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Abstract

Entity resolution is the task of identifying records in one or more data sources
which refer to the same real-world object. It is often treated as a supervised binary
classification task in which a labeled set of matching and non-matching record
pairs is used for training a machine learning model.

Acquiring labeled data for training machine learning models is expensive and
time-consuming, as it typically involves one or more human annotators who need
to manually inspect and label the data. It is thus considered a major limitation of
supervised entity resolution methods. In this thesis, we research two approaches,
relying on distant supervision and active learning, for reducing the labeling effort
involved in constructing training sets for entity resolution tasks with different pro-
filing characteristics.

Our first approach investigates the utility of semantic annotations found in
HTML pages as a source of distant supervision. We profile the adoption growth of
semantic annotations over multiple years and focus on product-related schema.org
annotations. We develop a pipeline for cleansing and grouping semantically anno-
tated offers describing the same products, thus creating the WDC Product Corpus,
the largest publicly available training set for entity resolution. The high predictive
performance of entity resolution models trained on offer pairs from the WDC Prod-
uct Corpus clearly demonstrates the usefulness of semantic annotations as distant
supervision for product-related entity resolution tasks.

Our second approach focuses on active learning techniques, which have been
widely used for reducing the labeling effort for entity resolution in related work.
Yet, we identify two research gaps: the inefficient initialization of active learning
and the lack of active learning methods tailored to multi-source entity resolution.
We address the first research gap by developing an unsupervised method for ini-
tializing and further assisting the complete active learning workflow. Compared to
active learning baselines that use random sampling or transfer learning for initial-
ization, our method guarantees high anytime performance within a limited labeling
budget for tasks with different profiling characteristics.

We address the second research gap by developing ALMSER, the first active
learning method which uses signals inherent to multi-source entity resolution tasks
for query selection and model training. Our evaluation results indicate that exploit-
ing such signals for query selection alone has a varying effect on model perfor-
mance across different multi-source entity resolution tasks. We further investigate
this finding by analyzing the impact of the profiling characteristics of multi-source
entity resolution tasks on the performance of active learning methods which use
different signals for query selection.



Zusammenfassung

Entity Resolution bezeichnet die Aufgabe, Datensätze in einer oder mehreren Da-
tenquellen zu identifizieren die das gleiche Realweltobjekt beschreiben. Sie wird
häufig als überwachte binäre Klassifizierungsaufgabe behandelt, bei der gelabel-
te übereinstimmende und nicht übereinstimmende Datensatzpaare für das Training
eines maschinellen Lernmodells verwendet werden.

Die Beschaffung von gelabelten Daten für das Training von maschinellen Lern-
modellen ist kostspielig und zeitaufwändig, da in der Regel ein oder mehrere mensch-
liche Annotatoren die Daten manuell prüfen und labeln müssen. Dies stellt eine
wesentliche Einschränkung der überwachten Methoden zur Entity Resolution dar.
In dieser Arbeit erforschen wir zwei Ansätze, welche sich auf Distant Supervisi-
on und Active Learning stützen. Beide Ansätze reduzieren den Labeling-Aufwand,
der bei der Erstellung von Trainingsdaten für Entity Resolution-Aufgaben mit un-
terschiedlichen Eigenschaften entsteht.

Unser erster Ansatz untersucht den Nutzen von semantischen Annotationen
in HTML-Seiten als Quelle für die Distant Supervision. Wir bestimmen den Zu-
wachs von semantischen Annotationen über mehrere Jahre hinweg und fokussieren
uns auf produktbezogene schema.org-Annotationen. Wir entwickeln eine Pipeline
zur Bereinigung und Gruppierung semantisch annotierter Angebote, die dieselben
Produkte beschreiben und erstellen so den WDC Product Corpus - das größte öf-
fentlich verfügbare Trainingsset für Entity Resolution. Die hohe Genauigkeit von
Entity Resolution-Modellen, die auf Datensatzpaaren aus dem WDC Product Cor-
pus trainiert wurden, zeigt deutlich die Nützlichkeit semantischer Annotationen als
Distant Supervision für produktbezogene Entity Resolution-Aufgaben.

Unser zweiter Ansatz konzentriert sich auf Active Learning-Methoden, die in
verwandten Arbeiten zur Reduzierung des Labeling-Aufwands für Entity Resolu-
tion untersucht wurden. Dabei stellen wir zwei Forschungslücken fest: die ineffi-
ziente Initialisierung des Active Learnings sowie das Fehlen von Active Learning-
Methoden, die speziell auf Multi-Source Entity Resolution zugeschnitten sind. Die
erste Forschungslücke adressieren wir, indem wir eine unüberwachte Methode zur
Initialisierung und Unterstützung des gesamten Active Learning-Prozesses ent-
wickeln. Im Vergleich zu Active Learning-Methoden, welche Zufallsstichproben
oder Transfer Learning für die Initialisierung verwenden, garantiert unsere Me-
thode bei einem begrenzten Labeling-Budget für Aufgaben mit unterschiedlichen
Eigenschaften eine konstant hohe Genauigkeit.

Die zweite Forschungslücke wird durch die Entwicklung von ALMSER adres-
siert - der ersten Active Learning-Methode, die für die Abfrageselektion und das
Modelltraining Multi-Source-bezogene Signale verwendet. Unsere Evaluierungs-
ergebnisse zeigen, dass die Nutzung dieser Signale für die Abfrageselektion allein
unterschiedliche Effekte auf die Modellleistung bei verschiedenen Multi-Source-
Entity Resolution-Aufgaben hat. Diese unterschiedlichen Effekte analysieren wir
anhand des Einflusses von Eigenschaften der Multi-Source Entity Resolution-Auf-
gaben auf die Leistung von Active Learning-Methoden, die verschiedene Signale
für die Abfrageselektion verwenden.
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Chapter 1

Introduction

Over the last years, we experience a rapid increase in data generated by businesses,
governmental institutions, as well as individuals. The large amounts of generated
data enable a variety of applications. For example, more and more businesses offer
their products on the Web to enable online shopping. Similarly, individuals can
publish advertisements for trading products or services in consumer-to-consumer
online environments. These large collections of data need to be effectively pro-
cessed, managed and analyzed in order to serve their purposes [Christen, 2012]. A
considerable amount of applications, enabled by the existence of such large data
collections, rely on comparing and aggregating data from disparate sources. For
instance, price comparison websites gather offers from different vendors which re-
fer to the same product and provide the customers a comparison overview of the
different prices for which the product is available. In the business domain, having
a unified view of enterprise data residing in multiple databases across the company
eases the execution of different operations, such as financial reporting, and sup-
ports decision making [Doan et al., 2012]. The task of providing unified access to
data originating from multiple data sources is known as data integration [Dong and
Srivastava, 2015]. Data integration has received increasing attention over the last
years. In 2005, enterprise information integration software was estimated to have
revenues of at least 0.5 billion U.S. dollars [Halevy et al., 2005], while in 2019, the
total revenue amounted to 3.37 billion U.S. dollars.1

Entity Resolution A central task in data integration is to identify records in
one or multiple data sources which describe the same real-world object [Christen,
2012]. This task is known as entity resolution. Interestingly, entity resolution is
also known under many alternative terms, such as entity matching, record linkage,
duplicate detection, and object identification [Christen, 2012]. Following the price
comparison website example, entity resolution aims at finding all matching offers
published by one or more vendors, i.e. offers that describe the same product. An

1Source: IDC report #US46651120, Worldwide Big Data and Analytics Software Market Shares,
2019: Investment in Data Continues (July 2020).

1



2 CHAPTER 1. INTRODUCTION

Table 1.1: Matching song records with different textual representations.

Song title Song length Artist Release title
Let it bee 4:03 The Beatles Let it be
Let it be (Beatles song) 243 Beatles Let it be (Beatles album)
Let it be - The Beatles Let it be

important challenge in entity resolution is the absence of commonly used object
identifiers [Christen, 2012]. To circumvent this challenge, entity resolution meth-
ods need to reconcile the heterogeneity of the descriptions of records that refer to
the same real-world object. The descriptions of records can be of different modal-
ities, such as text or images.

Resolving the textual heterogeneity of matching records has been studied for
decades [Fellegi and Sunter, 1969]. The reasons for the underlying textual hetero-
geneity are twofold. On the one hand, different data providers may choose different
ways of presenting a real-world object. On the other hand, the published data are
often subject to errors, such as typos and misspellings. Table 1.1 and Figure 1.1
show two examples of groups of matching records with different textual represen-
tations. Table 1.1 presents three records that refer to the song Let it be from the
band The Beatles. In order for an entity resolution method to recognize that the
three records refer to the same song, it needs to overcome the difference in the
record attribute values, e.g. Let it be (Beatles song) versus Let it be and 4:03 ver-
sus 243, spelling errors, e.g. Let it bee, as well as missing values. Figure 1.1 shows
two records that describe the same smartphone product with one long span of text.
The challenge for an entity resolution method, in this case, is to focus on and com-
pare the identifying words for the smartphone product, e.g. Samsung Galaxy S20
and 6.5 inches and ignore less important words, e.g. comes with and powered. The
different challenges entailed in entity resolution tasks, such as the ones presented
in Table 1.1 and Figure 1.1, are known to have an effect on the performance of
entity resolution methods [Köpcke et al., 2010; Mudgal et al., 2018].

Entity resolution methods can be distinguished into non-learning and learning,
considering the available expert knowledge [Papadakis et al., 2021]. For the exam-
ple of Table 1.1, a non-learning entity resolution method would require an expert to
define heuristics that can group together the matching song records. Such a heuris-
tic could be the following: if more than 60% of the words of the shortest in length
song and release titles are contained within the longer ones, then the records are
matching. Designing such heuristics requires substantial manual effort and domain
knowledge. Treating entity resolution as a learning task circumvents the need for
manually designing matching heuristics by employing machine learning models for
solving the task [Christophides et al., 2015]. Supervised entity resolution methods
constitute a specific type of learning techniques that use a labeled set, typically in
the form of matching and non-matching record pairs, to train a binary classification
model [Christophides et al., 2020; Papadakis et al., 2021]. The trained model can
then predict matching and non-matching relations between new record pairs.
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Figure 1.1: Matching phone records with different textual representations.

Reducing the Labeling Effort Acquiring an adequately large and representative
set of labeled data for training machine learning models is an expensive and time-
consuming task, as it requires one or more experts to manually inspect and label
the data [Papadakis et al., 2021; Wu et al., 2020]. There exist various techniques
to address this problem and reduce the labeling effort required for solving entity
resolution tasks, including the following [Papadakis et al., 2021; Roh et al., 2019]:

• Transfer learning methods leverage existing labeled data from one or more
related entity resolution tasks in order to train a machine learning model
for a target entity resolution task for which no or limited training data are
available [Thirumuruganathan et al., 2018; Zhao and He, 2019].

• Unsupervised learning methods relinquish the need for labeled training
data and learn an entity resolution model using techniques such as cluster-
ing [Saeedi et al., 2017] and self-learning [Hou et al., 2019; Wu et al., 2020].

• Distantly supervised methods use weakly labeled data, i.e. training data
which are labeled automatically based on heuristics. Such heuristics can
be extracted from structured web data found in knowledge bases [Mintz
et al., 2009] or in semantically annotated HTML pages [Meusel and Paul-
heim, 2014]. Typically, weakly labeled data are subject to some degree of
noise, compensated by their large size [Roh et al., 2019].

• Active learning methods reduce the labeling effort that is required for learn-
ing an effective entity resolution model by including the human annotator
in the learning loop and carefully choosing a small number of record pairs
to be labeled [Papadakis et al., 2021; Settles, 2012]. The labeling process
is guided iteratively by a so-called query strategy which, given the past re-
sponses of the human annotator and a measure of informativeness, assesses
how informative the available unlabeled record pairs are. Only the record
pairs assessed as most informative are selected for labeling [Settles, 2012].
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In this thesis, we focus on using distant supervision as well as active learning
methods, with the goal of reducing the labeling effort required for training machine
learning models to effectively solve entity resolution tasks with different profiling
characteristics.

Considering that the predictive performance of an entity resolution method can
vary given the challenges of the task to be solved [Köpcke et al., 2010; Mudgal
et al., 2018], we define a set of profiling dimensions, capturing central aspects of
the tasks. We profile existing entity resolution benchmark tasks along these dimen-
sions and identify groups of tasks entailing similar characteristics and challenges.

Towards using distant supervision to reduce the labeling effort for entity reso-
lution, we turn our focus on the Semantic Web and explore its potential as a source
of training data. To do so, we perform a three-step analysis. First, we profile
the growth of Semantic Web annotations over multiple years. Second, we explore
the utility of semantically annotated identifiers as supervision for entity resolution
tasks of two specific domains, i.e. product and local business. Third, we focus
on the product domain and develop a pipeline for cleansing and grouping seman-
tically annotated offers describing the same real-world products. The output of
the implemented pipeline is the WDC Product Corpus for entity resolution, com-
prising 26.5 million records of offers, grouped in 16.3 million clusters describing
the same products. Combining pairwise the intra- and inter-cluster records allows
us to generate the largest and most heterogeneous, in terms of the number of data
sources, publicly available training set for entity resolution so far. The high predic-
tive performance of entity resolution models trained on offer pairs from the WDC
Product Corpus clearly demonstrates the usefulness of semantic annotations as dis-
tant supervision for product-related entity resolution tasks.

Towards using active learning to reduce the labeling effort for entity resolu-
tion, we focus on two research gaps identified in related work: the inefficient ini-
tialization of active learning and the lack of active learning methods tailored to
multi-source entity resolution tasks.

We address the initialization issue in an unsupervised fashion. We develop a
method that assigns unsupervised matching and non-matching labels to all avail-
able unlabeled record pairs before active learning starts. The unsupervised labeled
record pairs assist not only the initialization step but also the complete active learn-
ing workflow.

With the purpose of reducing the labeling effort for multi-source entity res-
olution tasks, we develop ALMSER, an active learning method for multi-source
entity resolution. ALMSER uses signals, inherent to multi-source entity resolution
tasks, for query selection and model training. ALMSER comes with two query
strategies ALMSERgraph and ALMSERgroup; the first query strategies tailored to
multi-source entity resolution. We evaluate the distinct components of ALMSER
and observe that exploiting multi-source-related signals for query selection has a
different effect on model performance which depends on the multi-source entity
resolution task at hand. We further investigate this finding by analyzing the im-
pact of the profiling characteristics of multi-source entity resolution tasks on active
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learning methods exploiting different signals for query selection. To enable our
analysis, we propose a set of dimensions for profiling multi-source entity resolu-
tion tasks and curate a continuum of multiple tasks along these dimensions using
ALMSERgen, the first multi-source entity resolution task generator.

The rest of this introductory chapter is structured into four sections. Section 1.1
motivates the methodology followed in our work towards the goal of reducing the
labeling effort for efficiently solving entity resolution tasks with different profiling
characteristics. Section 1.2 summarizes the main contributions of the thesis. Sec-
tion 1.3 presents a short overview of the main topics addressed in each part and
chapter of this thesis. Finally, in Section 1.4, we list the publications containing
parts of our research.

1.1 Motivation

Entity Resolution Entity resolution has been studied for decades [Fellegi and
Sunter, 1969] and remains a highly active research field across different com-
munities, such as health researchers, statisticians, business, and computer scien-
tists [Christen, 2012]. In 2021 alone, the estimated amount of publications related
to entity resolution was over three thousand.2

Supervised Entity Resolution Since 2000, machine learning has reshaped the
research on entity resolution, with supervised entity resolution methods achieving
state-of-the-art results [Doan et al., 2012]. Supervised entity resolution methods
employ labeled data, typically in the form of matching and non-matching record
pairs, for training a machine learning model [Papadakis et al., 2021]. Obtaining
labeled training data is one of the major limitations of supervised entity resolution
methods [Papadakis et al., 2021]. For example, deep learning-based entity resolu-
tion methods require hundreds to thousands of manually labeled record pairs for
training in order to achieve a good model performance [Ebraheem et al., 2018;
Mudgal et al., 2018]. Even in the case of non-deep learning-based entity resolution
methods, a substantial increase in model performance can be achieved when hun-
dreds of labeled data are available for training [Köpcke et al., 2010]. Therefore,
reducing the labeling effort is of significant importance. In this thesis, we aim to
reduce the labeling effort involved in constructing training sets for learning entity
resolution models using distant supervision and active learning.

The Semantic Web as Distant Supervision for Entity Resolution Millions
of websites have started to add semantic annotations within their HTML pages in
order to make web data more easily consumable for web applications [Guha et al.,
2015]. Semantic annotations in HTML pages are enabled by domain-independent

2Calculated with dimensions.ai and the following search query: YEAR=2021 AND TI-
TLE.contains(”entity resolution“ OR ”entity linkage“ OR ”entity matching“ OR ”identity resolu-
tion“ OR ”record linkage“ OR ”data deduplication“ OR ”duplicate detection“).
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markup formats as well as annotation vocabularies. Being able to easily extract and
understand web content not only serves the main goal of semantic annotations, i.e.
making web data more easily consumable, but also makes the Web a rich source of
structured data, which can be used as supervision for multiple downstream tasks.
Indeed, semantic annotations have been used as a source of distant supervision for
different applications, such as information extraction [Foley et al., 2015; Meusel
and Paulheim, 2014]. However, they have not been explored in the context of entity
resolution. In our work, we fill this gap and explore the potential of using semantic
annotations found in HTML pages as distant supervision for entity resolution.

Semantic annotations are known to suffer from errors [Meusel and Paulheim,
2015b]. The errors occur due to the general noisy nature of the Web as well as the
different levels of knowledge and understanding of the semantic vocabularies from
the side of the webmasters [Meusel and Paulheim, 2015b]. In our work, we focus
on product-related semantic annotations, identify common errors and develop a
cleansing pipeline to overcome them.

Active Learning for Entity Resolution Active learning has been widely used
to reduce the labeling effort required for learning powerful entity resolution mod-
els [Meduri et al., 2020]. Yet, we identify two gaps in related work, which we
address in this thesis: the inefficient initialization of active learning and the lack of
active learning methods tailored to multi-source entity resolution tasks.

Initializing active learning is a non-trivial task known to suffer from the cold
start problem [Tejada et al., 2001]. The cold start problem refers to the lack of
adequate labeled data in the first active learning iterations. A common practice
for initializing active learning for entity resolution is to sample and manually label
a seeding set of matching and non-matching record pairs [Nafa et al., 2020; Qian
et al., 2017]. Such an initialization approach is expensive, as it increases the overall
labeling effort. Alternatively, transfer learning has been exploited for initializing
active learning [Kasai et al., 2019]. However, this assumes that there exist abundant
labeled record pairs of a similar topical domain which can be efficiently transferred
to the task at hand. Other rule-based entity resolution methods rely on the random
initialization of the rule-based model and completely relinquish the need for la-
beled data for starting active learning [Isele and Bizer, 2013; Ngomo and Lyko,
2012]. Nevertheless, rule-based models have been shown to underperform other
types of machine learning models, such as random forests [Meduri et al., 2020].

We address the initialization issue of active learning in an unsupervised fashion.
In comparison to existing works, our method comes at no additional labeling cost
for the initialization step, does not assume abundant labeled data from a related
task, and uses a random forest model for learning.

Although active learning has been widely used to tackle entity resolution tasks
with records originating from two data sources, it has been barely applied for multi-
source entity resolution tasks. Multi-source entity resolution tasks entail certain
characteristics which are complementary to the ones of two-source tasks and can
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be helpful for reducing the labeling effort in an active learning setting. Although
existing active learning methods, typically evaluated on two-source entity resolu-
tion tasks, are also applicable to multi-source tasks, they do not focus on additional
signals provided in multi-source settings. In our work, we address this gap and
develop an active learning method tailored to multi-source entity resolution.

Profiling Entity Resolution Tasks Given the same labeled data for training,
the performance of entity resolution methods, relying on different types of ma-
chine learning models, has been shown to vary significantly [Köpcke et al., 2010;
Mudgal et al., 2018]. For example, it has been shown that traditional machine
learning-based models, such as random forests, can excel on entity resolution tasks
with structured records, like the one presented in Table 1.1 [Mudgal et al., 2018].
However, this is not always the case for tasks with textual records, like the one
presented in Figure 1.1, for which deep learning-based models yield, in general,
better results [Li et al., 2020; Mudgal et al., 2018]. Therefore, uncovering the
specific challenges associated with different entity resolution tasks is essential for
understanding the strengths and weaknesses of different entity resolution methods.

Existing approaches for categorizing entity resolution tasks focus only on the
properties of the data sources but ignore the influence of the training set on the
difficulty of the task [Mudgal et al., 2018]. Mudgal et al. [2018] categorize entity
resolution tasks into the following three categories depending on the profile of the
records of the data sources to be matched: (i) structured, i.e. the records contain
multiple attributes with short values, (ii) textual, i.e. the records contain attributes
with long textual values, and (iii) dirty, i.e. the records contain misplaced or miss-
ing values across their attributes. However, textuality, structuredness, and density
alone are not enough to understand the specific challenges associated with an entity
resolution task. For example, matching two data sources with records having tex-
tual descriptions and no corner cases, i.e. all matches have high textual similarity
and all non-matches have low textual similarity, is less challenging than matching
data sources with textual records and many corner cases.

In our work, we propose a set of dimensions for profiling entity resolution tasks
that capture properties of the data sources as well as of the training set and thus
go beyond the dimensions used in related work for categorizing entity resolution
tasks.3

1.2 Contributions

In this section, we summarize the seven contributions of the thesis. We abbreviate
each of the contributions with [C1] to [C7]. The abbreviations will be used as a
reference throughout the chapters.

3The profiling of entity resolution tasks is different from the profiling of relational data, which is
known as data profiling.
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1. [C1] Profiling Dimensions We define a set of dimensions for profiling entity
resolution tasks that capture properties of the records to be matched as well
as of the labeled set of record pairs used for training. The proposed profiling
dimensions go beyond the ones used in related work for categorizing entity
resolution tasks that focus solely on the profile of the records [Mudgal et al.,
2018]. We use the profiling dimensions to compare and group together ex-
isting entity resolution benchmark tasks and uncover the specific challenges
that the entity resolution methods need to overcome for each group.

2. [C2] Adoption Trends of Semantic Annotations We monitor and analyze
the adoption of semantic annotations on the Web during the period 2012 to
2020 by extracting structured data from the Common Crawl web corpus.4

Along with this analysis, we are the first to investigate the potential of using
semantic annotations describing entities of the local business and product
topical domains as distant supervision for entity resolution.

3. [C3] WDC Product Corpus We exploit semantically annotated product-
related data extracted from the October 2016 Common Crawl web corpus
and curate the WDC Product Corpus for entity resolution. The curated cor-
pus contains 26.5 million records of offers originating from 79 thousand
websites, describing 16.3 million distinct products. By combining pairwise
the distinct records, we can derive the largest publicly available training set
for entity resolution. The derived training set is several orders of magnitude
larger than DI2KG [Crescenzi et al., 2021], the second largest training set
for entity resolution, which contains offers for 70 thousand distinct products
deriving from 71 different e-commerce websites.

4. [C4] Unsupervised Bootstrapping of Active Learning for Entity Reso-
lution We develop an unsupervised entity resolution method for initializing
and further assisting the complete active learning workflow. Compared to
existing initialization methods, our method comes at no additional label-
ing cost and does not assume abundant labeled data of a related task. We
compare our method to symbolic and subsymbolic baselines which apply
random sampling and transfer learning for initialization. Our evaluation on
six entity resolution tasks with different profiling characteristics shows that
our method consistently outperforms symbolic baselines using the HeALER
query strategy [Chen et al., 2019] and random initialization by up to 48%
in F1 score in the early active learning iterations. Within a labeling bud-
get of 100 record pairs, our method outperforms the symbolic baselines by
up to 3% when random sampling is used for initialization and up to 4.2%
when transfer learning from non-highly related entity resolution tasks is ap-
plied for initializing active learning. Finally, compared to subsymbolic active
learning baselines inspired by the work of Kasai et al. [2019], our method
consistently outperforms for a labeling budget of 500 record pairs by up to

4https://commoncrawl.org/

https://commoncrawl.org/
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32% in F1 score and entails significantly shorter waiting times among the
active learning iterations, i.e. up to 13.9 seconds in contrast to a maximum
of 16 minutes per iteration with batch queries in the case of the subsymbolic
baselines.

5. [C5] Active Learning for Multi-Source Entity Resolution We develop
ALMSER, an active learning algorithm for multi-source entity resolution.
ALMSER comes with two query strategies ALMSERgraph and ALMSER-
group; the first query strategies tailored to multi-source entity resolution.
Our evaluation on five multi-source entity resolution tasks with different
profiling characteristics shows that, within a labeling budget of 200 record
pairs, ALMSER consistently outperforms active learning baseline methods
that do not use multi-source-related signals and apply either a commonly
used margin-based query strategy [Meduri et al., 2020], or the HeALER
query strategy [Chen et al., 2019]. Our evaluation results show that the per-
formance gain of ALMSER is more significant in the early active learning
iterations than in the later ones. ALMSERgraph outperforms the HeALER
and the margin-based baselines by up to 5.5 and 13.4 percentage points in
F1 score, respectively, with 75 labeled record pairs. With the same label-
ing effort, ALMSERgroup outperforms the HeALER and the margin-based
baselines by up to 2.3 and 11.6 percentage points in F1 score, respectively.
After having labeled 200 record pairs, both ALMSERgraph and ALMSER-
group outperform the HeALER and the margin-based baselines by up to 1.9
and 4.8 percentage points, respectively.

6. [C6] Multi-Source Entity Resolution Tasks Profiling and Generation We
propose a set of dimensions for profiling multi-source entity resolution tasks.
Given the dimensions, we develop ALMSERgen, a multi-source entity res-
olution generator tool. In contrast to existing entity resolution task genera-
tors [Ioannou et al., 2013; Saveta et al., 2015], ALMSERgen covers multi-
source task-related desiderata, such as the existence of groups of two-source
tasks with similar patterns, as well as the overlap of entities across the dif-
ferent data sources within the multi-source entity resolution setting.

7. [C7] Impact of the Profile of Multi-Source Entity Resolution Tasks on
Active Learning We are the first to study the impact of the profiling char-
acteristics of multi-source entity resolution tasks on active learning meth-
ods exploiting different signals for selecting informative pairs for labeling.
We evaluate three active learning methods using the HeALER [Chen et al.,
2019], ALMSERgraph, and ALMSERgroup query strategies which exploit
committee-based uncertainty, graph, and grouping signals, respectively. Our
evaluation is conducted against 252 tasks generated with ALMSERgen as
well as five benchmark tasks. By analyzing the results, we identify four
patterns for explaining the contribution of graph and grouping signals with
respect to the profile of the tasks.
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1.3 Outline

We structure the thesis into three parts. We illustrate the structural outline of the
thesis in Figure 1.2. The different colors correspond to the distinct parts while the
layering of the blocks denotes the dependencies among the different chapters, i.e.
chapters depicted in higher layers depend on the chapters of the lower ones. In this
section, we give a short overview of the topics addressed in each part and chapter
of this thesis.

Figure 1.2: An overview of the thesis outline.

1.3.1 Part I: Entity Resolution

In the first part of the thesis, we provide the foundations of entity resolution and
profile existing entity resolution benchmark tasks, covering the contribution [C1]
of the thesis.

Chapter 2: Foundations of Entity Resolution In this chapter, we provide a
background on entity resolution. Additionally, we formally define the entity res-
olution problem, as considered in our work. We present the steps of the entity
resolution workflow and give an overview of different families of methods for each
step. Finally, we cover common evaluation metrics for entity resolution methods.

Chapter 3: Profiling Entity Resolution Benchmark Tasks In order to evaluate
and compare different entity resolution methods, a wide range of entity resolution
benchmark tasks has been developed and made publicly available. Different meth-
ods have been shown to perform better than others, given the characteristics of
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the task. Therefore, understanding the difficulty and diversity of entity resolution
benchmark tasks is essential for selecting appropriate entity resolution methods
and comparing their performance. In this chapter, we define a set of profiling di-
mensions that capture central challenges of entity resolution tasks and use them to
group benchmark tasks with similar characteristics.

1.3.2 Part II: The Semantic Web as Distant Supervision for Entity
Resolution

In the second part of the thesis, we explore the potential of using the Semantic Web
as a source of distant supervision for entity resolution tasks. This part covers the
contributions [C2] and [C3] of the thesis.

Chapter 4: Semantic Annotations on the Web In this chapter, we first discuss
the technical realization of semantic annotations and give an overview of the main
markup formats and the schema.org vocabulary. Next, we analyze the adoption
trends of semantic annotations in the period 2012 to 2020. Finally, we set a spe-
cific focus and explore the potential of generating distantly labeled data for entity
resolution tasks using semantic annotations related to products and businesses.

Chapter 5: The WDC Product Corpus for Entity Resolution The findings
of the previous chapter indicate that more and more websites markup semanti-
cally their HTML content using the schema.org vocabulary, while there exist large
amounts of markedup product-related entities accompanied by semantically anno-
tated identifiers which can be used for extracting distantly labeled data for product-
related entity resolution tasks. However, considering the noisy nature of the Web,
errors in semantic annotations may reduce the quality of the distantly labeled data.
In this chapter, we focus on schema.org product annotations and we develop a
pipeline for extracting, cleansing, and grouping semantically annotated offers that
refer to the same real-world products. The result of this pipeline is the WDC Prod-
uct Corpus. We profile the curated corpus and evaluate its cleanliness based on
a manually verified sample of grouped offer pairs. Finally, we assess the train-
ing quality of the corpus by evaluating symbolic and subsymbolic entity resolution
models trained on training subsets derived from the corpus. Our evaluation re-
sults prove the utility of semantic annotations as a source of distant supervision for
product-related entity resolution tasks.

1.3.3 Part III: Active Learning for Entity Resolution

In the third part of the thesis, we turn our focus on active learning as a means of
reducing the labeling effort for entity resolution. More specifically, we address
two specific research gaps: (i) the initialization of active learning and (ii) active
learning for multi-source entity resolution. This part covers the contributions [C4],
[C5], [C6], and [C7] of the thesis.
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Chapter 6: Foundations of Active Learning In this chapter, we provide the
foundations of active learning. We discuss the main scenarios in which the active
learning query selection component can guide the labeling process. Next, we focus
on the pool-based active learning setting and present its workflow. Finally, we
discuss different families of query selection strategies and commonly-used metrics
for evaluating the performance of active learning methods for entity resolution.

Chapter 7: Unsupervised Bootstrapping of Active Learning for Entity Reso-
lution In this chapter, we deal with the cold start problem that frequently arises
in active learning and refers to the lack of labeled data in the early iterations. To ad-
dress this problem without increasing the labeling effort, we develop and present an
unsupervised method for initializing active learning. In addition to the initialization
step, our method contributes to the complete active learning workflow. To denote
this combined assistance of different active learning components in an unsuper-
vised fashion, we refer to our method as unsupervised bootstrapping. Furthermore,
we compare our active learning method to both symbolic and subsymbolic active
learning baselines that use random sampling or transfer learning for initialization.

Chapter 8: Active Learning for Multi-Source Entity Resolution In this chap-
ter, we focus on applying active learning for multi-source entity resolution tasks.
Towards this goal, we develop and present ALMSER with its two query selec-
tion strategies, ALMSERgraph and ALMSERgroup. Additionally, we evaluate
ALMSER on five multi-source entity resolution tasks and compare to baseline ac-
tive learning methods which do not use signals unique to the multi-source setting.
Finally, we evaluate the distinct components of ALMSER, which utilize signals of
the multi-source setting, by performing an ablation study.

Chapter 9: Impact of the Profile of Multi-Source Entity Resolution Tasks on
Active Learning The results of the previous chapter indicate that exploiting
multi-source-related signals for query selection has a varying effect on model per-
formance across different tasks. In this chapter, we investigate the impact of the
profile of multi-source entity resolution tasks on the performance of active learning
methods exploiting different types of signals for query selection. We present a set
of dimensions for profiling multi-source entity resolution tasks. Additionally, we
develop ALMSERgen, a tool for generating multi-source entity resolution tasks
along the suggested dimensions. Finally, we present and analyze the experimental
results of 252 multi-source entity resolution tasks generated with ALMSERgen, as
well as five benchmark tasks, and study the effect of their profiling characteristics
on the performance of active learning methods using different query strategies.

Chapter 10: Conclusion This chapter summarizes the thesis and the main con-
tributions of the individual parts. Additionally, we discuss open issues, possible
relevant directions for future work, and the research impact of our work.
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1.4 Published Work

Parts of the research presented in this thesis have been published previously in
international journals, conferences, and workshops, which we list below. In each of
the following chapters, we will explicitly mention the corresponding publications
as well as the specific parts of the methodology and experiments resulting from
collaborations with other researchers.

• On Part I: Entity Resolution

– Primpeli, A. and Bizer, C. (2020). Profiling entity matching benchmark
tasks. In Proceedings of the 29th ACM International Conference on In-
formation and Knowledge Management, CIKM ’20, pages 3101–3108,
New York, NY, United States. ACM.

• On Part II: The Semantic Web as Distant Supervision For Entity Resolution

– Meusel, R., Primpeli, A., Meilicke, C., Paulheim, H., and Bizer, C.
(2015). Exploiting microdata annotations to consistently categorize
product offers at web scale. In Proceedings of the 16th International
Conference on Electronic Commerce and Web Technologies, EC-Web
’15, pages 83–99, Cham, Switzerland. Springer.

– Primpeli, A., Meusel, R., Bizer, C., and Stuckenschmidt, H. (2017).
The web data commons structured data extraction. In E-Science-Tage
2017: Forschungsdaten managen, page 1, Heidelberg. Heidelberg Uni-
versity.

– Bizer, C., Primpeli, A., and Peeters, R. (2019). Using the Semantic
Web as a source of training data. Datenbank-Spektrum, 19(2):127–135.

– Primpeli, A., Peeters, R., and Bizer, C. (2019). The WDC training
dataset and gold standard for large-scale product matching. In Com-
panion Proceedings of the 2019 World Wide Web Conference, WWW
’19 Companion, pages 381–386, New York, NY, United States. ACM.

– Peeters, R., Primpeli, A., Wichtlhuber, B., and Bizer, C. (2020). Using
schema.org annotations for training and maintaining product matchers.
In Proceedings of the 10th International Conference on Web Intelli-
gence, Mining and Semantics, WIMS ’20, pages 195–204, New York,
NY, United States. ACM.

– Zhang, Z., Bizer, C., Peeters, R., and Primpeli, A. (2020). MWPD2020:
Semantic Web challenge on mining the web of HTML-embedded prod-
uct data. In Proceedings of the Semantic Web Challenge on Mining the
Web of HTML-embedded Product Data co-located with the 19th Inter-
national Semantic Web Conference, MWPD ’20, pages 2–18, Aachen,
Germany. CEUR-WS.org.
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• On Part III: Active Learning for Entity Resolution

– Primpeli, A., Bizer, C., and Keuper, M. (2020). Unsupervised boot-
strapping of active learning for entity resolution. In Proceedings of the
17th Extended Semantic Web Conference, ESWC ’20, pages 215–231,
Cham, Switzerland. Springer.

– Primpeli, A. and Bizer, C. (2021). Graph-boosted active learning for
multi-source entity resolution. In Proceedings of the 25th International
Semantic Web Conference, ISWC ’21, pages 182–199, Cham, Switzer-
land. Springer.

– Primpeli, A. and Bizer, C. (2022). Impact of the characteristics of
multi-source entity matching tasks on the performance of active learn-
ing methods. In Proceedings of the 19th Extended Semantic Web Con-
ference, ESWC ’22, pages 113-129, Cham, Switzerland. Springer.
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Chapter 2

Foundations of Entity Resolution

This chapter provides the theoretical and technical foundations of entity resolution
in order to set the background of the research field in the focus of this work. Sec-
tion 2.1 presents the entity resolution task and gives an overview of the evolution
of entity resolution research trends. In Section 2.2, we formally define the entity
resolution problem. Section 2.3 presents the general entity resolution workflow,
discusses the details of each step in the workflow, and gives an overview of differ-
ent families of methods for each step. Section 2.4 discusses standard metrics for
evaluating the matching quality of entity resolution methods.

2.1 Background

Entity resolution (ER) is the task of identifying records from one or more data
sources that refer to the same real-world object [Christen, 2012; Elmagarmid et al.,
2007]. It is a vital step in data integration, which is the task of integrating different
data sources, such as data repositories or databases, with different schemata and
formats into one unified dataset [Christen, 2012]. Figure 2.1 presents a common
view of the data integration workflow. Although the order of the data integration
steps may vary across different approaches [Bilke and Naumann, 2005], entity res-
olution is usually preceded by schema matching [Christen, 2012; Papadakis et al.,
2021], the task of identifying correspondences among the attributes of different
sources and translating them to one integrated schema [Rahm and Do, 2000]. En-
tity resolution is followed by data fusion, which is the process of fusing multiple
records that refer to the same real-world object into a single representation [Blei-
holder and Naumann, 2009]. In the context of this thesis, we focus solely on the
entity resolution step of the data integration workflow, as we deal with integrating
data sources having a unified schema and do not proceed with fusing the matching
records into a single, consolidated dataset.

17
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Figure 2.1: The data integration workflow.

