand
information: reduced inventory holding costs allow the firm
to wait longer for more precise demand information, and once
obtained, this advanced information can then be used to lower
inventory holding costs even further.

Finally, our contribution can be viewed from the perspec-
tive of research on (random) product obsolescence and its
effects on a firm’s optimal inventory quantity. Initiated by
the pioneering work of Hadley and Whitin (1961), Hadley
(1962), and Hadley and Whitin (1962) and later extended
by Pierskalla (1969), Nahmias (1977, 1982), and Song and
Zipkin (1996), this literature addresses the optimal inven-
tory quantity for a firm that must balance its inventory hold-
ing costs with the risks originating from a stochastic selling
season. We follow this stream of work by investigating how
inventory holding costs affect a firm’s optimal inventory pol-
icy when the firm’s selling season is stochastic. However, we
depart from this literature by allowing the firm to choose its
inventory timing endogenously. Because the papers cited here
all assume that a firm’s inventory timing is exogenous, they
ignore the effects of holding costs or a stochastic selling sea-
son on a firm’s inventory timing decision.

The paper is organized as follows. We introduce our the-
oretical model in Section 2 before we derive the firm’s opti-
mal inventory policy in Section 3. We then study how vary-
ing customer demand patterns affect the firm’s optimal inven-
tory policy (Section 4), and we provide a numerical study
that quantifies the benefits of an optimal inventory timing
(Section 5). Section 6 summarizes our results and discusses
some limitations of our analysis. All proofs are relegated to
Appendix A.



2894 SCHLAPP ET AL.Production and Operations Management

2 MODEL SETUP

We base our model of a firm with a stochastic selling sea-
son on the fundamentals of the classic newsvendor model.
Thus, we consider a firm that sells a single product over a
limited selling season and that must decide on an inventory
policy well before the season starts. So, when selecting its
inventory policy, the firm has imperfect information about
customer demand—in terms of the product’s demand volume
and the exact shape and timing of the customer demand pat-
tern. Once production is completed and the firm’s inventory
becomes available, the firm can use that inventory to satisfy
customer demand; yet the firm also incurs inventory holding
costs until the inventory is either depleted or salvaged. The
salvaging of all unsold items occurs at the end of the selling
season when customer demand has ceased. The rest of this
section details our model setup and assumptions.

2.1 Inventory policy and stochastic selling
season

The classic newsvendor model—the starting point of our the-
oretical model—is useful for firms that are confronted with
stochastic demand over a finite selling season and that must
make a single inventory quantity decision before the start of
their selling season. As discussed in Section 1, those assump-
tions approximate the reality in our motivating example, the
agrochemical industry, reasonably well. In particular, in the
agrochemical industry, demand is clearly uncertain and sea-
sonal. Moreover, due to complex production processes and
a global supply chain structure, production lead times are
long, which severely limits an agrochemical manufacturer’s
ability to adjust inventory quantities close to the selling sea-
son. Furthermore, significant setup costs prevent agrochemi-
cal manufacturers from spreading production over time; thus
while the details of the production process are of course more
complex, the assumption of a single-order opportunity cap-
tures the essence of a manufacturer’s limited flexibility rather
well.

Those commonalities notwithstanding, the classic
newsvendor model also exhibits a major shortcoming: it
ignores the possibility of a stochastic selling season, which
is a key issue in the agrochemical industry. To account for
the peculiarities of a stochastic selling season, we extend
the classic newsvendor model along two dimensions. First,
besides deciding on the inventory quantity x—the standard
decision variable in newsvendor contexts—we allow the firm
also to choose its inventory timing t; that is, by choosing
t the firm decides on the earliest time its inventory can be
used to satisfy customer demand. An earlier inventory timing
likely allows the firm to capture a larger portion of customer
demand, but this advantage comes at the expense of an
extended period of holding inventory and thus higher holding
costs. Throughout the analysis, we measure time 𝜏 ≥ 0
continuously and refer to the pair (x, t) as the firm’s inventory
policy, which must be fixed before time 𝜏 = 0.

Second, we depart from previous work by considering
stochasticity in the product’s selling season (i.e., in the shape
and timing of the customer demand pattern), and not just the
product’s demand volume Q ≥ 0. Three statistics are needed
for a full characterization of the selling season’s properties:
(i) the beginning B of the season; (ii) the length L of the sea-
son; and (iii) the shape A(𝜏; Q,B,L) of the customer demand
pattern over the season, where A(𝜏; Q,B,L) measures the por-
tion of demand that becomes manifest after time 𝜏 for given
values of Q, B, and L. With these definitions in hand, we can
write future demand at time 𝜏—that is, the demand that arises
after time 𝜏—as Q(𝜏) = QA(𝜏; Q,B,L).

We assume that customer demand occurs only within
the selling season and that unserved customers are lost.
The mathematical implication is that, for any given Q,
B, and L, A(𝜏; Q,B,L) must satisfy these three properties:
(i) A(𝜏; Q,B,L) = 1 for all 𝜏 ≤ B, (ii) A(𝜏; Q,B,L) = 0 for all
𝜏 ≥ B + L, and (iii) A(𝜏; Q,B,L) is decreasing for all other 𝜏.
We further assume that, for any realization of Q, B, and L,
A(𝜏; Q,B,L) is a deterministic function of 𝜏, and it is once
continuously differentiable in 𝜏. We can then express, for any
given Q, B, and L, the customer demand rate at time 𝜏 as
D(𝜏) = −QA′(𝜏; Q,B,L) ≥ 0, where A′(𝜏) denotes the deriva-
tive of A(𝜏) with respect to 𝜏. In addition, we assume that B
and L are continuous random variables with support on [0, bu]
and (0, lu], respectively; here bu ≥ 0 and lu > 0.

Figure 1 illustrates the relationships among a product’s
demand volume, the properties of its selling season, and the
firm’s inventory policy: in the left panel, the firm’s inventory
timing occurs prior to the beginning of the selling season
(i.e., t < B) and the inventory quantity is insufficient to sat-
isfy all the demand (i.e., x < Q). In contrast, the right panel
shows a setting in which the firm’s inventory becomes avail-
able only after the season has already started (i.e., t > B) and
there are—at the end of the season—unsold items that the
firm must salvage (i.e., x > Q(t)). It is a vital feature of our
model—and a challenging empirical reality—that imperfect
information about customer demand prevents the firm from
exactly synchronizing its inventory policy with the true cus-
tomer demand pattern.

2.2 The firm’s optimization problem

The firm’s goal is to maximize its profits. As in the clas-
sic newsvendor model, the firm incurs a per-unit produc-
tion cost c > 0, realizes a price p > c per unit sold, and sal-
vages any unsold item at s < c when the selling season ends.
In addition, the firm incurs holding costs. Inventory occurs
because (a) the firm seeks to satisfy demand over a nonneg-
ligible portion of the length L of the selling season and (b) it
cannot perfectly predict the beginning B of the selling sea-
son. We capture inventory holding costs as follows: starting
with the availability of inventory at time t, the firm incurs
holding costs h ≥ 0 per unit of inventory and time until the
inventory is either depleted or salvaged. Note that we do not
allow the firm to salvage items during the selling season. This
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F I G U R E 1 Inventory policy and customer demand pattern

assumption is but mildly restrictive: because production costs
c are already sunk, the decision whether (or not) to salvage an
item during the selling season is solely based on the benefits
of salvaging versus the firm’s prospective sales revenues—
and not profit margins. And in reality, firms rarely find it opti-
mal to sacrifice future sales revenues to save some holding
costs by salvaging.

Taken together, these considerations require the firm
to choose an inventory policy (x∗, t∗) that maximizes its
expected profits: sales revenue minus the costs of production,
inventory holding, and salvage. Thus the firm’s optimization
problem is

max
(x,t)≥0

Π(x, t) = 𝔼Q,B,L

[
(p − c)x − h∫

B+L

t
I(𝜏; x, t) d𝜏

− (p − s)[x − Q(t)]+
]
, (1)

where I(𝜏; x, t) = [x − (Q(t) − Q(𝜏))]+ denotes the firm’s
inventory position at time 𝜏 ∈ [t,B + L] for a given inven-
tory policy (x, t), and [Z]+ = max{0,Z}. Figure 1 visual-
izes how I(𝜏; x, t) changes over the course of a selling
season.

3 SERVING A STOCHASTIC SEASON

We now study the properties of a firm’s optimal inventory pol-
icy. We begin by formally deriving the firm’s optimal inven-
tory quantity and timing (Section 3.1). Then we investigate
how those optimal decisions interact and evaluate how the
chosen inventory policy affects the firm’s ability to satisfy
customer demand (Section 3.2).

3.1 The optimal inventory policy

To better disentangle the different forces at play, we derive the
firm’s optimal inventory policy in two steps. First, we charac-
terize the firm’s optimal inventory quantity x∗(t) for a given
inventory timing t. We then determine the optimal inventory
timing t∗, taking into account the dependence of x∗(t) on t.

Proposition 1. For given t ≥ 0, let m(t) be the expected
profit margin of the first sold item; that is, m(t) = p − c −

h ∫ bu

t
ℙ(B > b) db if t ∈ [0, bu], m(t) = p − c if t ∈ (bu, bu +

lu], and m(t) = 0 otherwise. For a fixed inventory timing t, the
optimal inventory quantity x∗(t) is determined uniquely as a
function of t:

(i) for any t such that m(t) ≤ 0, x∗(t) = 0;
(ii) for any t such that m(t) > 0, x∗(t) solves

ℙ(Q(t) ≤ x∗(t))

=

p − c − h
⎡⎢⎢⎣
∫ bu

t
ℙ(B > b) db+𝔼B,L

[∫ B+L

max {t,B}

ℙ(Q(t) − Q(𝜏) ≤ x∗(t) ∣ B,L) d𝜏
]⎤⎥⎥⎦

p − s

=
m(t)
p − s

−
h

p − s
𝔼B,L

×

[
∫

B+L

max {t,B}
ℙ(Q(t)−Q(𝜏) ≤ x∗(t) ∣ B,L) d𝜏

]
.

(2)

Moreover, (a) ℙ(Q(t) ≤ x∗(t)) = (p − c)∕(p − s) if h = 0
and (b) 0 ≤ (m(t) − hlu)+∕(p − s) ≤ ℙ(Q(t) ≤ x∗(t)) ≤ m(t)∕
(p − s).
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The proposition shows, in line with prior work on the
newsvendor problem (see, e.g., Cachon & Kök, 2007;
Petruzzi & Dada, 2010), that the optimal inventory quantity
x∗(t) is determined by a “critical fractile” condition; hence,
the firm sets a target service level for future demand Q(t). In
fact, in the absence of inventory holding costs (i.e., if h = 0),
the critical fractile collapses to the classic newsvendor frac-
tile (see part (a) of the proposition). In general, however, the
critical fractile condition (2) differs from the classic newsven-
dor solution in two important ways. First, the critical frac-
tile applies to the distribution of future demand Q(t) rather
than total demand Q. The relevant demand distribution that
the firm should consider when choosing its inventory quan-
tity is thus dependent on the firm’s inventory timing decision.
Second, the product’s profit margin is adjusted for inventory
holding costs. In particular, incurred holding costs consist of
two components (as reflected by the two integrals in (2)): the
first integral accounts for the firm’s expected marginal presea-
son holding costs, whereas the second integral captures the
expected marginal in-season holding costs. It is obvious that
both terms are affected by the firm’s inventory timing t; yet,
marginal in-season holding costs also depend on the firm’s
inventory quantity. As a result, the firm’s optimal target ser-
vice level (i.e., its critical fractile) is—even for a given inven-
tory timing t—not exogenous to its inventory quantity deci-
sion. The final statement in Proposition 1 provides an exoge-
nous upper and lower bound for the firm’s target service level;
those bounds are obtained from bounding the firm’s expected
in-season holding costs.

As in the classic newsvendor model, the firm’s optimal
inventory quantity increases with the product’s sales price p
and salvage value s but decreases with the production cost c.
More important for our work, however, is the effect of the
firm’s inventory holding costs h on x∗(t): for a given inven-
tory timing t, the optimal inventory quantity declines when h
increases. The impact of h depends on the start and the length
of the selling season but also on the shape Q(𝜏) of the cus-
tomer demand pattern: if most demand manifests early in the
season then in-season holding costs are relatively small and
thus have only a minor effect on x∗(t); but if there are high
levels of demand toward the end of the selling season, then
in-season holding costs can be substantial and so may induce
the firm to choose a markedly lower inventory quantity.

Proposition 1 reveals that the firm’s inventory timing
affects the optimal inventory quantity in two distinct ways:
namely by (a) determining the addressable portion of demand
Q(t) and (b) by influencing—through inventory holding
costs—the product’s unit profit margin. The impact of the lat-
ter effect is represented by the function m(t); it designates, for
a given inventory timing t, the expected profit margin of the
first sold item. Note that any further item has a lower expected
profit margin because in-season holding costs accumulate
over time. Of course, if m(t) ≤ 0, then selling the product
would make no economic sense; hence x∗(t) = 0, as in part (i)
of Proposition 1. However, by increasing t, the firm can save
preseason holding costs and thus increase m(t). In fact, a firm
that chooses an inventory timing t ∈ [bu, bu + lu] can avoid

all preseason holding costs and realize the maximum attain-
able unit margin of m(t) = p − c > 0; that is, the firm can
always select an inventory timing t such that m(t) > 0. It then
follows from Proposition 1(ii) that the firm always finds it
optimal to offer the product and that the optimal inventory
quantity x∗(t) will be uniquely determined by (2).

Equipped with these insights, we now turn to the firm’s
optimal inventory timing decision. To this end, we analyze
how the firm selects its optimal inventory timing t∗ by solving
maxt≥0 Π(x∗(t), t). This optimization problem is not quasi-
concave in t, in general, and as such it may—depending on
the parameters of the problem—exhibit multiple local (or
possibly even global) optima. Yet, this potential multiplicity
of solutions does not affect any of our subsequent results.

Proposition 2. The optimal inventory timing t∗ satisfies the
following necessary optimality condition:

hx∗(t∗)ℙ(t∗ ≤ B + L) − h𝔼B,L

[
∫

B+L

t∗
𝔼Q

[
D(t∗) ∣ Q(t∗)

− Q(𝜏) ≤ x∗(t∗),B ≤ t∗,L
]
ℙ(Q(t∗) − Q(𝜏)

≤ x∗(t∗),B ≤ t∗) d𝜏

]
= (p − s)𝔼Q,B,L

[
D(t∗) ∣ Q(t∗) ≤ x

]
ℙ(Q(t∗)

≤ x∗(t∗)). (3)

Also, t∗ > 0 if and only if h > 0.