ER across Research Communities Entity resolution is an essential component
of many research areas and attracts the interest of different communities, such as
health researchers, statisticians, business, and computer scientists [Christen, 2012].
Interestingly enough, every community uses disparate terms for describing the task
of entity resolution: merge/purge, data cleansing or field scrubbing in the business
community [Rahm and Do, 2000], record matching or duplicate detection in the
database community, while the terms data linkage or record linkage were the first
to be used for describing the entity resolution task [Dunn, 1946] by statisticians
and health researchers even before entity resolution became an automated task to
be solved by modern computers [Christen, 2012].

Early ER Research Trends Early works on entity resolution focus on proba-
bilistic methods [Fellegi and Sunter, 1969; Newcombe and Kennedy, 1962]. These
methods classify record pairs into matches, potential matches, and non-matches
given the comparison of an aggregated similarity score, resulting from linearly
combining attribute similarity values, to a pre-defined threshold value [Newcombe
and Kennedy, 1962]. Porter and Winkler [1997] were the first to extend the ba-
sic probabilistic approaches by applying approximate string comparison functions
to address veracity, i.e. achieving high accuracy despite the variations in the tex-
tual attribute values of the records referring to the same real-world object. Since
the early work of Porter and Winkler [1997], approximate matching methods em-
ploying unsupervised and supervised classification techniques have been further
developed and thoroughly studied [Dorneles et al., 2011; Elmagarmid et al., 2007;
Köpcke et al., 2010; Koudas et al., 2006]. In their survey, Elmagarmid et al. [2007]
study entity resolution methods that address solely the problem of lexical hetero-
geneity of records, while Dorneles et al. [2011] distinguish three categories of ap-
proximate matching methods addressing veracity: content-based, structure-based,
which rely on the comparison of the values and structure of the records respectively,
and mixed, which are a hybrid variant of the two categories above. Köpcke et al.
[2010] compare eleven frameworks employing approximate supervised and un-
supervised matching methods and denote significant matching quality differences
with respect to different entity resolution tasks.
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ER in the Era of Big Data The impressive increase of data creation, consump-
tion, and storage worldwide in the last years calls for efficient and automated data
cleansing methods in an effort to improve data quality [Kaisler et al., 2013]. The
challenges in the era of Big Data are summarized by Laney [2001] with the 3V’s
model: volume, variety, and velocity. Identifying records referring to the same
real-world objects is an integral part of the general data cleansing process. Con-
sequently, research on entity resolution remains omnipresent, with a large body of
work being published every year. As a reference, in 2010, the estimated amount of
published works on entity resolution was 1.6 thousand, while in 2021, it was over
3.1 thousand.1 Novel entity resolution methods adjust to the new challenges of
the era of Big Data by employing machine learning, natural language processing,
and graph-based techniques [Christen, 2012; Getoor and Machanavajjhala, 2012],
while recently we observe a research trend shift towards deep learning [Barlaug
and Gulla, 2021; Ebraheem et al., 2018; Mudgal et al., 2018].

Christophides et al. [2020] and Papadakis et al. [2021] present a comprehen-
sive overview of the evolution of entity resolution methods addressing the chal-
lenges of the 3V’s model of Laney in addition to the primary entity resolution
challenge of veracity. In their work, they organize different entity resolution work-
flows and methods with respect to the challenges they address in four generations:
(i) addressing only veracity, i.e. textual differences in the values of the records, (ii)
addressing also volume, i.e. matching records of very large data sources, (iii) ad-
dressing also variety, i.e. unclear semantics and schema bindings, and (iv) address-
ing also velocity, i.e. data input as a stream. Although every generation inherits the
challenges of the previous ones, none of them has either become irrelevant so far
or can be considered the only focus of the research on entity resolution [Papadakis
et al., 2021]. In contrast, even some novel deep learning-based entity resolution
methods are regarded as 1st generation methods as they solely focus on the target
of veracity [Barlaug and Gulla, 2021; Li et al., 2020; Mudgal et al., 2018; Wang
et al., 2020]. Similarly, veracity is the main challenge addressed in the context of
this work.

2.2 Problem Definition

We formally define the main components and the task of entity resolution using
the notation and generic definitions of Christophides et al. [2015] and Papadakis
et al. [2021]. The main components of the entity resolution task are the records,
also referred to as profiles or entity descriptions, and the entities, which represent
disparate real-world objects. A data source record is a structured representation
of a real-world object, such as a product, a person, or a song. We consider entity
resolution tasks in which records comprise a set of attribute name-value pairs, with

1Calculated with dimensions.ai and the following search query: [YEAR] AND TI-
TLE.contains(”entity resolution“ OR ”entity linkage“ OR ”entity matching“ OR ”identity resolu-
tion“ OR ”record linkage“ OR ”data deduplication“ OR ”duplicate detection“).
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the attribute names being shared across all data sources. An entity is represented
by a set of records all referring to the same real-world object. More formally:

Definition 2.2.1 (Record) A record ri of a data source D, i.e. ri P D is defined
as ri “

 

paij , vij q : aij P N, vij P V
(

, with N,V being the set of attribute names
and attribute values in D, respectively.

Definition 2.2.2 (Entity) An entity en is represented by a set of records, i.e. en “
tr1, ..., rnu, with tr1, ..., rnu all describing the same real-world object.

The pairwise combinations of the records describing an entity tri, rju P en,
will be referred to as matching pairs or matches in this work. Any pair tri, rju P en
is commutative, transitive, symmetric and reflexive [Papadakis et al., 2021]. The
task of entity resolution is to discover all matches in a set of data sources SD using
a matching function M which determines whether two records ri, rj refer to the
same entity, i.e. Mpri, rjq “ true, or not, i.e. Mpri, rjq “ false . More formally:

Definition 2.2.3 (Entity Resolution) LetR “ tr1, ..., rxu be a set of records within
SD and M : R ˆ R Ñ ttrue, falseu be a boolean function. An entity resolution
of R aims to create a partitioning E “ te1, ...enu of R where all e P E refer to
distinct real-world objects, such that:

• matches are placed within the same partition,
i.e. @ri, rj P R : Mpri, rjq “ trueñ Dek P E : ri P ek ^ rj P ek

• each partition contains matches,
i.e. @ek P E : ri P ek ^ rj P ek ñMpri, rjq “ true

Both conditions of the Definition 2.2.3 are fully met in an ideal scenario in
which the boolean matching function M resembles an oracle. In the context of this
thesis, we consider entity resolution methods that aim to approximate the matching
function M to fulfill the two conditions as closely as possible. Entity resolution is
often called data deduplication or dirty entity resolution [Papadakis et al., 2021],
when |SD| “ 1, i.e. the set of records R derives from one data source. In our
work, we consider entity resolution tasks with |SD| “ 2, to which we refer as
two-source entity resolution tasks, and |SD| ą 2, to which we refer as multi-source
entity resolution tasks.

2.3 General Workflow

Entity resolution can be viewed as a sequence of four main steps presented in Fig-
ure 2.2 [Christen, 2012; Naumann and Herschel, 2010]. The input in the entity
resolution workflow is a set of records originating from one or more data sources
D1...Dn, and the output is a set of matching and non-matching record pairs denot-
ing the same or different real-world objects, respectively. In the first step, the input
data sources are pre-processed so that the values of the corresponding attributes
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Figure 2.2: Entity resolution workflow (adapted from Christen [2012]).

have the same structure and format [Doan et al., 2012]. The second step is block-
ing, which minimizes the computational cost of entity resolution. Without this
step, every record of each data source needs to be compared to every other record
leading to a quadratic complexity, which is clearly prohibitive for large datasets.
Blocking relies on an indexing function that is applied to every record and creates
blocks of similar records. Only the pairwise record combinations of each block are
used as input to the next step of record pair comparison. In this step, a numerical
representation of the record pair similarity is calculated. Given the numeric rep-
resentation of the record pairs, a binary matching decision is made whether or not
the records refer to the same real-world object.

Variations of the ER Workflow The general entity resolution workflow can be
found with slight variations in related works. Christophides et al. [2020] and Pa-
padakis et al. [2021] merge the two steps of record pair comparison and classifi-
cation under one step named entity matching and matching, respectively. Addi-
tionally, the pre-processing step often includes schema matching [Papadakis et al.,
2021]. Barlaug and Gulla [2021] consider data pre-processing and schema match-
ing as two different steps preceding blocking. In the case of deep learning-based
entity resolution methods, the boundaries between the individual steps of the gen-
eral entity resolution workflow become blurred [Barlaug and Gulla, 2021]. Bar-
laug and Gulla [2021] present the deep learning entity resolution workflow as a
combination of four interwoven steps, which are distinguishable only up to a cer-
tain degree within the neural network architecture. Entity resolution methods that
apply deep learning-based blocking methods rely on the indexable feature vectors
produced by the network. This reduces the blocking step to an indexing task [Ebra-
heem et al., 2018; Zhang et al., 2020a]. Additionally, record pair comparison and
classification are typically handled as a single step within the network [Ebraheem
et al., 2018; Li et al., 2020; Mudgal et al., 2018]. Figure 2.3 presents an adapted il-
lustration of the deep learning entity resolution workflow from the work of Barlaug
and Gulla [2021].

In the following sections, we present each of the steps of the entity resolu-
tion pipeline in more detail and outline different techniques for each one of them.
For each step, we distinguish between the variations of methods that employ deep
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Figure 2.3: Deep learning-based entity resolution workflow (adapted from Barlaug
and Gulla [2021]).

learning techniques and those that do not, for which we will use the naming con-
ventions subsymbolic and symbolic, respectively. The naming conventions were
established by Haugeland [1989] and Nilsson [1998] to describe methods that rely
either on features generated within an artificial neural network architecture (sub-
symbolic) or explicit, interpretable features generated by humans (symbolic).

2.3.1 Pre-processing

During pre-processing, also known as data preparation [Elmagarmid et al., 2007],
the structural and formatting variations of the input data sources are resolved. The
pre-processing step is crucial in the entity resolution pipeline as it can facilitate
the record pair comparison step and improve matching performance [Doan et al.,
2012; Herzog et al., 2007]. It is necessary for symbolic and subsymbolic entity
resolution methods, while for the latter, deep neural networks can effectively re-
place and automate some of the data pre-processing [Barlaug and Gulla, 2021]. An
overview of common pre-processing techniques can be found in [Christen, 2012;
Elmagarmid et al., 2007; Rahm and Do, 2000; Sarawagi, 2008]. Elmagarmid et al.
[2007] define pre-processing as a sequence of the following steps: data parsing,
data transformation, and data standardization.

Data Parsing During data parsing, the individual records and their attributes are
located and extracted. Data parsing methods typically rely on hand-crafted pattern
extractors, rule learning [Adelberg, 1998], machine learning techniques [Borkar
et al., 2001; Collins and Singer, 1999; Etzioni et al., 2004] or wrapper induction
methods [Crescenzi et al., 2001].

Data Transformation Data transformations are commonly performed on at-
tribute value level with the goal to eliminate inconsistent single values or unneces-
sary text and ensure that the values conform with the data type of the correspond-
ing domain [Christen, 2012; Elmagarmid et al., 2007]. Christen [2012] defines
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three groups of data transformation techniques: (i) removal of unwanted charac-
ters and stopwords, (ii) abbreviation of expansions and misspelling correction, and
(iii) segmentation of longer attributes to shorter ones, e.g. a date attribute of the
format DD.MM.YY can be split into three attributes [day], [month] and [year].
Similarly, an address attribute can be split into [street], [number] and [postal code].
Other commonly used data transformations are lowercasing, tokenization, removal
of punctuations, and common prefixes [Doan et al., 2012; Isele and Bizer, 2012].

Data Standardization Data standardization ensures that the record attribute val-
ues conform to a consistent content format [Elmagarmid et al., 2007]. For example,
address standardization involves the identification of the different address elements
and their combination according to a pre-defined pattern, such as ”[street], [num-
ber], [postal code]“.

Pre-processing for Subsymbolic ER In addition to data parsing, transforma-
tion, and standardization, Barlaug and Gulla [2021] consider the translation of
records to embedding vectors and hierarchical representation learning as part of
pre-processing for subsymbolic entity resolution methods. However, the distinc-
tion between these steps and record pair comparison is somewhat blurred as they
are interwoven in the end-to-end neural network training process. Therefore, they
are discussed as part of the record pair comparison step in Section 2.3.3.

2.3.2 Blocking

The goal of blocking is to achieve a trade-off between the reduction of unnec-
essary comparisons of non-matches and missing true matches [Christen, 2012;
Christophides et al., 2020]. To achieve this, every blocking method typically con-
sists of two main functions [Bilenko et al., 2006]: (i) The indexing function I , a
unary function that is applied to every record ri and returns a blocking key bikey .
The blocking key defines in which blocks the record ri will be indexed. (ii) An
equality function, which is applied to a pair of indexed records and returns true
if the records are indexed under at least one common block; otherwise, it returns
false. The record pairs for which the equality function outputs true proceed to
the next step of the entity resolution pipeline, while the rest are eliminated. More
formally:

Definition 2.3.1 (Blocking) Given a set of records R “ tr1, ..., rxu, the index
function I generates a blocking key for each ri P R, i.e. Ipriq “ bikey . Given an
equality function Ekey Ñ ttrue, falseu the records ri, rj are placed in the same
block only if Ekeypbikey , bjkeyq “ true.

An extensive overview and comparison of different blocking methods is pro-
vided in the surveys of O’Hare et al. [2019], Papadakis et al. [2019] and Ste-
orts et al. [2014]. Considering the overlap of record pairs across the blocks and
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the amount of blocking keys per record pair, Christen [2012] performs the fol-
lowing distinction of blocking method families: (i) standard blocking, (ii) sorted-
neighborhood blocking, (iii) q-gram based indexing, and (iv) canopy clustering.

Blocking Methods with Single Blocking Keys Standard blocking methods as-
sume a single blocking key per record and place each record in exactly one block,
i.e. the equality function as defined in Definition 2.3.1, is strict equality [Fellegi
and Sunter, 1969]. The record pairs across the blocks are not overlapping and dur-
ing the matching step, only the pairwise combinations of the records within each
block are considered. The sorted neighborhood approach sorts the records given
their blocking key and uses a sliding window to define which records are placed
in the same block [Hernández and Stolfo, 1998]. In contrast to standard blocking,
which can only guarantee non-missing true matches if all matching records are as-
signed exactly the same blocking key, the sorted neighborhood blocking method
allows for overlapping record pairs across the blocks. However, this comes with an
increased comparison cost, as standard blocking always achieves better reduction
than any sorted neighborhood blocking approach with a sliding window ě 2.

Blocking Methods with Multiple or Relaxed Similarity of Blocking Keys
Given the nature of the data to be matched, one blocking key per record might not
be enough to capture all matching record pairs during blocking [Papadakis et al.,
2021]. In such cases, blocking techniques that generate multiple blocking keys per
record and thus index each record under multiple blocks are necessary. Q-gram in-
dexing is such a technique as it generates different blocking key variations for each
record by combining substrings of the blocking key of length q [Christen, 2012;
Papadakis et al., 2015]. Canopy clustering is another family of blocking methods
that relies on non-identical blocking keys [Christen, 2012; McCallum et al., 2000].
Such methods apply approximate string comparison functions on the blocking keys
of the records. The record pairs with a blocking key similarity over a pre-defined
threshold t are considered for the next matching step.

Learnable Blocking Keys All of the blocking methods mentioned above, re-
quire the selection of one or more suitable blocking keys. Depending on the entity
resolution task at hand, these can be hard to determine. To circumvent the manual
selection of blocking keys, blocking methods that rely on supervised learning aim
to learn the optimal blocking key with respect to an objective function [Michelson
and Knoblock, 2006; Shao et al., 2019], e.g. maximizing the ratio of previously
uncovered matches over all non-matches [Bilenko et al., 2006].

Deep Learning-based Blocking Methods Deep learning-based blocking meth-
ods also bypass the need to manually determine blocking keys, as they reduce
the complete blocking task to an indexing task [Barlaug and Gulla, 2021]. Every
record is projected to the vector space based on pre-trained word-level or n-gram
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level representations. Matching candidates are retrieved by selecting the nearest
neighbors of each record based on a similarity function, e.g. cosine similarity [Pa-
padakis et al., 2021]. Examples of deep learning-based blocking methods are
DeepER [Ebraheem et al., 2018] and AutoBlock [Zhang et al., 2020a]. Thirumuru-
ganathan et al. [2021] present DeepBlocker, a framework that offers multiple deep
learning-based blocking solutions. DeepBlocker comes with different choices for
calculating distributed representations on attribute value and record level, while it
provides similarity-based, hash-based, and composite approaches for finding simi-
lar pairs.

2.3.3 Record Pair Comparison

The pairwise combinations of all records placed within the same block are consid-
ered for more detailed comparison and are often called candidate pairs. The record
pair comparison step generates a similarity vector per candidate pair, consisting of
one or more numerical values indicating how similar the records are [Christen,
2012]. The similarity vector of each candidate pair is the input to the next step of
record pair classification.

Symbolic and subsymbolic entity resolution methods vary significantly on how
they perform the record pair comparison step. Symbolic methods rely on hand-
crafted features extracted on record pair level. These features are typically ex-
tracted by applying different similarity metrics to the attribute values of the records
[Christen, 2012]. Subsymbolic methods rely on neural networks, which can only
handle numerical data, and therefore the input records of the candidate pairs need
to be first transformed into a numerical format [Goodfellow et al., 2016]. Bar-
laug and Gulla [2021] refer to this step as feature extraction and it is highly in-
terwoven with the record pair comparison and classification steps, as indicated in
Figure 2.3. The power of subsymbolic methods lies in their ability to replace man-
ual feature extraction by exploiting multi-layered network architectures, which can
learn powerful distributed representations of the words or n-grams of the records
of the candidate pairs [Papadakis et al., 2021].

In the following, we present some of the most widely used techniques and
design decisions for record pair comparison for symbolic and subsymbolic entity
resolution methods. A comprehensive overview of the two families of methods
is provided in [Christen, 2012; Elmagarmid et al., 2007; Naumann and Herschel,
2010] and in [Barlaug and Gulla, 2021; Mudgal et al., 2018; Papadakis et al., 2021],
respectively.

Record Pair Comparison for Symbolic ER

Symbolic entity resolution methods rely on data type-specific similarity metrics
for the record pair comparison step [Christen, 2012; Elmagarmid et al., 2007].
Typically, multiple similarity metrics are applied on attribute level in order to deal
with different types of value variations. Each metric takes as input two values
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Figure 2.4: Record pair comparison for symbolic ER methods - an example.

ria , rja , with a being the same attribute between the records ri, rj , and returns a
score in the range r0, 1s. In this section, we first discuss the suitability of similarity
metrics based on the application at hand. Next, we present different families of
similarity metrics with a focus and more detailed explanation of the metrics used
in this work for record pair comparison. All discussed similarity metrics can be
formulated as distance metrics: a similarity of 1 between two values implies a
distance of 0. To avoid confusion, we describe all metrics as similarity metrics.
Figure 2.4 presents an example pair comparison using two of the similarity metrics
presented in this section. A comprehensive overview of similarity metrics can be
found in [Christen, 2012; Elmagarmid et al., 2007; Naumann and Herschel, 2010].

Suitability of Similarity Metrics The suitability of a similarity metric depends
both on the underlying properties of the metric itself, i.e. what the metric is de-
signed to capture, as well as on the nature of the values to be compared, e.g. their
data type and length [Christophides et al., 2015]. For example, for the comparison
of short values of a fixed set of attributes, as in the case of comparing the title and
manufacturer of two product records, character-based similarity metrics are most
suitable. However, this is not always the case for longer record descriptions with a
loose structure, e.g. comparing two product descriptions. To compare long string
values, more flexible similarity metrics operating on word-level are required.

Additionally, choosing appropriate similarity metrics depends on the underly-
ing heterogeneity of records referring to the same real-world entity, which varies
across different applications. For example, for comparing records in a data ware-
house that might contain editing mistakes, such as the insertion of an extra char-
acter or accidental deletion of a character, we need metrics that compute the simi-
larity of two values based on the edit operations required for transforming the one
value into the other [Doan et al., 2012]. Such metrics are also suitable in case of
OCR errors, e.g. an O character is recognized as zero by the OCR system. In
other applications, lexical variations occur due to different spellings of words that
sound identical, e.g. Meyer and Meier. For such types of errors, metrics that do
not focus on the appearance of the values but are based on their sound are more
suitable [Doan et al., 2012].

Character-based Similarity Metrics Character-based similarity metrics calcu-
late the similarity of two string values on character-level and are designed to deal
with typographical errors [Elmagarmid et al., 2007]. Commonly used character-
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based similarity metrics are the Jaro similarity, originally developed for name com-
parison [Jaro, 1989], its extension Jaro-Winkler, which accounts for common string
prefixes and assigns a larger similarity score to string values that match from the
beginning [Winkler, 1990], as well as metrics based on edit distance. The latter
calculate the distance between two string values as the minimum amount of edit
operations that are required in order to convert the string value of ria to the string
value of rja . The following three edit operations are applied: character removal,
substitution, and insertion. For example, considering that each edit operation has a
cost of one distance unit, a special case of edit distance known as Levenshtein [Lev-
enshtein, 1966], the distance of the values ”let it be“ and ”let it bee“ is 1. This is
the case since one character removal is required so that the second value is identi-
cal to the first. In order to transform the Levenshtein distance to a similarity score
in the range r0, 1s, we apply Equation 2.1 on the string values of an attribute a
of the records ri and rj . For the two string values ”let it be“ and ”let it bee“ the
Levenshtein similarity is 1.0´ 1

10 “ 0.9.

SLevenshteinpria , rjaq “ 1.0´
distLevenshteinpria , rjaq

maxp|ria |, |rja |q
(2.1)

Token-based Similarity Metrics Token-based similarity metrics calculate the
similarity of two string values on token level, e.g. word or n-gram level, and
are designed to deal with string values containing tokens in different order [El-
magarmid et al., 2007]. Examples of token-based similarity metrics are Jaccard,
its variation Jaccard containment, also referred to as Longest Common Substring
Comparison [Christen, 2012], and CosineTFIDF [Cohen et al., 2003].

The Jaccard similarity metric measures the similarity between two string values
as the fraction of the number of the common tokens or n-grams to the number of
the union of tokens or n-grams. Let Tria and Trja be the sets of tokens generated
for the string values ria and rja , respectively. The Jaccard similarity is calculated
using Equation 2.2. For example, the Jaccard similarity on word level of the values
”Beatles“ and ”the Beatles“ is 1

2 “ 0.5.

Sjaccardpria , rjaq “
|Tria X Trja |

|Tria Y Trja |
(2.2)

The Jaccard containment similarity metric is calculated as shown in Equa-
tion 2.3. For example, the Jaccard containment similarity score on word-level of
the values ”the Beatles“ and ”Beatles“ is 1.0.

Scontainmentpria , rjaq “
|Tria X Trja |

minp|Tria |, |Trja |q
(2.3)

The CosineTFIDF metric calculates the similarity between two string values
as the cosine of the angle of their tf-idf weighting numerical vectors [Cohen et al.,
2003]. The term tf-idf stands for term frequency-inverse document frequency. It
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measures the importance of a token or n-gram as a combination of two parameters:
first, its frequency in the record attribute value, and second, its frequency across
all record values. Thus, the tf-idf of commonly shared tokens among all records
receive lower weights than tokens that are unique to specific records. The tf-idf
score of a token or n-gram t is calculated as shown in Equation 2.4. Once the values
of the records ria , rja have been transformed to tf-idf vectors, we can calculate the
CosineTFIDF as shown Equation 2.5.

tf-idft “ tfˆ log
R

Rt
(2.4)

where:

tf “ the number of occurrences of t in the current record
R “ the total amount of records
Rt “ the number of records that contain t

SCosineTFIDF “
Wi ˆWj

}Wi} ˆ }Wj}
“

řn
t“1wi,t ˆ wj,t

b

řn
t“1w

2
i,t ˆ

b

řn
t“1w

2
j,t

(2.5)

where:

n “ the unique terms over all records
wi,t “ the tf-idf weight of term t for record ri
wj,t “ the tf-idf weight of term t for record rj

Hybrid Similarity Metrics Hybrid similarity metrics combine the advantages
of character-based and token-based similarity metrics with the aim to handle both
typographical errors and different ordering of words [Doan et al., 2012]. Examples
of hybrid similarity metrics are the Monge Elkan metric [Monge and Elkan, 1996],
the extended Jaccard metric, and SoftTFIDF [Cohen et al., 2003]. The Monge
Elkan metric computes the similarity of two values by averaging the character-
based similarity of the individual tokens. The extended Jaccard metric, also re-
ferred to as relaxed Jaccard [Naumann and Herschel, 2010], combines a character-
based similarity metric, such as Levenshtein similarity, with the Jaccard similarity.
It calculates first the similarity of tokens, and then the similarity of the complete
values considering the overlap of similar tokens. This allows similar tokens which
exceed a pre-defined threshold θ, to be considered in the calculation of the inter-
section, as defined in Equation 2.2. As non-identical tokens can be potentially
accepted as equal if they surpass the threshold θ, the set of shared tokens and the
union of all tokens of the two values need to be redefined, as shown in the Equa-
tions 2.6 and 2.7. For example, given the two values ”let it bee“ and ”let it be“ the
Jaccard similarity is 0.5 but the extended Jaccard similarity is 3

3 “ 1.0, consider-
ing Levenshtein similarity as the inner edit-based similarity metric and a threshold



2.3. GENERAL WORKFLOW 29

value θ “ 0.6. Similarly, SoftTFIDF is a relaxed version of the CosineTFIDF sim-
ilarity metric as it uses a secondary similarity function to calculate the overlapping
tokens.

|Tria X Trja |extended “ |
 

pti, tj : ti P Tria ^ tj P Trja^ Simpti, tjq ą θqu |
(2.6)

|Tria Y Trja |extended “ |
 

pti, tj : ti P Tria ^ tj P Tria
(

| ´ |Tria X Trja |extended
(2.7)

Similarity Metrics for Non-String Values The similarity metrics presented so
far can be applied to pairs of string values but cannot meaningfully assess the sim-
ilarity of values of other data types, like numbers, dates, and geographical coordi-
nates. Although one can consider the string representation of the values, applying
string similarity metrics for their comparison would produce inaccurate results. For
example, the numerical values ”199.95“ and ”200“ would have a string similarity of
0, using any of the presented string similarity metrics. Therefore, data type-specific
metrics are needed. One way of calculating the numeric distance of values is by
deriving the absolute difference of the two values normalized by a maximum ab-
solute difference, which is either pre-defined or derived from all numerical values
at hand [Christen, 2012]. The numeric distance of two values can be formulated as
numeric similarity, as shown in Equation 2.8. Alternatively, the numeric similarity
can be computed as the relative difference between the two values [Konda et al.,
2016], as shown in Equation 2.9.

Snumericpria , rjaq “ 1.0´
|ria ´ rja |

maxpria , rjaq
(2.8)

Snumericpria , rjaq “ 1.0´
2ˆ |ria ´ rja |

ria ` rja
(2.9)

The numeric similarity metric can be extended to cover time, date, and geo-
graphical coordinates similarity [Christen, 2012]. However, in this case, a transla-
tion of the specific data types to a numeric format is required. For example, time
values can be translated into seconds before applying numeric similarity. Dates
can be segmented into day, month, and year components, while geographic coordi-
nates can be split into longitude and latitude values [Christen, 2012]. An overview
of different methods for calculating the similarity of geographical locations is pro-
vided in [Koumarelas et al., 2018]. Finally, for comparing non-textual modalities
such as visual, e.g. images and videos, or auditory records, a two-step approach
is required: first, a transformation for representing the audio or visual record as
a multi-dimensional feature vector and second, the comparison of the two vectors
with a similarity metric, e.g. Euclidean distance. An overview of audio match-
ing and image matching techniques is provided in the works of Berenzweig et al.
[2004] and Mitchell [2010].
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Record Pair Comparison for Subsymbolic ER

Subsymbolic entity resolution methods rely on deep neural networks, which are
multi-layered neural networks [Goodfellow et al., 2016]. Multi-layered neural net-
works are able to automate the task of feature extraction by learning useful and
highly abstract numerical representations from unstructured input records [Bar-
laug and Gulla, 2021]. To enable learning representations, neural networks require
the input records to be transformed to a numerical format using an embedding
model [Papadakis et al., 2021]. The initial numeric representations can be con-
sidered as parameters of the multi-layered network, which are learned throughout
the complete training phase [Barlaug and Gulla, 2021]. The learned numeric rep-
resentations of the records are then used as input for the record pair comparison.
As already discussed, there is no clear line between the steps of feature extraction,
i.e. initial embeddings and representation learning, and record pair comparison
as both interplay within the deep neural network architecture [Barlaug and Gulla,
2021]. However, the design decisions of the initial embedding model, structure of
representation learning, and how the record pair comparison is performed, come in
different variations that are discussed below, while an extensive overview is pro-
vided in the work of Barlaug and Gulla [2021].

Embeddings Starting from the embedding vector representation of the record
values, there are multiple embedding models to choose from. Considering their
granularity, embeddings can be calculated on word- or on token-level [Barlaug and
Gulla, 2021; Papadakis et al., 2021]. Word-level embeddings map every word of
each attribute value of each record to a numeric vector of a pre-defined dimension
using a lookup mapping dictionary. An example word embedding for the word
”Beatles“ may look like [0.7, 0.6, 0.8] considering a three-dimensional embed-
ding space. The mappings are automatically learned with techniques like neural
networks or dimensionality reduction, such that similar terms end up close in the
resulting vector space [Bengio et al., 2003]. Token-level embeddings use a trained
model, which produces word embeddings from the individual characters of the
word, given that the characters are part of the model’s vocabulary [Bojanowski
et al., 2017]. Thus, token-based embeddings are less prone to out-of-vocabulary
words in comparison to word-based embeddings. Given their origin, word embed-
dings can be distinguished into learned and pre-trained embeddings [Mudgal et al.,
2018]. Learned embeddings are task-specific embeddings, trained on the available
labeled data of the given task. Pre-trained embeddings are pre-trained on data from
large corpora, such as Wikipedia, and can be directly reused for feature extrac-
tion [Papadakis et al., 2021]. Pre-trained embeddings can be further adjusted by
fine-tuning them on the specific entity resolution task [Ebraheem et al., 2018]. Ex-
amples of word-level, pre-trained embeddings are word2vec [Mikolov et al., 2013]
and GloVe [Pennington et al., 2014], while fastText [Bojanowski et al., 2017] is an
example of a pre-trained character-based embedding model.
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Representation Learning The initial mappings of the input data to numerical
distributed representations are further evolved within the layers of the neural net-
work in order to learn more accurate representations [Papadakis et al., 2021]. The
learned representations can be either interdependent if they exploit information on
record pair level to learn the highest representation on record level, or indepen-
dent, in case they rely only on single records, while in both cases they can be
designed to occur in different levels of granularity, i.e. character, word, attribute,
record [Barlaug and Gulla, 2021]. Examples of works applying independent repre-
sentation learning include the works of Kooli et al. [2018] and Kasai et al. [2019].
In the work of Kooli et al. [2018], simple concatenation of fastText embeddings
is used for building attribute level representations. In the work of Kasai et al.
[2019], an one-layer bidirectional GRU on word-level embeddings is used to re-
trieve attribute level representations. Examples of works applying interdependent
representation learning include DeepMatcher and transformer-based methods [Li
et al., 2020; Mudgal et al., 2018]. DeepMatcher is a deep learning-based frame-
work for entity resolution, developed by Mudgal et al. [2018], which among other
design decisions builds attribute representations from fastText word-level embed-
dings using a bidirectional GRU and cross-attention model. Transformer-based
methods are considered extreme examples of interdependent representation learn-
ing as there are no boundaries between the different representation levels, while
the learned representation of each token depends on every other token of the whole
record pair sequence [Barlaug and Gulla, 2021].

Transformer-based Models and ER Methods Transformer-based language mod-
els were introduced in 2017 [Vaswani et al., 2017] with the aim to capture contex-
tual information while generating word embeddings by being trained on predicting
masked tokens within a sentence given its context [Papadakis et al., 2021]. Among
the most commonly used transformer-based language models is BERT [Devlin
et al., 2018], which stands for Bidirectional Encoder Representations from Trans-
formers and indicates its pre-training on both right and left context, and its vari-
ants, RoBERTa [Liu et al., 2019] and DistilBERT [Sanh et al., 2019], among oth-
ers. Typically all of those models are pre-trained on the masked token model-
ing objective. The pre-trained models can then be fine-tuned on a specific task,
e.g. binary classification, using the labeled data at hand. Transformer-based lan-
guage models have been applied and fine-tuned for entity resolution tasks [Brunner
and Stockinger, 2020; Li et al., 2020; Peeters and Bizer, 2021]. An example of a
transformer-based model for entity resolution is JointBERT [Peeters and Bizer,
2021]. In contrast to the BERT model and its pre-mentioned variants, JointBERT
is a BERT-based multi-task learning variant [Caruana, 1997] specifically designed
for entity resolution and pre-trained on a dual objective combining binary classifi-
cation and multi-class classification.
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(a) Pre-trained word embed-
dings and input record pair

(b) Calculation of attribute similarity

Figure 2.5: Record pair comparison for subsymbolic ER methods - an example.

Distributed Representation Comparison Subsymbolic entity resolution meth-
ods that learn distributed representations at either attribute [Kasai et al., 2019; Kooli
et al., 2018] or record level [Ebraheem et al., 2018] proceed to the step of compar-
ing the learned distributed representations and produce a similarity vector for each
record pair [Barlaug and Gulla, 2021]. Some methods consider attribute-aligned
comparison [Kasai et al., 2019; Mudgal et al., 2018], i.e. compare the attribute
value representations of the two records, or disregard the schema and compare di-
rectly on record level [Ebraheem et al., 2018; Kooli et al., 2018].

The final comparison of the distributed representations of the candidate pair
records results either in another distributed similarity representation [Ebraheem
et al., 2018; Kooli et al., 2018; Mudgal et al., 2018] or a single numeric value,
e.g. calculated using cosine similarity [Wolcott et al., 2018] or by applying learn-
able distance functions [Mudgal et al., 2018]. Figure 2.5 presents an example of
comparing a record pair using sample pre-trained embeddings (Figure 2.5a) and
attribute-aligned pair comparison resulting in a non-distributed similarity vector
per attribute, calculated with cosine similarity (Figure 2.5b).

Methods that rely on transformers exploit self- and cross-attention mechanisms
between all words and generate distributed representations for the complete se-
quence of record pairs [Brunner and Stockinger, 2020; Li et al., 2020]. Therefore
for such methods, it is often hard to distinguish between representation learning of
a single record and record pair comparison.
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2.3.4 Record Pair Classification

In this step of the entity resolution pipeline, the matching decision match or non-
match is made, given the similarity vector produced for the record pair candidate in
the preceding step of record pair comparison [Christen, 2012]. The classification
step is well distinguishable from the record pair comparison step in the general en-
tity resolution workflow in the case of symbolic methods. Nonetheless, this is not
the case for subsymbolic methods as they combine the feature extraction, record
pair comparison, and classification steps in a neural network [Barlaug and Gulla,
2021]. However, for such methods the classification step is executed in distinct lay-
ers within the neural network architecture, often referred to as classification layers,
which can be, to a certain extent, distinguished from the record pair comparison
layers [Barlaug and Gulla, 2021]. In the following, we provide a short outlook on
methods applied during the classification step for symbolic entity resolution meth-
ods and within the classification layers for subsymbolic entity resolution methods.

Record Pair Classification for Symbolic ER Several approaches have been
proposed for tackling the classification task within the entity resolution workflow.
Given the need for training data, the classification methods can be distinguished
into unsupervised and supervised methods [Christen, 2012].

Early unsupervised approaches aggregate the similarity vector, produced in the
record comparison step, into one similarity score and compare it against a pre-
defined threshold value in order to obtain the matching decision [Bilenko and
Mooney, 2003; Cohen et al., 2003; Monge and Elkan, 1996]. Alternatively, un-
supervised approaches rely on hand-crafted matching rules [Hernández and Stolfo,
1998; Lim et al., 1996] or clustering approaches, such as k-means [Elfeky et al.,
2002]. Saeedi et al. [2017] compare different unsupervised clustering-based tech-
niques for entity resolution. In a later work, they develop CLIP [Saeedi et al.,
2018], a clustering matching method that relies on hand-written domain-specific
rules.

Supervised classification methods train machine learning classification mod-
els, using a set of labeled matching and non-matching record pairs. The trained
models are then applied to unseen record pairs for which the matching decision
is predicted [Christen, 2012]. Common classification models provided by entity
resolution tools include decision trees [Elfeky et al., 2002], support vector ma-
chines [Christen, 2008], logistic and linear regression [Konda et al., 2016], ge-
netic programming [Isele and Bizer, 2012] as well as ensemble classification mod-
els such as random forests and extreme gradient boosting (XGBoost) [Chen and
Guestrin, 2016; Konda et al., 2016]. Köpcke et al. [2010] compare different su-
pervised classification methods, while a comprehensive overview of both unsuper-
vised and supervised methods is provided in [Christen, 2012; Doan et al., 2012;
Elmagarmid et al., 2007].
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Record Pair Classification for Subsymbolic ER As already discussed, the
classification step of subsymbolic entity resolution methods is executed within
the neural network either standalone or as part of the final layers of a larger net-
work [Barlaug and Gulla, 2021]. In contrast to symbolic entity resolution meth-
ods, which can vary significantly on how the classification step is performed, there
is less variety in the case of subsymbolic entity resolution methods. Commonly,
a multi-layered perceptron with softmax as an activation function is applied for
the classification step [Fu et al., 2019; Kasai et al., 2019; Mudgal et al., 2018].
Transformer-based entity resolution methods typically use a single dense classi-
fication layer with softmax [Brunner and Stockinger, 2020; Li et al., 2020]. An
overview of the classification layer structure of different subsymbolic methods is
provided by Barlaug and Gulla [2021].

2.4 Evaluation Metrics

The main goal of an entity resolution model addressing veracity is to be able to
accurately assign matching or non-matching labels to record pairs describing the
same or different real-world entities, respectively. Although other objectives like
the interpretation of the entity resolution models might be relevant, they are not in
the scope of this thesis.

In order to measure the prediction quality of an entity resolution model, a
ground truth, often called gold standard, is required. The gold standard is a set
of manually labeled and verified matching and non-matching record pairs that are
similar to the data to be matched [Christen, 2012]. During evaluation, every record
pair in the gold standard is assigned the label matching or non-matching, which is
predicted by the matching algorithm, i.e. a function M 1 which approximates the
boolean function M as per Definition 2.2.3. The predicted label is compared to
the true match status and one of the following categories is assigned to each record
pair [Christen and Goiser, 2007]:

• True Positives (TP): Matching record pairs that have been correctly classified
as matches by the matching algorithm.
More formally: TP “ |M 1pri, rjq “ true^ Dek P E : pri, rjq P ek|

• False Positives (FP): Non-matching record pairs that have been wrongly clas-
sified as matches by the matching algorithm. Also known as Type I errors.
More formally: FP “ |M 1pri, rjq “ true^ Eek P E : pri, rjq P ek|

• True Negatives (TN): Non-matching record pairs that have been correctly
classified as non-matches by the matching algorithm.
More formally: TN “ |M 1pri, rjq “ false^ Eek P E : pri, rjq P ek|

• False Negatives (FN): Matching record pairs that have been wrongly clas-
sified as non-matches by the matching algorithm. Also known as Type II
errors.
More formally: FN “ |M 1pri, rjq “ false^ Dek P E : pri, rjq P ek|
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Given the number of true positives (TP), false positives (FP), true negatives
(TN), and false negatives (FN), different quality measures can be calculated. The
following quality measures are among the most frequently used for measuring the
prediction quality of matching algorithms: accuracy, precision, recall, and F1.
Accuracy measures the ratio of correctly classified record pairs to all record pairs
and is calculated as:

ACC “
TP ` TN

TP ` TN ` FP ` FN
(2.10)

Precision measures how many of the classified matches are actually matches given
the gold standard and is calculated as:

P “
TP

TP ` FP
(2.11)

Recall measures how many of the true matches have been classified correctly and
is calculated as:

R “
TP

TP ` FN
(2.12)

The F1 score, also known as f-score or f-measure, is the harmonic mean of preci-
sion and recall and is calculated as:

F1 “
2ˆ P ˆR

P `R
(2.13)

The harmonic mean is preferred against the arithmetic mean because in many
applications, it is not sufficient if only one of the involved metrics scores high,
which could potentially balance the arithmetic mean at a good level [Naumann and
Herschel, 2010]. While accuracy is useful for tasks where the classes are balanced,
i.e. the number of matching and non-matching pairs in the gold standard is similar,
precision, recall, and F1 score do not include the number of true negatives in their
calculations. Therefore they are suitable metrics in the case that the gold standard
is imbalanced, which often occurs for entity resolution tasks as naturally there exist
many more non-matching than matching record pairs.
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Chapter 3

Profiling Entity Resolution
Benchmark Tasks

Entity resolution has been studied over a long time [Fellegi and Sunter, 1969] and is
the focus of many research works [Christen, 2012; Papadakis et al., 2021]. To eval-
uate and compare different entity resolution methods, a wide range of entity resolu-
tion benchmark tasks has been developed and made publicly available [Draisbach
and Naumann, 2010; Konda et al., 2016; Köpcke et al., 2010]. Such tasks con-
sist of the following artifacts: (i) one or more data sources with records describing
real-world objects and (ii) a set of correspondences stating for all or for a subset
of all record pairs whether they describe the same real-world object (matches) or
different real-world objects (non-matches). Figure 3.1 illustrates the artifacts of
an entity resolution task along with the example of two data sources containing
phone product records. In our work, entity resolution is treated as a supervised
binary classification problem in which a labeled set of matching and non-matching
pairs is needed for training a machine learning model, similarly to many related
works [Christen, 2012; Christophides et al., 2020; Halevy et al., 2006]. To enable
the comparison and evaluation of supervised entity resolution methods, the corre-
spondence set of the benchmark tasks is split into training and test sets [Han et al.,
2011].

Despite the availability of a large number of benchmark tasks for entity reso-
lution, there is no universal entity resolution method excelling in all of them. In
contrast, different methods have been shown to perform better than others, given
the characteristics of the task [Köpcke et al., 2010; Mudgal et al., 2018]. Therefore,
understanding the difficulty and diversity of benchmark tasks is essential for select-
ing appropriate entity resolution methods, assessing their strengths and weaknesses
as well as comparing their performance. The latter relies on exactly defined sets of
matching and non-matching record pairs, as well as fixed splits of the correspon-
dence sets into training and test sets when it comes to supervised entity resolution
methods. However, these sets are not always provided for some widely used bench-
mark tasks.

37
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Figure 3.1: Artifacts of an example entity resolution task.

This chapter aims first to enable the comparison of supervised entity resolu-
tion methods on clearly defined grounds and second to systematically explore the
challenges associated with entity resolution tasks having different profiling charac-
teristics, covering the first contribution of this thesis [C1]. To achieve both goals,
we complement, profile, and compare 21 entity resolution benchmark tasks. To en-
able the exact reproducibility of evaluation results and a clear comparison of entity
resolution methods, we employ a heuristic and complement the tasks that do not
have fixed sets of non-matching pairs, as well as fixed training and test splits. To
better understand the specific challenges associated with different tasks, we define
a set of profiling dimensions that capture central aspects of the entity resolution
tasks. The profiling dimensions capture properties of the records to be matched
as well as of the record pairs in the correspondence set and thus go beyond the
dimensions used in related work for categorizing entity resolution tasks, which
solely focus on the characteristics of the records of the data sources [Mudgal et al.,
2018]. Using the proposed profiling dimensions, we create groups of benchmark
tasks having similar characteristics. Additionally, we assess the difficulty of each
group by computing baseline evaluation results with standard symbolic record pair
comparison techniques and two common classification methods.

The contributions of this chapter are summarized as follows:

• We define a set of dimensions for profiling entity resolution tasks that cap-
tures characteristics of the correspondence set of record pairs in addition to
the characteristics of the records of the data sources to be matched.

• We create groups of benchmark tasks having similar characteristics and as-
sociated challenges.

• We complement existing benchmark tasks by adding fixed splits of matching
and non-matching record pairs in order to support the reproducibility and
comparability of the results of different entity resolution methods.

• We evaluate the difficulty of 21 benchmark tasks by establishing baseline
evaluation results.
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This chapter is structured into six sections. Section 3.1 discusses the related
work in the areas of profiling entity resolution tasks, as well as reproducing re-
sults of entity resolution methods. Section 3.2 introduces the 21 benchmark entity
resolution tasks used in our analysis. In Section 3.3, we present the heuristic for
complementing the incomplete benchmark tasks, while in Section 3.4, we present
the proposed dimensions for profiling and grouping entity resolution tasks. In Sec-
tion 3.5, we report the baseline results for each task. Finally, Section 3.6 summa-
rizes the main findings and contributions of the chapter.

The methodology and results of this chapter have been published in the Pro-
ceedings of the 29th International Conference on Knowledge Management [Primpeli
and Bizer, 2020]. All complemented benchmark tasks, together with the code for
profiling and evaluating them, are available for public download.1

3.1 Related Work

Data Profiling Data profiling is the “activity of creating small but informative
summaries of a database” [Johnson, 2009]. It is an essential task for many different
use-cases, such as data exploration, data cleansing, and data integration [Abedjan
et al., 2015], which goes hand in hand with the entity resolution task. Understand-
ing the profile of the data to be integrated contributes to estimating the schematic
fit, i.e. the overlap degree of schemata, and the data fit, i.e. the overlap degree
of data objects among different data sources. Data profiling of relational data has
moved from single column-related metadata, such as value counts, density, and
value ranges, to detecting dependencies among different columns, such as foreign
key discovery and functional dependencies [Naumann, 2014].

Profiling of ER Tasks There are many survey articles comparing entity resolu-
tion methods utilizing benchmark tasks [Christophides et al., 2020; Köpcke et al.,
2010], but there are hardly any works comparing and categorizing entity resolu-
tion benchmark tasks. To the best of our knowledge, the work of Mudgal et al.
[2018] is the only one that categorizes entity resolution tasks under the following
three groups: structured, textual, and dirty. The three groups are loosely defined as
follows: structured tasks are entity resolution tasks with short and atomic attribute
values, textual tasks contain attributes with longer textual values, such as product
descriptions, and dirty tasks are structured tasks with misplaced attribute values or
missing values. Therefore, the categorization of an entity resolution task into one
of those groups is conducted on the basis of the number of attributes, the length,
and the presence or absence of artificial noise in the attribute values, without con-
sidering any properties of the correspondence set.

Reproducibility and Comparability of Evaluation Results The comparison
and reproducibility of research results on clear grounds is an important issue across

1http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/index.html

http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/index.html
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different research communities. Even in the case that the same benchmark tasks
are used to evaluate different methods, the evaluation metrics or the train and test
splits might differ [Barlaug and Gulla, 2021]. To circumvent this problem and
reach safe comparison conclusions, researchers often need to re-implement other
methods, which is a tedious task [Barlaug and Gulla, 2021]. Therefore, initia-
tives such as SIGMOD reproducibility2 and Papers with Code3 invite researchers
to make their experiments repeatable by sharing all relevant artifacts. In addi-
tion, there exist multiple campaigns that contribute to the meaningful evaluation
of different systems, such as the SemEval workshop4 with a focus on NLP tasks,
the SemWebEval, and the OAEI contest5, both aiming at evaluating tasks rele-
vant to the Semantic Web community. Such campaigns provide benchmarks and
fixed evaluation procedures. The OAEI contest publishes, among others, matching
tasks on both schema and instance level for evaluating ontology matching sys-
tems. These tasks use RDF data that include class and property hierarchies, which
should be considered by successful matching systems. This differs substantially
from the benchmark tasks that we consider in this chapter, which contain relational
data sources with aligned schemata. For tasks that address both schema and in-
stance matching, different profiling dimensions become relevant. These have been
analyzed in the work of Daskalaki et al. [2016]. Examples of relevant profiling di-
mensions for such tasks are the schema similarity of the data sources and the data
source creation method, i.e. whether the data are real or synthetic [Daskalaki et al.,
2016].

3.2 Benchmark Tasks

Various repositories provide entity resolution benchmark tasks for public download
in an effort to facilitate the evaluation, reproducibility, and comparability of differ-
ent entity resolution methods. The Database Group of the University of Leipzig6

published several benchmark tasks in 2010, which are widely used by the com-
munity since then. The Magellan repository7 has been maintained since 2015 by
the Data Management Research Group of the University of Wisconsin-Madison.
It includes a large collection of benchmark tasks, a subset of which has been cre-
ated by the same research group, while some tasks have been collected from other
repositories. The DuDe repository of the Hasso Plattner Institute8 provides three
benchmark tasks, originally published by other sources, which have been modified
to better serve the entity resolution setting [Draisbach and Naumann, 2010]. Fi-

2http://db-reproducibility.seas.harvard.edu/
3https://paperswithcode.com/
4http://alt.qcri.org/semeval2020/
5http://oaei.ontologymatching.org
6https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_r

esolution
7https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
8https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html

http://db-reproducibility.seas.harvard.edu/
https://paperswithcode.com/
http://alt.qcri.org/semeval2020/
http://oaei.ontologymatching.org
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
https://hpi.de/naumann/projects/data-integration-data-quality-and-data-cleansing/dude.html
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nally, the Web Data Commons (WDC) project, which is maintained by the Data
and Web Science Group of the University of Mannheim, has published several e-
commerce-related benchmark tasks.9’10 The WDC tasks include product-specific
training sets, that are derived using distant supervision from the Web while the test
sets are manually verified. More details on the curation of the WDC entity resolu-
tion benchmark tasks using distant supervision from the Web will be provided in
Chapter 5.

We collect and profile 21 benchmark tasks from these four repositories. Ta-
ble 3.1 provides information about the selected tasks. We report basic profiling
information: (i) the number of data sources from which the records originate, (ii)
the number of records in the data sources, indicated with DS1 and DS2 for two-
source tasks otherwise we report the overall number of records, (iii) the number
of matching and non-matching record pairs in the correspondence set, (iv) if the
task is complete, i.e. contains fixed splits of matching and non-matching record
pairs, (v) the number of attributes of specific data types, and (vi) the average den-
sity (ratio of non-null values to all values) of the attributes of all records appearing
in the correspondence set. We consider an attribute to be of data type long string
if the average length of its values exceeds six words, similar to the Magellan at-
tribute data type detection system.11 As shown in Table 3.1, the tasks are diverse
and include data sources of different sizes, amounts of attributes, density as well as
attribute data types. Most benchmark tasks contain records originating from two
data sources. In contrast, the tasks provided by the Web Data Commons Product
repositories include records from up to 269 data sources.

Six of the tasks provide the complete mapping (i.e. all matching record pairs)
while no explicit non-matching pairs are offered. For the rest of the tasks, a subset
of both matching and non-matching record pairs is included in the set of corre-
spondences. For the cases where the complete mapping is provided, non-matching
pairs can be generated by calculating the Cartesian product of all records and ex-
cluding the matching pairs. Given the size of the data sources, this often results
in large amounts of non-matching pairs and thus motivates the usage of blocking
techniques [Ebraheem et al., 2018; Papadakis et al., 2020] to remove obvious non-
matches which are not helpful for training and are uninteresting for testing. As
the benchmark tasks only define matches, different researchers who use these tasks
generate different sets of non-matches. This influences the model training [Brun-
ner and Stockinger, 2020; Li et al., 2020; Mudgal et al., 2018]. Given that not all
of those works publish the complemented sets used for their experiments, it is not
possible to exactly reproduce the evaluation of the methods.

The WDC tasks are published together with fixed training, validation and test
splits of matching and non-matching record pairs. The repositories hosting the rest
of the tasks do not provide fixed splits, while split sets for three of the eight pre-

9http://webdatacommons.org/productcorpus/index.html
10http://webdatacommons.org/largescaleproductcorpus/v2/index.html
11https://github.com/anhaidgroup/py_entitymatching In addition to the cut at six words, Magellan

differentiates string values exceeding ten words.

http://webdatacommons.org/productcorpus/index.html
http://webdatacommons.org/largescaleproductcorpus/v2/index.html
https://github.com/anhaidgroup/py_entitymatching
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sented Magellan benchmark tasks are provided in the DeepMatcher GitHub reposi-
tory.12 Researchers using the incomplete benchmark tasks thus split the correspon-
dences into training and test sets by themselves, often without providing the details
required for reproducing the splits in their papers, such as the sampling tool and
random seeds. This hinders the reproducibility of the experimental results.

3.3 Task Completion

In order to exactly reproduce evaluation results, the correspondence set must be
split into a fixed training and test set of matches and non-matches. This is espe-
cially necessary for tasks with small-sized correspondence sets. In this case, the
model can overfit the small training set [Han et al., 2011]. Additionally, its evalu-
ation can be misleading and not show the real prediction quality of the model, as
it only depends on the few record pairs of the test set. However, as explained in
the previous section and shown in Table 3.1, most benchmark tasks do not provide
fixed splits.

We complement the correspondence sets of the benchmark tasks that provide
a complete mapping but do not provide non-matches using the following heuristic
which relies on canopy clustering [Christen, 2012] and random sampling. First,
we construct all non-matching record pairs by calculating the Cartesian product
of all records and excluding the pairs appearing in the complete mapping. We
restrict the amount of non-matching pairs to allow for a reasonable duration of
record pair comparison and training by blocking. We generate blocking keys using
the domain-dependent label of the records, e.g. title for records describing books
or product name for records describing products, and apply relaxed Jaccard with
inner Levenshtein distance and a threshold of 0.2 as the equality function for gen-
erating the blocks. We select all non-matching pairs within each block. To avoid
selection bias, we add randomly selected non-matching pairs, the amount of which
equals 25% of the amount of non-matching pairs sampled within the blocks. To
enhance the diversity of the correspondence set, we allow each record to appear in
at most ten non-matching record pairs. Finally, we apply stratified sampling and
split the correspondence sets of the tasks that do not provide fixed splits into test
and training sets. The latter is further split to curate a validation set, often used for
tuning the parameters of machine learning models [Han et al., 2011]. The splitting
is performed on correspondence level rather than on entity level. This means that
although the record pairs uniquely appear in the split sets, e.g. no record pair from
the training set is in either the test or the validation set, this does not apply for sin-
gle records. For example, the training set can include a record pair pr1, r2,matchq,
while the record pair pr1, r3, non-matchq might appear in the validation or test set.
The record pairs of the correspondence set are distributed as follows: training set
70%, validation set 20%, and test set 10%.

12https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
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Table 3.1: Overview of the 21 entity resolution benchmark tasks.

Task #Data #Records #Matches #Non- Complete Attributes
sources DS1 DS2 matches #Short str. #Long str. #Num. Density

Leipzig Database Group
abt-buy 2 1,081 1,092 1,095 - 0 2 1 0.63
amazon-google 2 1,363 3,226 1,298 - 1 2 1 0.75
dblp-acm 2 2,614 2,294 2,223 - 1 2 1 1.00
dblp-scholar 2 2,616 64,263 5,346 - 1 2 1 0.81

DuDe
restaurantsFodors-Zagats 2 533 331 112 - 5 0 0 1.00
cora 1 1,879 64,578 268,082 11 6 1 0.31

Magellan
productsWalmart-Amazon 2 2,554 22,074 1,154 - 6 3 1 0.84
baby products 2 5,085 10,718 108 292 7 2 7 0.42
beer 2 4,345 3,000 68 382 4 0 0 0.96
bikes 2 4,785 9,002 130 320 5 0 3 0.78
booksGoodreads-Barnes 2 3,967 3,700 92 305 6 1 3 0.53
cosmetics 2 6,443 11,026 128 280 2 1 0 0.94
musiciTunes - Amazon 2 6,906 55,932 132 407 7 0 0 0.99
restaurantsYellow - Yelp 2 5,223 11,840 130 270 5 0 1 1.00

Web Data Commons
phones 17 447 50 258 22,092 22 1 3 0.25
headphones 6 444 51 226 22,418 21 3 3 0.13
tvs 8 428 60 182 25,499 49 9 3 0.07
xlarge_cameras 269 3,665 7,478 35,899 X 1 3 0 0.51
xlarge_watches 190 4,068 9,564 53,105 X 1 3 0 0.43
xlarge_computers 235 4,676 9,991 59,571 X 1 3 0 0.50
xlarge_shoes 120 2,808 4,440 39,088 X 1 3 0 0.41
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3.4 Task Profiling

This section introduces the profiling dimensions that we use to analyze the tasks
and describes our strategy for selecting attributes relevant to solving the tasks. Af-
terward, we present the profiling results for the 21 tasks and create groups of tasks
having similar characteristics.

3.4.1 Relevant Attributes

Attributes that do not contribute to the solution of an entity resolution task are
not relevant for understanding the task-related challenges and, therefore, should be
excluded from the profiling.

We identify relevant attributes by learning a random forest and selecting at-
tributes based on the importance of their corresponding features resulting from the
trained model, similar to a wrapper-based feature extraction method [Khalid et al.,
2014]. In order to ensure that the different structural and formatting variations of
the input data sources do not affect the selection of relevant attributes, we first nor-
malize the attribute values following standard pre-processing steps as described in
Section 2.3.1: the attributes of the different sources are aligned with respect to their
schema, translated to a common language, lowercased and deprived of stopwords.
To generate the features, we calculate various pairwise record similarity scores for
each attribute using a set of data type specific similarity metrics, as introduced in
Section 2.3.3. All details about the record pair comparison step will be provided in
Section 3.5.1. The feature selection method starts by fitting a random forest classi-
fier to the complete feature vector, i.e. all generated features N , and retrieving the
weights of the features, i.e. the feature importances assigned by the trained classi-
fier. The random forest classifier is evaluated using four-fold cross-validation. The
score of this evaluation F1n is the F1 score that can be reached when training the
model on the features generated by all attributes. Next, the N features are sorted
in descending order given their weights. We iterate over the N sorted features and
in each iteration m P r1, N s, we reduce the feature vector to top m features. The
reduced feature vector is used for training a new random forest classifier, which
is evaluated with F1m. We stop iterating once the model learned using a reduced
feature vector reaches the quality of the model learned on the complete feature set,
i.e. F1m ą“ F1n. Algorithm 1 gives the pseudo-code of our feature selection
strategy.

We identify relevant attributes by projecting the relevant features to single
record attributes, e.g. title_Levenshtein to title. In contrast to key detection [Nau-
mann, 2014], which finds the combinations of attributes that uniquely identify
records in a data source, our attribute selection strategy finds attributes whose val-
ues, when compared pairwise with one or more similarity metrics, help reveal if a
pair of records is matching or non-matching.

The coverage of models, learned with different combinations of attributes, can
significantly vary as not all attributes contribute equally to the solution of the en-
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tity resolution task [Petrovski and Bizer, 2020]. Discovering the set of attributes
that encode the most-identifying information is crucial for extracting more focused
profiling meta-information. We define these attributes as top relevant attributes
and approximate their calculation using the following simple rule: the top rele-
vant attributes are the attributes that, when used for pairwise feature generation
and model learning, make up for 95% of the maximum F1 score, F1n. There-
fore, we use the same feature selection strategy as described by Algorithm 1 with
the only difference that the selection condition (line 8 in the pseudo-code) is now
F1m ą“ 0.95ˆ F1n.

Algorithm 1 Feature selection algorithm

Input: Dn : Rˆ n matrix, n ą 0
Output: D1 : Rˆm matrix, 0 ă m ă“ n

1: modeln “ RandomForestpDnq

2: F1n “ cross_validatepmodeln, Dnq

3: sorted_features “ sort_descpmodeln.feature_weightsq
4: for m “ 1 to n do
5: D1 Ð Dnrr, sorted_features.toppmqs
6: modelm “ RandomForestpD1q
7: F1m “ cross_validatepmodelm, D1q
8: if F1m ą“ F1n then
9: break

10: end if
11: end for
12: return D1

3.4.2 Profiling Dimensions

We define five profiling dimensions that evolve around specific matching-related
challenges: schema complexity, textuality, sparsity, corner cases, and development
set size. In the following, we present the motivation behind each profiling dimen-
sion and explain how it is calculated.

Schema Complexity (SC)

This dimension refers to the number of attributes that contribute to solving an entity
resolution task. A high schema complexity suggests a larger amount of underlying
matching patterns and thus might be harder for a learner to solve. We approximate
schema complexity by the number of relevant attributes of an entity resolution task,
calculated with the heuristic, introduced in Section 3.4.1.
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Textuality (TX)

Attribute values that consist of long sequences of words, e.g. the title of a product
offer in e-commerce, often contain information that could also have been repre-
sented using multiple attributes. Such attributes are challenging for entity reso-
lution methods as they need to either separate the attributes in pre-processing or
apply similarity metrics that can deal with below 1st normal form values, i.e. each
attribute holds an atomic value that cannot be further split into smaller parts. We
calculate the textuality of an entity resolution task as the average length value in
words split by white space, of the top relevant attributes of the records appearing
in the set of correspondences.

Sparsity (SP)

Having missing values in a supervised learning setting is a well-recognized chal-
lenge for machine learning. In a classification setting with a non-dense feature
vector, the learning algorithm has to learn multiple classification functions, with
each function covering a subset of the data points having the same missing fea-
tures [Goodfellow et al., 2016]. We calculate sparsity as the ratio of missing at-
tribute values to all attribute values of the relevant attributes of records that appear
in the correspondence set of the entity resolution task.

Corner Cases (CC)

The dimension of corner cases aims to capture the number of record pairs that are
non-matching, but their attribute values are similar and the ones that have attribute
values of low similarity but are matching. This dimension is crucial for under-
standing the difficulty of an entity resolution task. In a trivial entity resolution set-
ting with no corner cases, the matching record pairs lie far from the non-matching
record pairs in the hypersurface of the vector space and can thus be perfectly sep-
arated with a decision boundary, e.g. defined by a linear function or a decision
tree. A less trivial entity resolution task includes record pairs that are close to the
decision boundary. For these corner cases, the learning algorithm needs to make
further adjustments.

We use this observation and the simple case of a linear classifier for approxi-
mating the number of corner cases of an entity resolution task, which we compute
with the following heuristic: for every record pair in the correspondence set, we
calculate an aggregated similarity score by averaging the pairwise similarity score-
based feature values, the computation of which is detailed in section 3.5.1, of the
top relevant attributes. Feature values that cannot be computed because of miss-
ing corresponding attribute values of one or both records of the pair are excluded
from this aggregation. With every record pair being represented by its aggregated
similarity score, we iteratively search in steps of 0.01 for the threshold value that
can best separate the matching from the non-matching pairs, i.e. maximizes the
F1 score. Once the optimal threshold is found, we measure the number of match-
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ing pairs lying in the non-matching zone (false negatives) and the amount of non-
matching pairs lying in the matching zone (false positives). To account for the
class imbalance problem in entity resolution, the corner cases dimension is cal-
culated as the ratio of corner cases in relation to the amount of matching pairs:
#false_positives`#false_negatives

#matching_pairs .

Development Set Size (DS)

The difficulty of an entity resolution task also depends on the number of corre-
spondences that are available for learning and selecting matching models. This
is an instantiation of the general observation that the performance of a classifier
is affected by the size of the training set, while small sample sizes tend to cause
classification models to overfit the data used for training and hyperparameter opti-
mization [Anthony and Biggs, 1997]. We calculate the development set size as the
amount of matching and non-matching record pairs in the training and validation
sets of an entity resolution task.

3.4.3 Profiling and Grouping Benchmark Tasks

We identify the relevant attributes, calculate the values of the five profiling di-
mensions for each task, and create groups of tasks having similar characteristics.
Table 3.2 presents the grouped benchmark tasks along with the attributes that are
relevant for entity resolution, the ratio of relevant attributes to all attributes, as well
as the values of the five profiling dimensions schema complexity (SC), textuality
(TX), sparsity (SP), corner cases (CC) and development set size (DS). The relevant
attributes are listed in descending order considering their corresponding feature
importances. The inner brackets indicate the top relevant attributes.

Looking at the relevant attributes, we observe that in only 6 out of the 21 tasks,
all attributes were selected as relevant, using the selection strategy described in
Section 3.4.1. For the remaining 15 tasks, a subset of the attributes is sufficient for
reaching the same F1 score, which would result from using all attributes.

Small development sets can lead to models that overfit the data. This is rele-
vant for the bikes, booksGoodreads-Barnes, and cosmetics tasks. For these tasks, more
identifying attributes, such as the book title and the bike model name, receive a
lower weight compared to less identifying ones, such as the number of pages and
the bike color.

The profiling results show patterns, which we use to create five groups of entity
resolution tasks. The grouping can help researchers to select interesting tasks for
evaluating entity resolution methods and to better understand and interpret their
results, i.e. which challenges an entity resolution method can successfully deal
with. In the following, we present the five groups.
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Table 3.2: Relevant attributes and profiling results.

The inner brackets indicate in the Relevant attributes column indicate the top relevant attributes.
SC = schema complexity, TX = textuality, SP = sparsity, CC = corner cases, DS = development set size

Task
Relevant attributes Profiling dimensions

% of all SC TX SP CC DS
Group 1: Dense data, simple schema

beer [[beer_name], brew_factory, ABV, style] 1.00 4 5.32 0.06 0.32 405
bikes [[color, bike_name], price, km_driven] 0.44 4 5.37 0.00 0.09 405
musiciTunes-Amazon [[song_name, time], album_name] 0.42 3 6.6 0.00 0.08 485
restaurantsYellow-Yelp [[phone], name, address] 0.50 3 2 0.00 0.05 360
restaurantsFodors-Zagats [[phone], name, address] 0.60 3 1.02 0.00 0.03 600

Group 2: Sparse data, complex schema
phones [[phone_type,memory, display_size], color, mpn, ..] 0.38 10 4.8 0.39 0.42 20,137
headphones [[model], mpn, impedance, sensitivity, accessories] 0.18 5 1.5 0.63 0.23 20,401
tvs [[model], mpn, weight, height, width] 0.11 5 1.04 0.64 0.36 23,138

Group 3: Small and difficult
baby products [[title, ext_id, SKU],colors, category, ..] 0.50 8 9.2 0.32 0.81 360
booksGoodreads-Barnes [[pagecount, title], publisher, ISBN13, format, ..] 0.70 7 7.86 0.24 0.53 357
cosmetics [[color, description], price] 1.00 3 9.36 0.07 0.27 367

Group 4: Textual data, few corner cases
dblp-acm [[title], year, authors] 0.75 3 7.65 0.00 0.02 42,079
dblp-scholar [[title], authors] 0.50 2 7.8 0.02 0.07 74,689
productsWalmart-Amazon [[title, modelno], long_description, brand, price] 0.50 5 10.52 0.08 0.27 14,036
cora [[authors, volume, pages, year, title] , ..] 0.38 7 15.97 0.26 0.23 299,726

Group 5: Textual data, many corner cases
abt-buy [[name], description, price] 1.00 3 8.69 0.23 0.69 6,452
amazon-google [[name, price, description]] 0.75 3 130.22 0.03 0.68 7,604
xlarge_cameras [[title, description], brand, specTable] 1.00 4 98.71 0.38 0.78 42,277
xlarge_watches [[title, description], specTable, brand] 1.00 4 109.79 0.43 0.64 61,569
xlarge_computers [[title, description], brand, specTable] 1.00 4 51.69 0.44 0.86 68,462
xlarge_shoes [[title, description]] 0.50 2 80.85 0.17 0.98 42,429
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Group 1: Dense Data, Simple Schema

This group comprises entity resolution tasks with low schema complexity (ď 4
relevant attributes), high density (ą 0.94), and short attribute values (ă 7 words).
The following benchmark tasks have dense data and simple schema: bikes, beer,
restaurantsFodors-Zagats, restaurants Yellow-Yelp and musiciTunes-Amazon. These tasks are
expected to be easy to solve for symbolic entity resolution methods.

Group 2: Sparse Data, Complex Schema

In group 2 belong entity resolution tasks that have non-dense attributes (ă 0.60)
with short values (ă 5 words) and high schema complexity (ě 5 relevant at-
tributes). Under this group fall the following tasks: phones, headphones, and tvs.
The matching methods used for evaluating these tasks need to especially address
the challenge of low data density [Petrovski and Bizer, 2020].

Group 3: Small and Difficult

In this group belong the entity resolution tasks that have challenging characteris-
tics, like high schema complexity and textuality, but only provide a small number
of matches and non-matches, which a classifier can use for learning and optimizing
the hyperparameters. The small size of the training set makes it hard for classifiers
to adapt to the different challenges and may lead to overfitting. The benchmark
tasks falling into this group are booksGoodreads-Barnes, cosmetics, and baby products.

Group 4: Textual Data, Few Corner Cases

This group contains entity resolution tasks with textual relevant attributes (ą 7
words) and a low to very low containment of corner cases (ď 0.27). The chal-
lenge imposed by the textuality dimension becomes trivial in the absence of cor-
ner cases. The benchmark entity resolution tasks that fall under this category are
productsWalmart-Amazon, dblp-acm, dblp-scholar, and cora. Subsymbolic entity res-
olution methods are known to outperform symbolic ones on highly textual tasks
due to their ability to automatically generate highly dimensional features [Mudgal
et al., 2018]. Nonetheless, it is hard for subsymbolic entity resolution methods to
show their strengths, given textual tasks with a low containment in corner cases.

Group 5: Textual Data, Many Corner Cases

This group contains entity resolution tasks with high textuality and many cor-
ner cases. The benchmark tasks that can be categorized under this group are
xlarge_cameras, xlarge_watches, xlarge_computers, xlarge_shoes, amazon-google,
and abt-buy. For these tasks, subsymbolic entity resolution methods have been
shown to achieve better results than methods relying on symbolic features [Mud-
gal et al., 2018; Peeters et al., 2020a,b].
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Table 3.3: Parameter ranges of the grid search.

RF estimators max. depth min. leaf size
[10, 100, 500] [5, 10, 50, None] [1, 3, 5]

SVM C gamma kernel
log(-2, 5), α “ 10 [1´6, 1´4, 1´2, 1, 10 ] [ rbf, linear*]

3.5 Baseline Evaluation

Considering baseline results is crucial for judging the difficulty of benchmark tasks.
Baseline results set the lower limit of the predictive quality that a new entity reso-
lution method needs to achieve on a specific task and indicates if there is room for
improvement for more sophisticated methods. In this section, we describe the en-
tity resolution methods that we employ for calculating baseline results. Afterward,
we apply the methods to the 21 benchmark tasks, present the baseline results, and
discuss the difficulty of the tasks in relation to the task groups.

3.5.1 Record Pair Comparison

We perform record pair comparison using symbolic features, which we calculate
with data type specific similarity metrics, as presented in Section 2.3.3 and sim-
ilarly to the Magellan matching system [Konda et al., 2016]. As a first step, we
need to detect the data type of each attribute. Our data type detection heuristic
distinguishes between three data types: short string, long string, and numeric. The
long string data type is assigned to those attributes whose values have an average
length larger than six words. If more than one data type is detected for the same
attribute, we assign long string, if long string appears in the list of detected data
types. Otherwise, we assign short string.

Given the detected data type, multiple data type specific similarity metrics are
used for constructing the feature vector. Feature values of data type short string are
compared with the following similarity metrics: Levenshtein, Jaccard on the token
level, Jaccard with inner Levenshtein, exact similarity, and containment similarity.
The containment similarity is calculated on word-level for any string value with
more than one word. Otherwise, it is calculated on the token level. For long strings,
the similarity metrics used for short strings are applied while Jaccard is calculated
on the word level and additionally the cosine similarity with tf-idf weighting is
computed. For numeric attributes, the absolute difference is computed. In addition
to the attribute-specific similarity scores, we also concatenate all attribute values of
a record and calculate an overall similarity score using cosine similarity with tf-idf
weighting over the concatenated values.

All similarity scores are scaled to the range of [0,1]. In the case that the value
of an attribute is missing for one or for both records of the record pair, we assign
the out-of-range score -1. This allows any classifier to consider all record pairs
without dropping or replacing the missing values.
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3.5.2 Record Pair Classification

We employ two widely-used supervised classification models for learning baseline
matchers: support vector machines (SVM) and random forests (RF). We optimize
the hyperparameters shown in Table 3.3 using grid search. The asterisk indicates
that the linear kernel has not been used in combination with all other parameter
values in the grid search like the rbf kernel, but only in one setting with default C
and gamma values. For the non-optimized parameters, we use the default values of
the python scikit-learn library, version 0.22.1. Finally, we use fixed random seeds
for allowing the reproducibility of the baseline results by setting the random_state
parameter of the scikit-learn classification models to 1.

3.5.3 Baseline Results

We evaluate the baseline entity resolution methods with split validation and calcu-
late precision, recall, and F1 score on the positive class (matching). We present the
baseline results in Table 3.4. In addition, we show the best reported result found in
related work from supervised entity resolution methods. Entity resolution methods
applying other types of learning, e.g. active learning or semi-supervised learn-
ing, are excluded from this comparison [Kasai et al., 2019; Papadakis et al., 2020;
Primpeli and Bizer, 2019]. The interpretation of the comparison to the results re-
ported in related work should be made with attention to the differing, unfixed train,
validation, and test sets.

Comparing the results of the two classifiers, we see that the SVM classifier
performs similar (6 tasks) or worse (11 tasks) than the random forest classifier for
17 out of 21 tasks. However, this is not the case for the xlarge_shoes, baby prod-
ucts, cosmetics, and booksGoodreads-Barnes tasks, for which the SVM outperforms
the random forest by 0.04 to 0.09 in F1 score. In addition, six benchmark tasks are
perfectly solved by the baseline method (F1 score=1.00), indicating that there is no
room for improvement for more advanced methods.

Considering the grouping of the tasks, we can see that each profiling group im-
poses varying difficulty levels on our baseline method. More concretely, F1 scores
between 0.92 and 1.00 are achieved for the tasks belonging to Group 1: Dense
Data, Simple Schema. For solving the tasks of this group, only a small amount of
attributes needs to be considered by the learning algorithm. The matching patterns
are simple, which we verify by looking at the average depth of the trees of the best
random forest estimator per task, ranging between 4.5 and 4.98. On the other hand,
the tasks of Group 2: Sparse Data, Complex Schema are more difficult to solve,
with the F1 scores being lower than the F1 scores reported for the tasks of Group
1, as a result of the higher sparsity and schema complexity. These characteristics
require the machine learning model to learn complex matching patterns. The aver-
age depth of the trees of the best random forest estimators for the tasks of Group 2
is 10.
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Table 3.4: Baseline results and comparison to related work.