Two opposing effects determine the firm’s optimal inven-
tory timing. With a later inventory timing, the firm is able to
reduce the time that items, which are sold later in the season,
must be stored; the firm can hence reduce inventory hold-
ing costs. At the same time, however, the firm becomes more
susceptible to losing demand early in the season; as a result,
some items may need to be stored for a longer period of time
until they are sold—if they are sold at all. Proposition 2 shows
that the optimal inventory timing equates to the marginal
impact of t on these effects. In particular, the left-hand side
of (3) characterizes the marginal change in expected hold-
ing costs when increasing t. Here, the first term captures the
direct effect of reducing storage time, whereas the second
term adjusts for the indirect effect that some items now need
to be stored longer until they are sold. The right-hand side
represents the marginal increase in leftover inventory due to
late inventory availability; those leftovers must be salvaged.

Proposition 2 also establishes that, as a consequence,
choosing the earliest possible inventory timing (i.e., t = 0) is
optimal only in the absence of holding costs. In all other cases
(i.e., if h > 0), the firm should trade off a (potentially small)
risk of missing some early demand against reduced inventory
holding costs. This is similar to the classic newsvendor logic,
which prescribes that, in the presence of overage costs, a firm
should accept a certain risk of losing sales.
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3.2 Inventory timing and customer service

Because the firm’s future demand volume Q(t) stochastically
decreases with t, it would be natural to expect that a later
inventory timing would result in stochastically less demand
being satisfied. While this conjecture is obviously true for a
fixed inventory quantity, we have learned from Proposition 1
that the firm should adjust its optimal inventory quantity as a
function of t—this interdependence renders the impact of the
firm’s inventory timing on its service performance more intri-
cate. In this section, we identify the conditions under which
the above conjecture is (and is not) true.

As a starting point, we shed more light on the interaction
between the firm’s inventory timing t and the associated opti-
mal inventory quantity x∗(t). That is, how does x∗(t) change
with t?

Lemma 1. Let fY be the probability density function of the
random variable Y. Then the firm’s optimal inventory quan-
tity x∗(t) increases with t if and only if

hℙ(t < B + L) − h𝔼B,L

[
∫

B+L

t
𝔼Q

[
D(t) ∣ Q(t) − Q(𝜏)

≤ x∗(t),B ≤ t,L
]
fQ(t)−Q(𝜏)∣B≤t(x

∗(t))ℙ(B ≤ t) d𝜏

]

> (p − s)𝔼Q,B,L
[
D(t) ∣ Q(t) ≤ x∗(t)

]
fQ(t)(x

∗(t)). (4)

In particular: (i) if h = 0 then x∗(t) decreases with t, but (ii) if
h > 0 then there exists t > 0 such that x∗(t) increases with t
for t ∈ [0, t].

Lemma 1 provides a necessary and sufficient condition for
x∗(t) to increase with the firm’s inventory timing t. Despite
its unwieldy appearance, condition (4) has an intuitive inter-
pretation. Note that the critical fractile condition (2) stipu-
lates two conditions under which x∗(t) increases with t: (i) the
firm’s expected underage costs must increase with t (which
favors a higher x∗(t)); and (ii) this increase must be great
enough to compensate for an expected reduction in future
demand Q(t) (which favors a lower x∗(t)). Condition (4) for-
malizes this intuition. With a later inventory timing t, the firm
reduces its expected unit holding costs (as given by the left-
hand side of (4)) and so increases its expected unit underage
costs; if this holding cost reduction outweighs the additional
loss in revenue (as given by the right-hand side of (4)), then
it is optimal for the firm to increase x∗(t) with t.

Parts (i) and (ii) of Lemma 1 provide further insights into
the leading role that inventory holding costs play in the inter-
action between a firm’s inventory quantity and timing deci-
sion. If there are no holding costs (h = 0), then the firm never
benefits from simultaneously increasing its inventory tim-
ing and its inventory quantity. However, if inventory holding
costs are strictly positive (h > 0), then the firm may benefit

from increasing both decisions at the same time—but only
if the customer demand rate D(t) is sufficiently small. The
latter phenomenon typically occurs early in the firm’s win-
dow of sales opportunity [0, bu + lu]: when t ∈ [0, t] as in
Lemma 1(ii).

As an aside, Lemma 1 also establishes an interesting inter-
play between demand uncertainty and the firm’s optimal
inventory quantity. Suppose that t < t′; this inequality implies
that Qt first-order stochastically dominates Qt′ (i.e., ℙ(Qt ≤
x) ≤ ℙ(Qt′ ≤ x) for all x ≥ 0). Lemma 1 now shows that
first-order stochastic dominance in demand does not always
lead to higher inventory quantities—and so we may have
x∗(t′) > x∗(t).

So far, we have established that the optimal inventory
quantity may (or may not) increase with the firm’s inventory
timing. This finding allows us to examine the impact of the
firm’s inventory timing on its performance in terms of satisfy-
ing customer demand. In particular, will an earlier inventory
timing always lead to a greater amount of satisfied demand,
or equivalently, to a lesser amount of lost sales?

Note that lost sales in our setting occur for two differ-
ent reasons: (i) demand occurs before the firm’s inventory
timing or (ii) the inventory quantity has been depleted. So
for a given inventory policy (x, t), the firm’s expected lost
sales are given by (x, t) = 𝔼Q,B,L[(Q − Q(t)) + [Q(t) − x]+].
Given that Q(t) stochastically decreases with the firm’s inven-
tory timing t, it is obvious that expected lost sales increase
with t if x∗(t) decreases with t. Yet by Lemma 1, x∗(t) may
actually increase with t; in that event, expected lost sales may
actually decrease with the firm’s inventory timing. Our next
proposition formalizes this intuition by giving necessary and
sufficient conditions for (x∗(t), t) to decrease with t.

Proposition 3. (x∗(t), t) decreases with t if and only if

(x∗(t))′ >
𝔼Q,B,L[D(t) ∣ Q(t) ≤ x∗(t)]ℙ(Q(t) ≤ x∗(t))

ℙ(Q(t) > x∗(t))
. (5)

In particular: (i) if h = 0 then (x∗(t), t) increases with t,
but (ii) if h > 0 then there exists tl > 0 such that (x∗(t), t)
decreases with t for t ∈ [0, tl].

The main outcome of Proposition 3 is that, in optimum,
the firm’s expected lost sales may decrease with its inventory
timing—but only if inventory holding costs are sufficiently
high. So if h > 0 and if a later inventory timing is associ-
ated with a larger inventory quantity (per Lemma 1), then
the increase in the optimal inventory quantity (x∗(t))′ may be
larger than the increase in unsatisfied early demand (as given
by the right-hand side of (5)) and thereby lead to an overall
reduction in expected lost sales.

From a managerial perspective, Proposition 3 falsifies the
seemingly convincing argument that earlier inventory avail-
ability necessarily leads to a higher level of satisfied demand.
In fact, a premature inventory timing may reduce a firm’s
capacity to satisfy demand because high inventory holding
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costs may force the firm to reduce its inventory quantity
which, in turn, harms its service performance.