Profiling group Task
SVM Random forest

∆RF´SVM
Best F1 score
result in related workP R F1 P R F1

Group 1:
Dense data,
simple schema

beer 1.00 0.86 0.92 1.00 1.00 1.00 +0.08 0.78 [Mudgal et al., 2018]
bikes 0.92 0.92 0.92 0.92 0.92 0.92 0.00 -
musiciTunes-Amazon 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.94 [Li et al., 2020]
restaurantsYellow -Yelp 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 [Mudgal et al., 2018]
restaurantsFodors-Zagats 1.00 0.91 0.95 1.00 1.00 1.00 +0.05 0.97 [Li et al., 2020]

Group 2:
Sparse data,
complex schema

phones 0.85 0.88 0.86 0.85 0.88 0.86 0.00 0.84 [Petrovski and Bizer, 2020]
headphones 0.98 0.93 0.95 0.98 0.96 0.97 +0.02 0.94 [Petrovski and Bizer, 2020]
tvs 0.93 0.78 0.85 0.94 0.89 0.91 +0.06 0.83 [Petrovski and Bizer, 2020]

Group 3:
Small and difficult

baby products 0.70 0.64 0.67 0.68 0.55 0.63 -0.04 -
booksGoodreads-Barnes 0.80 0.89 0.84 0.73 0.89 0.80 -0.04 -
cosmetics 1.00 0.77 0.87 0.90 0.69 0.78 -0.09 -

Group 4:
Textual data,
few corner cases

dblp-acm 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.98 [Mudgal et al., 2018]
dblp-scholar 0.99 0.99 0.99 0.99 0.99 0.99 0.00 0.94 [Mudgal et al., 2018]
productsWalmart-Amazon 0.97 0.87 0.92 0.93 0.89 0.93 +0.01 0.89 [Gokhale et al., 2014]
cora 0.99 0.98 0.99 1.00 1.00 1.00 +0.01 1.00 [Wang et al., 2011]

Group 5:
Textual data,
many corner cases

abt-buy 0.96 0.71 0.81 0.95 0.77 0.85 +0.04
0.91 [Liu et al., 2019]
reported in [Peeters and Bizer, 2021]

amazon-google 0.83 0.68 0.74 0.80 0.69 0.75 +0.01 0.71 [Li et al., 2020]
xlarge_cameras 0.71 0.61 0.65 0.75 0.67 0.71 +0.06 0.98 [Peeters and Bizer, 2021]
xlarge_watches 0.86 0.71 0.78 0.82 0.73 0.81 +0.03 0.97 [Peeters and Bizer, 2021]
xlarge_computers 0.74 0.67 0.70 0.78 0.78 0.78 +0.08 0.97 [Peeters and Bizer, 2021]
xlarge_shoes 0.83 0.43 0.57 0.82 0.38 0.52 -0.05 0.97 [Peeters and Bizer, 2021]
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Our baseline methods perform poorly for the tasks of Group 3: Small and Dif-
ficult, with F1 scores ranging between 0.67 and 0.87. We assume the reason for
the poor performance to be, on the one hand, the inherent challenging characteris-
tics of the tasks, such as high textuality, a significant amount of corner cases, and
high schema complexity, and on the other hand, the small amount of training data.
These factors likely cause the model to overfit the training data and not generalize
well on the test set.

The F1 scores achieved using the random forest classifier for the tasks of
Group 4: Textual Data, Few Corner Cases are above 0.93. This indicates that
they have a low level of difficulty despite their high textuality. The small amount
of corner cases makes the tasks trivial. For each of the tasks dblp-acm and dbpl-
scholar, which contain almost no corner cases, there is only one top relevant fea-
ture: title_cosine_tfidf for the dblp-acm task and title_relaxed_jaccard for the
dblp-scholar. This indicates that condensing the title attribute into a single sim-
ilarity score is enough for solving both tasks. The other tasks of Group 4 contain a
few corner cases but have the following characteristics, which we hypothesize help
the model to generalize well and achieve good performance: the cora task has a
very large development set and the productsWalmart-Amazon task has a model number
attribute, which is highly identifying for resolving product records.

The performance of our baseline method drops for the entity resolution tasks
of Group 5: Textual Data, Many Corner Cases and ranges between 0.57 and 0.85.
These tasks have many corner cases and highly textual relevant attributes, such
as product titles and descriptions. The weak performance can be explained by
the inability of the similarity-based feature vector to adequately summarize the
textual data. In contrast to our symbolic, similarity-based features, the related
works, reporting significantly higher F1 scores on these tasks, use subsymbolic
entity resolution methods, which have been shown to perform better on textual
data [Li et al., 2020; Mudgal et al., 2018; Peeters and Bizer, 2021].

3.6 Discussion and Conclusion

In this chapter, we selected 21 benchmark entity resolution tasks and identified that
17 of them were incomplete with regard to fixed sets of training, validation, and
test record pairs. We complemented the incomplete tasks in order to facilitate the
reproducibility and comparability of entity resolution methods.

Additionally, we proposed a heuristic for extracting attributes relevant for solv-
ing entity resolution tasks as well as five dimensions for profiling the tasks. The
profiling dimensions evolve around specific challenges of entity resolution tasks
and go beyond the dimensions of textuality and structuredness, which have been
used so far in related work [Mudgal et al., 2018]. Compared to the profiling dimen-
sions proposed by Naumann [2014], which focus on profiling single data sources,
our suggested profiling dimensions capture properties of both the data sources and
the correspondence set of the entity resolution task. We used these dimensions to
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profile and group the collection of 21 benchmark tasks into five groups entailing
similar challenges. By calculating baseline results, we identified the difficulty level
of the tasks of each group.

Our results indicate that focusing only on the characteristics of the records to
be matched is not sufficient for understanding the challenges associated with the
entity resolution tasks and properties of the correspondence set need to be addition-
ally considered. This finding complements the categorization of entity resolution
tasks proposed by Mudgal et al. [2018] into structured, textual, and dirty tasks. We
could identify that textual tasks, for which subsymbolic methods are known to per-
form well [Mudgal et al., 2018], can be equally well solved using symbolic entity
resolution methods if a small number of corner cases exists in the correspondence
set. With regard to structured tasks, we find that more fine-grained categorizations
are needed, which involve additional properties such as schema complexity and
density.
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The Semantic Web as Distant
Supervision for Entity Resolution
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Chapter 4

Semantic Annotations on the Web

The Semantic Web emerged from the vision for a Web in which ”information is
given a well-defined meaning, better enabling computers and people to work in
cooperation“ [Berners-Lee et al., 2001]. This vision motivated a large body of re-
search work to focus on developing and extending various technologies, which are
commonly known as part of the Semantic Web Stack [Berners-Lee, 2009]. For ex-
ample, data formats, such as the Resource Description Framework (RDF) [Klyne
and Carroll, 2004], ontologies, and knowledge representation languages, such as
the Web Ontology Language (OWL), were established to provide a universal syn-
tactic and structural representation of information published on the Web. In ad-
dition, tools, like the SPARQL query language [Prud’hommeaux and Seaborne,
2008], were developed to facilitate the consumption of such information. These
technologies and tools have enabled the realization of the vision of the Semantic
Web in different ways. The Linked Open Data Cloud (LOD) is one form of this
realization and refers to a collection of publicly available datasets containing inter-
linked entities of different topic areas. As of May 2020, the LOD Cloud contains
1,301 datasets with 16,283 links.1

Semantic annotations on the Web are another form of realization of the Se-
mantic Web vision enabled by domain-independent markup formats as well as
annotation vocabularies. These standards allow data publishers to add semantic
information within the HTML pages, thus enhancing plain HTML documents with
structured data and fulfilling a vital Web design aspect by separating content from
presentation [Guha et al., 2015].

The usage of markup formats and vocabularies for semantically annotating data
on the Web makes the content of webpages more easily consumable, crawlable and
searchable [Mika, 2015]. This facilitates the design and execution of multiple web
applications such as web search, price comparison, and reservation engines [Guha
et al., 2015]. The consumption of semantically annotated data by more and more
web applications has made the exchange of structured data important for web data
publishers [Guha et al., 2015]. To ease the adoption of a consistent semantic ter-

1https://lod-cloud.net/#about
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minology, the major search engines Bing, Google, Yahoo, and Yandex joint their
efforts in 2011 and developed the schema.org vocabulary. According to the Web
Data Commons project, which monitors the adoption of semantic annotations on
the Web yearly, there has been significant growth in the adoption of semantic anno-
tations in the last decade. In 2010, 5.7% (147 million) of the examined webpages
contained semantically annotated data, which increased to 49.9% (1.7 billion) in
2020.2

Being able to extract easily and understand web content not only serves the
primary goal of semantic annotations, that of making web data more easily con-
sumable for web applications, but also makes the Web a rich source of structured
data that can be used as supervision for multiple downstream tasks. For example,
semantically annotated reviews with properties defining the review text and the re-
view sentiment can be used as training data for a sentiment classification model.
The trained model can then be applied to unseen and non-annotated textual reviews
in order to predict their sentiment. Similarly, semantically annotated product de-
scriptions with product identifiers such as GTIN numbers can be used as training
data for entity resolution models, given that multiple product descriptions share
the same product identifier. The trained model can then predict matching or non-
matching relations between product descriptions that do not contain identifiers.

In this part of the thesis, we explore the potential of using semantic annotations
as a source of distant supervision for entity resolution tasks. Towards this goal, in
this chapter, we first give an overview of how semantic annotations can be realized
and consumed. Second, we analyze the adoption trends of semantic annotations
and explore the potential of using semantic annotations for generating training data
for entity resolution tasks, thus covering the second contribution of the thesis [C2].
For our analysis, we set a specific focus on two widely used classes with different
annotation policy recommendations by the main search engines: Product and Local
Business. We monitor the adoption of semantically annotated identifying proper-
ties for these two classes, which can be used as distant supervision for different
entity resolution tasks, such as matching product or local business records.

The contributions of this chapter are summarized as follows:

• We provide an overview of the adoption of semantic annotations for the pe-
riod 2012 to 2020.

• We explore the utility of semantically annotated identifiers of two different
schema.org classes as a form of distant supervision for building large training
sets for entity resolution with no labeling effort.

This chapter is structured into seven sections. In Sections 4.1 and 4.2, we
give an overview of the four main markup formats and the schema.org vocabu-
lary used for defining structural elements and a common terminology for semantic
annotations. In Section 4.3, we showcase three web applications that consume

2http://webdatacommons.org/structureddata/

http://webdatacommons.org/structureddata/
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semantically annotated data. Section 4.4 presents the adoption trends of the four
main markup formats and schema.org vocabulary from 2012 to 2020. Section 4.5
presents the use-case analysis of exploiting semantically annotated data describing
products and local businesses as source of distant supervision for entity resolution
tasks. Section 4.6 discusses related work on using content of the Semantic Web
as a source of supervision for different tasks other than entity resolution. Finally,
Section 4.7 concludes the chapter and summarizes our main findings.

The profiling of the growth of semantic annotations is joint work with Robert
Meusel and has been reported yearly since 2012 on the Web Data Commons - Mi-
crodata, RDFa, JSON-LD, and Microformat Data Sets page.3 The code for profil-
ing the growth of semantic annotations can be found on the download instructions
page of each release.4 Parts of the profiling analysis have been published in the
Proceedings of the International Conference on Electronic Commerce and Web
Technologies [Meusel et al., 2015] and in E-Science-Tage 2017: Forschungsdaten
managen [Primpeli et al., 2017]. Exploring the Semantic Web as a source of distant
supervision for different tasks, including entity resolution, has been published in
the Datenbank-Spektrum Journal [Bizer et al., 2019].

4.1 Markup Formats

Semantic markup formats provide standards or recommendations for extending
data objects described in HTML pages with HTML elements that can be easily
parsed, consumed, and generated by machines. Four markup formats are most
commonly used for adding semantic annotations to HTML pages: Microdata,
RDFa, Microformats, and JSON-LD. In the following, we present each of the four
markup formats and the attributes used to denote an object’s metadata semanti-
cally. Next, we discuss the differences among the four markup formats along with
an example code snippet.

4.1.1 Microdata

Microdata defines a set of machine-readable features which is used in combination
with and as an extension of standard attributes defined within HTML. The Micro-
data format was first envisioned as part of the 5th major revision of the HTML lan-
guage, the core language of the World Wide Web. Its purpose was to give semantic
meaning to objects described in HTML pages and enhance the interoperability
among user agents.5 Microdata attributes can be used to denote the following:

1. An item, i.e. a data object within the HTML code that we want to annotate
semantically. To create an item the itemscope attribute is used.

3http://webdatacommons.org/structureddata/
4http://webdatacommons.org/structureddata/2020-12/stats/how_to_get_the_data.html
5https://www.w3.org/standards/history/microdata

http://webdatacommons.org/structureddata/
http://webdatacommons.org/structureddata/2020-12/stats/how_to_get_the_data.html
https://www.w3.org/standards/history/microdata
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2. A property of an item. To create a property of an item, the itemprop
attribute is used in one of the children elements of the item element.

3. The type of an item defined as a URL. To add a type to an item, the attribute
itemtype is used.

4. The global identifier of the annotated item. To add a global identifier value,
the attribute itemid is used.

4.1.2 RDFa

RDFa is short for Resource Description Framework in Attributes and, similarly to
Microdata, defines a set of extensions for HTML-based languages for semantically
annotating data objects. The RDFa markup format was first proposed in 20046 as a
means to combine the standard document markup language HTML with the RDF
metadata standard and facilitate RDF-related parsers to consume data published on
the Web. RDFa reached W3C recommendation status in 20087 and comes in three
main variants: RDFa 1.0, used solely in combination with XHTML documents,
RDFa 1.1, the first generic RDFa standard for both HTML and XML documents,
and finally RDFa Lite, a light version of RDFa containing a subset of its attributes.
Below we list and explain the attributes of the RDFa markup format, which are
also part of RDFa Lite:

1. resource defines the identifier of a data object described on a page.

2. vocab specifies the vocabulary used to markup a resource.

3. prefix allows to define and create abbreviations of more vocabularies that
can be used in addition to the one defined in the vocab attribute.

4. property specifies the relationship between the subject resource and a
literal value or the object resource.

5. typeof specifies the RDF type of the subject or the object resource.

Additionally RDFa defines the following attributes: about, rel, rev, content,
and datatype.

4.1.3 Microformats

Microformats define a set of conventions for semantically annotating HTML doc-
uments about certain pre-defined types of entities, such as people, companies,
events, and recipes. The markup format was first launched in 2005, envisioning
a decentralized development of resources through machine-readable data.8 Al-
though Microformats is still consumed by big search engines, such as Google, for

6https://www.w3.org/MarkUp/2004/02/xhtml-rdf.html
7https://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
8https://microformats.org/2005/06/20/welcome

https://www.w3.org/MarkUp/2004/02/xhtml-rdf.html
https://www.w3.org/TR/2008/REC-rdfa-syntax-20081014/
https://microformats.org/2005/06/20/welcome
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providing rich search results, it is not a W3C recommendation. There exist several
microformats with an intended use given their topical domain. In the following,
we enumerate some of the most commonly used microformats together with their
defined root class name, which indicates the topical domain of the annotated data
object:

1. hCard for publishing people, companies and organizations. The root class
name is vcard.

2. hCalendar for publishing events. The root class name is vcalendar or
vevent.

3. hProduct for publishing products. The root class name is hproduct.

4. hReview for publishing reviews. The root class name is hreview.

5. hRecipe for publishing recipes. The root class name is h-recipe.

4.1.4 JSON-LD

JSON-LD is short for Javascript Object Notation for Linked Data. Its primary goal
is to provide a Javascript notation for combining Linked Data in Web-based envi-
ronments. It was first introduced in 2010 and became a W3C recommendation in
January 2014. It is an open format, maintained and developed by a publicly open
community, the JSON-LD Community Group.9 JSON-LD provides a semantic
context around data objects published in HTML pages in the form of a JSON snip-
pet. The JSON snippet is added either in the <head> or in the <body> section
of the HTML document. JSON-LD specifies several syntax tokens and keywords
necessary for building the JSON metadata objects. Below we list some of the most
useful JSON-LD keywords and outline their functionality:

1. @context defines a mapping dictionary between vocabulary terms or JSON-
LD keywords and their values.

2. @type specifies the data type of a node or a typed value.

3. @id specifies an IRI or a blank node identifier for uniquely identifying data
objects within the document.

4. @vocab specifies the vocabulary from which the properties and the @type
keyword value originate.

5. @value indicates a typed value, i.e. a combination of a value and its stan-
dardized type indicated with an IRI.

9https://www.w3.org/community/json-ld/

https://www.w3.org/community/json-ld/
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(a) No semantic annotations

(b) Microdata

(c) RDFa

(d) Microformats

(e) JSON-LD

Figure 4.1: HTML snippets with and without semantic annotations.
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4.1.5 Markup Formats Comparison

Figure 4.1a presents an example HTML snippet of a product offer describing an
outdoor tent. The individual HTML elements contain specific properties of the
product offer easily understood by a human reader, such as its name, product iden-
tifier, and review rating. However, these properties cannot be easily parsed by
machines, e.g. search engines, to optimize their search results. Adding semantic
annotations using one of the presented markup formats can help a search engine to
understand the content of the page.

Figures 4.1 (b-e) present the same HTML example snippet annotated with the
four markup formats. Microdata (Figure 4.1b) and RDFa (Figure 4.1c) exploit
different terms for differentiating between classes and properties of data objects.
In contrast, the Microformats (Figure 4.1d) markup format only uses the keyword
class for both. Additionally, Microformats is rather strict in its usage as it spec-
ifies attribute terms and cannot be combined with external vocabularies. On the
other hand, RDFa, Microdata, and JSON-LD rely on external vocabularies. For
example, in order to signify the name of the product in the presented example,
the Microformats format uses the fn property defined within the hProduct class. In
contrast, the other three markup formats exploit the Product/name property defined
by the schema.org vocabulary. JSON-LD can be considered easier to implement
than the other three formats, as webmasters need to add the JSON snippet either
in the head or the body of the HTML document, without wrapping the semantic
notations around the HTML elements. Due to its simple maintenance and parsing,
JSON-LD is the recommended format by Google Search for enhancing the search
results.10

4.2 Schema.org Vocabulary

Vocabularies Prior to Schema.org Initial attempts to develop a common vocab-
ulary for semantically annotating webpages targeted specific applications [Guha
et al., 2015]. For example, the RSS vocabulary (Rich Site Summary) released in
1999 allowed users to add news feeds from different sources to their webpages.
Microformats like hCalendar and hCard were designed to be used with specific
terms serving calendar and contact information exchange, respectively, while the
FOAF vocabulary (Friend of a Friend) was used to annotate social network data.
A historical overview of different vocabularies and their target applications is pro-
vided by Guha et al. [2015]. All those vocabularies contained a limited number of
terms covering the needs of the specific applications they were addressing.

Web search was the first application that sought to consume semantic annota-
tions of a broader coverage with the aim to enhance search results [Guha et al.,
2015]. Early attempts of web search applications to establish guidelines for se-
mantically annotating web content, such as Yahoo’s SearchMonkey in 2008 and

10https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data

https://developers.google.com/search/docs/advanced/structured-data/intro-structured-data


64 CHAPTER 4. SEMANTIC ANNOTATIONS ON THE WEB

Google Rich Snippets in 2009, led to data silos [Mika, 2015]. Each application ex-
pected different semantic annotation mechanisms and terms, i.e. different attribute
names were used to denote the same type of data objects. This was burdensome for
web content publishers. Therefore the need to simplify the effort of web content
publishers, by providing one common terminology understood and consumed by
all main search engines, emerged.

Initial Development and Extensions This need was addressed in 2011 with the
development of schema.org, a joint initiative by Google, Microsoft, Yandex, and
Yahoo. The schema.org vocabulary is a collection of terms that can be used to
describe data objects of different types, such as products, persons, job postings,
and recipes. Schema.org terms can be combined with different markup formats,
such as RDFa, Microdata, and JSON-LD.

In its initial version, schema.org contained 297 classes/types and 187 relation-
s/properties [Guha et al., 2015]. Until October 2021, the schema.org vocabulary
has been extended through 52 releases.11 At its launch, schema.org was designed
to be extensible in two ways, which were more formally defined in 2015 as hosted
and external extensions [Guha et al., 2015]. Hosted extensions are discussed with
the broader community in collaboration with experts and integrated within the core
of the schema.org vocabulary. External extensions are coordinated independently
and are not integrated into schema.org’s core. An example of an external extension
of schema.org is the GS1 web vocabulary, which supports fine-grained product
data descriptions according to product regulation standards, e.g. EU No1169.12

The discussions regarding the vocabulary extensions initially relied on project-
based collaborations, but soon evolved to occur within a public and open commu-
nity, taking place over the W3C public-vocabs mailing list [Guha et al., 2015]. In
March 2015, the community discussions concerning maintenance and extensions
were moved to a W3C Community Group [Mika, 2015].13 The latest release (Oc-
tober 2021) 13.0 contains 792 classes, 1447 relations/properties, 15 datatypes, 83
enumerations and 445 enumeration members.14

Hierarchy of Terms The classes of the schema.org vocabulary are arranged in
a hierarchy, with Thing being the most generic class. In the 13.0 release, there ex-
ist the following ten classes under Thing: Action, BioChemEntity, CreativeWork,
Event, Intangible, MedicalEntity, Organization, Person, Place, and Product. The
properties of the vocabulary can be used across different classes but have an in-
dented usage with regard to the classes and values with which they are compatible.
Figure 4.2 shows part of the documentation of the Product schema.org class. Each
property of the class product is accompanied by its expected type and descrip-

11https://schema.org/docs/releases.html
12https://www.gs1.org/voc/
13https://www.w3.org/community/schemaorg/
14https://schema.org/docs/schemas.html

https://schema.org/docs/releases.html
https://www.gs1.org/voc/
https://www.w3.org/community/schemaorg/
https://schema.org/docs/schemas.html
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Figure 4.2: Part of the documentation of the schema.org Product class.

tion. For example, the property manufacturer can denote the manufacturer of the
product and expects a value of type Organization. Additionally, schema.org offers
properties for indicating product identifiers, such as gtin13 and gtin14, which both
expect textual values.

4.3 Applications using Semantic Annotations

In the following, we present example applications that consume semantic annota-
tions embedded in HTML pages: web search, intelligent personal assistants, prod-
uct catalogs, and comparison portals. An extensive list of applications consuming
semantic annotations on the Web can be found in the work of Guha et al. [2015].

4.3.1 Web Search

One of the main contributions of semantic markup annotations is that they can be
used to enhance the search results in the form of additional information snippets,
i.e. compact summaries of the content of the page. As each search engine may
implement a different crawling strategy for retrieving search results, guidelines for
best annotation practices are published in the webmasters’ documentation of each
web search engine. In the following, we give an overview of the markup annotation
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guidelines of Yahoo and Bing15 as well as Google16 and Yandex17 as reported in
their webmasters’ documentation as of October 2021.

Annotation Guidelines of Bing and Yahoo The common crawling strategy
of the Bing and Yahoo18 search engines supports the following vocabularies and
markup formats: schema.org with Microdata or JSON-LD, Microformats, RDFa,
and Open Graph. Nine types of entities are supported in total, such as People,
Recipes, and Products. However, except for the Microdata format, which can be
used with any of the nine types, some types are not supported in combination with
specific formats, e.g. Breadcrumbs with Microformats and Products with RDFa.
Additionally, an extension of the defined nine types is allowed through the use of
the schema.org classes, e.g. a web content publisher can annotate an element with
the schema.org class Place and its properties, even though Place is not one of the
nine defined classes which Bing and Yahoo support.

Annotation Guidelines of Google Google Search supports structured data in
Microformats, RDFa, Microdata, and JSON-LD format, while the latter is recom-
mended. Schema.org is the only supported vocabulary after the announcement in
April 2020 that data-vocabulary.org, which was the predecessor of schema.org, will
no longer be eligible for Google rich results features.19 Depending on the annota-
tion type, Google distinguishes between required and optional properties. In order
to check the validity of the embedded structured data against the crawling strategy
of Google, webmasters can use publicly available structured data validation tools
such as the Rich Results Test tool20 or the schema.org Validator.21 Validating the
code of Figure 4.1b against the Rich Results Test Tool outputs one error due to the
missing author property of the Review item, as well as some warnings due to miss-
ing optional product properties. These properties are recommended for optimized
search results by Google, such as product description and brand.

Annotation Guidelines of Yandex Yandex supports the enrichment of search
snippets with the schema.org vocabulary in combination with the RDFa, Micro-
data, or JSON-LD markup formats. Additionally, Microformats are supported.
Although all schema.org classes can be used for annotating data objects in HTML
pages, only two Microformats are supported: hCard for marking up contact infor-
mation such as addresses or phone numbers and hRecipe for marking up recipes.
Similar to the Google validation tool, Yandex specifies required properties per type

15https://www.bing.com/webmasters/help/marking-up-your-site-with-structured-data-3a93e731
16https://developers.google.com/search/docs/advanced/structured-data/sd-policies
17https://yandex.com/support/webmaster/
18https://en-global.help.yahoo.com/kb/SLN2213.html
19https://developers.google.com/search/blog/2020/01/data-vocabulary
20https://search.google.com/test/rich-results
21https://validator.schema.org/

https://www.bing.com/webmasters/help/marking-up-your-site-with-structured-data-3a93e731
https://developers.google.com/search/docs/advanced/structured-data/sd-policies
https://yandex.com/support/webmaster/
https://en-global.help.yahoo.com/kb/SLN2213.html
https://developers.google.com/search/blog/2020/01/data-vocabulary
https://search.google.com/test/rich-results
https://validator.schema.org/
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and offers its own structured data validator22 whose usage is restricted to registered
Yandex users. For example, the properties name, description, price, and priceCur-
rency are required to form a snippet describing a product.

4.3.2 Intelligent Personal Assistants

Structured data assist automated agents such as chatbots, voice assistants, and e-
mail assistant applications with the completion of web service tasks, such as ques-
tion answering and scheduling of appointments. The Google Voice Assistant ex-
ploits the schema.org property speakable within an HTML page for identifying text
snippets that are suitable for audio playback using text-to-speech.23 Similarly, Cor-
tana, the virtual assistant developed by Microsoft uses markup annotations to syn-
chronize different applications, such as the e-mail and calendar applications [Guha
et al., 2015]. For example, an e-mail containing structured data concerning a flight
reservation would assist Cortana in creating the corresponding event in the calen-
dar application of the user. Neumaier et al. [2017] developed a prototype for a
chatbot that accumulates Open Data, translates them to a unified schema.org tem-
plate, and exploits schema.org annotations for question answering. Such usage of
structured data for assisting chatbots has attracted the attention of providers that
support conversational AI providers, such as Schema App24 and Onlim25.

4.3.3 Product Catalogs and Comparison Portals

Annotated data can be exploited for building catalogs and comparison portals, with
the product domain being well-suited for such downstream applications. Google
products rebranded as Google Shopping in 2012, exploits structured data to cre-
ate comprehensive lists of products and compare the prices of product offers from
different merchants. To support merchants in publishing their offers, Google es-
tablished the Merchant Center, which provides guidelines on adding semantic an-
notations on product offers.

4.4 Adoption of Semantic Annotations

In this section, we analyze the yearly adoption of web semantic annotations in the
period 2012-2020 and explore which markup formats are the most widely used,
both in general and in combination with the schema.org vocabulary. This explo-
ration can provide a first estimate of the potential of exploiting semantic annota-
tions, complying with specific markup formats and using schema.org terms, as a
source of distant supervision. For our analysis, we compile the profiling results of
the overall adoption of semantic annotations as well as of the adoption of the four

22https://webmaster.yandex.com/microtest.xml
23https://developers.google.com/search/docs/advanced/structured-data/speakable
24https://www.schemaapp.com/schema-markup/schema-markup-make-chatbots-intelligent/
25https://onlim.com/en/conversational-ai-and-schema-org/

https://webmaster.yandex.com/microtest.xml
https://developers.google.com/search/docs/advanced/structured-data/speakable
https://www.schemaapp.com/schema-markup/schema-markup-make-chatbots-intelligent/
https://onlim.com/en/conversational-ai-and-schema-org/
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Figure 4.3: Relative and absolute number of webpages (blue) and websites (or-
ange) per WDC release with semantic annotations.

markup formats, introduced in Section 4.1 and schema.org vocabulary, introduced
in Section 4.2, as published by the Web Data Commons (WDC) project,26 which
was maintained since 2016 as part of the work of this thesis. The WDC project
extracts yearly all Microdata, JSON-LD, RDFa, and Microformats data from the
Common Crawl web corpus,27 the largest and most up-to-date web corpus that is
currently available to the public. The extracted data are available for download in
the form of RDF-quads. In addition, yearly statistics on the deployment of the dif-
ferent markup formats and vocabularies are calculated and published. Considering
that JSON-LD became a W3C recommendation in 2014, the first reported statistics
on the adoption of this format appeared in the WDC 2015 release. It is important to
mention that the corresponding Common Crawl corpora, used to extract the yearly
WDC structured data releases, differ in size, number of webpages (URLs), number
of pay-level domains (PLDs), i.e. websites, as well as crawl depth, i.e. the amount
of crawled pages within the same website. Although this is important for interpret-
ing the overall trends, a deeper analysis of the effect of the yearly crawling strategy
of Common Crawl on the resulting WDC corpora is beyond the scope of this work.

4.4.1 Overall Adoption Trends

The line chart of Figure 4.3 presents the relative (primary y ax - left) and abso-
lute (secondary y ax, log scale - right) number of webpages (URLs) and websites
(PLDs) with semantic annotations per year. The 2012 WDC release revealed that
only 5.6% of the PLDs in the crawled corpus contained semantic annotations. To
put things into context, we remind the reader that the joint effort of the four main

26http://webdatacommons.org/
27http://commoncrawl.org/

http://webdatacommons.org/
http://commoncrawl.org/
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Figure 4.4: Websites in millions deploying the major markup formats per year.

search engines Google, Bing, Yahoo, and Yandex to create the schema.org vo-
cabulary and motivate the web content publishers to add semantic annotations for
improving search results was introduced in 2011. Although we will look in more
detail at the adoption growth of the schema.org vocabulary in the following para-
graphs, we can already attribute the large relative jump in the years after 2012 to
the improvement of the collaboration between publishers and consumers of web
content through the common ground offered by the schema.org vocabulary.

The relative growth of URLs with semantic annotations is mostly positively
correlated with the yearly growth of PLDs with semantic annotations. A noticeable
exception occurred in 2016, for which we see a high jump in terms of PLD growth
but a decrease in the relative URL growth. The reason for this is the considerable
difference in the depth of the October 2016 Common Crawl corpus compared to
the rest of the crawls. More concretely, the average number of URLs per PLD was
larger than 500 in the 2016 Common Crawl corpus, which is 5-7 times larger than
the average number of URLs per PLD for the rest of the crawled corpora used for
analysis. Within eight years, the structured data adoption ratio increased to 44.3%
and 49.9% in terms of PLDs and URLs, respectively, indicating that almost half
of the websites and webpages in the crawl use markup annotations to semantically
annotate their web content. This corresponds to 15.3 million websites and 1.7
billion pages, which is more than four times larger than the adoption reported in
2012.

4.4.2 Markup Format Adoption Trends

Despite the overall continuous increase in the deployment of structured data, not all
markup formats follow the same growth rate. We demonstrate this with the barplot
of Figure 4.4, which presents the adoption of the four major markup formats in
2012-2020 in terms of the absolute number of websites (PLDs). We can observe
that after 2016, the Microdata and JSON-LD formats dominate over the hCard and
RDFa formats. Through the years, JSON-LD has become as popular as Microdata
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and has grown over 50% from 2019 to 2020. Microformat hCard is also adopted
by a steadily increasing number of websites. However, considering that Microfor-
mats are used together with a specific set of inextensible terms of a flat hierarchy,
their expressivity is rather limited in comparison to extensible vocabularies, such
as schema.org. We verify this observation by looking at the top classes by the num-
ber of PLDs for the different markup formats for the 2020 WDC release: for the
Microformats hCard, the top classes linked to the root class vcard2006 are Name,
VCard, and Organization, which apart from the latter do not signify the specific
type of the annotated data object, such as WebSite, Person, Product, SearchAction,
Breadcrumb, Article and Document, which are some of the top classes for the other
three markup formats. It is worth noting that the large increase in the number of
PLDs using RDFa annotations in 2020 in comparison to the previous years is due
to a different extraction strategy. Between 2012 and 2019, only RDFa annotations
found in the body element of the HTML page were extracted, while in 2020 we
additionally extracted RDFa annotations found in the <header> element of the
HTML page. For a fair comparison to the previous years, we represent the number
of PLDs annotating RDFa data as a stacked bar in Figure 4.4: the upper light-
colored part indicates the number of PLDs that include RDFa annotations only in
the <header> elements while the lower part indicates the number of PLDs that
include RDFa annotations in the <body> element of their HTML pages.

4.4.3 Schema.org Adoption Trends

As introduced in Section 4.2, the schema.org vocabulary offers a set of terms ar-
ranged in a hierarchy for annotating different types of entities. Being promoted
by the main search engines and used in different downstream applications such as
web search, intelligent personal assistants, and online advertising, schema.org has
seen noteworthy growth over the last few years. We demonstrate the growth of the
schema.org vocabulary with the line chart of Figure 4.5, which shows the number
of websites using the schema.org vocabulary in combination with either the Micro-
data or the JSON-LD format since 2012 and 2015, respectively. Additionally, we
depict with dotted lines the relative number of websites using schema.org with Mi-
crodata or JSON-LD with respect to the overall number of websites with Microdata
and JSON-LD, respectively.

Schema.org migrated its website from http to https and changed the provided
annotation examples to “https://schema.org”-based URLs during 2020. Although
this action is not clearly documented, it can be verified by comparing the differ-
ent archived versions of the schema.org website. For example, the documentation
of the schema.org/Product class in August 2019 provides an “http://schema.org”-
based example,28 while the version of November 202129 provides an “https://schema.
org”-based example. Additionally, the usage of both http and https in schema.org
annotations is confirmed as valid in the Frequently Asked Questions section of the

28https://web.archive.org/web/20190809175648/http://schema.org/Product
29https://web.archive.org/web/20201102143606/https://schema.org/Product
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Figure 4.5: Absolute (in millions) and relative number of websites using
schema.org with either Microdata (blue) or JSON-LD (orange).

schema.org website.30 Therefore, in Figure 4.5, we present the number of websites
that use either suffixes for annotating their structured data.

Given the yearly PLD adoption of the JSON-LD and Microdata markup for-
mats, we can observe that the two formats are highly interlinked with the schema.org
vocabulary. More specifically, all webmasters that use the JSON-LD format to
mark up their data include at least one schema.org annotation on their websites.
This trend has been observed yearly since the first reported adoption statistics of
JSON-LD in 2015. The same is not applied to the Microdata markup format, for
which we see a continuously growing trend of its usage in combination with the
schema.org vocabulary. In 2012, 73.3% of the websites using Microdata were
found to include at least one schema.org annotation in their websites. The respec-
tive ratio for 2016 is 93.4%, while for 2020 it is 96.9%. With respect to the ratio
of schema.org entities to all Microdata and JSON-LD entities per year, we can ob-
serve a similar trend to the one of the PLDs. All entities (99.9%) marked up using
the JSON-LD format found in the WDC releases from 2015 to 2020 are anno-
tated with a schema.org class. The corresponding ratio for the entities marked up
with the Microdata format has grown from 59.6% to 94.4%. The continuously in-
creasing adoption of the schema.org vocabulary in combination with the two most
widely used markup formats, i.e. Microdata and JSON-LD, indicates that seman-
tically annotated web content with this vocabulary and markup formats may have
a promising potential as distant supervision for different tasks. In order to verify
this assumption for the task of entity resolution, we will look in the next section at
specific schema.org classes and the adoption of their identifying properties.

30https://schema.org/docs/faq.html#19

https://schema.org/docs/faq.html#19
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4.5 Use-Case Analysis: Semantic Annotations as Distant
Supervision for Domain-Specific Entity Resolution Tasks

This section explores the potential of using semantically annotated data of the
Product and LocalBusiness, with its subclasses Hotel and Restaurant, schema.org
classes as a source of training data for entity resolution tasks of the same topical
domain. Figure 4.6 presents the growth of the selected classes in terms of the num-
ber of websites annotating web content with the respective classes using either the
Microdata or the JSON-LD markup formats for the period 2013-2020. In general,
we observe a growing adoption trend throughout the years for all classes. While
the number of parsed websites of the Common Crawl corpora used for the 2013
and 2020 WDC extraction has almost tripled from 12.8 million to 34.5 million,
respectively, the number of websites using the selected schema.org classes in 2020
is at least 9ˆ larger in comparison to 2013.

Nevertheless, some drops between the years can be noticed. For example,
the number of websites using schema.org/Restaurant annotations decreased from
5,079 to 3,901 between 2014 and 2015. Such drops are primarily attributed to the
different crawling strategies employed by Common Crawl throughout the years
and secondarily to the changes in the adoption practices followed by the webmas-
ters. Following the example of the drop in schema.org/Restaurant annotations from
2014 to 2015 and comparing the Common Crawl releases used for the WDC 2014
and 2015 versions, we see that the 2014 version contains 1.2 million more web-
sites in comparison to the 2015 version. By analyzing the websites employing
schema.org/Restaurant annotations, we find that 70% of the websites appearing in
the WDC 2014 version but not in the WDC 2015 version are not found in the re-
spective 2015 Common Crawl release. Therefore these websites were excluded by
the crawler. Examples of such websites are tapasitas.com, californiapizza.ca, and
online-sushi.com. For the rest 30% of the websites, which could be found in the
respective 2015 Common Crawl release, we observe a shift in the annotation prac-
tices of the webmasters: schema.org/Restaurant annotations were included in 2014
but then removed in 2015.31 Examples of such websites are giantrusticpizza.com,
jimmysbarandgrill.com, and wingatehotelnyc.com.