4 IMPACT OF CUSTOMER DEMAND
PATTERN

The conditions that characterize the optimal inventory quan-
tity and timing for a firm that faces a stochastic selling season
are rather complex; this complexity is due to the interplay of
several opposing forces (cf. Section 3.1). In this section, we
aim to isolate some of those relevant effects to garner further
insights by studying two special cases that are both instruc-
tive and practically relevant. In the first case, a firm is con-
fronted with instantaneous demand; this setting allows us to
isolate how uncertainty in demand timing (as captured by B)
affects the firm’s inventory timing (Section 4.1). In the sec-
ond case, the firm has perfect information about the selling
season’s properties (Section 4.2); this analysis yields addi-
tional insights concerning the influence of varying demand
patterns (as captured by A(𝜏)). Unless explicitly stated other-
wise, we maintain the same modeling assumptions as in our
base model.

4.1 Instantaneous demand

It is common in the newsvendor literature to abstract from the
dynamics within the selling season and instead to assume that
all demand occurs at a single and ex ante known moment in
time (see, e.g., Choi, 2012; Petruzzi & Dada, 1999, 2010; Qin
et al., 2011). Given that assumption, the firm’s inventory tim-
ing is trivial: inventory should be made available just before
demand occurs. In this section, we follow the assumption
of instantaneous demand—that is, in our demand model, we
set the season length to zero: L = 0 and A(𝜏; B) = 1{𝜏≤B}—
but depart from the traditional newsvendor setting by view-
ing the demand timing B as uncertain. In this setting, choos-
ing an adequate inventory timing becomes a challenging task
for the firm.

Despite its simplicity, the assumption of instantaneous
demand is a reasonable approximation of the market structure
in many real-world scenarios. Thus instantaneous demand is
a realistic assumption if (a) a firm’s selling season is indeed
short (e.g., only a few days) and/or (b) its in-season holding
costs are negligible (though preseason holding costs may still
be important). Under those conditions, the firm’s optimiza-
tion problem (1) reduces to

max
(x,t)≥0

Πi(x, t) = 𝔼Q,B[(p − c)x − hx[B − t]+

− (p − s)[x − Q(t)]+]. (6)

It is easy to see that when holding costs are negligible (i.e.,
h ≈ 0), then the firm finds it optimal to make its inven-
tory available as early as possible (i.e., it would set ti = 0).

Instantaneous demand can hence induce a firm to choose
ti = 0 even when h > 0, a decision that would be suboptimal
for an extended selling season (cf. Proposition 2). In those
cases, the promise of holding cost savings never outweighs
the downside risk of losing the entire season’s demand. How-
ever, when holding costs are sufficiently high, this argument
is no longer correct: the firm should postpone its inventory
timing. For the case of sufficiently high holding costs, we
establish the firm’s optimal inventory policy (xi, ti)—that is,
the solution to (6)—in Proposition 4.

Proposition 4. Assume that h − (p − s)fB(0) > 0, and let
HY = fY∕(1 − FY ) denote the hazard rate of the random vari-
able Y, with FY being the cumulative distribution function of
Y. Then, the firm’s optimal inventory policy solves

ℙ(Q(ti) ≤ xi) =
p − c − h ∫ bu

ti
ℙ(B > b) db

p − s
, (7)

HB(ti) =
hxi

(p − s) ∫ xi

0
ℙ(Q > q ∣ B > ti) dq

. (8)

Furthermore, H′
B(ti) ≥ 0.

As in our base model, the firm’s optimal inventory quantity
is determined by a critical fractile condition on Q(ti); thus
the only difference between (7) and (2) is that the former
does not include an adjustment term for in-season holding
costs. It is also interesting to note that even in the absence of
in-season holding costs, the optimal inventory quantity xi is
smaller than in classic newsvendor settings—this is due to the
(preseason) holding costs incurred until the (uncertain) start
of the season.

There is an appreciable reduction in complexity when
comparing the firm’s inventory timing under instantaneous
demand (as given by (8)) with our base case of a finite
season length (as given by (3)). Here, the firm’s optimal
inventory timing is determined by a simple hazard rate con-
dition that balances the firm’s earliness/holding costs with
its tardiness costs (i.e., expected lost revenues). In particu-
lar, the firm should choose its inventory timing such that,
at 𝜏 = ti, the likelihood of demand occurrence—given that
demand has not materialized earlier—equates to a predefined
threshold.

According to Proposition 4, a firm’s optimal inventory
timing ti is determined by the hazard rate of demand tim-
ing (i.e., by HB). In particular, the more rapidly the like-
lihood of demand occurrence increases over time, the ear-
lier the firm should make its inventory available; and ceteris
paribus, ti increases with h and s but decreases with p because
H′

B(ti) ≥ 0. This finding suggests that when holding inven-
tory becomes more expensive relative to the revenue differ-
ence between regular sales and salvaging (i.e., if h∕(p − s)
increases), firms should accept a higher risk of missing an
early season. Even though this strategy may lead to less items
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being sold, in expectation, it allows the firm to sell items at
higher margins.

4.2 Deterministic selling season

In this section, we study more closely how the properties
of A(𝜏) affect the firm’s inventory timing. For this purpose,
we consider a deterministic analogue of our base model by
assuming that all characteristics of the selling season are per-
fectly known. Thus, we set Q = q > 0, B = 0, and L = l > 0
while assuming that A(𝜏) is given. Then the deterministic ana-
logue of the firm’s profit function (1) can be written as

max
(x,t)≥0

Πd(x, t) = (p − c)x − h∫
l

t
I(𝜏; x, t) d𝜏

− (p − s)[x − A(t)q]+, (9)

and the optimal inventory policy (xd, td) is derived using
Proposition 5. To simplify the analysis, we focus on those
cases when inventory holding costs do not exceed the prod-
uct’s profit margin.

Proposition 5. Assume that p − c ≥ hl. Then, the firm’s opti-
mal inventory policy solves

xd = A(td)q, (10)

−
A′(td)
A(td)

=
h

p − c
. (11)

Moreover, (i) td = 0 if and only if h = 0, (ii) A(𝜏) is log-
concave at 𝜏 = td, and (iii) td (respectively xd) increases
(respectively decreases) with h.

This proposition reveals that, for a deterministic selling
season and moderate holding costs, the firm simply chooses
its inventory quantity so as to satisfy all demand that occurs
after the inventory timing (i.e., xd = A(td)q). It is intuitive
that, since the firm can perfectly predict demand and since
it is always profitable to sell the product, the firm is deter-
mined to serve every single customer once inventory is avail-
able. Yet this strategy does not imply that the firm makes its
inventory available immediately; rather, the firm continues to
trade off lost sales early in the season against reduced hold-
ing costs for serving later demand. Technically, the optimal
inventory timing td is determined by the logarithmic deriva-
tive of A(𝜏); that is, the firm selects its inventory timing such
that, at 𝜏 = td, the ratio of demand rate over future demand
meets a predefined target value. Also, because the firm is able
to perfectly synchronize inventory with demand, td is inde-
pendent of xd and s. In particular, (11) establishes that—for
the optimal inventory timing—the marginal loss of revenue
from further postponing the product’s availability must equal
the firm’s marginal holding costs.

An intriguing observation is that a firm’s optimal inven-
tory timing depends on the slope and curvature of A(𝜏).
This finding has two central managerial implications. First,
it identifies—via Proposition 4—that there are two major
factors that managers should consider when choosing their
inventory timing: (i) the hazard rate of the season start B
and (ii) the slope and curvature of the (expected) demand
pattern A(𝜏). Note that the optimal timing condition (3)
in our base model is a convolution of those two compo-
nents. In practice, relying on these two factors considerably
reduces the managerial decision problem’s complexity. Sec-
ond, Proposition 5(iii) establishes that the firm—in response
to an increase in holding costs—never increases both its
inventory timing and inventory quantity if the selling sea-
son is deterministic. We can therefore conclude that the unex-
pected interaction effects described in Lemma 1 and Propo-
sition 3 are mainly driven by the firm’s lack of knowledge
about the exact properties of its selling season.

5 QUANTIFYING THE IMPACT OF
INVENTORY TIMING

Having characterized the main trade-offs that the firm must
balance with its inventory policy when serving a stochastic
selling season, we now turn to the magnitude of the effects
resulting from an optimally chosen inventory policy. Through
an extensive numerical simulation, we investigate (a) whether
(or not) inventory timing has a first-order effect on firm prof-
its and (b) how the firm’s inventory policy and profits are
affected by parameter changes.

5.1 Simulation setup and choice of
parameters

To shed light on the influence of our various model param-
eters, we constructed our simulation study in a full factorial
design over a wide range of parameter values, as listed in the
leftmost column of Table 1. In total, we analyze 2187 dif-
ferent scenarios. The chosen parameter values reflect typi-
cal agrochemical products and their selling seasons, as dis-
cussed below.

As for product characteristics, we account for the reality
that agrochemical products differ widely in (a) their profit
margins and (b) their inventory holding costs (e.g., because
some products rely on more expensive raw materials than oth-
ers or require special storage conditions). We represent prod-
ucts with different profit margins by fixing the sales price p =
$100 while varying production costs c ∈ {$25, $50, $75}. For
simplicity, we normalize the salvage value to zero (s = $0).
Inventory holding costs h are measured—as it is standard in
practice—as percentage 𝜌 of production costs (i.e., h = 𝜌c);
here 𝜌 ∈ {1%, 2%, 3%} per month (or equivalently, 12–36%
per year), which covers the full spectrum from common items
(𝜌 = 1%) to even the most hazardous materials (𝜌 = 3%).



2900 SCHLAPP ET AL.Production and Operations Management

TA B L E 1 Results of numerical experiments

h-nv policy Optimal policy

𝚫𝚷h-nv
avg (%) 𝚫𝚷h-nv

0.95
(%) 𝚫𝚷∗

avg (%) 𝚫𝚷∗
0.95

(%) t∗∕bu xnv − x∗

25 0.01 0.05 0.16 0.59 0.13 0.74

c 50 0.05 0.26 0.64 2.30 0.18 1.10

75 0.35 1.49 2.89 9.94 0.26 2.05

0.01 0.02 0.09 0.41 1.94 0.16 0.50

𝜌 0.02 0.10 0.52 1.13 5.14 0.19 1.29

0.03 0.29 1.42 2.15 9.74 0.22 2.11

10 0.04 0.23 0.91 4.22 0.18 0.46

𝜎 30 0.13 0.61 1.22 5.46 0.19 1.54

50 0.24 1.19 1.57 7.11 0.21 1.90

(1,1) 0.13 0.62 0.73 3.35 0.11 1.38

(𝛼, 𝛽) (2,4) 0.10 0.46 0.75 3.21 0.12 1.16

(4,2) 0.17 0.82 2.21 9.07 0.35 1.35

1 0.10 0.47 0.89 4.05 0.21 1.13

bu 1.5 0.13 0.62 1.23 5.56 0.19 1.30

2 0.17 0.83 1.57 7.37 0.18 1.46

0.8 0.04 0.22 0.74 3.49 0.13 0.71

L 1.5 0.09 0.47 1.10 5.20 0.18 1.10

3 0.28 1.42 1.85 8.98 0.27 2.08
Q

L
0.14 0.65 0.95 4.50 0.14 1.34

D(𝜏)
2Q(𝜏−B)

L2
0.18 0.85 2.04 9.07 0.32 1.39

2Q(B+L−𝜏)

L2
0.09 0.48 0.70 3.20 0.11 1.16

Total 0.14 0.64 1.23 5.57 0.19 1.30

With respect to the characteristics of the selling sea-
son, we differentiate between a “near-instantaneous” sea-
son (L = 0.8 months), a moderate season (L = 1.5 months),
and a “climatic” season (L = 3 months). The beginning B
of the season can be more or less uncertain in reality: we
capture this fact by (a) varying the support [0, bu] of B,
with bu ∈ {1, 1.5, 2} (measured in months) and (b) chang-
ing the relative likelihood of an early versus a late sea-
son start. To this end, we assume B ∼ B1(bu, 𝛼, 𝛽), with
B1 being the beta distribution of the first kind (Donald
& Xu, 1995), and (𝛼, 𝛽) ∈ {(1, 1), (2, 4), (4, 2)}. In addi-
tion, agrochemical manufacturers also encounter varying cus-
tomer demand patterns: whereas for some products cus-
tomer demand is relatively constant over the course of a sea-
son, other products may experience time-varying demand.
In our simulation study, we examine the case of a con-
stant (D(𝜏) = Q∕L), an increasing (D(𝜏) = 2Q(𝜏 − B)∕L2),
and a decreasing demand rate (D(𝜏) = 2Q(B + L − 𝜏)∕L2),
with 𝜏 ∈ [B,B + L]. Finally, we also consider different lev-
els of uncertainty in the demand volume Q by assuming
that Q follows a gamma distribution with (normalized) mean
𝜇 = 100 and standard deviation 𝜎 ∈ {10, 30, 50}.

We implemented our numerical simulation in MATLAB.
To identify the optimal inventory policy (x∗, t∗), we enumer-
ated t in increments of 0.01 on the interval [0, bu + L]; for

any given t, we then used the theoretical bounds on x∗(t) from
Proposition 1 to limit the search space for x and enumerated x
in increments of 1 unit. For each scenario of our full factorial
design, we simulated one million selling seasons. As a result,
with a 95% confidence level, our reported profits deviate by
at most 0.24% from their theoretical values.

5.2 The benchmark policies

To assess the value of an optimal inventory timing, we com-
pare the optimal inventory policy (x∗, t∗)—and the result-
ing profits Π(x∗, t∗)—to two benchmark policies. As a first
benchmark, we consider a firm that completely disregards
the impact of holding costs h on its seasonal inventory pol-
icy; that is, the benchmark firm naïvely sets its inventory
policy by assuming h = 0. We refer to this benchmark as
the nv policy. From Propositions 1 and 2, it follows directly
that the benchmark firm’s inventory policy is (xnv, 0), with
ℙ(Q ≤ xnv) = (p − c)∕(p − s); that is, xnv equals the classic
newsvendor quantity.

Our second benchmark mirrors current practice in the agro-
chemical industry much more closely. In our experience,
managers find the quantity trade-off easier to make than the
timing-related trade-offs. As a result, while their inventory



HOW TO SERVE A STOCHASTIC SEASON 2901
Production and Operations Management

quantity effectively balances underage and overage costs,
managers are biased in their timing decision toward early
product availability—in an attempt to minimize lost sales.
In addition, we observed that the interdependencies between
quantity and timing choices tend to be overlooked. We mimic
this behavior in our second benchmark policy, referred to as
the “h-nv” policy, by assuming that the firm strives for full
coverage over the selling season (i.e., th = 0) but optimizes
the inventory quantity xh according to Proposition 1. With
such a policy, the firm never loses sales because of late inven-
tory availability.