In the following, we profile the adoption of specific schema.org properties,
which when used alone or in combination, can uniquely identify a real-world object
of a specific class, e.g. a GTIN number for products or a tax identification number
for businesses. The profiling analysis of the identifying schema.org properties is
done on website (PLD) and markedup entity level. To avoid confusion with the
entity definition presented in Section 2.2, we clarify that a markedup entity refers
to the set of semantic annotations describing an object or a concept within a single
HTML page. Figure 4.1e illustrates an example of a JSON-LD markedup entity
describing an outdoor tent product offer.

The existence and consistent usage of such identifying schema.org properties

31Verified using the Wayback Machine: https://web.archive.org/
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Figure 4.6: Websites in thousands with selected schema.org classes.

can be a valuable source of distant supervision. By comparing the values of the
identifying schema.org properties, we can group the records, i.e. markedup en-
tities, into clusters representing unique real-world objects from which matching
(intra-cluster) and non-matching (inter-cluster) record pairs can be retrieved with-
out the need of manual annotation. The generated correspondence sets can be
exploited for training entity resolution models. The distantly trained models can
then be applied to new record pairs describing real-world objects of the same class
and predict matching or non-matching relations without requiring explicit identifier
information.

4.5.1 Use-case 1: schema.org Product Annotations

The Product class is one of the most widely used schema.org classes in terms
of the number of annotated entities and websites, according to the yearly WDC
schema.org subset statistics.32As shown in Figure 4.6, the adoption of schema.org/
Product annotations is increasing significantly per year. In 2013, 68 thousand web-
sites were found to annotate product-related data, while in 2017, the number of
websites was 8.7ˆ larger. In the 2020 version of the WDC structured data analysis,
2.2 million websites were found to use the schema.org/Product class in combina-
tion with either the Microdata or the JSON-LD markup format.

Identifying Schema.org Properties According to the documentation of the
schema.org/Product class, the Product type can be used for annotating an offered

32http://webdatacommons.org/structureddata/2020-12/stats/schema_org_subsets.html

http://webdatacommons.org/structureddata/2020-12/stats/schema_org_subsets.html
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Table 4.1: Absolute (in thousands) and relative number of schema.org/Product
entities and websites with identifier properties.

schema.org/
Product
property

2013 2017 2020
Markedup

entities
PLDs

Markedup
entities

PLDs
Markedup

entities
PLDs

# (in K) % # (in K) % # (in K) % # (in K) % # (in K) % # (in K) %
gtin8 0.3 0.0 0.0 0.0 540.9 0.1 0.3 0.0 3,661.9 0.5 22.8 1.0
gtin12 0.3 0.0 0.0 0.0 507.6 0.1 0.6 0.1 4,052.6 0.5 24.5 1.0
gtin13 177.5 0.1 0.3 0.4 5,737.9 1.2 6.6 1.0 29,590.2 3.7 68.0 2.9
gtin14 10.9 0.0 0.0 0.0 578.1 0.1 0.8 0.1 2,784.0 0.3 18.0 0.8
identifier 273.4 0.2 0.2 0.2 425.3 0.1 0.6 0.1 4,197.5 0.5 14.1 0.6
productID 28,427.0 16.0 7.4 10.8 54,787.4 11.0 38.0 6.3 51,663.9 6.5 109.3 4.7
mpn 1,561.4 0.9 0.5 0.7 15,678.3 3.2 10.1 1.7 69,860.7 8.8 148.0 6.3
sku 14,513.1 8.2 1.3 1.9 49,732.8 10.0 150.4 25.3 241,700.5 30.4 1,291.1 56.2

product item or service, such as a pair of shoes or a concert ticket.33 The schema.org
vocabulary offers 57 properties. Among those, the following eight properties de-
scribe product identifiers: gtin8, gtin12, gtin13, gtin14, mpn, productID, identi-
fier, and sku. The gtin-based properties are indented for describing global trade
item numbers, i.e. identifier values for distinguishing trade items and services de-
veloped by GS1.34 The mpn and sku vendor-specific properties are assigned by
the products’ manufacturers and describe the manufacturer part number and stock
keeping unit, respectively. Finally, the productID and identifier properties can be
used to describe any product identifier value, such as an ISBN number. The men-
tioned identifying properties, with the exception of the more general productID and
identifier properties, are listed as recommended for rich results eligibility when
marking up product-related content by Google.35 Additionally, Google made an
official announcement in February 2021 through the Google Search Central Blog,
motivating and providing guidelines to the webmasters for semantically annotating
unique product identifiers.36 If used consistently, such global identifiers allow of-
fers for the same product from multiple e-shops to be grouped into clusters and are
therefore a valuable source of distant supervision.

Adoption Statistics In order to estimate the potential of the annotated product
identifiers as a source of distant supervision, we measure their adoption in different
WDC releases and analyze the overlap of the identifier property values. Table 4.1
presents the absolute and relative number of websites using the respective identi-
fier properties for three WDC Microdata and JSON-LD corpora in 2013, 2017, and
2020. Additionally, we report the absolute and relative number of markedup enti-
ties of type schema.org/Product containing the respective properties. We observe
that there has been a significant increase in the adoption of identifying properties
of product markedup entities over the years. For example, the vendor-specific sku

33https://schema.org/Product
34https://www.gs1.org/
35https://developers.google.com/search/docs/advanced/structured-data/product
36https://developers.google.com/search/blog/2021/02/product-information

https://schema.org/Product
https://www.gs1.org/
https://developers.google.com/search/docs/advanced/structured-data/product
https://developers.google.com/search/blog/2021/02/product-information
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Table 4.2: Group size distribution of product identifiers overlap.

Group size
# Occurrences

2013 2017 2020
1 4,492,158 41,538,284 100,464,424
[2-5] 2,084,117 10,676,183 36,033,295
[6-10] 409,380 1,234,244 5,254,722
[11-20] 285,232 634,551 2,576,139
[21-50] 180,727 310,188 1,182,615
[51-100] 54,480 95,664 295,704
[101-200] 23,863 40,512 123,900
[201-500] 17,408 16,411 65,008
[501-800] 4,082 3,049 16,205
[801-1000] 1,208 917 5,057
[1001-5000] 2,436 2,127 11,623
[5001-10000] 125 208 852
>10000 161 497 465

identifying property was used by 1.9% of the PLDs in 2013, while the respective
relative adoption for 2017 and 2020 is 25.3% and 56.2%. Interestingly, we see that
e-shops tend to move from general identifying properties to more specific ones.
In 2013, 10.8% of the PLDs annotating products used the general productID prop-
erty, while its relative adoption dropped to 4.7% in 2020. Looking at the gtin-based
global identifiers, we observe an overall increasing trend from less than 1% rela-
tive PLD adoption in 2013 to more than 5% relative PLD adoption in 2020. This
suggests that e-shops adapt to the main search engine guidelines to provide unique
global identifiers for their offered products.

Overlap Estimation The pre-requisite for generating training sets from semanti-
cally annotated product offers for entity resolution is the overlap of their identifying
property values. Product offers having the same annotated product identifiers can
be used to build up matching record pairs. In contrast, product offers with differ-
ent semantically annotated identifiers can be exploited for building non-matching
record pairs. We estimate the product identifiers overlap by calculating the num-
ber of occurrences of the identifier values regardless of the identifying schema.org
property in the three Product WDC corpora. Table 4.2 presents the frequency per
group size range per year, e.g. in 2017, there exist 1.23 million distinct identifier
values that appear in 6 to 10 markedup entities each. Despite the large majority of
identifying values appearing only once (group size 1) for all three yearly snapshots,
we observe that there exists a large and continuously increasing amount of iden-
tifying values that appear in multiple markedup entities. Exploiting the offers of
groups with size [2-10] in the WDC 2017 Product corpus, we can produce 55.6 mil-
lion pairs of matching offers without investing any labeling effort. Although more
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Table 4.3: Absolute and relative number of schema.org/LocalBusiness entities and
websites with identifier properties.

schema.org/
LocalBusiness
property

2013 2017 2020
Markedup

entities
PLDs

Markedup
entities

PLDs
Markedup

entities
PLDs

# % # % # % # % # % # %
duns 9 0.0 7 0.0 18,897 0.0 124 0.0 25,916 0.0 179 0.0
GLN 0.0 0.0 0.0 0.0 18,820 0.0 6 0.0 1,000 0.0 10 0.0
leiCode 0.0 0.0 0.0 0.0 133 0.0 5 0.0 2,368 0.0 32 0.0
taxID 1,226 0.0 23 0.0 262,770 0.3 396 0.1 586,371 0.8 901 0.1
vatID 1,567 0.0 27 0.0 259,451 0.3 2,864 0.7 956,118 1.3 12,890 2.0
identifier 0.0 0.0 0.0 0.0 43 0.0 1 0.0 37,326 0.1 138 0.0
telephone 9,005,683 11.8 21,491 45.7 36,049,923 44.6 169,375 43.8 48,001,143 64.5 509,804 79.2
geo 1,900,62139 83.3 1,754 3.7 13,929,608 17.2 21,046 5.4 9,253,675 12.4 128,631 20.0

elaborate cleansing and grouping steps are required considering the noisy nature
of web data which will be further investigated in Chapter 5, we can conclude that
there exists a considerable potential of generating training data for product-related
entity resolution tasks by exploiting the semantically annotated product markedup
entities.

4.5.2 Use-case 2: schema.org Local Business Annotations

According to the schema.org documentation, the schema.org type LocalBusiness
describes a physical business or branch of an organization.37 It is a subclass of
schema.org/Organization or schema.org/Place classes and a parent class of specific
types of businesses such as schema.org/Hotel and schema.org/Restaurant.

Identifying Schema.org Properties As subclasses of schema.org/Organization,
the classes LocalBusiness, Hotel, and Restaurant inherit the properties of the Orga-
nization type, among which the following five properties can be used for denoting
global identifiers: duns, globalLocationNumber, leiCode, taxID, and vatID. The
duns property refers to the Dun & Bradstreet DUNS (Data Universal Numbering
System) number, a unique nine-digit identifier for businesses.38 The numbering
system was established in 1963 and assigns a numerical identifier at the lowest
organizational level, i.e. a business location with a distinct operation. The glob-
alLocationNumber property (GLN) is a 13-digit number for identifying parties or
physical locations and is part of the GS1 systems of standards. The leiCode prop-
erty refers to the Legal Identifier Code, a 20-character alpha-numeric code based
on the ISO 17442 standard. The property vatID refers to the value-added tax iden-
tification number, while the taxID is indented for covering country-specific tax
identifiers.

37https://schema.org/LocalBusiness
38https://www.dnb.com/duns-number.html
39For the calculation of #Entities the domain citysearch.com has been excluded as it accounted for

more than 97% of the entities. This is due to a focus of the crawl in that domain which did not occur
in the next years.

https://schema.org/LocalBusiness
https://www.dnb.com/duns-number.html
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Table 4.4: Group size distribution of local business, hotel, and restaurants identi-
fiers overlap.

Group size
# Occurrences

Local business Hotel Restaurant
2013 2017 2020 2013 2017 2020 2013 2017 2020

1 1,773 184,843 59,723 5 76 607 3 166 30769
[2-5] 64 7,134 10,932 2 28 237 1 15 6816
[6-10] 7 5,422 3,395 0 25 117 0 6 191
[11-20] 5 1,486 2,192 0 25 81 0 4 73
[21-50] 3 743 1,863 0 20 43 0 1 63
[51-100] - 145 1,007 0 5 23 0 3 10
[101-200] - 169 738 0 1 5 0 0 6
[201-500] - 197 865 0 0 13 0 0 0
[501-800] 1 56 394 0 0 1 0 0 0
[801-1000] - 15 144 0 0 0 0 0 0
[1001-5000] - 16 173 0 0 1 0 0 0
[5001-10000] - 2 4 0 0 0 0 0 0
>10000 - 2 6 0 0 0 0 0 0

Adoption Statistics The Google documentation on annotating data content with
the schema.org type LocalBusiness does not include any of the above-mentioned
identifying properties as recommended. Table 4.3 presents the adoption of schema.
org identifier properties in 2013, 2017, and 2020 in terms of absolute and relative
numbers of websites and markedup entities. We observe that there is overall a
slowly increasing trend in annotating global identifiers for local businesses, while
the taxID and vatID properties are more frequently used in comparison to the rest
of the identifying properties. Despite the increasing adoption, the ratio of PLDs
using either taxID or vatID for annotating global identifiers of businesses to all
PLDs annotating local businesses remains lower than 2.5% even in 2020.

Overlap Estimation Table 4.4 presents the group size distribution given the
overlap of the identifier values of all identifying properties for the three years 2013,
2017, and 2020 for the parent class LocalBusiness and two of its subclasses, Hotel
and Restaurant. We observe that in contrast to 2013, where we have no sufficient
overlap for generating large amounts of matching LocalBusiness record pairs, in
2017 and 2020, there exist more than 15 thousand and 21 thousand identifier val-
ues respectively that occur in more than one LocalBusiness markedup entity and
can therefore be exploited for generating correspondence sets with considerable
amounts of matching record pairs. Even though the identifier value overlap for the
two subclasses Hotel and Restaurant is 2 to 30 times smaller in terms of occur-
rences per group size in the WDC 2020 corpus, the estimated amount of matching
record pairs that can be generated from the groups of size smaller than 50, is 35
thousand and 54 thousand respectively. This indicates that despite the limited adop-
tion of identifying properties for these two classes, a training set of considerable
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Table 4.5: Group size distribution of local business identifiers overlap. Grouping
based on exact match of the telephone and on approximate match (< 300 meters
distance) of the geo property values.

Group size [2-5] [6-10] [11-20] [21-50] [51-100] >100
# Occurrences 96,773 7,134 1,998 563 115 105

size can still be generated and used as distant supervision for entity resolution tasks
containing hotel or restaurant records.

Alternative Identifying Properties Besides the properties for annotating global
identifiers of businesses, the schema.org/LocalBusiness class offers the geo and
telephone properties, which, when used in combination, can help disambiguate lo-
cal businesses. Using both properties has the following two advantages over using
only one of them: First, it enables distinguishing different local businesses which
belong to the same business chain and thus often share the same telephone num-
ber. Therefore, combining geographical information with the telephone number
can uniquely identify the individual establishment of a business chain. Second, it
enables distinguishing different local businesses located in the same building and
thus have the same address.

In contrast to the schema.org properties describing global identifiers, the geo
and telephone properties are recommended by Google for annotating businesses.40

This leads to broader adoption in comparison to the adoption of global identifier
properties, as presented above. Indeed, in 2013, 45.7% of the websites annotating
businesses (9 million entities) included telephone number annotations, while in
2020, the corresponding adoption increased to 79.2% (48 million entities). The
property schema.org/geo was used by 3.7% of the websites in 2013 (1.9 thousand
entities), while in 2020, the adoption increased to 20% (9.2 million entities).

Although combining the values of the telephone and geo schema.org proper-
ties can be exploited for grouping the LocalBusiness markedup entities, normal-
izing the geo values to the same level of precision and the telephone number to a
consistent standard, e.g. [+][country code][area code][number], requires extensive
pre-processing. We apply the following normalization pipeline41 and group the
markedup entities of the WDC 2020 release: First, non-numerical characters are
removed from the telephone values. Next, the telephone values are converted to the
international telephone number standard E.164.42 Finally, the geo-coordinates are
converted to float values. The markedup entities with exactly the same telephone
numbers and a geo distance of no more than 300 meters are grouped together and

40https://developers.google.com/search/docs/advanced/structured-data/local-business#structure
d-data-type-definitions

41The normalization pipeline is part of the yet unpublished work of Alexander Brinkmann on
Unsupervised and Supervised Blocking using Contrastive Learning for Entity Resolution.

42https://www.itu.int/rec/T-REC-E.164/en

https://developers.google.com/search/docs/advanced/structured-data/local-business#structured-data-type-definitions
https://developers.google.com/search/docs/advanced/structured-data/local-business#structured-data-type-definitions
https://www.itu.int/rec/T-REC-E.164/en
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therefore considered to describe the same real-world business.
Table 4.5 presents the occurrences per group size with the grouping being gen-

erated using the telephone and geo property values after applying the previously
described cleansing process on the WDC 2020 LocalBusiness corpus. Considering
the groups of size smaller than 50, more than 700 thousand matching record pairs
can be retrieved. This further indicates that despite the more elaborate cleansing
process, exploiting the geo and telephone number properties for grouping can also
produce a large amount of potentially matching record pairs that can be used as
distant supervision.

4.6 The Semantic Web as Distant Supervision for Other
Tasks

Using content from the Semantic Web as distant supervision has been explored in
different tasks, such as relation extraction, product categorization, and product fea-
ture extraction. Table 4.6 presents a summarized overview of works using seman-
tic annotations or knowledge bases as a source of distant supervision for different
tasks. The column Source refers to the data source that was used for extracting
labeled data, the column Usage of Semantic Annotations indicates if semantically
annotated data in HTML pages were exploited for constructing the labeled set and
the Training Size column shows how many labeled entities were extracted and used
for training machine learning models.

Information Extraction Semantic annotations about types, e.g. product, event,
hotel, local business, cooking recipe, and properties, e.g. name, address, opening
hours, ingredient, together with the structure of the HTML code around the anno-
tations can be used to train information extraction methods to recognize the same
type of information in webpages that do not contain such annotations. For instance,
the annotation of the product price 69,99 Euro within an HTML page provides the
learning algorithm with an example of the structure and unit of measurement of
price values as well as an example of the HTML structures that are used around
price values on this page.

A successful example of an information extraction system that employs schema
.org annotations as training data is the work of Foley et al. [2015]. The purpose of
their system is to discover data about local events, such as small venue concerts,
theatre performances, garage sales, and movie screenings on webpages. To train
their system, they use event data from webpages which are annotated using the
schema.org event properties name, date, time, and location. They evaluate their
method on 700 million webpages from the ClueWeb12 corpus. Using 217,000
semantically annotated events as supervision, they are able to double recall at a
precision level of 85%.

In the work of Ristoski and Mika [2016], the authors propose an approach for
enriching product ads with product features extracted from semantically annotated
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Task
Topical
domain

Source
Usage of semantic
annotations

Training
size

Appears in

Relation
extraction

Multiple Freebase relations NO 1.8M [Mintz et al., 2009]

Relation
extraction

Multiple Webpages from ClueWeb NO 120M (by 2015) [Mitchell et al., 2018]

Information
extraction

Events Schema.org event data YES 217K [Foley et al., 2015]

Product
categorization

Products Schema.org product data YES 9.4K [Meusel et al., 2015]

Feature
extraction

Products HTML product annotations YES „30K [Ristoski and Mika, 2016]

Product
categorization

Products Schema.org product data YES 765K [Brinkmann and Bizer, 2021]

Table 4.6: Related works using distant supervision from the Semantic Web.

product offers on the web. The structured products are used as distant supervision
for training feature extraction models, which can then extract attribute-value pairs
from unstructured product descriptions. The extracted key-value pairs are used in
a two-fold manner: first for identifying matching products to specific product ads
and second for enriching the ads with the extracted data.

A series of publicly available information extraction evaluation datasets that
were built using schema.org annotations was compiled by Meusel and Paulheim
[2014] for the information extraction challenge of the Linked Data for Informa-
tion Extraction (LD4IE) workshops in 2014 and 2015. The dataset of the LD4IE
Challenge 2014 consists of webpages containing Microformats-hCard annotations
describing contact information of persons and organizations. The goal of the chal-
lenge was to extract such contact information from pages without annotations. The
dataset of the LD4IE Challenge 2015 [Meusel and Paulheim, 2015a] consists of
HTML pages that contain schema.org annotations describing music recordings,
persons, cooking recipes, restaurants, and sports events. This dataset was extracted
from the December 2014 version of the Common Crawl. Altogether, the pages
originate from 7,300 different websites. The goal of the challenge was to extract
information on the above-mentioned domains from pages without annotations.

Relation Extraction Relation extraction is a specific information extraction task
that aims at finding relations between entities and has been often tackled with dis-
tant supervised learning [Mintz et al., 2009; Mitchell et al., 2018]. Mintz et al.
[2009] use entity pairs that are linked with some relation in the Freebase knowl-
edge base as distant supervision for training a relation extraction machine learning
model. They are able to extract 1.8 million relation instances, which they use as
training data for a relation extraction machine learning model. The trained model
is able to extract 10 thousand instances of 102 distinct relations with a precision of
67.2%. For the same application domain, Mitchell et al. [2018] developed NELL,
a Never Ending Language Learner model. NELL automatically and continuously
extracts relations from ClueWeb, a collection of billions of webpages, and adds
them to the NELL knowledge base. The relations of the curated knowledge base
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are exploited as training examples for extracting additional relations in a cyclic
manner. By 2015, the NELL system was able to extract 120 million relations.

Product Categorization Schema.org product annotations have also been ex-
ploited for the product categorization task [Meusel et al., 2015]. More specifically,
the annotated schema.org/Product/category values are used as features for train-
ing a classifier to predict product category labels given product descriptions with
no category information. The model reaches an accuracy of 56%, given that the
category information is combined with other properties such as the name of the
product.

Brinkmann and Bizer [2021] tackle the task of hierarchical product categoriza-
tion by exploiting schema.org/Product entities to pre-train a ROBERTa transformer
model. In the pre-training phase, the values of the properties title, description, and
category of schema.org/Product offers are used in order to inject domain-specific
knowledge into the model. Next, the model is fine-tuned on the hierarchical prod-
uct categorization task by exploiting manually labeled product offers. The authors
show that using schema.org product annotations in the pre-training phase leads to
an improved performance in terms of weighted F1 score by 1.22%.

4.7 Discussion and Conclusion

In this chapter, we gave an overview of different markup formats and the schema.org
vocabulary used for semantically annotating web content. Next, we explored the
adoption trends of semantic annotations in the period 2012 to 2020 and their poten-
tial as a source of distant supervision for entity resolution tasks. We could identify
that although there is a constantly growing number of websites using semantic an-
notations, not all markup formats share the same growth trends. We showed that
Microdata and JSON-LD are the most popular in terms of adoption markup formats
and are widely used together with the schema.org vocabulary.

We conducted a use-case-specific analysis by presenting an overview of the
vocabulary, search engine annotation recommendations, and adoption growth of
the schema.org Product and LocalBusiness classes. We observed that although
schema.org provides terms for each one of those classes which can be used for
annotating unique entity identifiers, there exist large differences concerning the
adoption of such properties among the analyzed classes. Those differences can
be mainly attributed to the annotation recommendations from large search engines
such as Google and Yahoo. For example, we observed that more than 55% (1.2
million) of the websites including product annotations in 2020, used at least one
schema.org identifier property such as sku. In contrast less than 2.5% (14 thousand)
of the websites with local business annotations were found to also include identifier
properties, such as taxID and vatID.

By grouping the identifier values using simple overlap, we can obtain thou-
sands of matching record pairs for both of the analyzed classes, which in terms of
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size can be considered a rich source of supervision. However, given the limited
website adoption of identifying properties for the local business-related data, we
expect the grouped records to have a lower level of heterogeneity in comparison to
the product-related grouped records, which derive from many more websites. Ad-
ditionally, we showed that a combination of alternative identifying properties, such
as address and telephone number, can be used to group local business markedup
entities. However, exploiting such properties comes at a higher pre-processing
cost. In summary, we conclude that for both use-cases, semantic annotations show
a considerable potential for generating training sets for entity resolution tasks in
terms of the amount of distantly labeled record pairs, while there exist significant
differences among the classes in terms of expected data heterogeneity and pre-
processing effort.



Chapter 5

The WDC Product Corpus for
Entity Resolution

Product-related semantic annotations have a good potential to be used as a source of
distant supervision for training entity resolution models targeting product match-
ing tasks, as we saw in the previous chapter. This is due to the following two
reasons: First, products are naturally accompanied by identifiers, while more and
more webmasters semantically annotate those, following the recommendations of
the main search engines. Second, there exists a large number of groups of product
offers sharing the same annotated identifiers. These groups can be used to de-
rive matching and non-matching pairs of offers from multiple websites, which can
serve as labeled data for training entity resolution models. The trained models can,
in turn, be applied to unseen product-related record pairs without any identifiers
and predict matching relations.

The noisy nature of the Web, in combination with the different levels of knowl-
edge and understanding of semantic vocabularies from the side of the webmas-
ters, lead to errors in the annotated data or misuse of the vocabulary terms. An
overview of frequent semantic annotation errors is presented by Meusel and Paul-
heim [2015b]. Thus, semantic annotations need to be cleaned before they can
be used for generating training data. For example, looking at the 20 most com-
mon schema.org/productID, schema.org/gtin, and schema.org/sku values of the
WDC 2017 schema.org/Product corpus, we can detect the following noisy iden-
tifiers: “stock:” with 195 thousand occurrences, “as_shown” with 63 thousand
occurrences and “00000000000000” with 7.5 thousand occurrences. Such fre-
quently occurring identifier values can lead to erroneously grouping offers re-
ferring to different real-world products. Additionally, webmasters do not always
consistently use the schema.org vocabulary and therefore provide product identi-
fiers for entities of types other than Product or Offer. For example, in the WDC
2017 schema.org/Product corpus, we find 612 and 129 thousand occurrences of the
productID property assigned to markedup entities of types IndividualProduct and
SomeProducts, respectively. Both of those classes are valid schema.org subclasses

83
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of the class schema.org/Product, and can therefore contribute to the grouping of
markedup entities and the curation of training data.

In this chapter, we consider different annotation strategies for product-related
data and develop a pipeline for cleansing and grouping semantically annotated
product offers describing the same real-world product, which relies on the over-
lap of their product identifiers. The output of this pipeline is the WDC Product
Corpus for entity resolution, which is the third contribution of this work [C3]. The
WDC Product Corpus comprises 26.5 million records of product offers described
with multiple attributes such as name, description, price, and product category.
The product offers are grouped in 16.3 million clusters. Combining pairwise the
product offer records of the same clusters, we can generate the largest training set
in terms of size and heterogeneity for entity resolution so far, with more than 40
million matching record pairs deriving from more than 79 thousand websites. In
this chapter, we provide profiling information on the WDC Product Corpus. Addi-
tionally, we evaluate its quality in a twofold manner: First, by manually validating
for a subset of the grouped product offers whether they refer to the same real-world
product or not. Second, by using record pairs of the same clusters (matching) and
of different clusters (non-matching) to train traditional symbolic as well as sub-
symbolic entity resolution models. For evaluating the performance of the entity
resolution models, we build a gold standard with manually verified matching and
non-matching product offers.

The contributions of this chapter are summarized as follows:

• We exploit semantically annotated product identifiers for grouping matching
records of product offers and curate the WDC Product Corpus. By combin-
ing pairwise the grouped product offers, we generate the largest and most
heterogeneous, in terms of the number of data sources, training dataset for
entity resolution produced so far.

• We identify different types of errors appearing in product-related semantic
annotations and build a cleansing pipeline for reducing the noise of the WDC
Product Corpus.

• We evaluate the cleanliness of the WDC Product Corpus by manually veri-
fying for a subset of the grouped offers whether they refer to the same real-
world product.

• We evaluate the training quality of the WDC Product Corpus using symbolic
and subsymbolic entity resolution methods and a manually curated gold stan-
dard.

This chapter is structured into five sections. In Section 5.1, we present the
pipeline which we execute for curating the WDC Product Corpus for entity reso-
lution and discuss in detail the cleansing and feature extraction steps. Section 5.2
presents the profiling statistics of the WDC Product Corpus. In Section 5.3, we
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evaluate the cleanliness and training quality of the corpus and present the results
of baseline experiments using a subset of the matching and non-matching record
pairs retrieved from the corpus as training data. In Section 5.4, we compare the
WDC Product Corpus to other benchmark entity resolution tasks and discuss re-
lated works that have used the corpus for training entity resolution models. Finally,
Section 5.5 summarizes the main findings of the chapter.

The methodology for curating the WDC Product Corpus and its profiling statis-
tics have been published in the Companion Proceedings of the 2019 World Wide
Web Conference [Primpeli et al., 2019]. The evaluation of the quality of the WDC
Product Corpus is joint work with Ralph Peeters and has been partially published
in the Proceedings of the 10th International Conference on Web Intelligence, Min-
ing and Semantics [Peeters et al., 2020b]. The categorization of the corpus is joint
work with Helene Bechtold and has been published in her Master’s thesis [Bech-
told, 2019]. The WDC Product Corpus is available for public download.1

5.1 Curation Pipeline

In this section, we outline the details of the pipeline which we execute to curate
the WDC Product Corpus. The curation workflow consists of a cleansing and an
attribute extraction pipeline. The cleansing pipeline allows to gather, cleanse and
group records of product offers with semantically annotated identifiers into clusters
representing the same real-world products. Hereon, we will refer to the semanti-
cally annotated product offers as offers. The attribute extraction pipeline assigns to
each offer of the corpus a set of product-related attributes, such as product name
and product category.

5.1.1 Cleansing Pipeline

We use the Web Data Commons schema.org/Product data corpus November 2017,2

containing 809 million schema:Product and schema:Offer markedup entities, as
a starting point, which is extracted from the October 2016 Common Crawl web
corpus.3 In order to overcome syntactic errors in annotations and the inconsistency
of annotation practices of different webmasters, we develop a cleansing pipeline.
Figure 5.1 gives an overview of the cleansing pipeline and the amount of resulting
offers and clusters in the WDC Product Corpus after each cleansing step. In the
following, we provide the methodological details of each cleansing step.

Filtering of Offers with Annotated Identifiers The schema.org vocabulary
provides multiple properties for annotating product identifiers, which were pre-
sented and compared in Section 4.5.1. According to the schema.org documen-

1http://webdatacommons.org/largescaleproductcorpus/index.html
2http://www.webdatacommons.org/structureddata/2017-12/stats/schema_org_subsets.html
3https://commoncrawl.org/2016/11/october-2016-crawl-archive-now-available/

http://webdatacommons.org/largescaleproductcorpus/index.html
http://www.webdatacommons.org/structureddata/2017-12/stats/schema_org_subsets.html
https://commoncrawl.org/2016/11/october-2016-crawl-archive-now-available/
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Figure 5.1: Cleansing pipeline for curating the WDC Product Corpus.

Table 5.1: Overlap of global and vendor-
specific schema.org product identifiers.

Value
overlap

gtin8 gtin12 gtin13 gtin14

sku 2,065 18,682 103,736 16,897

productID 2,966 13,854 198,847 10,192

identifier 122 3,751 17,732 837

Overlap # 5,153 36,287 320,315 27,926
Overlap % 6.75% 15.81% 11.21% 11.35%

Table 5.2: Most frequent alternative
identifier-related schema.org terms.

Schema.org
term

#Entities

IndividualProduct/productID 612,260
IndividualProduct/sku 308,096
ProductModel/sku 236,415
SomeProducts/mpn 136,058
SomeProducts/productID 129,608
SomeProducts/gtin13 127,360

tation for the Product4 and the Offer5 classes, the gtin-based and mpn properties
should be used to annotate global-scoped identifiers. Vendor-specific identifiers
should be marked-up as sku, while productID and identifier can be used either
to markup vendor-specific or global identifiers. However, we observe that the
identifier-related terms are used inconsistently in many cases, as vendor-scoped
terms are often used to annotate global-scoped identifier values. Table 5.1 presents
the number of overlapping values marked with vendor-specific and global-scoped
schema.org identifier properties. For example, 2,065 product identifier values are
found to be marked with both the sku and the gtin8 properties. In total, more than
19% of the distinct global identifier values are annotated using the property sku,
while the properties identifier and productID are also often used for the same pur-
pose. Based on this observation, we consider the values of all of the following
properties for the grouping step: gtin8, gtin12, gtin13, gtin14, mpn, sku, identifier,
and productID.

Additionally, we notice that 6% of the websites annotating offers with iden-
tifier values use schema.org terms that are either invalid or do not conform with
the search engines’ recommendations for annotating products, as described in Sec-
tion 4.5.1. This is similar to the observations of Meusel and Paulheim [2015b].
For example, a frequent pattern is the usage of alternative schema.org types de-
noting product offer identifiers, such as IndividualProduct/productID or Product-
Model/sku. We present such identifier-related terms and their frequency in Ta-
ble 5.2. Such terms reveal identifying information for an offer and therefore, we

4https://schema.org/Product
5https://schema.org/Offer

https://schema.org/Product
https://schema.org/Offer
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(a) Listing item (b) Recommended offers

(c) Detail page

Figure 5.2: Example of a product offer listing and advertisement.

do not want to ignore them during grouping. We capture such offers by applying
the following regular expression pattern on the schema.org terms used to describe
them: .*/(gtin8|gtin12|gtin13|gtin14|sku|mpn|identifier|productID). This results in
116 million offers being selected from the WDC 2017 schema.org/Product corpus.

Removal of Listing Pages and Advertisements Figure 5.2 shows an example
of a listing item referring to a light bulb product offer (Figure 5.2a), a part of
its corresponding detail page (Figure 5.2c), as well as two recommended offers
appearing on the detail page (Figure 5.2b). Product summaries included in list-
ings and advertisements are often repetitive and provide information that is either
fully contained in the product’s detail page (Figure 5.2a) or incomplete and thus
not enough to disambiguate a product (Figure 5.2b). We consider that the limited
and repetitive texts of listing and advertisement offers do not contribute to learning
powerful classification models due to their triviality or even mislead the learning
process due to their ambiguity. Therefore, we want to include only the comprehen-
sive information about a product from its detail page in the WDC Product Corpus
and not the summaries of this information found on listing pages or as advertise-
ments on other detail pages.

To detect listing pages and advertisements, the following heuristic is applied:
First, we group the offers that appear in the same webpage. For each group that
contains more than one offer, we calculate the standard deviation σpOlengthq and
the median medianpOlengthq of the length of the concatenated title and descrip-
tions of its offers. If we find that the standard deviation of a group is small, i.e.
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the descriptions of all offers of the same webpage have little variation, we as-
sume that the webpage is a listing one and exclude all offers appearing on it. The
standard deviation boundary for the classification decision is empirically set as
0.2 ˆ medianpOlengthq. If the standard deviation σpOlengthq is smaller than the
defined boundary, we classify as listings and filter out all offers of the group. Other-
wise, we proceed to a second step and check for every offer if there exists a seman-
tic connection to other offers of the same group using the terms schema:RelatedTo
and schema:SimilarTo. If such connection exists, we classify the offer as an adver-
tisement and filter it out. We measure the quality of our heuristic using a manually
annotated test set of 80 offers from different webpages with a ratio 70%:30% of
listingsORads and non-listingsORads, respectively. We calculate the F1 score on
the positive class listingsORads to be 94.8%. This cleansing step removes 49%
of the offers, leaving 58 million non-listing or advertisement offers in the WDC
Product Corpus.

Filtering by Identifier Length and Occurrence In the next pre-processing step,
the annotated identifier values are normalized by removing non-alphanumeric char-
acters and common prefixes, such as initial zero digits and identifier-related strings
like ean, mpn, sku, and isbn. Considering the length of global identifiers, such as
gtin or isbn, and the fact that short identifiers are more likely to introduce noise
in the grouping step, we filter out all offers having identifiers that are shorter than
eight characters. Additionally, offers whose identifier values completely consist
of alphabetical characters are removed. Finally, we observe that a considerable
amount of websites use the same identifier value to annotate all their offers, likely
due to an error in the script generating the pages. We detect these websites and
remove their offers from the corpus. After these filtering steps, 26.6 million offers
remain in the WDC Product Corpus.

Grouping and Post-processing We group the remaining 26.6 million offers into
18 million clusters using their identifier values. It happens that single offers contain
multiple alternative identifiers referring to the same product, e.g. gtin8 and gtin12,
or gtin12 and mpn. We use this information transitively to merge clusters referring
to the same product, which results in a reduction of the number of clusters to 16
million.

We also note that some websites annotate offers with identifiers referring to
product categories, such as UNSPSC numbers, in addition to product-specific iden-
tifiers. For detecting such cases, we examine the structure of the identifier co-
occurrence graph within each cluster. Figure 5.3 presents how such an identifier
co-occurrence graph can be derived: Given the overlap of the offers’ identifier val-
ues in Figure 5.3a and considering graph transitivity, all offers are grouped in one
cluster, as shown in Figure 5.3b. Representing every distinct identifier value ap-
pearing in the clustered offers as a vertex and denoting co-occurrence relations with
edges results in the graph of Figure 5.3c. For example, there is an edge between
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(a) Offers with identifiers (b) Clustered
offers

(c) Identifier
co-occurrence graph

(d) Post-processed
clustered offers

Figure 5.3: Example of deriving the identifier co-occurrence graph and post-
processing the clustered offers.

the vertices representing the values prod_A and cat_1, as they co-occur in the offer
with id 1, considering Figure 5.3a.