5.3 Simulation results

The results of our numerical experiments are summarized in
Table 1. Columns 2–5 show the simulated profits; for a given
inventory policy  , ΔΠ

avg (respectively ΔΠ
0.95) denotes the

average (respectively 95% quantile) relative increase in firm
profits under policy  as compared to the nv policy. The
most important finding of our simulation study is that inven-
tory timing can have a sizeable effect on firm profits, with a
maximum profit increase of up to 30% and a 95%-quantile
increase of 5.57%. Yet, we also observe that benefits are dis-
tributed very heterogeneously across parameter values—as
indicated by the average profit increase amounting to 1.23%.
Note that this number may appear low, but considering the
size of the agrochemical market, it still implies substantial
absolute benefits and a potentially large increase in net mar-
gins.

Table 1 also shows which parameters chiefly drive the
profit increase. Clearly, when profit margins are sufficiently
high or holding costs are low, then the firm’s primary con-
cern is to maximize demand coverage. Thus, the benefits of
deviating from t = 0 are small at best. For any other parame-
ter, however, the 95% quantile (respectively maximum) profit
increase from using an optimal inventory timing exceeds 3%
(respectively 12%) when the focal parameter is fixed (see
Table 1, column 5). Intuitively, the benefits of a later inven-
tory timing are particularly large when (a) the selling sea-
son is long (i.e., high L), (b) demand is highly uncertain
(i.e., high 𝜎 or bu), or (c) the distribution of the season start
or the demand pattern over the season are left-skewed (i.e.,
(𝛼, 𝛽) = (4, 2) or D(𝜏) = 2Q(𝜏 − B)∕L2).

A second important observation is that inventory timing
has a stronger effect on firm profits than an isolated adjust-
ment of the firm’s inventory quantity. In particular, whereas
an optimally chosen inventory timing leads to as much as
10% higher profits in our numerical study (using the 95%
quantile), adjusting the inventory quantity to holding costs—
while fixing t = 0—only allows the firm to realize additional
profits of up to 1.5% (see column 3 of Table 1). This observa-
tion is also reflected in the firm’s optimal inventory policy; as
indicated by the rightmost columns of Table 1, which show
the average value of t∗, scaled by bu, and the average devi-
ation of x∗ from xnv, respectively. While, on average, t∗ is
postponed by 0.19bu months as compared to our benchmark
nv policy, the optimal inventory quantity only differs by about

F I G U R E 2 Inventory timing and firm profits

F I G U R E 3 Inventory timing and expected sales

1.3 units on average (with xnv ranging from 63 to 127). Thus,
it is the timing decision that primarily differentiates the opti-
mal policy from our naïve benchmark.

Figures 2 and 3 provide further insights into the opti-
mal inventory policy and connect that policy to the more
advanced h-nv policy (ΔΠ∗

h-nv and ΔS∗h-nv measure the relative
change in expected profits and expected sales, respectively,
between the optimal policy and the h-nv policy). Figure 2
clearly shows that, not surprisingly, the benefits of the opti-
mal inventory policy (x∗, t∗) increase when a more delayed
inventory availability is warranted (i.e., if t∗∕bu increases).
Also, it is remarkable that the firm sometimes even finds
it optimal to almost surely miss the beginning of the sell-
ing season by setting t∗ > bu. Conceptually, any postpone-
ment of inventory availability leads to a higher chance of
the firm missing demand early in the season. Our simula-
tion results reveal that the firm oftentimes counteracts this
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negative effect by (weakly) increasing its inventory quantity
to promote additional sales (i.e., x∗(t∗) ≥ x∗(0)). In fact, in
line with Lemma 1, x∗(t∗) ≥ x∗(0) in more than 96% of our
scenarios. Finally, we observe that the increase in x∗(t∗) is
largest when (a) holding costs are substantial and (b) demand
is highly uncertain and likely occurs relatively late in the
firm’s window of sales opportunity [0, bu + L].

Naturally, the interaction between t∗ and x∗ also has an
effect on the firm’s expected sales; a finding that is nicely
displayed in Figure 3. Even though a later inventory timing
causes some early lost sales, it may also allow the firm to
stock more items and thus increase overall sales (ΔS∗h-nv > 0,
which happens in 8.3% of our instances). In many other
scenarios, the effect of a delayed inventory availability on
expected sales is negligible—in only 2.6% of our scenarios,
expected sales decrease by more than 1%. Hence, by coor-
dinating its inventory timing with its inventory quantity, the
firm is oftentimes able to maintain (or even increase) product
sales while at the same time realizing substantial savings in
inventory holding costs (on average, these savings amount to
19%).

6 IMPLICATIONS AND LIMITATIONS

The goals of this paper are to establish the importance of
a firm’s inventory timing decision and to show that inven-
tory timing has a first-order effect on both firm profits and
customer service. We take the perspective of a firm that
sells a single product over a stochastic selling season, which
means that the firm has imperfect information about when
exactly the selling season would be, how much demand there
would be, and how demand would be distributed over the sea-
son. We motivated our analysis based on observations in the
agrochemical industry; yet, similar multifaceted uncertain-
ties are also present for other products with climatic selling
seasons such as lawn and gardening items, sun care prod-
ucts, and nonfood specials at discount retailers. We estab-
lish the firm’s optimal inventory policy, unravel the interac-
tion effects between the firm’s inventory quantity and inven-
tory timing, demonstrate that an optimally chosen inven-
tory timing enables the firm to increase profits and simul-
taneously reduce lost sales, and disentangle how the vari-
ous properties of a selling season affect a firm’s inventory
policy. At the heart of this analysis is our insight that the
firm, through its inventory timing, can endogenize (a) the
profit margin of its products by determining its exposure to
inventory holding costs and (b) its future demand and lost
sales. We show that this flexibility may lead to a nonmono-
tonic interrelation between the optimal inventory quantity and
timing.

A naïve approach to inventory timing might suggest to sim-
ply make products available right before the start of their
selling season; yet our findings show that this thinking is
flawed for two reasons. First, in many practical applications,
it is not clear exactly when customer demand begins to occur
(e.g., when demand depends on weather conditions). Man-

agers thus have to determine at what moment in time their
demand potential is sufficiently strong to justify inventory
availability. The intuition behind this result is similar to the
classic newsvendor logic that managers, when confronted
with uncertain demand volumes, should not blindly maxi-
mize demand coverage. Second, even if the start of the sell-
ing season can be predicted fairly precisely, making inven-
tory available immediately can be very costly; particularly
so if inventory must be stored for a long period of time
before being sold. Hence, managers—through their inven-
tory timing—should always trade off (the risk of) losing some
demand early in the season against higher profit margins for
items that are sold later in the season. Our numerical anal-
ysis for a realistic range of parameters from the agrochem-
ical industry shows that optimal inventory timing increases
expected gross margins by 1–2%, on average. While this
improvement may appear relatively small, it translates into
much larger improvements in net margins and absolute bene-
fits. Moreover, our analysis also reveals that gross margins
increase much more strongly, by 9–10%, for products that
face (i) strong uncertainty in demand timing or volume, (ii)
a slow start of the selling season, (iii) a relatively long sell-
ing season, (iv) low-profit margins, and/or (v) high inventory
holding costs.