We detect identifier values that refer to product categories rather than single
products by measuring the degree and the clustering coefficient for each vertex
in the identifier co-occurrence graph. The degree of a vertex is calculated as the
number of edges adjacent to it. The clustering coefficient of a vertex is calculated
as the fraction of pairs of the vertex’s neighbors which are adjacent to each other.
A high degree of a vertex in combination with a small clustering coefficient in the
identifier co-occurrence graph denotes that an identifier value often co-occurs with
other values that, however, never appear together. In the example of Figure 5.3,
the vertex representing the value cat_1 occurs together with the values prod_A,
prod_B, and prod_C, among which, however, there is no edge. This indicates that
the vertex cat_1 likely represents a product category identifier rather than a single
product identifier and should be removed. With the removal of this vertex, the
clustered offers of Figure 5.3b are split into three clusters, as shown in Figure 5.3d.

We discover that vertices having a degree larger than ten and a clustering co-
efficient smaller than 0.2, tend to represent product categories rather than single
products. Therefore, we remove the identifier values corresponding to those ver-
tices and split the clustered offers, similar to the example above. This removes
90,073 offers and results in the creation of 199,139 additional clusters. Therefore
the final WDC Product Corpus contains 26,507,033 offers deriving from 79,126
websites and grouped into 16,391,439 clusters.

5.1.2 Attribute Extraction Pipeline

Product identifiers allow offers to be grouped into clusters representing the same
real-world product. Deriving pairs of offers within and across clusters allows us to
build a training set of distantly labeled matching and non-matching pairs of offers.
In order to be able to train entity resolution models that can predict if two product
offers without identifiers are matching or non-matching, the offers of the training
set need to be accompanied by product-related attributes. We obtain such attributes
using the schema.org property values of the markedup offer entities. Additionally,
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(a) Product offer on a webpage. (b) Corresponding schema.org annotations.

Figure 5.4: Example of a product offer annotation with two schema.org entities.

we further enrich the offers by exploiting the content of the specification tables
found in their corresponding webpages as well as by assigning product category
information. Below, we present the steps for extracting product-related attributes.

Leveraging Entity Relations

For the majority of the clustered offers, we directly extract the most frequently ap-
pearing schema.org properties, which reveal part of the product’s identity and can
be therefore used for matching: name, title, description, brand, price, priceCur-
rency, and manufacturer. We merge the name and title attributes into a single title
attribute. In addition, we extract the values of the properties image and availabil-
ity. The image information can be used as an additional matching signal in general
but will not be exploited in our work, as we solely focus on textual attributes. The
availability information can be used as distant supervision in different applications
other than entity resolution, such as feature extraction.

We find that 20% of the offers in the corpus do not contain highly relevant to the
entity resolution task properties, such as title and description. This originates in the
annotation practice of describing a product offer using two separate markedup en-
tities. An example of this annotation practice is shown in Figure 5.4. The example
product comprises two markedup entities which are connected with the Produc-
t/offers property: the parent markedup entity, which is of type schema.org/Product
and is annotated with the name property, and the child markedup entity of type
schema.org/Offer, which contains the sku identifier, the price, and the availabil-
ity information. Given our cleansing pipeline described in Section 5.1.1, the first
markedup entity would be filtered out in the first cleansing step as it does not con-
tain any identifier information, while the second markedup entity would end up in
the corpus without, however, having any title information.

We identify such cases by detecting offers in the WDC Product corpus con-
nected with the Product/offers property to any offers of the input corpus, i.e. the
WDC 2017 schema.org/Product corpus, and merge them. By merging the two of-
fers of Figure 5.4, we enrich the offer with “sku:KZZ99789” with the title value
“Boys Lace Up Camo High Top Trainers”. This step reduces the number of offers
in the WDC Product Corpus having no title or description to less than 3%.
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Figure 5.5: An example specification table and its HTML content.

Detection and Extraction of Specification Tables

Product pages often contain specification tables describing the product in the form
of key/value pairs. Figure 5.5 presents an example specification table along with its
HTML content. The example specification table corresponds to the product offer
of Figure 5.2c. The structured data provided within the specification table are ben-
eficial for matching product-related records [Kannan et al., 2011; Petrovski et al.,
2014]. In order to differentiate between specification and non-specification HTML
tables, we consider the findings of Qiu et al. [2015] and Petrovski and Bizer [2017]
and apply a table detection heuristic in an unsupervised fashion. The heuristic ex-
tracts certain HTML table attributes, calculates their values, and compares the cal-
culated values to pre-defined upper and lower thresholds. If the value of at least one
of the attributes exceeds the upper threshold or is below the lower threshold, then
it is classified as a non-specification table. If the values of all attributes are within
the threshold ranges, the HTML table is classified as a specification table. The fol-
lowing HTML table attributes and threshold ranges are used for the heuristic: ratio
of numerical over alphabetical characters (0.08-2.0), ratio of nested elements that
are row or columns elements, i.e. <td>, <tr>, <th> (0.8-1.0), number of columns
(1-6), number of rows (3-50), and average length of text per row (15-100). The
HTML table attributes values of the table in Figure 5.5 fall within the specified
ranges for all attributes and is therefore classified as a specification table: ratio of
numerical over alphabetical characters =0.2, ratio of nested elements that are row
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or columns elements =1.0, number of columns =2, number of rows =7, and average
length of text per row =26.4. We evaluate the specification table detection heuris-
tic based on a manually annotated gold standard of 455 HTML tables found in 27
webpages. The annotation process is conducted by a single annotator who receives
the complete HTML page and annotates every HTML <table> element found on
the page as specification or non-specification. Based on our gold standard, the
applied heuristic reaches an F1 of 78% on the positive class specification.

After an HTML table has been classified as a specification table, we extract
all its textual elements, concatenate them into one string value and add it as an
attribute of its corresponding offer. For the table of Figure 5.5, the extracted speci-
fication table attribute is specTableContent: {Brand Philips Lighting Product Line
Warm Glow Model Number 15BR30/PER/950 /E26/DIM/HO 4/1FB T20 Energy
Used 15 Watts Incandescent/Halogen Equivalent 100 Watts Volts 120 Watts Base
Medium (E26)}. Additionally, to enable the corpus usage as distant supervision for
feature extraction applications, we use the two column-heuristic from [Qiu et al.,
2015] only in the case of two-column specification tables. The heuristic extracts
the values of the left column as attribute names and the values of the right column
as attribute values. If applicable, the attribute name/value pairs are organized as
a dictionary and added as an attribute to the corresponding offer. For the table
of Figure 5.5, the extracted name/value pairs attribute is keyValuePairs:{Brand:
Philips Lighting, Product Line: Warm Glow, Model Number: 15BR30/PER/950
/E26/DIM/HO 4/1FB T20, Energy Used: 15 Watts, Incandescent/Halogen Equiva-
lent: 100 Watts, Volts: 120 Watts, Base: Medium (E26)}.

Categorization of Offers

E-shops use a wide range of different categorization schemata to present their of-
fers. Product category information is crucial to the entity resolution task. It can
be used as part of the blocking strategy to reduce the candidate record pairs to the
ones belonging to the same category. This requires that the offers are mapped to a
pre-defined, unique categorization taxonomy, a task faced by many aggregators in
e-commerce. The schema.org vocabulary contains the category property, which is
indented for capturing the product category of a markedup product entity. However,
only 2% of the offers in the WDC Product Corpus contain category information,
while the category values are not consistent among the different webmasters. In
this section, we aim to assign consistent product category labels to the offers of the
WDC Product Corpus. We treat the problem of product categorization as a super-
vised multi-class classification task that comes with the following requirements:
(i) a product category taxonomy, (ii) a gold standard of annotated offers with their
respective product category labels, and (iii) a multi-class classification model. In
the following, we present the methodological details and evaluation results of the
product categorization task.
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Product Category Taxonomy We create a flat product category taxonomy by
comparing and merging the first-level categories of three existing product category
taxonomies: the Amazon taxonomy [McAuley et al., 2015],6 the Google product
taxonomy7 and the UNSPSC taxonomy.8 While the Amazon product taxonomy
is a flat set of 24 product categories, the Google and UNSPSC taxonomies are
hierarchical and comprise 156,478 and 6,000 categories, respectively.

Table 5.3 presents the categories of our defined taxonomy and their mappings
to the Amazon, Google, and UNSPSC categories, including the depth of the cor-
responding category path for the case of the hierarchical taxonomies. We split the
broad category of Clothing, Shoes & Jewelry into four categories: Clothing, Shoes,
Jewelry, and Luggage & Travel Gear. Similarly, we split the Electronics category
into three categories: Camera & Photo, Computers & Accessories, and Other Elec-
tronics. Comparing the flat Amazon taxonomy to the more fine-grained Google
and UNSPSC taxonomies, we create a product category in our taxonomy if the
mapped Google and UNSPSC categories are first-level categories. For example,
we directly add in our taxonomy the Automotive category of the Amazon taxon-
omy as it corresponds to the Vehicles & Parts first-level category of the Google
taxonomy and the Commercial, Military, Private Vehicles first-level category of
the UNSPSC taxonomy. For the Amazon categories mapped to deeper levels in
the Google and UNSPSC taxonomies, the respective first-level categories are com-
pared and we manually assess whether the sub-categories can be merged. For ex-
ample, the Health & Beauty category of our taxonomy considers cosmetics, health,
beauty, and personal care products which follow under the merged sub-categories
of the Google and UNSPSC taxonomies. This results in 23 product categories as
listed in the right column of Table 5.3. Finally, we add two more categories to our
taxonomy: Others, containing products that could not be assigned to any of the de-
fined categories, and Not Found, which is assigned to product offers with unclear
descriptions.

Gold Standard for Product Categorization In order to enable the training and
evaluation of a multi-class classifier for the task of offer categorization, we create
a gold standard from a subset of the offers in the WDC Product Corpus. The
annotation is conducted by one annotator who manually inspects the schema.org
properties and specification table content extracted in the previous steps for a subset
of the offers in the WDC Product Corpus. After inspection, she assigns one of the
category labels of the defined taxonomy to each offer. Offers that do not fit into
any of the defined categories are assigned the category label Others. In addition,
offers whose description was unclear are assigned the label Not Found. In total,
24,689 offers deriving from 2,115 clusters are annotated. The distribution of the
number of offers, clusters, and attribute density in the categorization gold standard
is presented in Table 5.4.

6http://jmcauley.ucsd.edu/data/amazon/
7https://www.google.com/basepages/producttype/taxonomy.en-US.txt
8https://wwwcfprd.doa.louisiana.gov/osp/lapac/vendor/commodityTree.cfm

http://jmcauley.ucsd.edu/data/amazon/
https://www.google.com/basepages/producttype/taxonomy.en-US.txt
https://wwwcfprd.doa.louisiana.gov/osp/lapac/vendor/commodityTree.cfm
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Table 5.3: Mapping of different product category taxonomies to the final taxonomy.

Amazon taxonomy Google taxonomy UNSPSC taxonomy Final taxonomy
Automotive Vehicles & Parts (1) Commercial, Military, Private Vehicles (1) Automotive

Baby Baby & Toddler (1)
Baby & Toddler Furniture & Accessories
(3)

Baby

Beauty Health & Personal Care
Cosmetics (3)
Health & Beauty (1)

Cosmetics (4)
Personal Care Products (2)

Health & Beauty

Books Books (2) Printed Media (2) Books
CDs & Vinyl Music & Sound Recordings (2) Music on Tape or CD (4) CDs & Vinyl
Cellphones & Accessories Mobile Phone Accessories (4) Mobile Phones (4) Cellphones & Accessories

Clothing, Shoes & Jewelry

Clothing (2)
Jewelry & Watches (2)
Shoes (2)
Luggage & Bags (1)

Clothing (2)
Jewelry (2)
Footwear (2)
Luggage & Handbags and Packs &
Cases (2)

Clothing
Jewelry
Shoes
Luggage & Travel Gear

Digital Music - - -

Electronics
Cameras & Optics (1)
Computers (2)
Electronics (1)

Photographic, Filming or Video
Equipment (2)
Computer Equipment & Accessories
(2)
Consumer Electronics (2)

Camera & Photo
Computers & Accessories
Other Electronics

Grocery & Gourmet Food
Food, Beverages & Tobacco
(1)

Food, Beverages & Tobacco Products (1) Grocery & Gourmet Food

Home & Kitchen Patio, Lawn & Garden Home & Garden (1)
Furniture & Furnishings (1)
Agriculture, Forestry & Garden
Handtools (3)

Home & Garden

Movies & TV DVDs & Videos (2) Motion Pictures on DVD (4) Movies & TV
Musical Instruments Musical Instruments (3) Musical Instruments & Parts & Accessories (2) Musical Instruments

Office Products Office Supplies (1)
Office Equipment, Accessories &
Supplies (1)

Office Products

Pet Supplies Animal & Pet Supplies (1) Domestic Pet Products (2) Pet Supplies
Sports & Outdoors Sporting Goods (1) Sports & Recreational Equipment (1) Sports & Outdoors
Tools & Home Improvement Hardware (1) Tools & General Machinery (1) Tools & Home Improvement
Toys & Games Toys & Games (1) Toys & Games (2) Toys & Games
Video Games Video Games (2) Computer Game or Entertainment Software (3) Video Games
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Table 5.4: Statistics of the product categorization gold standard.

Category # Offers # Clusters Title Description Brand Manufacturer
Automotive 1,446 78 100% 66% 63% 5%
Baby 918 89 100% 69% 47% 12%
Books 656 89 100% 35% 62% 7%
CDs_and_Vinyl 604 90 95% 36% 19% 5%
Camera_and_Photo 968 91 100% 86% 35% 19%
Cellphones_and_Accessories 1,377 90 100% 67% 70% 2%
Clothing 3,242 232 100% 14% 1% 0%
Computers_and_Accessories 4,753 162 100% 97% 94% 1%
Grocery_and_Gourmet_Food 561 76 100% 80% 20% 7%
Health_and_Beauty 506 73 99% 52% 23% 10%
Home_and_Garden 554 78 100% 69% 25% 4%
Jewelry 767 56 100% 79% 3% 1%
Luggage_and_Travel_Gear 812 72 99% 68% 31% 6%
Movies_and_TV 643 75 98% 91% 11% 9%
Musical_Instruments 570 83 99% 94% 35% 11%
Office_Products 659 57 100% 51% 6% 7%
Other_Electronics 687 87 100% 81% 33% 8%
Others 10 7 100% 70% 40% 10%
Pet_Supplies 610 77 100% 97% 3% 6%
Shoes 555 68 100% 48% 23% 2%
Sports_and_Outdoors 818 71 100% 85% 86% 1%
Tools_and_Home_Improvement 783 85 100% 68% 57% 17%
Toys_and_Games 586 89 100% 34% 21% 9%
Video_Games 584 82 100% 86% 48% 7%
not found 1,020 58 97% 26% 3% 3%
Total/ Average* 24,689 2,115 99.58%* 65.48%* 42.78%* 4.87%*

Product Categorization Model We split the categorization gold standard into
train and test with a ratio of 80%:20% and compare different classification models.
We build different product categorization models by executing a workflow of pre-
processing, feature extraction, and model selection steps, which we explain below.

For each offer in the gold standard the following attributes are considered: title,
description, brand, manufacturer, HTML page content, and specification table, if
existing. For each attribute, the contents are filtered by stopwords and punctuation
characters, lowercased, and tokenized.

We curate the feature vector of each offer by applying a bag-of-words feature
creation model and compute tf-idf weights for different combinations of attributes,
e.g. only schema.org property values or schema.org property values and speci-
fication tables. The hyperparameters for the feature vector creation, such as the
ngram level of splitting the tokens and pruning of tokens given their frequency,
are optimized using grid search with 5-fold cross-validation. Finally, the follow-
ing attribute combinations are considered for feature creation and evaluated: (i)
schema.org, which only uses the values of the existing schema.org properties, (ii)
schema.org+spec.tables, which additionally exploits the specification table con-
tent if existing and (iii) schema.org+html content, which additionally exploits the
content of the webpage in which the offer was found.

We evaluate the following classification algorithms: SVM, logistic regression,
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Table 5.5: Product categorization results.

Algorithm Attributes Micro-F1

SVM
schema.org 0.86
schema.org + spec. tables 0.85
schema.org + html content 0.81

Logistic regression
schema.org 0.85
schema.org + spec. tables 0.87
schema.org + html content 0.81

Naive Bayes
schema.org 0.84
schema.org + spec. tables 0.84
schema.org + html content 0.73

Decision tree
schema.org 0.66
schema.org + spec. tables 0.66
schema.org + html content 0.67

Naive Bayes, and decision tree. Table 5.5 shows the F1 scores on the test set for
each algorithm and attribute combination. We observe that the logistic regression
model trained on the features generated from the schema.org properties and speci-
fication table content achieves the best micro-averaged F1 score of 0.87. Therefore,
we select this model for profiling the offers of the WDC Product Corpus on product
category level.

5.2 Profiling

In this section, we present the profiling statistics of the WDC Product Corpus and
its English language subset, which is created by selecting all offers from pages
having the suffixes: com, net, co.uk, and org. Thereafter, we will refer to the
English subset as WDC English Product Corpus. Figure 5.6 shows an example
offer of the WDC Product Corpus.

Figure 5.6: An example offer of the WDC Product Corpus.
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Table 5.6: Distribution of offers and matching offer pairs per cluster size.

# Clusters # Matching pairs
Cluster
size

WDC Product
Corpus

WDC English
Product Corpus

WDC Product
Corpus

WDC English
Product Corpus

1 13,301,842 8,434,389 0 0
2 1,915,909 1,012,220 1,915,909 1,012,220
[3-4] 760,360 400,522 3,026,997 1,552,680
[5-10] 304,379 163,356 5,677,852 3,064,532
[11-20] 63,981 37,562 6,752,150 3,751,124
[21-30] 17,710 10,567 5,374,523 3,185,935
[31-40] 10,863 4,461 6,666,546 2,646,306
[41-50] 6,318 2,504 6,281,387 2,502,691
[51-60] 2,663 1,300 3,978,483 1,972,822
[61-70] 1,378 832 2,891,198 1,750,014
[71-80] 1,058 682 2,960,532 1,899,880
[>80] 4,978 3,999 137,488,518 113,935,797

The WDC Product Corpus contains 26 million offers deriving from 79 thou-
sand websites, grouped into 16 million clusters. The WDC English Product Cor-
pus contains 16 million offers deriving from 43 thousand websites, grouped into
10 million clusters. Table 5.6 shows the distribution of offers per cluster in the two
corpora as well as the amounts of matching pairs that can be derived by combining
pairwise the offers of each cluster. We observe that small clusters (sizes one and
two) account for 92% of the clusters in the WDC Product Corpus. The reasons for
the large fraction of small clusters are twofold: First, the long tail distribution of
products on the Web, i.e. only a few products are offered by many e-shops, while a
large number of products are offered by few e-shops. Second, the limited depth of
the CommonCrawl, as only a fraction of the pages of each website is crawled. The
WDC English Product Corpus contains over 600 thousand clusters of size three or
larger. Despite the large number of small clusters, and disregarding the clusters of
size larger than 80, which we expect to be noisy, more than 20 million matching
pairs can be derived from the WDC English Product Corpus.

Next, we profile the density of the offer attributes, the extraction of which
was analyzed in Section 5.1.2. Table 5.7 shows the distribution of the schema.org
properties that are used to describe the offers in the two corpora. Our specification
table detection method finds at least one specification table in 24% of the HTML
pages contained in the WDC Product Corpus and 17% of the pages of the WDC
English Product Corpus. Using the key/value pair extraction heuristic described in
Section 5.1.2, we are able to extract ten or more key/value pairs from 73% of the
specification tables.

Finally, we profile the distribution of offers and clusters per product category.
Considering that the multi-class classifier for the product categorization task is
trained on offers with English attribute values, we apply the best performing model
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Table 5.7: Density of offer attributes in the WDC Product Corpus.

Attributes
Offers in

WDC Product Corpus WDC English Product Corpus
# (in K) % # (in K) %

title 25,281 95.3 15,653 95.1
description 17,215 64.9 11,352 69.0
brand 9,313 35.1 5,645 34.3
image 5,785 21.8 4,348 26.4
price 3,335 12.5 1,977 12.0
price currency 2,971 11.2 1,873 11.3
availability 1,180 4.4 716 4.3
manufacturer 2,024 7.6 1,254 7.6

only to the offers of the WDC English Product Corpus. The profiling results in
terms of the relative and absolute amount of offers and clusters per category are
presented in the barplot of Figure 5.7. We observe that for most categories the num-
ber of offers (orange bars) and clusters (blue bars) are in a similar range. However,
this is not the case for the office products category which is assigned to more than
2 million offers belonging to 403.8K clusters. This indicates that the large clusters
of the corpus refer to office products. By manually inspecting the classified office
product offers, we indeed verify that 64% (1.4 million offers) belong to only 100
clusters with size larger than 1000 offers and derive from websites that offer vector
images, such as www.vectorstock.com. The fact that these websites typically offer
millions of vector images, explains the large number of offers being annotated as
office products.

5.3 Quality Evaluation

In the previous section, we profiled the WDC Product Corpus and showed that we
can derive a large amount of matching offer pairs. Additionally, we showed that the
majority of the offers are accompanied by product-related attributes, such as title
and description. In this section, we analyze the quality of the WDC Product Corpus
in terms of overall cluster quality as well as training quality. To assess the overall
cluster quality, we select a sample of offer pairs from clusters of different sizes
as well as categories and manually inspect how many of those refer to different
products and are therefore wrong. In order to assess the training quality of the
WDC Product Corpus, we filter category-specific clusters and derive training sets
from inter-cluster (matching) and intra-cluster (non-matching) offer pairs. We use
the derived sets to train baseline entity resolution models. We assess the prediction
quality of the trained models using the WDC Product Gold Standard, a manually
labeled set of matching and non-matching offer pairs. In the following, we present
the details of our two-fold evaluation of the WDC Product Corpus.
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Figure 5.7: Distribution of offers and clusters per category in the WDC English
Product Corpus.

5.3.1 Clusters Quality

We assess the level of noise in the clusters of the WDC Product Corpus based on
a sample of 900 offer pairs from clusters of different size ranges and product cat-
egories. We sample clusters from the following six categories: Cellphones and
Accessories, Health and Beauty, Clothing, Home and Garden, Jewelry, and Of-
fice Products, and the following cluster size ranges: small (3-5 offers), medium
(6-80 offers) and large (>80 offers). From each group size and product category,
we randomly sample 50 offer pairs, which we manually annotate as matching or
non-matching. The annotation process is conducted by two annotators. Each anno-
tator inspects half of the sampled offer pairs along with their extracted attributes,
i.e. schema.org properties, specification tables, and category labels, and assigns
matching or non-matching labels. The ambiguous offer pairs are inspected by both
annotators. Considering that every sampled offer pair derives from the same clus-
ter, the offer pairs that are annotated as non-matching constitute noise.

Our evaluation shows that 846 offer pairs (94% of the complete sample) refer
to the same real-world product and are therefore grouped correctly, while 29 offer
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(a) Error type: wrong identifiers.

(b) Error type: wrong grouping.

Figure 5.8: Examples of erroneously clustered offers in the WDC Product Corpus.

pairs (3% of the complete sample) refer to different products and are therefore
wrong. For the remaining 25 offer pairs, the annotators are unsure if the offer
descriptions refer to the same or different real-world products. We find that the
attribute values of 70% of these offer pairs contain less than four tokens, which is
the reason for their ambiguity.

Analyzing the origin of the errors, we find two main reasons for erroneously
grouping offers that refer to different products: (i) the offers are assigned wrong
identifiers, and (ii) our grouping strategy based on identifier value co-occurrence
leads to wrongly grouping offers referring to different products. Figure 5.8 presents
two examples of erroneously clustered offer pairs. The error shown in Figure 5.8a
belongs to the first error type, as the two offers are assigned the same identifier
but refer to different real-world products considering their description. Thus, we
can assume that either one or both identifier values are wrong. Figure 5.8b belongs
to the second error type, as the two offers are grouped in the same cluster even
though they have different identifiers. The wrong grouping is due to the indirect
co-occurrence of the two identifier values via transitivity, e.g. another offer is
assigned both identifier values 721405206254 and 892199001223, which causes
the grouping of offers having these two identifier values under the same cluster.
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We observe that 90% of the grouping errors are found in medium and large
clusters, while 50% of the wrong identifier errors are found in large clusters. Fi-
nally, the errors are almost evenly distributed among the different product cate-
gories, which signifies that no product category can be considered noisier than any
other.

5.3.2 Training Quality

In this section, we estimate the usefulness of the WDC Product Corpus for train-
ing entity resolution models for product matching. We do so by measuring the
prediction quality of baseline symbolic and subsymbolic entity resolution methods
that can be achieved using matching and non-matching offer pairs derived from the
corpus as training data. In order to allow entity resolution methods to be evaluated
on completely clean data, we create the WDC Product Gold Standard by manually
verifying for a subset of pairs of offers if they refer to the same product or not.
Considering that for the subsymbolic methods we use English language embed-
dings, all offer pairs used for training as well as for building the WDC Product
Gold Standard originate from the WDC English Product Corpus. In the following,
we describe the curation of the WDC Product Gold Standard and the extraction
of training sets from the WDC English Product Corpus. Additionally, we present
the experimental setup and evaluation results of different baseline symbolic and
subsymbolic entity resolution methods.

WDC Product Gold Standard

We consider offer pairs from the WDC English Product Corpus of four different
product categories for building the WDC Product Gold Standard: Watches (a sub-
set of the Jewelry category), Shoes, Computers & Accessories, and Camera &
Photo. First, we identify the clusters belonging to the selected product categories.
Second, we select 150 related clusters from each product category, preferring clus-
ters having a large diversity among the offers’ textual content and a minimum size
of seven offers. The large diversity, in this context, refers to offers describing the
same product while the Jaccard string similarity of their titles and descriptions
varies. This leads to the selection of clusters that contain textually similar as well
as less similar offers.

In order to select challenging pairs of offers for the manual verification, we
apply the following procedure: From every selected cluster, we pick one offer and
concatenate its textual content given by the values of the attributes title, description,
brand, and specification table. Similarly to Köpcke et al. [2010], we use the Jaccard
similarity metric and the offers’ textual content to calculate the similarity scores
between the picked offer and the offers of the same cluster (intra-cluster similarity
scores) as well as the offers of different clusters (inter-cluster similarity scores).
To build matching offer pairs, we select two intra-cluster offer pairs having the
highest and lowest similarity scores and add them to the gold standard. To build
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Table 5.8: WDC Product Gold Standard profiling.

T=title, D=description, B=brand, S=specification table

Category
# Pairs % Density

Matching Non-matching T D B S
computers 300 800 100 82 42 22
cameras 300 800 100 73 25 7
watches 300 800 100 72 15 7
shoes 300 800 100 70 8 2

non-matching offer pairs, we add two to three inter-cluster offer pairs with the
highest similarity score and three randomly chosen inter-cluster pairs in the gold
standard. We manually verify for all selected pairs if they are really matching or
non-matching by comparing the textual content of the offers. If we discover an
incorrectly labeled pair, we correct the label.

The resulting gold standard consists of 300 matching and 800 non-matching
offer pairs for each product category. Table 5.8 presents the profiling statistics of
the WDC Product Gold Standard. As density, we denote the ratio of matching
and non-matching pairs in the WDC Product Gold Standard for which both offers
contain the corresponding attribute.

Training Subsets

We generate category-specific subsets of different sizes, i.e. small, medium, large
and xlarge, from the WDC English Product Corpus for training baseline entity
resolution models. To build matching pairs, we iterate over all clusters which have
offers in the gold standard and retrieve a varying amount of offer pairs, depending
on the size of the training set. For building the small training sets we retrieve one
pair of offers. For medium, we retrieve three pairs, while for large and xlarge, 15
and 50 intra-cluster pairs are selected. To build non-matching pairs, in a first step,
the title similarity of each pair of clusters is calculated using Jaccard similarity
over the concatenated titles of the offers. In a second step, for each cluster, the
top ten most similar clusters based on this similarity are chosen. For each of the
resulting most similar cluster pairs, a varying amount of offer pairs is sampled,
depending on the size of the training set. We select 3 pairs for the small training
sets, 9 for the medium, 45 for the large, and 150 for the xlarge. This procedure
for sampling non-matching pairs ensures that the pairs in the training subsets are
similar and allow the classifiers to learn useful patterns for differentiating difficult
non-matching offers. During the training subsets creation, we ignore any offer pair
that is already in the WDC Product Gold Standard and do not manually verify
the correctness of the labels of the offer pairs. The resulting amounts of training
examples in the four training subsets as well as their attribute density, can be seen
in Table 5.9.
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Table 5.9: Training subsets profiling.

T=title, D=description, B=brand, S=specification table

Category Size
# Pairs % Density

Matching Non-matching T D B S

computers

small 722 2,112 100 51 34 21
medium 1,762 6,332 100 51 34 20
large 6,146 27,213 100 51 31 18
xlarge 9,690 58,771 100 50 30 16

cameras

small 486 1,400 100 53 21 4
medium 1,108 4,147 100 57 22 4
large 3,843 16,193 100 60 25 3
xlarge 7,178 35,099 100 66 29 3

watches

small 580 1,675 100 43 15 7
medium 1,418 4,995 100 44 14 6
large 5,163 21,864 100 45 14 6
xlarge 9,264 52,305 100 50 11 5

shoes

small 530 1,533 100 49 8 0
medium 1,214 4,591 100 49 7 0
large 3,482 19,507 100 51 6 0
xlarge 4,141 38,288 100 53 5 0

Baseline Experiments

We execute a set of baseline experiments using different supervised symbolic and
subsymbolic entity resolution methods. For all experiments, the training subsets
are used for training while the trained model is evaluated against the manually ver-
ified WDC Product Gold Standard. Additionally, we pre-process the attribute val-
ues by lowercasing and removing non-alphanumeric characters and stopwords. We
apply a combination of different record pair comparison and classification configu-
rations for the symbolic and subsymbolic methods. For the record pair comparison
step of symbolic methods, we use (i) binary word co-occurrence, which assigns 1
if the word appears in both offers of the corresponding pair and 0 otherwise, and
(ii) data type specific similarity metrics, as introduced in Section 2.3.3, which are
automatically generated using the Magellan framework [Konda et al., 2016]. For
the record pair classification of symbolic methods, we train the following machine
learning models: logistic regression, linear SVC, random forests, and XGBoost.
For the subsymbolic methods, we use pre-trained and self-trained fastText embed-
dings in combination with the network types implemented by the DeepMatcher
framework, i.e. RNN and hybrid.

The results of the experiments in terms of F1 score are summarized in Ta-
ble 5.10. We use different font colors to denote the best performing model per size
for each family of methods. Given the small training sets, the random forest and
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logistic regression classifiers perform the best for all product categories in combi-
nation with both the co-occurrence and similarity-based features. When using the
medium, large and xlarge training sets, there is no clear winner in performance for
a specific classification model with regard to symbolic entity resolution methods.
Concerning the results of the subsymbolic methods, we observe that RNN deliv-
ers the best results with the exception of Watches small/medium, Shoes small, and
Cameras large, for which the hybrid model delivers the best results.

The subsymbolic entity resolution baseline methods are 7-23% better in F1
compared to the symbolic entity resolution methods. This confirms the findings
of Chapter 3 that subsymbolic methods excel on tasks with high textuality and a
large number of corner cases. Indeed, as reported in Chapter 3, the WDC product-
related entity resolution tasks have a high textuality level with up to 109 words
per offer on average, as well as a large number of corner cases estimated to be up
to 98% for the xlarge tasks. Finally, we observe that although the F1 scores im-
prove with the increase of the training set size for the subsymbolic methods, with
the only exception a small drop of 1.52 percentage points from watches large to
xlarge, this is rarely the case for the F1 scores retrieved with the symbolic meth-
ods. For these families of methods, we notice large drops in F1 score with the
increase of the training set size which are up to 32 percentage points, e.g. in the
case of large to xlarge training sets of the watches category when LinearSVC model
with similarity-based features is applied. We assume that this effect is due to the
increasing dimensionality of the training data, which cannot always be captured
by traditional machine learning models relying on symbolic features leading to a
decrease in performance [Caruana et al., 2008].

5.4 Related Work

In this section, we first compare the training sets that can be derived from the
WDC Product Corpus to existing entity resolution benchmark tasks, and then we
refer to related works that have used the WDC Product Corpus as part of their
methodological or experimental setup.

Comparison to Benchmark Entity Resolution Tasks. In Chapter 3, we in-
troduced various benchmark tasks of different topical domains and sizes. In this
section, we will focus and compare in detail the WDC Product Corpus to (i) bench-
mark product matching tasks and (ii) the largest publicly available matching tasks.

Many of the existing benchmark tasks contain records describing products,
similarly to the WDC Product Corpus. Abt-Buy and Amazon-Google are two
widely-used product tasks [Köpcke et al., 2010]. Additionally, Gokhale et al.
[2014] provide publicly the Walmart-Amazon benchmark task. All three product-
related tasks derive from two e-shops and contain up to 1,300 manually labeled
record pairs. Petrovski and Bizer [2017] provide a gold standard for product data
extraction and matching with product offers from 32 different e-shops.
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Table 5.10: F1 scores of baseline experiments using the training sets extracted from the WDC English Product Corpus.

The different font colors denote the best-performing model per size for each family of methods.
Symbolic ER - Word co-occurrence features

Logistic regression Linear SVC XGBoost Random forestCategory
small medium large xlarge small medium large xlarge small medium large xlarge small medium large xlarge

computers 61.20 73.00 80.90 82.09 60.99 74.55 81.51 83.39 58.08 58.55 58.69 55.85 52.24 48.20 49.71 44.11
cameras 61.75 70.26 82.08 72.83 47.45 69.67 75.99 73.03 48.94 55.06 56.38 54.95 39.03 49.20 48.26 36.32
watches 62.97 69.54 78.14 77.01 62.88 68.96 77.86 76.30 53.31 55.65 56.06 53.28 42.04 45.49 32.09 16.67
shoes 71.90 79.19 71.32 71.76 70.69 78.80 71.70 70.73 63.75 65.01 66.99 67.69 58.29 60.96 56.00 52.55

Symbolic ER - Similarity-based features
Logistic regression Linear SVC XGBoost Random forest

small medium large xlarge small medium large xlarge small medium large xlarge small medium large xlarge
computers 54.12 55.06 54.96 54.79 54.96 54.60 54.81 54.79 57.78 62.86 69.22 69.23 59.23 64.13 65.91 64.72
cameras 55.63 55.54 54.93 56.70 55.02 56.82 55.03 56.12 51.45 56.21 59.89 64.21 54.28 59.44 60.76 62.63
watches 55.63 57.11 41.44 30.58 55.41 57.14 57.04 25.06 58.33 65.85 66.67 60.76 67.16 64.36 68.27 58.65
shoes 51.42 51.21 50.20 49.59 50.51 51.15 49.74 49.37 57.39 60.82 54.97 47.00 64.07 62.96 63.45 63.27

Subsymbolic ER - fastText embeddings
RNN + self-trained fastText RNN + pre-trained fastText Hybrid + self-trained fastText Hybrid + pre-trained fastText

small medium large xlarge small medium large xlarge small medium large xlarge small medium large xlarge
computers 68.18 76.46 89.56 92.87 70.55 77.82 89.55 93.42 65.13 76.17 86.31 88.31 66.88 77.48 87.98 92.24
cameras 67.38 75.09 86.73 88.19 68.59 76.53 86.57 89.25 64.12 75.69 81.53 85.44 63.11 73.69 87.19 85.67
watches 65.27 78.73 92.78 94.13 64.75 78.53 91.28 94.40 66.70 83.56 91.06 93.44 66.32 82.21 91.57 91.92
shoes 73.08 77.32 87.59 90.54 72.91 79.48 90.39 92.70 71.23 75.64 85.57 87.65 73.86 78.02 88.65 91.23
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Mudgal et al. [2018] use several large product tasks for evaluating deep learning-
based entity resolution methods. However, these are not publicly available. Crescenzi
et al. [2021] curate ALASKA, a corpus consisting of offers describing 70 thousand
distinct real-world products from 71 e-shops. ALASKA supports multiple tasks
along the data integration pipeline, such as schema matching and entity resolution.
The product offers are extracted using focused crawling and a product specifica-
tion extraction tool, which inspects the HTML page and extracts key/value pairs
from specification tables. The ALASKA corpus has been used for training, eval-
uating, and comparing entity resolution methods submitted to the 2020 SIGMOD
Programming Contest9 as well as to the DI2KG challenges in 2019 and 2020.10

In contrast to the WDC Product Corpus, which allows for automatic generation of
training sets using pairs of offers of the same or different clusters, the training sets
derived from the ALASKA corpus are manually curated and labeled. For the SIG-
MOD and DI2KG entity resolution challenges different training sets were provided
to the participants, with the largest one containing 44 thousand matching pairs.

The largest publicly available benchmark tasks for entity resolution in terms of
the number of matching pairs include records from the citations and music domain.
The Citeseer-DBLP contains more than 550 thousand matching pairs of citation
records deriving from two data sources. The Falcon-Song corpus, originating from
the Million Songs Dataset provided by McFee et al. [2012] contains more than 1.2
million matching pairs of song records. Both of the tasks are publicly available in
the Magellan data repository.11

Table 5.11 gives a comparison overview of the discussed benchmark tasks and
corpora for entity resolution along the following dimensions: topical domain, pub-
lic availability, number of data sources from which the records originate, and the
number of matching pairs that can be used for training. The last two lines in the
overview table contain the information along the mentioned dimensions for the
training sets that can be derived from the WDC Product Corpus and WDC English
Product Corpus, respectively. The amount of matching pairs refers to the maxi-
mum amount of pairs of offers that can be retrieved by combining pairwise the
offers of the same clusters in each corpus. Concerning the number of matching
pairs of the WDC Product Corpus, we see that it is several orders of magnitude
larger than the existing evaluation tasks in the area of product matching, including
public as well as proprietary tasks. Compared to the Falcon-Songs task, the WDC
English Product Corpus is 17 times larger. Concerning the number of sources, the
WDC English Product Corpus covers 43,293 sources, while the existing tasks con-
tain records from at most 71 sources. This indicates that even the WDC English
Product Corpus alone can be used to derive the largest, in terms of the number
of matching record pairs, and most heterogeneous, in terms of the number of data
sources, training sets for entity resolution.

9http://www.inf.uniroma3.it/db/sigmod2020contest
10http://di2kg.inf.uniroma3.it
11https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository

http://www.inf.uniroma3.it/db/sigmod2020contest
http://di2kg.inf.uniroma3.it
https://sites.google.com/site/anhaidgroup/useful-stuff/the-magellan-data-repository
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Table 5.11: Comparison overview of benchmark entity resolution tasks.

Dataset Domain
Publicly
available

# Data
sources

# Matching
pairs

Walmart-Amazon [Gokhale et al., 2014] electronics yes 2 1,154
Amazon-Google [Köpcke et al., 2010] software yes 2 1,300
Abt-Buy [Köpcke et al., 2010] product yes 2 1,097
DM-Clothing [Mudgal et al., 2018] clothing no 1 105,608
DM-Electronics [Mudgal et al., 2018] electronics no 1 98,401
DM-Home [Mudgal et al., 2018] home no 1 111,714
DM-Tools [Mudgal et al., 2018] tools no 1 96,836
DM-Company [Mudgal et al., 2018] company yes not reported 28,200
Citeceer - DBLP (Magellan repository) citations yes 2 558,787
Falcon - Songs (Magellan repository) music yes 1 1,292,023
WDC - Electronic Products GS [Petrovski and Bizer, 2017] electronics yes 32 1,500
Alaska [Crescenzi et al., 2021] product yes 71 44,039
WDC Product Corpus product yes 79,126 40,582,671
WDC English Product Corpus product yes 43,293 20,773,304

Related Works using the WDC Product Corpus Since its publication in 2019,
the WDC Product Corpus has been used by several related works on entity resolu-
tion but also for other tasks, such as product categorization. Below, we summarize
these works, present their results and, if applicable, compare them to our baseline
results in Table 5.12.

The WDC Product Corpus was provided to the participants of the MWPD2020
challenge on product entity resolution [Zhang et al., 2020b]. Three of the six par-
ticipating systems used the corpus in addition to the provided training set to extract
additional training data for fine-tuning transformer-based language models.

Li et al. [2020] use the category-specific training sets (Computers, Cameras,
Watches, Shoes) from the WDC English Product Corpus for fine-tuning DITTO,
a deep-learning entity resolution system based on pre-trained transformer-based
language models. Additionally, the WDC Product Gold Standard is used for the
evaluation of DITTO’s performance and its comparison to DeepMatcher [Mud-
gal et al., 2018]. The results of Li et al. [2020] indicate that DITTO outperforms
DeepMatcher by up to 4.0 F1 percentage points for all training sets of size large
or xlarge, with the Shoes category being the only exception for which it under-
performs by 2%. The improvement is more significant for the medium and small
training sets, as in this case it outperforms by up to 18% in all categories.

Peeters et al. [2020a] use the computer-specific training sets derived from the
WDC English Product Corpus for fine-tuning a BERT-based language model on
the product entity resolution task. The fine-tuned results significantly outperform
DeepMatcher (up to 20%) while achieving comparable performance to the results
of DITTO, with the differences in F1 ranging between -0.98 to +1.59. Apart from
the fine-tuning step, the authors derive 3.5 million additional training offer pairs
from the WDC English Product Corpus, which they use for intermediate in-domain
training. The intermediate training occurs before the fine-tuning step, considering
the binary product matching objective as well as the masked language modeling
objective. Compared to the fine-tuned model, the intermediate training step boosts
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the overall performance by up to 11.84 F1 percentage points when using only the
binary product matching objective and by up to 14.64 F1 percentage points when
using the additional masked language modeling objective.

Peeters and Bizer [2021] use offer pairs as well as distinct offer records with
their identifiers from the computer-specific training sets for fine-tuning a BERT
model using a dual objective: the binary matching objective similarly to the pre-
vious work and a multi-class classification objective, i.e. the model is tasked to
predict the identifier of each offer. The developed model is called JointBERT and
outperforms DITTO for the computer-related tasks given enough training data, i.e.
when the large and xlarge sets are used for training, by up to 5% in F1. In their
later work, Peeters and Bizer [2022] apply supervised contrastive learning to pre-
train a transformer encoder which is then fine-tuned on the entity resolution task at
hand. They use the computer-specific training sets derived from the WDC English
Product Corpus for evaluation and compare their results to DeepMatcher [Mudgal
et al., 2018], RoBERTa [Liu et al., 2019], DITTO [Li et al., 2020] and their previ-
ous work JointBERT [Peeters and Bizer, 2021]. The experimental results show that
their supervised contrastive learning model performs by 0.8 to 8.84 F1 percentage
points better than the best baseline method. The performance improvement varies
depending on the size of the WDC training sets, i.e. larger improvements are ob-
served for small and medium training sizes.

Wilke and Rahm [2021] use the Shoes training set to train a multi-modal entity
resolution method that builds on DeepMatcher and uses both textual and visual
features. The authors add a corresponding image crawled from the Web to each
offer in the Shoes training set. The results show that combining images with the
textual attributes of the offers can improve the model performance in comparison
to only exploiting the textual attributes by up to 2%.

Tu et al. [2022] use the WDC Product Gold Standard datasets of the Shoes,
Watches, Computers, and Cameras categories to evaluate the effect of domain
adaptation. Domain adaptation refers to a set of techniques for effectively reusing
labeled data from a source task to a target task for which little or no training data
are available. The WDC tasks of the different categories are combined pairwise,
e.g. Shoes as a source task and Watches as a target task. The results show that do-
main adaptation can improve over naive transfer learning by up to 8.3 F1 percent-
age points, while for some combinations of tasks, the difference is either minimal
(< 0.7) or negative (-1.5 for the computers-watches combination). This finding is
attributed to the “proximity” of the source and target tasks.

Finally, Brinkmann and Bizer [2021] use offers from the WDC Product Corpus
for pre-training a ROBERTa model for the task of hierarchical product categoriza-
tion. The authors extract a small and a large set of offers from the WDC Product
Corpus, with 75 thousand and 1.1 million offers, respectively. The attributes title,
description, and category are considered for the pre-training phase. The results
indicate that the pre-training step using the offers from the WDC Product Corpus
can boost the performance of the ROBERTa model by up to 1.22% in terms of
weighted F1 score.
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Table 5.12: Comparison overview of F1 scores of baseline experiments and related work using the training sets extracted from the WDC
English Product Corpus.

Baselines presented in Section 5.3.2 Results from related work

Category Size
Symbolic

Word co-occurrence
Symbolic

Similarity-based
Subsymbolic

fastText
DITTO

[Li et al., 2020]
Intermediate train.

[Peeters et al., 2020a]
JointBERT

[Peeters and Bizer, 2021]
R-SupCon

[Peeters and Bizer, 2022]
Multi-modal DL

[Wilke and Rahm, 2021]
computers

small

61.20 59.23 63.27 80.76 96.53 77.55 95.21
cameras 61.75 55.63 68.59 80.89
watches 62.97 67.16 66.70 85.12
shoes 71.90 64.07 73.86 75.89
computers

medium

74.55 64.13 77.82 88.62 96.58 88.82 98.50
cameras 70.26 59.44 76.53 88.09
watches 69.54 65.85 83.56 91.12
shoes 79.19 62.96 79.48 82.66
computers

large

81.51 69.22 89.55 91.70 95.82 96.90 98.50
cameras 82.08 60.76 87.19 91.23
watches 78.14 68.27 92.78 95.69
shoes 71.70 63.45 90.39 88.07
computers

xlarge

83.39 69.23 93.42 95.45 97.37 97.49 98.33
cameras 73.03 64.21 89.25 93.78
watches 77.01 60.76 94.40 96.53
shoes 71.76 63.27 92.70 90.11 83.60
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5.5 Discussion and Conclusion

In this chapter, we presented the WDC Product Corpus for entity resolution, a
corpus of 26 million product offers, grouped into 16 million clusters represent-
ing different real-world products and originating from 79 thousand websites with
schema.org/Product annotations. For the curation of the corpus, we exploited se-
mantically annotated product identifiers, investigated different errors related to
schema.org/Product annotations, and developed a cleansing pipeline to reduce the
impact of those errors.

We profiled the WDC Product Corpus along different dimensions, including
the distribution of cluster sizes, the density of product-relevant schema.org prop-
erties, and the product categories to which the offers of the corpus belong. The
profiling analysis showed that by combining pairwise all intra-cluster and inter-
cluster offers, we could generate up to 40 million and more than 5 trillion matching
and non-matching pairs of offers describing products of different categories. Only
considering clusters of the English subset of the WDC Product Corpus with a size
between 5 and 80, 20.7 million matching offer pairs and 2.6 trillion non-matching
offer pairs can be derived. The derived matching and non-matching pairs can be
used for training entity resolution models targeting the product entity resolution
task. The training sets generated from the WDC Product Corpus are the largest
and most heterogeneous, in terms of the number of data sources from which the
records originate, among the training sets of all publicly available entity resolution
benchmark tasks. Without the website owners putting semantic annotations into
their HTML pages, it would have been much harder, if not impossible, to extract
product offers from thousands of e-shops referring to the same products.

Additionally, we evaluated the cleanliness and training quality of the WDC
Product Corpus. Based on a manually verified sample of pairs of offers, we evalu-
ated the level of noise, i.e. intra-cluster offer pairs that refer to different real-world
products, to be 6%. Using product category-specific matching and non-matching
pairs derived from the WDC Product Corpus for training baseline entity resolution
models, we showed that F1 scores up to 94.4% can be achieved when applying
the deep learning-based model DeepMatcher [Mudgal et al., 2018]. The evaluation
was based on a manually verified test set of product offers having no product iden-
tifier information deriving from the same corpus. Finally, we presented multiple
subsymbolic entity resolution models from the related work, such as DITTO [Li
et al., 2020] and JointBERT [Peeters and Bizer, 2021] using training subsets de-
rived from the WDC Product Corpus for model training and fine-tuning. Those
models are able to achieve significant improvements in terms of F1 score in com-
parison to the baseline DeepMatcher results. The high matching performance that
can be achieved by training entity resolution models with offer pairs from the WDC
Product Corpus clearly proves the utility of the Semantic Web as a rich source of
distant supervision for product-related entity resolution tasks.
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Chapter 6

Foundations of Active Learning

Active learning is a supervised learning paradigm. It is based on the fundamental
idea that a machine learning model can achieve better predictive performance if
trained on a small but carefully chosen set of labeled instances [Settles, 2012].
“Traditional” supervised learning methods are executed sequentially with respect
to the labeling process, i.e. a set of instances is selected upfront, labeled, and
used for training a machine learning model. We will refer to these methods as
passive in order to distinguish them from the active learning ones [Settles, 2012].
On the contrary, active learning methods are iterative methods. In each iteration,
a query selection component guides the labeling process to select only a subset
of all available unlabeled instances for labeling [Cohn et al., 1994]. The selected
instances are typically labeled by a human annotator [Settles, 2012].

Active learning is a good fit for supervised learning tasks for which abundant
unlabeled instances are available but obtaining their labels for training is difficult,
costly, or time-consuming. As such, it has been applied for different applications,
like image classification [Beluch et al., 2018], named entity recognition [Shen
et al., 2004], information extraction [Zhuang et al., 2020], as well as entity resolu-
tion [Chen et al., 2019; Isele and Bizer, 2013; Sarawagi and Bhamidipaty, 2002].
An overview of different active learning-based methods for different types of ap-
plications is provided by Settles [2012]. A more focused survey on active learning
methods for natural language processing tasks is provided by Olsson [2009]. Ren
et al. [2021] provide an overview of active learning methods that use deep-learning-
based models. Meduri et al. [2020] give an overview of active learning methods for
entity resolution.

In this part of the thesis, we turn our focus on active learning for entity resolu-
tion as a means of reducing the labeling effort while achieving comparable perfor-
mance to passive entity resolution methods. In this chapter, we discuss the main
concepts around active learning, concentrating on the most prominent techniques
employed for entity resolution.

This chapter is structured into four sections. Section 6.1 discusses the main
scenarios in which the query selection component can ask queries to guide the
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labeling process. Section 6.2 focuses on one of the main scenarios, i.e. the pool-
based active learning, describes its workflow for the task of entity resolution, and
discusses relevant workflow desiderata. In Section 6.3, we discuss different fam-
ilies of query selection strategies. Finally, in Section 6.4, we present commonly
used metrics for evaluating the performance of active learning methods for entity
resolution.

6.1 Query Selection Scenarios

There exist several ways in which the query selection component can ask queries to
guide the labeling process during active learning, among which the following three
have been distinguished by Settles [2012]: (i) membership query-synthesis, (ii)
stream-based selective sampling, and (iii) pool-based sampling. In the following,
we describe the three query selection scenarios.

Membership Query-Synthesis In the membership query-synthesis scenario,
the query selection component synthesizes new queries instead of selecting ex-
isting unlabeled instances [Angluin, 1988]. The new queries are interpolated, i.e.
they are described with the same features and lie within the feature value ranges of
the input space defined by the existing unlabeled data [Baum and Lang, 1992]. A
bottleneck that can occur in this query selection scenario is that often the generated
queries are hard to be interpreted by the human annotator [Baum and Lang, 1992;
Settles, 2012]. This bottleneck is tackled by the following scenarios.

Stream-based Selective Sampling In the stream-based selective sampling sce-
nario, the query selection component receives a stream of unlabeled instances and
decides for each one of them if they should be labeled or not [Cohn et al., 1994].
This query selection scenario has been employed in different applications, mostly
focused on natural language processing tasks, such as word sense disambigua-
tion [Fujii et al., 1998] and part-of-speech tagging [Dagan and Engelson, 1995].

Pool-based Sampling A pool-based scenario assumes that all unlabeled in-
stances are provided at once [Settles, 2012]. In this scenario, the query selection
component has always access to a pool of all unlabeled instances, in contrast to
stream-based selective sampling, where the unlabeled instances are provided in
small batches as a stream. In the context of this thesis, we consider entity reso-
lution as a static task, i.e. the aim is to identify all matching record pairs among
two or more static data sources. In such a setting, all unlabeled record pairs can
be generated upfront, and therefore the pool-based scenario is the most fitting one.
Pool-based active learning for entity resolution has been widely applied in related
work, e.g. in [Isele and Bizer, 2013; Ngomo et al., 2011; Ngomo and Lyko, 2012;
Sarawagi and Bhamidipaty, 2002]. An overview of pool-based active learning
methods for entity resolution is given in [Meduri et al., 2020; Papadakis et al.,
2021]. In the sections and chapters to follow, we will solely focus on pool-based
active learning and not discuss the other two query selection scenarios any further.
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6.2 Pool-based Active Learning

As already discussed in the previous section, the pool-based query selection sce-
nario has been widely employed by active learning methods for entity resolution.
In this section, we discuss the main components and general workflow of pool-
based active learning methods for entity resolution.

6.2.1 Components

There exist four main components within a pool-based active learning workflow:
the unlabeled pool, the labeled set, the query selection, and the learner [Settles,
2012].

Unlabeled Pool The unlabeled pool contains all instances for which the label is
yet unknown. In the context of entity resolution, the unlabeled pool contains pairs
of records without any matching or non-matching label. Typically, the record pairs
in the unlabeled pool are the output of a blocking step, as discussed in Section 2.3.2.

Labeled Set The labeled set contains the set of instances that have been labeled
by the human annotator. In the context of entity resolution, the labeled set contains
record pairs with matching or non-matching labels. Initially, the labeled set is ei-
ther empty, e.g. in the work of Isele and Bizer [2013], or is initialized with a small
set of seeding record pairs, e.g. in the work of Qian et al. [2017]. The initializa-
tion of the labeled set is a non-trivial problem, which will be further discussed in
Chapter 7.

Query Selection The query selection component is responsible for selecting in-
stances from the unlabeled pool to be labeled by the human annotator. For an entity
resolution task, the query selection component employs a certain query selection
strategy, which assesses all record pairs of the unlabeled pool according to a utility
measure [Settles, 2012], often referred to as informativeness [Meduri et al., 2020;
Papadakis et al., 2021]. The record pairs that are assessed as most informative are
selected for labeling. Commonly used query selection strategies will be covered in
Section 6.3.

Learner The learner component is the machine learning model representing the
solution of the task. For an entity resolution task, as defined in the context of this
thesis, the learner is a binary classifier relying on any type of machine learning
algorithms, such as random forests, SVM, or neural networks. An overview of dif-
ferent types of learners employed by active learning methods for entity resolution
is provided in [Meduri et al., 2020].
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Figure 6.1: Pool-based active learning workflow.

6.2.2 Workflow

After having introduced the four main components of pool-based active learning,
we now describe the complete workflow in the context of entity resolution. The
main pre-requisite for starting the active learning workflow is the initialization of
the labeled set with seeding matching or non-matching pairs. As already intro-
duced, this is a non-trivial task, which will be further analyzed in Chapter 7. Alter-
natively, a few methods do not use seeding record pairs but randomly initialize the
query selection component in order to be able to select the first instance for label-
ing [Isele and Bizer, 2013; Ngomo and Lyko, 2012]. Figure 6.1 presents the general
workflow of pool-based active learning after initializing the labeled set with at least
one matching and one non-matching record pair. It should be noted that for some
specific query selection strategies (learner-aware query strategies), which will be
covered in Section 6.3, the learner component is part of the query selection com-
ponent. We denote this with the dotted line connecting the two components. In the
following, we describe the general workflow.

In each active learning iteration, the query selection component assesses the
informativeness of all record pairs of the unlabeled pool. The record pair(s) that
are assessed as the most informative are selected and removed from the unlabeled
pool (Step 1). The selected record pair(s) are forwarded to a human annotator,
who assigns a label matching or non-matching (Step 2). The labeled record pair(s)
are added to the labeled set (Step 3). The labeled set is used to evolve the query
selection component according to the employed query strategy (Step 4) and to train
the learner (Step 5). The quality of the learner is evaluated on an external test set.
In order to assess the quality of the learner in each iteration, it is common to train
the learner and evaluate its predictions on the test set at the end of each active
learning iteration [Meduri et al., 2020].
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6.2.3 Workflow Desiderata

The general workflow described in the previous section is followed by most pool-
based active learning methods for entity resolution [Kasai et al., 2019; Meduri
et al., 2020; Qian et al., 2017], as well as for other applications, such as text and
image classification [Hoi et al., 2006; Zhang and Chen, 2002]. However, there exist
certain workflow desiderata which can vary among the methods. In the following,
we list different workflow desiderata and discuss how they are realized in related
works as well as in the context of this work. As the related works that will be
discussed tackle different tasks and do not solely focus on entity resolution, we
will use the more general term instance instead of record pair.

Amount of Annotators A pool-based active learning workflow can include one
or more human annotators in the labeling process. In the case that more annotators
are involved, widely known as crowdsourcing, each instance selected for labeling
by the query selection component receives more than one label. Techniques com-
bining active learning with crowdsourcing have been widely explored [Agarwal
et al., 2013; Ipeirotis et al., 2014]. Crowdsourcing active learning techniques de-
pend their query selection strategy on the redundancy of labels [Bouguelia et al.,
2018; Sherif et al., 2020]. In the context of this thesis, we consider a single human
annotator while each instance is assigned a single label, similarly to many related
works, e.g. [Isele and Bizer, 2013; Kasai et al., 2019].

Correctness of Labels The assigned labels by the human annotator can be ei-
ther assumed as always correct or error-prone. The existence of noisy labels is a
general problem in machine learning which affects the prediction quality of the
classification model and has been studied in both passive [Natarajan et al., 2013;
Song et al., 2022] and active learning settings [Bouguelia et al., 2018]. In the latter,
the quality of the classification model, i.e. the learner, can be further deteriorated
due to the query selection component that can be misled by the presence of noise
in the labeled set [Bouguelia et al., 2018].

Commonly, the case of a flawless human annotator is assumed in related active
learning works [Chen et al., 2019; Sarawagi and Bhamidipaty, 2002]. However,
there exists a line of work on active learning which considers that labeling errors
can occur [Bouguelia et al., 2018; Sherif et al., 2020; Zhang et al., 2015]. To
circumvent the problem of error-prone labels, some active learning methods use
crowdsourcing techniques and exploit the disagreement of the labels provided for
the same instance [Agarwal et al., 2013; Ipeirotis et al., 2014; Sherif et al., 2020],
or rely on re-labeling mechanisms [Bouguelia et al., 2015, 2018; Zhang et al.,
2015]. In the latter case, the aim is to spot and correct the errors using the learner’s
confidence [Bouguelia et al., 2015], estimating the influence of erroneously labeled
instances [Zhang et al., 2015], or by comparing the learner’s predictions with and
without the labels which are suspected to be wrong [Bouguelia et al., 2018]. In our
work, we assume a flawless human annotator who always provides correct labels.
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Amount of Queries per Iteration In each active learning iteration, one, i.e. sin-
gle queries, or more, i.e. batch queries, instances can be selected for labeling. The
amount of queries per iteration varies significantly in related work. For example,
single queries are considered in [Bouguelia et al., 2018; Isele and Bizer, 2013].
Batch queries of size ten are applied in [Meduri et al., 2020; Ngomo and Lyko,
2012]. Small batch sizes are inefficient for deep learning-based active learning
methods due to the long training times [Ren et al., 2021]. Therefore, for such meth-
ods, larger batch sizes are preferred, which typically are in the range of 20 [Kasai
et al., 2019] to 100 [Nafa et al., 2020]. In the context of this thesis, we consider
single queries in each active learning iteration.

Stopping Criterion The active learning workflow iterates until a stopping cri-
terion is met [Settles, 2012]. Typically, the stopping criterion is a certain labeling
budget, e.g. 100 labels. In our work, we use a budget-based stopping criterion
similar to many pool-based active learning methods [Chen et al., 2019; Isele and
Bizer, 2013; Meduri et al., 2020]. For example, Isele and Bizer [2013] consider
a budget of 50 labels and Bouguelia et al. [2018] consider a budget of 250 labels.
Related works that consider a varying batch query size set their budget limitation
with respect to the number of active learning iterations. For example, Chen et al.
[2019] consider a varying batch query size from 10 to 30 in their experimental
setup and set 199 active learning iterations as their stopping criterion. Alternative
stopping criteria for active learning have been proposed in [Olsson and Tomanek,
2009; Vlachos, 2008]. The common ground of these methods is that they aim to
quantify the confidence of the learner regarding the most informative unlabeled in-
stances and stop iterating once the confidence has converged to a stable level over
multiple iterations.

Table 6.1 (left) gives a comparative overview of different active learning meth-
ods for entity resolution with respect to the realization of the discussed pool-based
active learning workflow desiderata. The stopping criterion dimension is not re-
ported on the table, as all active learning methods that focus on entity resolution
apply the budget-based stopping criterion.

6.3 Query Selection Strategies

As already discussed, the active learning query selection component is respon-
sible for assessing the informativeness of the record pairs in the unlabeled pool.
To do so, it employs a query selection strategy, also referred to more compactly
as query strategy [Settles, 2012]. An overview of different query strategies is pro-
vided in [Settles, 2012]. A distinction between different families of query strategies
applied on entity resolution tasks is presented in [Meduri et al., 2020; Papadakis
et al., 2021].
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Table 6.1: Comparison of active learning methods for entity resolution with respect to the pool-based active learning workflow desiderata
and the query strategy categorization.

Method
Workflow desiderata Query strategy categorization

# Annotators
Correctness

of labels
# Queries

per iteration
Based on Learner-

aware
Learner-
agnosticclassification heuristics monotonicity

[Tejada et al., 2001] 1 correct single
X

(committee-based)
X

[Sarawagi and Bhamidipaty, 2002] 1 correct single
X

(committee-based)
X

[de Freitas et al., 2010] 1 correct single & batch
X

(committee-based)
X

[Arasu et al., 2010] 1 correct single X X

[Ngomo and Lyko, 2012] 1 correct batch (10)
X

(committee-based)
X

[Isele and Bizer, 2013] 1 correct single
X

(committee-based)
X

[Ngomo et al., 2013] 1 correct batch (10)
X

(committee-based)
X X

[Christen et al., 2015] 1 error-prone batch (calculated) X X
[Qian et al., 2017] 1 correct batch (12) X X

[Kasai et al., 2019] 1 correct batch (20)
X

(margin-based)
X

[Chen et al., 2019] 1 correct batch (10-30)
X

(committee-based)
X

[Sherif et al., 2020] 2-16 error-prone batch (10)
X

(committee-based)
X

[Nafa et al., 2020] 1 correct batch (up to 100) X X
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Meduri et al. [2020] distinguish two categories of query strategies, learner-
aware and learner-agnostic, given the access of the query selection component to
the learner. Learner-aware query strategies use the learner to assess the informa-
tiveness of the instances of the unlabeled pool. In contrast, learner-agnostic query
strategies do not consider the learner for assessing the informativeness of the in-
stances. A different categorization is provided by Papadakis et al. [2021] concern-
ing the different types of assumptions taken for assessing how informative a record
pair is. In the following, we present the three categories of query strategies as dis-
tinguished by Papadakis et al. [2021] and discuss related works belonging to these
categories. In addition, we distinguish the related works into the categorization
scheme of Meduri et al. [2020], i.e. learner-aware and learner-agnostic. Table 6.1
(right) gives an overall comparison overview of different active learning methods
for entity resolution with respect to the categorization of their query strategy.

6.3.1 Heuristic-based

Heuristic-based query strategies rely on the feature vectors of the record pairs in the
unlabeled pool for selecting ambiguous to the learner instances [Papadakis et al.,
2021]. Ngomo et al. [2013] extend a classification-based query strategy by adding
a heuristic for filtering the unlabeled record pairs, which are likely falsely pre-
dicted by the learner. Christen et al. [2015] propose AdInTDS, a learner-aware
query strategy that relies on the clustering of the unlabeled record pairs and esti-
mates the purity of the clusters. The representative record pairs of the estimated
unpure clusters are considered most informative and therefore selected for label-
ing. Qian et al. [2017] develop a learner-aware active learning method for entity
resolution which applies rule learning. The labeled set is used for training the rule
learning model, which is then applied to the record pairs of the unlabeled pool. The
query strategy uses a set of heuristics and selects record pairs that are likely falsely
predicted by the learner, given their feature vector. Similarly, Nafa et al. [2020]
aim to select likely falsely predicted record pairs by exploiting a risk model, which
assesses the mislabeling risk of the unlabeled record pairs.

6.3.2 Classification-based

Classification-based query strategies exploit the confidence of one or more ma-
chine learning models, trained on the current labeled set for assessing the infor-
mativeness of the unlabeled record pairs [Papadakis et al., 2021]. In the case that
these models include the learner, the query strategies are considered learner-aware,
otherwise learner-agnostic [Meduri et al., 2020]. The classification-based query
strategies can be further distinguished into committee-based and margin-based.
Committee-based query strategies use multiple models, i.e. the committee. The
learner can be part of the committee. The models in the committee are trained on
the current labeled set and vote their predictions on the unlabeled record pairs. The
informativeness of each record pair is estimated as the disagreement of the votes
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of the committee. Margin-based query strategies assess as most informative the
record pairs which are close to the decision boundary determined by one or more
classifiers.

Classification-based query strategies have been widely adopted by active learn-
ing methods for entity resolution. Early approaches focus on committee-based
query strategies that comprise either models trained on different subsets of the la-
beled set [Tejada et al., 2001] or are different parametrizations of the same learner
[Sarawagi and Bhamidipaty, 2002]. Multiple works rely on committees of linkage
rules which evolve using genetic programming [de Freitas et al., 2010; Isele and
Bizer, 2013; Ngomo and Lyko, 2012; Ngomo et al., 2013]. Linkage rules typically
comprise a set of property, transformation, comparison, and aggregation opera-
tors [Isele and Bizer, 2013]. Chen et al. [2019] propose HeALER, a committee-
based query strategy whose committee members are different types of classifiers.
Finally, Mozafari et al. [2014] as well as Kasai et al. [2019] use margin-based
query strategies, which estimate the informativeness of each unlabeled record pair
based on the classification probability of the learner.

6.3.3 Monotonicity-based

Monotonicity-based active learning methods rely on the monotonicity assumption
of precision, i.e. given a matching record pair with an overall similarity s, any
record pair with a similarity score ą s can be safely considered as matching [Tao,
2018]. An example of a monotonicity-based query strategy is applied in the work
of Arasu et al. [2010]. The authors rely on the monotonicity assumption of preci-
sion and select batches of unlabeled record pairs for annotation that are estimated
to increase the precision of the learner.

6.4 Evaluation Metrics

In their survey paper, Meduri et al. [2020] propose four dimensions for evaluating
the overall quality of active learning methods for entity resolution: learner quality,
labeling effort, latency, and interpretability.

Learner Quality To measure the learner quality, the common evaluation metrics
for entity resolution, as presented in Section 2.4, are used: precision, recall, and F1
score. These metrics are calculated with respect to the predictions of the learner of
the last active learning iteration on an external test set. This allows reporting the
quality of the learner given a pre-defined labeling budget. In order to measure the
quality of the learner during active learning, in both earlier and later iterations, the
F1 score is typically measured and reported after each active learning iteration.

To compare different active learning methods across all iterations, an aggre-
gated F1 score is needed. Bouguelia et al. [2015] report the average score of all it-
erations. Alternatively, the area under the F1 score curve is commonly used [Moza-
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Figure 6.2: Example of approximating the F1-AUC using the trapezoidal rule.

fari et al., 2014; Sherif et al., 2020]. The area under the F1 scores curve, abbrevi-
ated with F1-AUC, is calculated as the definite integral between two points. One
technique of approximating the definite integral is the composite trapezoidal rule.
The trapezoidal rule partitions the curve into equal subintervals and approximates
the area under the intervals as a trapezoid. In the case of active learning, each
subinterval can be considered as the area of the F1 curve between two points with
labeled data ri, i` 1s, as shown in Figure 6.2 and indicated with the dotted vertical
lines. More formally, the trapezoidal rule for approximating the definite integral
between two points a and b in the F1 curve considering n partitions is given by
Equation 6.1.

ż b

a
fpxqdx «

∆x

2
rfpx0q ` 2fpx1q ` ...` 2fpxn´1q ` fpxnqs (6.1)

where:

∆x “ b´a
n , subinterval, i.e. one labeled example for the case of active learning

xi “ α` i∆x

Labeling Effort In the context of our work, we assume that each record pair
is equally difficult to be assessed as matching or non-matching by the human an-
notator. Therefore, the labeling effort is quantified only by the number of record
pairs that are manually labeled during active learning and is independent of other
dimensions, such as the size or the ambiguity of the descriptions of the record pairs
provided to the human annotator for labeling.

Latency The metric of latency refers to the overall time required for query se-
lection. Considering that during active learning, a human annotator needs to be
available throughout the complete labeling process, latency is an additional impor-
tant evaluation metric. In our work, the three metrics mentioned above are used to
measure the effectiveness of active learning methods.
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Interpretability The metric of interpretability evaluates how readable and in-
terpretable the output model is to the user [Meduri et al., 2020]. However, the
dimension of interpretability solely relies on the classification model used as the
learner, independently of whether the model appears in a passive or an active learn-
ing setting. For example, rule-based models are, in general, more interpretable than
neural network-based models. Therefore, in our work, we do not consider the met-
ric of interpretability for evaluating the results of active learning methods for entity
resolution.
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Chapter 7

Unsupervised Bootstrapping of
Active Learning for Entity
Resolution

After having discussed the foundations of active learning, starting from this chap-
ter, we turn our focus on pool-based active learning methods as a means of reducing
the labeling effort for entity resolution. As already introduced, pool-based active
learning methods for entity resolution use a query strategy for assessing how in-
formative the record pairs of the unlabeled pool are. The record pairs assessed as
most informative are selected for labeling and added to the labeled set, which is
further used for training the learner. Additionally, we saw in Section 6.1, that the
majority of active learning methods either use classification-based query strategies
or/and are learner-aware. For such methods, the pre-requisite for the pool-based
active learning workflow to start is the initialization of the classification model(s)
used as part of the query strategy or/and the learner.

A problem that frequently arises is the lack of labeled record pairs before ac-
tive learning starts, which further hinders the initialization of the classification
model(s), known as the cold start problem [Konyushkova et al., 2017]. The cold
start problem is a non-trivial bottleneck for active learning methods and different
techniques have been applied to circumvent it. Such techniques include random
initialization of the classification model(s) which are part of the query strategy and
learning [Isele and Bizer, 2013; Ngomo and Lyko, 2012], transfer learning [Ka-
sai et al., 2019] or labeling of a seeding subset of record pairs [Chen et al., 2019;
Konyushkova et al., 2017; Qian et al., 2017; Sarawagi and Bhamidipaty, 2002].
All of these approaches rely on certain assumptions which can vary among dif-
ferent entity resolution tasks, such as the distribution of pre-calculated similarity
scores [Chen et al., 2019], or increase the human labeling effort. The related work
will be discussed in further detail in Section 7.1.

In this chapter, we present an unsupervised method for assisting both the ini-
tialization as well as the complete workflow of active learning, to which we refer
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as unsupervised bootstrapping, thus covering the contribution [C4] of the thesis. In
contrast to existing active learning initialization approaches, our method comes at
no additional labeling cost and is independent of the entity resolution task at hand.
Our unsupervised bootstrapping method relies on the unsupervised aggregation of
the similarity-based scores of the pool record pairs into one overall score and a
thresholding heuristic. The overall scores are compared against the heuristically
defined threshold and the record pairs of the unlabeled pool receive matching and
non-matching labels which are subject to some degree of noise. The unsupervised
labeled record pairs are further exploited for initializing active learning. Addition-
ally, they are also part of the complete active learning workflow, i.e. query selection
and training of the learner. The query selection relies on the committee-based query
strategy of HeALER [Chen et al., 2019], while we use a random forest classifier as
a learner. Finally, we perform a three-fold evaluation on six entity resolution tasks
across different profiling groups, as presented in Chapter 3. First, we compare
the results of our proposed thresholding heuristic to baseline threshold-based un-
supervised entity resolution methods. Second, we compare our unsupervised boot-
strapped active learning method to symbolic baselines using the HeALER query
strategy [Chen et al., 2019] and random sampling or transfer learning for initial-
ization. Third, we compare our active learning method to subsymbolic baselines,
inspired by the work of Kasai et al. [2019]. The subsymbolic baselines use ei-
ther our unsupervised method or transfer learning for initialization and rely on the
DeepMatcher framework [Mudgal et al., 2018].

The contributions of this chapter are summarized as follows:

• We propose a thresholding heuristic for unsupervised entity resolution that
uses a domain-independent scoring function.

• We propose a method for bootstrapping active learning that comes at no
additional labeling cost and guarantees high anytime performance within a
limited annotation budget.

• We perform an extensive evaluation on six entity resolution tasks with dif-
ferent profiling characteristics.

• We compare our proposed method to symbolic and subsymbolic active learn-
ing methods.

This chapter is structured into four sections. In Section 7.1, we discuss the
related work with respect to the initialization techniques applied by active learning
methods for entity resolution and distinguish the latter into symbolic and subsym-
bolic. Section 7.2 presents our methodology on bootstrapping active learning in
an unsupervised fashion. In Section 7.3, we present the experimental results first
of our proposed thresholding heuristic and second of the complete active learning
workflow and compare them against baseline symbolic and subsymbolic methods.
Finally, in Section 7.4, we summarize the main findings of this chapter.
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The methodology as well as the evaluation of the results presented in this chap-
ter have been partially published in the Proceedings of the 17th Extended Semantic
Web Conference [Primpeli et al., 2020]. The evaluation of the subsymbolic base-
line methods is a joint work with Stephan Waitz and the results have been partially
published in his Master thesis [Waitz, 2021]. The code developed by Stephan Waitz
can be used for reproducing the subsymbolic active learning baseline experiments
and is publicly available.1 Additionally, we provide the code and datasets used for
the rest of the experimental evaluation of this chapter.2

7.1 Related Work

Pool-based active learning has been widely used for entity resolution in related
work. As already identified in Section 6.1 of the previous chapter, the majority of
the pool-based active learning methods for entity resolution apply classification-
based and/or learner-aware query strategies. Therefore, they require a mechanism
for initializing the active learning workflow. In this related work section, we first
discuss how these methods initialize the active learning workflow. Next, we dis-
tinguish the methods into symbolic and subsymbolic, report their current findings,
and discuss some practical considerations which are important to the comparison
of active learning methods on clear grounds. A comparison overview of pool-based
active learning methods with respect to the criteria discussed in this section is pre-
sented in Table 7.1.