Like other theoretical models, ours is an abstraction of real-
ity. In the formulation process, we chose to focus on a single-
product setting and to disregard capacity considerations. We
believe that, in doing so, our framework takes a crucial first
step toward the end of understanding optimal inventory tim-
ing decisions; in the real world, however, managers must
coordinate the inventory timing of many different products—
and especially when these products share a common (capac-
itated) production process. In the multiproduct case, man-
agers must sequence the production of the different products
and must therefore decide which products to produce ear-
lier or later. That decision will directly influence each prod-
uct’s inventory holding costs and hence the product’s effec-
tive profit margin. We view the interaction effects between
different products and their inventory timing as a promising
direction for future research.

Another practically relevant question concerns the
specifics of the production process. On an aggregate level,
we have considered production as an integrated process.
Yet real-world production processes are typically “layered”:
the product passes through multiple production steps (e.g.,
synthesis of active ingredients, product formulation, packag-
ing). Such a multistage production process poses additional
constraints on a firm’s inventory decisions. It would be
instructive to explore how different production processes
affect a firm’s inventory timing. Last, for some practical
applications, it might also be worthwhile to explicitly con-
sider the influence of inventory availability on customer
demand (see, e.g., Baron et al., 2011; Urban, 2005) and
to endogenize a firm’s pricing decision (see, e.g., Raz &
Porteus, 2006; Petruzzi & Dada, 1999). Naturally, we would
expect firms to choose an earlier inventory timing if inventory
availability has a positive effect on customer demand; yet,
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the effect of an optimal pricing decision on a firm’s inventory
timing is not immediately obvious.

In sum, we believe that our work sheds light on the core
trade-offs underlying a fundamental managerial decision: a
seasonal product’s inventory timing. Our analysis of a firm’s
optimal inventory policy yields managerial recommendations
as a function of the product’s cost structures and the (stochas-
tic) pattern of customer demand. Thus we have made some
headway toward a better understanding of optimal inventory
timing decisions for seasonal products.
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A P P E N D I X A : P R O O F S
Proof of Proposition 1. We prove the result in two steps. We
start by showing that, for any given t, theΠ(x, t) defined in (1)
is strictly concave in x. Then we derive the necessary and suf-
ficient first-order optimality condition for determining x∗(t).

To prove strict concavity, we rewrite the firm’s expected
profits as

Π(x, t) = 𝔼Q,B,L

[
(p − c)x − h∫

B+L

max{t,B}
I(𝜏; x, t) d𝜏

− (p − s)[x − Q(t)]+ − hx[B − t]+
]
, (A1)

and then take partial derivatives with respect to x. Because
each term in (A1) is integrable and has a bounded derivative,
we can interchange the expectation and differentiation opera-
tors. The result then follows directly from applying Leibniz’s
formula twice:

𝜕Π(x, t)
𝜕x

= 𝔼Q,B,L

[
(p − c) − h∫

B+L

max {t,B}
1{Q(t)−Q(𝜏)≤x} d𝜏

− (p − s)1{Q(t)≤x} − h(B − t)+
]

= (p − c) − h𝔼B,L

×

[
∫

B+L

max {t,B}
ℙ(Q(t) − Q(𝜏) ≤ x ∣ B,L) d𝜏

]

− (p − s)ℙ(Q(t) ≤ x) − h∫
bu

t
ℙ(B > b) db;

(A2)

𝜕2Π(x, t)

𝜕x2
= −(p − s)fQ(t)(x) − h𝔼B,L

×

[
∫

B+L

max {t,B}
fQ(t)−Q(𝜏)∣B,L(x)d𝜏

]
< 0. (A3)

Here fY denotes the probability density function of random
variable Y . The strict inequality in (A3) follows directly from
our assumption that p > s.

We now derive the optimal inventory quantity as a func-
tion of t. Note that, for any t > bu + lu, we have Qt = 0 and
so x∗(t) = 0. Furthermore, if t ≤ bu + lu and m(t) ≤ 0, then
𝜕Π(x, t)∕𝜕x < 0 for all x ≥ 0 and therefore x∗(t) = 0. In con-
trast, if t ≤ bu + lu and m(t) > 0, then x∗(t) > 0 and setting
(A2) to zero yields the necessary and sufficient first-order
optimality condition. Finally, that the second term in (A2) can
take only a value between 0 and hlu establishes the bounds
on x∗(t). □

Proof of Proposition 2. Equipped with x∗(t) as defined in
Proposition 1, we can reduce the firm’s optimization prob-
lem (1) to a problem in t only: maxt≥0 Π(x∗(t), t). Using total
differentiation now allows us to derive the firm’s optimal
inventory timing t∗; that is, we must solve dΠ(x∗(t∗), t∗)∕dt =
𝜕Π(x∗(t∗), t∗)∕𝜕t + (𝜕Π(x∗(t∗), t∗)∕𝜕x)(𝜕x∗(t∗)∕𝜕t) = 0.
Since the firm can always choose an inventory tim-
ing t that will guarantee m(t) > 0, it follows that—
in the optimal case—x∗(t∗) satisfies condition (2). This
outcome implies, by optimality and the envelope theo-
rem, that 𝜕Π(x∗(t∗), t∗)∕𝜕x = 0 and so dΠ(x∗(t∗), t∗)∕dt =
𝜕Π(x∗(t∗), t∗)∕𝜕t = 0.

It remains to calculate the first-order partial derivative of
(A1) with respect to t. The partial derivatives of the first,
third, and last terms in (A1) are straightforward; however,
differentiating the second term with respect to t is much
more involved. We now provide a detailed account of this
derivative.

To begin, we rewrite the second term in (A1)—while sup-
pressing h—by using the law of iterated expectations:

𝔼Q,B,L

[
∫

B+L

max{t,B}
I(𝜏; x, t) d𝜏

]
= 𝔼Q,B,L

×

[
∫

B+L

B
I(𝜏; x, t)d𝜏1{B>t} + ∫

B+L

t
I(𝜏; x, t) d𝜏1{B≤t}

]

https://doi.org/10.1111/poms.13725


HOW TO SERVE A STOCHASTIC SEASON 2905
Production and Operations Management

= 𝔼Q,B,L

[
∫

B+L

B
I(𝜏; x, t)d𝜏 ∣ B > t

]
ℙ(B > t)

+ 𝔼Q,B,L

[
∫

B+L

t
I(𝜏; x, t) d𝜏 ∣ B ≤ t

]
ℙ(B ≤ t). (A4)

Next, we derive this term’s first-order partial derivative with
respect to t by (a) applying Leibniz’s formula, (b) interchang-
ing the expectation and differentiation operators, and (c) not-
ing that 𝜕I(𝜏; x, t)∕𝜕t = 0 for t < B:

𝜕

𝜕t
𝔼Q,B,L

[
∫

B+L

max{t,B}
I(𝜏; x, t) d𝜏

]
= 𝔼Q,B,L

×

[
∫

B+L

t
D(t)1{Q(t)−Q(𝜏)≤x} d𝜏 − x1{t<B+L} ∣ B ≤ t

]

× ℙ(B ≤ t) = 𝔼B,L

[
∫

B+L

t
𝔼Q

[
D(t) ∣ Q(t) − Q(𝜏)

≤ x,B ≤ t,L
]
ℙ(Q(t) − Q(𝜏) ≤ x,B ≤ t) d𝜏

]
− xℙ(B ≤ t < B + L) (A5)

Finally, we are ready to write the first-order partial derivative
of Π(x, t) with respect to t as

𝜕Π(x, t)
𝜕t

= −(p − s)𝔼Q,B,L
[
D(t) ∣ Q(t) ≤ x

]
ℙ(Q(t) ≤ x)

+ hxℙ(t < B + L) − h𝔼B,L

×

[
∫

B+L

t
𝔼Q

[
D(t) ∣ Q(t) − Q(𝜏) ≤ x,B ≤ t,L

]
× ℙ(Q(t) − Q(𝜏) ≤ x,B ≤ t) d𝜏

]
. (A6)

Inserting x∗(t) and setting (A6) to zero establishes the neces-
sary optimality condition (3).

Note that if h = 0 then the unique solution to (3) is t∗ = 0.
In contrast, if h > 0 then 𝜕Π(x∗(0), 0)∕𝜕t = hx∗(0) > 0 and
so t∗ > 0. □

Proof of Lemma 1. In the proof of Proposition 1, we
showed that 𝜕2Π(x∗(t), t)∕𝜕x2 < 0. Furthermore, it fol-
lows from the implicit function theorem that dx∗(t)∕dt =
−(𝜕2Π(x∗(t), t)∕𝜕x𝜕t)∕(𝜕2Π(x∗(t), t)∕𝜕x2). Hence x∗(t)
increases with t if and only if 𝜕2Π(x∗(t), t)∕𝜕x𝜕t > 0. We
next derive 𝜕2Π(x, t)∕𝜕x𝜕t, after which condition (4) will
follow from inserting x∗(t):

𝜕2Π(x, t)
𝜕x𝜕t

= −(p − s)𝔼Q,B,L
[
D(t) ∣ Q(t) ≤ x

]
fQ(t)(x)

+ hℙ(t < B + L) − h𝔼B,L

×

[
∫

B+L

t
𝔼Q

[
D(t) ∣ Q(t) − Q(𝜏) ≤ x,B ≤ t,L

]
× fQ(t)−Q(𝜏)∣B≤t(x)ℙ(B ≤ t) d𝜏

]
. (A7)

(i) If h = 0, then condition (4) can never be satisfied and so
x∗(t) decreases with t.

(ii) At t = 0, condition (4) simplifies to h > 0 because
D(0) = 0 almost surely. As a result, if h > 0 then x∗(t)
increases with t at t = 0. The result now follows from the
continuity of all involved functions. □

Proof of Proposition 3. Taking the total derivative of
(x∗(t), t) with respect to t yields

d(x∗(t), t)
dt

= 𝔼Q,B,L[D′(t)] + 𝔼Q,B,L[(D(t) − (x∗(t))′)1{Q(t)>x∗(t)}]

= 𝔼Q,B,L[D(t)1{Q(t)≤x∗(t)}] − (x∗(t))′𝔼Q,B,L[1{Q(t)>x∗(t)}]

= 𝔼Q,B,L[D(t) ∣ Q(t) ≤ x∗(t)]ℙ(Q(t) ≤ x∗(t))

− (x∗(t))′ℙ(Q(t) > x∗(t)). (A8)

It is then immediate that (x∗(t), t) decreases with t
if and only if (x∗(t))′ > 𝔼Q,B,L[D(t) ∣ Q(t) ≤ x∗(t)]ℙ(Q(t) ≤
x∗(t))∕ℙ(Q(t) > x∗(t)).

(i) Note that 𝔼Q,B,L[D(t) ∣ Q(t) ≤ x∗(t)]ℙ(Q(t) ≤
x∗(t))∕ℙ(Q(t) > x∗(t)) ≥ 0 for all t. Yet Lemma 1(i)
implies, for h = 0, that (x∗(t))′ ≤ 0 for any t. Therefore,
(x∗(t), t) increases with t if h = 0.

(ii) Since D(0) = 0 almost surely it follows that, for t =
0, we have d(x∗(0), 0)∕dt = −(x∗(0))′ℙ(Q > x∗(0)).
Hence d(x∗(0), 0)∕dt < 0 if (x∗(0))′ > 0, but by
Lemma 1(ii) this implication holds if h > 0. The
result now follows from the continuity of all involved
functions. □

Proof of Proposition 4. The derivation of (7) follows exactly
the same steps used in the derivation of (2) as presented
in the proof of Proposition 1; we therefore dispense with
a detailed derivation here. Instead, we focus on the firm’s
optimal inventory timing ti as given by (8). This necessary
optimality condition follows directly from taking the first-
order derivative of Πi with respect to t, setting it to zero, and
then rearranging terms: 𝜕Πi(x, t)∕𝜕t = hx(1 − FB(t)) − (p −
s)fB(t) ∫ x

0
(1 − FQ∣B>t(q)) dq = 0. Note that 𝜕Πi(x, 0)∕𝜕t ≥

(h − (p − s)fB(0))x > 0 for all x > 0.
Now we establish that H′

B(ti) ≥ 0. First, the optimality
of ti requires that 𝜕2Πi(xi, ti)∕𝜕t2 ≤ 0 or, equivalently, that
−f ′B(ti)∕fB(ti) ≤ hxi∕((p − s) ∫ xi

0
(1 − FQ∣B>ti (q)) dq). Second,

our definition of the hazard rate implies that HB(t) increases
with t if and only if fB(t)∕(1 − FB(t)) = HB(t) ≥ −f ′B(t)∕fB(t).
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Merging these two conditions with (8) reveals that, at
the optimum, HB(ti) = hxi∕((p − s) ∫ xi

0
(1 − FQ∣B>ti (q)) dq) ≥

−f ′B(ti)∕fB(ti), which implies that H′
B(ti) ≥ 0. □

Proof of Proposition 5. We start by observing that Πd
is unimodal in x. In particular: for any given t we have
𝜕Πd(x, t)∕𝜕x ≥ p − c − hl ≥ 0 for all x ≤ A(t)q and that
𝜕Πd(x, t)∕𝜕x < −(c − s) < 0 for all x > A(t)q. As a result,
xd(t) = A(t)q for any t and so we can find td by maximizing
Πd(xd(t), t). Hence 𝜕Πd(xd(t), t)∕𝜕t = (p − c)A′(t)q + hA(t)q,
from which (11) now follows.

(i) By assumption, A′(0) = 0. We can therefore conclude
from (11) that td = 0 if h = 0 but that td > 0 if h > 0.

(ii) For td to be optimal we require that 𝜕2Πd(xd, td)∕𝜕t2 ≤
0 or, equivalently, that A′′(td) + A′(td)h∕(p − c) ≤
0. Also, it is easy to verify that A(𝜏) is log-
concave if and only if A′′(𝜏) − A′(𝜏)2∕A(𝜏) ≤ 0.
Combining these two conditions with (11) reveals
that, at the optimum, A′′(td) − A′(td)2∕A(td) = A′′(td) +
A′(td)h∕(p − c) ≤ 0. Therefore, A(𝜏) is log-concave at
𝜏 = td.

(iii) Because A(𝜏) is log-concave at 𝜏 = td, we know that
−A′(td)∕A(td) must be an increasing function. Hence it
follows from (11) that td increases with h. Then, by (10)
and our assumption that A(𝜏) is a decreasing function, it
is also true that xd decreases with h. □
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