Initializing Active Learning A common approach for initializing active learn-
ing is manually labeling a randomly selected subset of record pairs from the unla-
beled pool. We report the amount of sampled and manually labeled record pairs re-
quired for initialization in different active learning works, if explicitly documented
in the respective publications, in Table 7.1 and column Initialization method (seed
size). Meduri et al. [2020] select 30 record pairs as seeds and add them to the
labeled set. Qian et al. [2017] initialize the labeled set with 5 matching and 5 non-
matching pairs. Similarly, Brunner and Stockinger [2019] and Sherif et al. [2020]
use 10 randomly sampled and manually labeled record pairs as seeds. Wang et al.
[2021b] and Nafa et al. [2020] use larger randomly sampled seeding sets of 30 to
565 record pairs which account for 20% of all matching and non-matching pairs
per task after blocking. According to Wang et al. [2021b], a larger seeding set is
necessary as it guarantees an initial learner of high quality which further positively
impacts the complete active learning process. Similarly, Nafa et al. [2020] use
larger seeding sets for training the deep learning-based learner of the first iteration.
The problem with randomly sampling seeding record pairs for initializing active
learning is that, considering the high imbalance of matching and non-matching
pairs in an entity resolution task, it might be hard to find even one matching pair

1https://github.com/wbsg-uni-mannheim/DeepAL_for_ER
2https://github.com/wbsg-uni-mannheim/UnsupervisedBootAL

https://github.com/wbsg-uni-mannheim/DeepAL_for_ER
https://github.com/wbsg-uni-mannheim/UnsupervisedBootAL
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within a small amount of randomly sampled record pairs. This increases the overall
human labeling effort, as in order to find e.g. 5 matching record pairs [Qian et al.,
2017] a larger amount of record pairs needs to be inspected.

Other related works follow a more principled random sampling approach and
randomly select seeding record pairs from different areas of the similarity score
distribution [Chen et al., 2019; Sarawagi and Bhamidipaty, 2002; Tejada et al.,
2001]. However, these methods need to pre-define a number of similarity groups
as well as the number of record pairs from each group that needs to be labeled.
These two parameters can vary among different tasks and therefore require manual
inspection [Chen et al., 2019]. Furthermore, all initialization methods that rely on
a manually labeled seeding set of record pairs increase the human labeling effort
in contrast to our approach.

Existing works that do not increase the labeling effort for initializing the active
learning workflow can be distinguished into three categories. First, works that ran-
domly initialize the models of the query selection and learner components [Isele
and Bizer, 2013; Ngomo and Lyko, 2012; Ngomo et al., 2013]. The common
ground of these works is that they rely on populations of linkage rules, evolving
with the use of genetic programming. In the very first iteration, a random popu-
lation of linkage rules is generated. Second, works that rely on transfer learning
for initialization [Kasai et al., 2019]. However, this assumes that there exist abun-
dant labeled record pairs of a similar topical domain of high relatedness, i.e. a
model trained on the labeled record pairs can be transferred to the entity resolution
task at hand [Thirumuruganathan et al., 2018]. Although domain adaptation can
be applied for aligning the distributions of the labeled and unlabeled record pairs,
its effect in terms of performance has been shown to vary significantly given the
closeness of the source labeled task to the target unlabeled task [Tu et al., 2022].

Third and similar to our work, Bogatu et al. [2021] rely on an unsupervised ap-
proach for extracting a small seeding set of potentially matching and non-matching
record pairs. More concretely, the authors perform unsupervised representation
learning and derive numeric vectorized representations for all records. Next, they
apply nearest–neighbor search and compute the distances between the closest and
the furthest record representations. The record pairs having the minimum and max-
imum distances are assigned non-matching and matching labels respectively and
are used as seeding pairs. It is worth noting that the work of Bogatu et al. [2021]
was published one year after the publication of our proposed unsupervised boot-
strapping method [Primpeli et al., 2020].

Symbolic Active Learning Methods Similar to symbolic entity resolution meth-
ods, symbolic active learning methods for entity resolution perform record pair
comparison using data type-specific similarity metrics, as discussed in Section 2.3.3.
The works that rely on linkage rules use a combination of transformation and sim-
ilarity operators to compare the records [Isele and Bizer, 2013; Ngomo and Lyko,
2012; Ngomo et al., 2013; Qian et al., 2017].
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Table 7.1: Comparison of active learning methods with respect to the initialization approach, entity resolution steps, and usage of training
data enlargement techniques and a validation set.

Method
Initialization
method (seed size)

Symbolic Subsymbolic
Record pair
comparison

Record pair
classification

Training data
enlargement

Use of external
validation set (size)

[Tejada et al., 2001]
random sampling
from the sim. score distribution

X similarity-based
decision
tree

[Sarawagi and Bhamidipaty, 2002]
random sampling from the
sim. score distribution (2)

X similarity-based
decision
tree

[de Freitas et al., 2010] random sample (2) X
linkage rule
operators

genetic
programming

[Ngomo and Lyko, 2012]
random model
initialization

X
linkage rule
operators

genetic
programming

[Isele and Bizer, 2013]
random model
initialization

X
linkage rule
operators

genetic
programming

[Ngomo et al., 2013]
random model
initialization

X
linkage rule
operators

genetic
programming

[Qian et al., 2017] random sample (10) X
linkage rule
operators

rule
learning

[Kasai et al., 2019] transfer learning X fastText
DeepMatcher
RNN

X X(20%)

[Chen et al., 2019]
random sampling from the
sim. score distribution (4-10)

X similarity-based
decision
tree

[Brunner and Stockinger, 2019] random sample (10) X similarity-based
SVM, random forests,
neural network

[Sherif et al., 2020] random sample (10) X similarity-based WOMBAT

[Nafa et al., 2020] random sample (50-575) X fastText
DeepMatcher
(hybrid)

X(5-25%*)

[Bogatu et al., 2021]
unsupervised based
on sim. scores

X
variant auto-encoder
representations

siamese
neural network

X

[Wang et al., 2021b] random sample (30-500) X similarity-based random forest X X(20%)
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Different classification models have been used as learners in symbolic active
learning methods for entity resolution. The early approaches of Tejada et al. [2001]
and Sarawagi and Bhamidipaty [2002] use decision tree models. Later, multiple
approaches emerged, using the genetic programming algorithm for learning link-
age rules [Isele and Bizer, 2013; Ngomo and Lyko, 2012; Ngomo et al., 2013].
Other works relying on linkage rules developed their own rule learning algorithms,
e.g. Qian et al. [2017] with LEARNRULE and Sherif et al. [2020] with WOM-
BAT. Brunner and Stockinger [2020] experiment with different types of learners,
including random forests, SVM, and logistic regression, while Wang et al. [2021b]
apply random forests.

In their benchmark study, Meduri et al. [2020] evaluate different types of clas-
sification models as learners, including SVM, random forests, and rule learning.
Additionally, they evaluate three query strategies: committee-based, margin-based,
and heuristic-based. The findings of the benchmark study show that random forests
with learner-aware committee-based strategies outperform the rest of the tested
models and query strategy combinations on nine different entity resolution tasks.

Concerning the composition of the committee members in committee-based
strategies, Chen et al. [2019] have shown that a heterogeneous committee, i.e. the
models are different types of classifiers, delivers better results in comparison to
different parametrizations of the same classifier. Given the findings of Meduri
et al. [2020] as well as of Chen et al. [2019], we use a heterogeneous committee-
based query strategy and a random forest as learner for building our symbolic active
learning pipeline for entity resolution.

Subsymbolic Active Learning Methods Subsymbolic active learning methods
for entity resolution rely on distributed representations for the record comparison
step and use deep learning-based architectures for the query selection and learner
components. In the work of Kasai et al. [2019] and Nafa et al. [2020], the Deep-
Matcher framework [Mudgal et al., 2018] is used for record pair comparison and
classification. Both methods rely on pre-trained fastText embeddings while the
RNN and hybrid architectures are used, respectively. Kasai et al. [2019] deliver
promising results in terms of F1 score, showing that their active deep learning-
based method achieves close to passive learning results produced by symbolic en-
tity resolution methods. In this chapter, we develop and consider for experimental
comparison a subsymbolic approach, mainly inspired by Kasai et al. [2019].

Bogatu et al. [2021] develop VAER, a Variational Active Entity Resolution
method which aims to reduce the overall labeling effort while leveraging the ad-
vantages of deep learning by decoupling the record pair comparison and the record
pair classification steps. The authors perform unsupervised representation learning
on record level by exploiting variational auto-encoders, which are deep generative
models typically used for dimensionality reduction [Kingma and Welling, 2014].
Variational auto-encoders consist of an encoder which aims to map the input, i.e.
attribute values of a record, to a lower dimension probability distribution, and a de-
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coder which ensures that the transformed input can be reconstructed to produce the
original one. Once the records have been mapped to their learned numerical repre-
sentations, VAER applies active learning for selecting informative record pairs for
labeling, which are further used to train a siamese neural network.

Finally, Jain et al. [2021] develop DIAL, a deep indexed active learning ap-
proach for entity resolution. A significant methodological difference to the exist-
ing symbolic and subsymbolic approaches is that DIAL integrates the blocking and
the matching steps in the active learning loop. Both, the matcher and the blocker
rely on transformer-based pre-trained language models. In contrast to the typical
pool-based scenario, which is studied in this part of the thesis, the unlabeled pool
in DIAL is filled with different record pairs after every iteration, given the blocking
results. Additionally, the query selection component considers the blocking results
of each iteration as part of the query strategy.

Training Data Enlargement In order to circumvent the absence of large amounts
of training data during active learning, which can lead to the overfitting of the
learner [Anthony and Biggs, 1997], training data enlargement techniques have been
applied in related work [Kasai et al., 2019; Wang et al., 2021b]. The common
ground of the works using training data enlargement techniques is that they do not
increase the labeling effort as they solely rely on confidently predicted unlabeled
record pairs by the query selection component. The confident unlabeled pairs re-
ceive their predicted label and are added to the labeled set. Wang et al. [2021b]
apply a committee-based query strategy and calculate the confidence of the pre-
dictions of the unlabeled record pairs as the agreement among the votes of the
committee members. Kasai et al. [2019] apply a learner-aware margin-based query
strategy and calculate the confidence of the predictions of the unlabeled record
pairs as the prediction probability of the learner.

Use of External Validation Set A critical observation that can be made from
some of the related works applying active learning for entity resolution, is that
they use an external validation set, e.g. [Kasai et al., 2019; Nafa et al., 2020; Wang
et al., 2011]. We report which works use external validation sets as well as their
relative sizes in Table 7.1 and column Use of external validation set (size). The
relative size denotes the ratio of all record pairs after blocking for each task used in
the experiments of the respective works. The validation set is exploited for tuning
the hyperparameters of the models, which are part of the active learning pipeline,
or for model selection. Although benchmark entity resolution tasks should be ac-
companied by validation sets to allow a fair comparison of passive entity resolution
methods, as discussed in Chapter 3, exploiting them in an active learning setting
perplexes the interpretation of the active learning results. One cannot differentiate
if the achieved performance is due to the labeled set, gathered during active learn-
ing, or the external validation set. Kasai et al. [2019] use a validation set of 20% of
the record pairs after blocking for model selection. Nafa et al. [2020] assume the
existence of a validation set for fine-tuning the model of their query selection com-
ponent. For the evaluation of their method, Nafa et al. [2020] use the DeepMatcher
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Figure 7.1: Workflow of unsupervised bootstrapping of active learning for entity
resolution.

entity resolution tasks [Mudgal et al., 2018] along with the provided splits for train-
ing (60%), validation (20%) and testing (20%). In order to test the robustness of
their method, the authors vary the size of the validation set from 25% to 100%
of the original provided validation set. This results in multiple validation sets per
task containing a minimum of 5% and a maximum of 20% of the record pairs after
blocking. Bogatu et al. [2021] exploit the validation sets that come together with the
benchmark entity resolution tasks used for experimentation to fine-tune the hyper-
parameters of both components of their variational active resolution model, i.e. the
representation learning step as well as the active learning step. However, the size
of the validation sets is not explicitly reported. Similarly, Wang et al. [2021b] use
a validation set comprising 20% of the record pairs after blocking for fine-tuning
the parameters of the learner. In our experiments, we account for this observation
and do not use an external validation set.

7.2 Methodology

We tackle the cold start problem of active learning by applying an unsupervised
entity resolution method for bootstrapping, i.e. initializing and assisting, the ac-
tive learning workflow. Our method comes at no additional labeling cost. In this
section, we describe the details of our proposed method for bootstrapping active
learning for entity resolution. Our method comprises two main methodological
steps: unsupervised entity resolution and active learning. The unsupervised en-
tity resolution step relies on the aggregation of the similarity-based features of all
record pairs in the unlabeled pool and a thresholding heuristic. The output of this
step is a pool of unsupervised labeled and weighted record pairs. The unsupervised
entity resolution step will be described in Section 7.2.1. In the active learning step,
the unsupervised labeled record pairs are used for initializing the active learning
workflow, but also as part of the query selection and learner components. The ac-
tive learning step will be described in Section 7.2.2. Figure 7.1 gives an overview
of the complete workflow of our method.
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7.2.1 Unsupervised Entity Resolution

In order to bootstrap the active learning workflow, we apply an unsupervised entity
resolution method and assign weighted matching and non-matching labels to the
record pairs of the unlabeled pool. We remind the reader that the unlabeled pool
construction is typically preceded by a blocking step.

Unsupervised entity resolution methods can be distinguished into threshold-
based, rule-based, and clustering-based [Christen, 2012; Papadakis et al., 2021].
Threshold-based methods use a threshold value, which can be either pre-defined
or calculated, for splitting the record pairs into matching and non-matching, given
their aggregated attribute similarities [Kejriwal and Miranker, 2015; Oulabi and
Bizer, 2019]. Rule-based methods employ matching rules for classifying the record
pairs as matching or non-matching. A matching rule is comprised of similarity
scores combined with conjunctions, disjunctions, and negations [Christen, 2012].
Clustering-based methods apply different clustering algorithms, such as k-means
[Elfeky et al., 2002], and create clusters of potentially matching and non-matching
record pairs. Considering that typically rule-based and clustering-based techniques
require manually designing matching rules or setting a set of clustering parameters,
we employ a threshold-based method. Below we describe the details of the unsu-
pervised entity resolution step.

Similarity Score Aggregation

The unsupervised matching step starts by calculating similarity-based features for
each record pair after blocking. We use the data type-specific similarity metrics
on attribute level, as described in Section 2.3.3, and generate a numerical feature
vector for each record pair. Additionally, we calculate the cosine score with tf-idf
weighting over the concatenated values of all attributes. The overall cosine similar-
ity score is added as an additional feature to the feature vector. In the case that the
similarity score cannot be computed for an attribute combination, because either
one or both values are missing, we assign the out-of-range score -1. This allows
any classifier to consider the relevant record pairs without dropping or replacing
the missing values.

We summarize the feature vector values into one value per record pair and as-
sign this score as its aggregated similarity score. A similarity score close to 1 gives
a strong signal that the record pair matches, whereas a similarity score close to 0
indicates that it does not match. We calculate the aggregated similarity score per
record pair as a weighted linear combination of all its non-missing feature values.
The overall cosine similarity receives a weight of 0.5, while all other features share
equally a weight of 0.5. We additionally weigh every feature value with the overall
density of the corresponding feature. The rationale behind this weighting scheme
is that we assume features that derive from attributes with few missing values to be
more important for solving the matching task in comparison to features deriving
from non-dense attributes. The aggregated similarity score sp of a record pair p is
calculated using Equation 7.1.
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sp “ 0.5ˆ cosine_tfidf` 0.5ˆ

n
ř

i“1,fip‰´1
fip ˆ di

|fip ‰ ´1|
(7.1)

where:

n “ the number of the features of record pair p
fip “ the value of feature fi of record pair p
di “ the density of feature fi

Thresholding

After the feature values have been aggregated to one similarity score per record
pair, a threshold value needs to be defined for assigning matching labels to the
record pairs in an unsupervised fashion. The record pairs with an aggregated sim-
ilarity score above the threshold value are assigned the label matching. Other-
wise, they are assigned the label non-matching. Typically, thresholding methods
are static with the threshold being 0.5, i.e. the middle value of the similarity score
range [Kejriwal and Miranker, 2015; Oulabi and Bizer, 2019].

Another thresholding technique that has been explored for the task of image
segmentation [Sezgin and Sankur, 2004], is Otsu’s thresholding method [Otsu,
1979]. Otsu’s method selects as a threshold the value that maximizes the variance
between the two classes and therefore expects that the distribution of values is bi-
modal, i.e. two clear peaks appear in the histograms of similarity scores without
any long-tail values.

To bypass the bimodality assumption of Otsu’s method, Ng [2006] developed
a variation of Otsu’s method, known as the valley-emphasis threshold. The valley-
emphasis threshold, which has also been used in the area of image segmentation,
is calculated using Equation 7.2, where pt is the relative frequency of grayscale t,
ω is the probability of each class and µ is the mean gray-level value of each class.

t_valley “ ArgMax
 

p1´ ptq pω1ptqµ
2
1ptq ` ω2ptqµ

2
2ptqq

(

(7.2)

For the task of image segmentation, the relative frequency is calculated as
pt “ ni{n, where ni is the number of occurrences of gray level i and n is the total
number of pixels. We adjust the valley-emphasis method to fit the entity resolu-
tion task by performing the following two adaptations: (i) We round the similarity
scores to the second decimal and calculate ni as the frequency of the rounded sim-
ilarity score. In this way, we aggregate the occurrences of infrequent values, which
allows for reasonable ni, as the similarity scores can have an arbitrary number of
decimal digits. (ii) We set n as the number of occurrences of the most frequent
similarity score and not to the total number of record pairs, which would be the
direct equivalent to the number of pixels. The reason for this adaptation is to allow
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Figure 7.2: Elbow point at 0.368 of the cumulative histogram of similarity scores
of record pairs from an example ER task.

the valley-emphasis method to have an effect over Otsu’s method, as otherwise the
weighting factor p1´ ptq will always be very close to 1.

Additionally to the existing thresholding methods, we propose a novel thresh-
olding method that determines the threshold value as the elbow point (also denoted
knee or point of maximum curvature [Satopaa et al., 2011]) of the cumulative his-
togram of the similarity scores of all record pairs after blocking. The elbow value
can be approximated as the point with the maximum perpendicular distance to the
vector between the first and the last point of the cumulative histogram. Figure 7.2
shows the elbow point of the cumulative histogram of similarity scores for an ex-
ample entity resolution task. From the histogram, we can see that 12.8K pairs in
this example entity resolution task have a similarity score below the elbow point.

The elbow thresholding method adjusts to the similarity score distributions of
different entity resolution tasks in contrast to static thresholding, while it does not
assume bimodality like Otsu’s thresholding. To further illustrate this, we present
the similarity scores for three entity resolution tasks in Figure 7.3. The three tasks
belong to different profiling groups, defined in Chapter 3: the task of Figure 7.3a
belongs to Group 1: Dense Data, Simple Schema, the task of Figure 7.3b belongs
to Group 3: Sparse Data, Complex Schema, and the task of Figure 7.3c belongs to
Group 5: Textual Data, Many Corner Cases. It becomes obvious that the similar-
ity score distributions among different entity resolution tasks can vary significantly,
e.g. the task of Figure 7.3a appears to have a clear bimodality, while the similarity
scores of the record pairs of the task of Figure 7.3c resemble a power-law distri-
bution. Therefore, it becomes clear that a static threshold value is unsuitable for
all tasks. Additionally, Otsu’s threshold, even when bimodality appears, is moved
towards the long tail of the distribution (Figure 7.3a). Finally, the adjusted valley
and the proposed elbow method produce similar threshold values.

Confidence Weights

Apart from their unsupervised matching labels, the record pairs are assigned weights,
which indicate how confident our unsupervised method is for the predicted label.
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(c) ER task of Group 5

Figure 7.3: Histograms of similarity scores of ER tasks of different profiling
groups and threshold boundaries per method.

This is necessary as the record pairs that are expected to be noisier should affect
less the active learning step in comparison to more confident pairs. The confidence
weight of a record pair is calculated as the normalized distance of its aggregated
similarity score sp to the threshold value t.

Therefore, record pairs close to the decision boundary t will receive a confi-
dence weight close to 0, while record pairs whose similarity scores are the highest
or the lowest in the similarity score distribution will receive a confidence weight
close to 1. We use the Equation 7.3 for calculating the confidence weight cp of a
record pair p, given a threshold value t and a similarity score distribution S.

cp “

$

’

’

’

’

’

&

’

’

’

’

’

%

|sp´t|
t´minpSq , if sp ă t

|sp´t|
maxpSq´t , if sp ą t

0 , if sp “ t

(7.3)

7.2.2 Active Learning

Considering the findings of Meduri et al. [2020] and Chen et al. [2019], as dis-
cussed in the related work Section 7.1, we use a heterogeneous learner-aware
committee-based query strategy and a random forest classifier as the learner for
the active learning step. Apart from its good performance in active learning set-
tings [Meduri et al., 2020], the random forest model allows for incremental training
by gradually adding new trees to the forest, a characteristic which is used in our
methodology and will be explained later in this section in more detail.

In a typical pool-based active learning setting, the pool contains unlabeled
record pairs. In our proposed method, the pool contains unsupervised labeled
record pairs, subject to some degree of noise. Thereafter, we will refer to the
pool of the active learning step of our methodology as noisy pool, to differentiate
it from the typical active learning setting. The existence of labels in the noisy pool
allows us to initialize the models of the query selection and learner components.
Our initialization method comes at no additional labeling cost, in contrast to the
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majority of active learning methods for entity resolution that rely on a manually
labeled seeding set of record pairs, as described in Section 7.1. In the following,
we describe how the noisy pool is exploited for initializing the query selection and
learner components as well as for assisting the complete active learning workflow.

Initializing the Learner

Before starting the active learning workflow, we use the record pairs of the noisy
pool and train a random forest classifier using the default parameters of the model,
as set from the scikit-learn library version 0.19.23: 10 estimators, i.e. trees, a
minimum split size of 2, while allowing sample replacement and maximum depth.
The confidence weights of the record pairs are considered as training weights upon
learning. This allows near to zero weighted leaf nodes of the individual trees of
the random forest classifier to be ignored. In this way, we avoid the over-fitting of
the initial random forest classifier to the most unconfident record pairs of the noisy
pool.

Initializing the Committee

We bootstrap the models of the committee for our query strategy by adding one
most confident positive and one most confident negative pair of the noisy pool to
the labeled set. The initialized labeled set is used for training the committee models
of the first active learning iteration.

Refining the Committee

We use a heterogeneous committee to select the most informative record pair for
labeling. This has been shown to perform better than committees of the same clas-
sification model with different model parameterizations [Chen et al., 2019]. Our
committee comprises five linear and non-linear classification models with default
parameters4: logistic regression, linear SVM, decision tree, XGBoost, and ran-
dom forest. The first four classifiers have been shown to achieve good accuracy
with little training data [Chen et al., 2019]. As we use a random forest classifier
for the learner component of the active learning workflow, we add this classifier
to the committee. In every active learning iteration, each model in the committee
is trained on the current labeled set. Next, it votes its predictions on all record
pairs of the noisy pool, i.e. every record pair receives five votes. The record pairs
with the maximum disagreement are considered to be the most informative. We
measure disagreement using vote entropy, calculated with Equation 7.4. A further
possibility would be to add weights to the votes of the committee and calculate
a weighted vote entropy considering the prediction probabilities of the commit-
tee models. However, as the committee comprises different types of classification

3https://scikit-learn.org/0.19/modules/generated/sklearn.ensemble.RandomForestClassifier.html
4As defined by the scikit-learn library version 0.19.2

https://scikit-learn.org/0.19/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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models, we expect their probability distributions to be distorted and hard to com-
pare [Niculescu-Mizil and Caruana, 2005]. Although calibration methods exist for
adjusting the predictions of different classification models to the actual posterior
probabilities, such as Platt Calibration [Platt et al., 1999] and Isotonic Regres-
sion [Zadrozny and Elkan, 2001], these have not been studied in our work.

We restrict the number of most informative pairs to those whose majority vote
disagrees with the unsupervised label of the record pair. From this restricted set,
one pair is randomly selected for labeling. In this way, we aim to select pairs to
query whose unsupervised label might be wrong and can therefore lead to the ad-
dition of new information to the random forest model learned during initialization.

vote_entropyp “ ´
|Y |
ÿ

i“1

V pyiq

C
log

V pyiq

C
(7.4)

where:

Y “ set of labels
V pyiq “ number of votes for label yi
C “ number of members in the committee

Refining the Learner

We propose the incremental training of the learner in each active learning iteration
to allow for a gradual fading away effect of the model learned in the initializa-
tion phase. To do so, we use a random forest classifier as the learner to which
we gradually add more estimators, i.e. trees. Therefore, the model learned in the
previous query iterations is not overwritten, a common practice in active learning
settings [Chen et al., 2019; Meduri et al., 2020; Sarawagi and Bhamidipaty, 2002],
but expanded. We start our training (active learning iteration 0) with the initializa-
tion of the learner, as explained previously, by fitting an initial number of trees on
the noisy pool of record pairs. Each active learning iteration adds a small number
of new trees to the model of the previous iteration. The added trees are trained
on the current labeled set. In the early training iterations, we expect the added es-
timators to be of low quality and high disagreement on their predictions, as they
are trained on small amounts of clean data. Therefore, in the early iterations, the
initial learner, trained in the initialization phase, dominates its predictions over the
ones of the added estimators. Once the added estimators become of better quality,
given the expansion of the labeled set, their prediction agreements will increase,
dominate the ones of the initial model and lead to model correction. We set the
number of trees learned in the initialization phase to 10 and the incremental size
of estimators per iteration to 2. In comparison to a regular random forest model,
which is not expanded but retrained, our learner retains a “fade-away” effect of the
noisy pool of record pairs. Finally, the incremental training of the learner resem-
bles the boosting rounds of a gradient-boosted tree model, such as the XGBoost
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Table 7.2: Profiling information of the ER tasks of the experimental setup.

Profiling group Task Attributes
Pool pairs Test

# match. # non-match. # match. # non-match.
Group 1:
Dense data,
simple schema

dbpedia_dnb 4 2,310 11,554 577 2,888

dbpedia_viaf 5 2,552 12,764 801 4,006

Group 3:
Sparse data,
complex schema

wdc_phones 18 206 1,556 51 389

wdc_headphones 14 180 983 45 245

Group 5:
Textual data,
many corner cases

abt_buy 3 878 4,854 219 1,213

amazon_google 4 1,041 5,714 259 1,428

model [Chen and Guestrin, 2016]. The difference is that in each iteration, which
would correspond to a boosting round in the case of XGBoost, the trained model
does not focus on the errors of the model of the previous iteration but on the clean
labeled record pairs.

7.3 Experimental Evaluation

In this section, we present the experimental results of our proposed method. First,
a detailed description of the experimental setup is given. Next, we split and discuss
the experimental results into three parts. In the first part, we present the results
of existing thresholding methods and compare them to the results of the elbow
thresholding method, described in Section 7.2.1. In the second part, we compare
the results of our active learning method to symbolic active learning baselines.
Finally, in the third part of our evaluation, we compare the results of our active
learning method to subsymbolic active learning baselines, inspired by the work
of Kasai et al. [2019].

7.3.1 Experimental Setup

We use six entity resolution tasks for our experimental evaluation from the author
(two tasks) and the product (four tasks) domains. The two author entity resolution
tasks belong to the profiling Group 1: Dense Data, Simple Schema, as defined
in Chapter 3. The two tasks include records describing authors retrieved from
DBpedia and linked to the DNB5 and VIAF6 data sources using owl: sameas links.
In total, there exist 2,887 matching record pairs between DBpedia and DNB and
3,353 matching record pairs between DBpedia and VIAF. The DBpedia and DNB
data sources have the following attributes in common: author_name, birthdate,
deathdate, and gender. Between DBpedia and VIAF, the attributes author_name,
birthdate, deathdate, gender, and a list of works are provided.

5https://www.dnb.de/wir
6http://viaf.org/

https://www.dnb.de/wir
http://viaf.org/
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We use two e-commerce tasks with records describing phones and headphones
from the Web Data Commons Project7 with multiple non-dense attributes. There-
fore these two tasks belong to Group 3: Sparse Data, Complex Schema, as defined
in Chapter 3. For our experiments, we disregard all attributes that have a den-
sity lower than 0.10. After this filtering, the records of the wdc_phones task have
attributes with densities ranging between 11% and 93%. The densities of the at-
tributes for the wdc_headphones range between 10% and 91%.

Additionally, we consider the abt_buy and amazon_google e-commerce tasks
[Köpcke and Rahm, 2008] which belong to Group 5: Textual Data, Many Cor-
ner Cases, as defined in Chapter 3. The records of the abt_buy task contain the
attributes product name, product description, and product price. The records of
the amazon_google task contain the attributes product name, product description,
manufacturer, and price.

Finally, we remove the labels of the record pairs of the train split of each task.
In a typical pool-based active learning setting, these are the pairs to be added to the
unlabeled pool. In our setting, these pairs receive labels, using the unsupervised
matching technique described in Section 7.2.1, and are added to the noisy pool
before active learning starts. Table 7.2 summarizes the profiling information of the
tasks used for experimentation in terms of record attributes, as well as the number
of matching and non-matching training and test record pairs.

7.3.2 Comparison to Thresholding Baselines

We evaluate the elbow point thresholding method and compare it to static thresh-
olding, for which the threshold is set to 0.4 and 0.5. Additionally, we perform
a comparison to two thresholding methods for binary problems from the field of
image segmentation, Otsu’s method [Otsu, 1979] and the valley-emphasis method,
[Ng, 2006] after the adjustments explained in Section 7.2.1.

Table 7.3 presents the results of the five compared thresholding methods in
terms of sample correctness (accuracy) and F1 score. To put the unsupervised
results into context, we present the difference ∆ to the F1 score, achieved in a
passive supervised learning scenario in which all training record pairs are manually
labeled and used to train a random forest classifier.

Comparing the thresholding methods’ results, we observe that our proposed
elbow point method achieves better results in terms of F1 score for five of the six
tasks in comparison to static thresholding when the threshold value is set to 0.5,
with the exception of wdc_phones where it underperforms by 2%. For the rest of
the tasks, the elbow method significantly dominates static@0.5 thresholding by an
absolute F1 score difference varying from 1% to 20%. In comparison to the static
thresholding when the threshold value is set to 0.4, the elbow method achieves
better results in four of the six tasks. However, the absolute F1 score difference is
smaller in comparison to the difference to the static@0.5 threshold and up to 8.4%.

7http://webdatacommons.org/productcorpus

http://webdatacommons.org/productcorpus
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Table 7.3: Comparison of thresholding methods and difference to passive learning.

Task
Thresholding

method
Unsupervised Passive

F1
∆ to

passive F1Accuracy F1

dbpedia_dnb

elbow 0.918 0.722

0.976

-0.254
static@0.4 0.920 0.721 -0.255
static@0.5 0.894 0.538 -0.438

Otsu’s 0.833 0.602 -0.374
valley 0.906 0.707 -0.269

dbpedia_viaf

elbow 0.956 0.862

0.983

-0.121
static@0.4 0.957 0.857 -0.126
static@0.5 0.915 0.663 -0.320

Otsu’s 0.743 0.542 -0.441
valley 0.958 0.861 -0.122

amazon_google

elbow 0.892 0.588

0.729

-0.141
static@0.4 0.899 0.624 -0.105
static@0.5 0.882 0.441 -0.288

Otsu’s 0.825 0.600 -0.129
valley 0.827 0.602 -0.127

abt_buy

elbow 0.896 0.674

0.818

-0.144
static@0.4 0.878 0.657 -0.161
static@0.5 0.912 0.660 -0.158

Otsu’s 0.794 0.562 -0.256
valley 0.857 0.630 -0.188

wdc_phones

elbow 0.881 0.523

0.851

-0.328
static@0.4 0.762 0.439 -0.412
static@0.5 0.881 0.544 -0.307

Otsu’s 0.759 0.438 -0.413
valley 0.757 0.438 -0.413

wdc_headphones

elbow 0.907 0.734

0.966

-0.232
static@0.4 0.925 0.741 -0.225
static@0.5 0.898 0.539 -0.427

Otsu’s 0.877 0.682 -0.284
valley 0.910 0.738 -0.228

Otsu’s thresholding method underperforms the adjusted valley method by a
maximum absolute margin of 32%. It is interesting to observe that the valley
method achieves very similar results to our proposed elbow method. However,
the elbow method significantly outperforms the valley method for the wdc_phones
tasks by 8%. Although the elbow heuristic does not always outperform all other
thresholding methods, we see that, in contrast to the other methods, it does not
suffer from large differences in F1 score across the tasks. This indicates that the
elbow thresholding heuristic can generalize well independently from the underly-
ing similarity score distribution, which can greatly vary among the different tasks.
Finally, the elbow thresholding method achieves 11% - 32% lower results in terms
of F1 score in comparison to the results achieved with full supervision and has an
accuracy of 88% or higher. For the rest of the experimental evaluation, we consider
the elbow thresholding method.
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7.3.3 Comparison to Symbolic Active Learning Baselines

We compare our proposed method, which we abbreviate with boot in the rest of
the experimental section, to three symbolic active learning baseline methods. The
first baseline method uses a random forest classifier as learner, the committee-
based query strategy of HeALER [Chen et al., 2019] and random initialization.
The second baseline method is similar to the first, while it additionally uses an
incrementally learned random forest classifier, similarly to boot. The third base-
line method, inspired by the initialization method used in the work of Kasai et al.
[2019], replaces the unsupervised initialization of boot with transfer learning. In
the following, we present the details of the three symbolic baseline methods.

B1: Random Forest - Random Initialization

As the first baseline, abbreviated with no_boot, we consider an active learning
setting with a pool containing all record pairs without labels or weights and an ini-
tially empty labeled set. As a query strategy, we apply first random sampling until
at least one positive and one negative pair is included in the labeled set. After that,
we apply the HeALER query-by-committee strategy, as described in Section 7.2.2.
A random forest classifier is trained in every iteration with the pairs of the labeled
set, using 10 estimators. With this baseline method, we aim to compare the two ini-
tialization techniques for active learning, i.e. random sampling and unsupervised
entity resolution with the elbow thresholding heuristic.

B2: Random Forest with Warm Start - Random Initialization

The second baseline, abbreviated with no_boot_warm, is designed in the same
way as the first one apart from the model training step. In this case, we use a warm
start setting like in our proposed method, with a random forest classifier being
incrementally expanded. Once the labeled set includes at least one positive and
one negative pair, an initial random forest is trained using 10 estimators. Similar to
our boot approach, in every iteration, two new estimators, i.e. trees, are trained on
the labeled set and are added to the initial random forest classifier. This baseline
guarantees that in every iteration the same number of trees as in the boot setting is
retrained. In addition, it ensures that the total number of estimators of the random
forest classifier in every iteration is the same as the one used for our method.

B3: Random Forest with Warm Start - Transfer Learning Initialization

The third baseline, abbreviated with boot_TL, uses transfer learning instead of un-
supervised matching for initializing active learning. In this setting, we consider
the existence of two entity resolution tasks for each experiment: a source task, for
which all record pairs after blocking have been manually labeled, and a target task,
for which no labeled record pairs are available and is the task we aim to solve. The
source and target tasks need to be from the same topical domain and have the same
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Table 7.4: Task relatedness scores per pair of tasks of the same profiling group.

Pair of ER tasks Task relatedness
dbpedia_dnb dbpedia_viaf 0.442
abt_buy amazon_google 0.134
wdc_phones wdc_headphones 0.212

schema. In our experimental setting, finding a source task is feasible, as there exist
three pairs of related entity resolution tasks. For the cases that the schemata of
the source and target tasks do not completely match, we reduce the feature vector
to the features that can be derived from the intersection of the source and target
schemata.

The only methodological difference between the boot_TL baseline method and
our method boot is that the initialization step relies on transfer learning and not
on unsupervised matching. More concretely, we train a random forest classifier
on all labeled record pairs of the source task. We apply the trained model to the
record pairs of the target task and derive their predicted labels match or non-match.
Similar to the confidence-based weighting scheme of the boot method, we use
instead of the normalized distance to a threshold value, the prediction probability
of the random forest classifier trained on the source task and assign weights to all
record pairs of the target task. We use the labeled and weighted record pairs of
the target task to initialize the noisy pool. Afterward, we apply the active learning
steps described in Section 7.2.2.

We expect some of the tasks of our experimental setting to be more closely
related than others which can, in turn, affect the initialization step and influence
positively the performance of the learner during active learning. For example, the
tasks dbpedia_dnb and dbpedia_viaf are expected to be more related than the tasks
amazon_google and abt_buy, as the first share one data source while the latter do
not. One way of measuring how related two entity resolution tasks are, is to com-
pute the task relatedness (TR), a metric introduced by Thirumuruganathan et al.
[2018]. TR calculates how similar two tasks are by training a logistic regression
classifier to predict the task from which each record pair originates. A high pre-
diction quality signifies that the two tasks are dissimilar, while a low prediction
quality signifies that the tasks are similar and are expected to have the same un-
derlying matching patterns. We measure the prediction quality of the classifier
using the Matthews correlation coefficient (MCC) and calculate the TR score as
1´MCC, similar to Thirumuruganathan et al. [2018]. Table 7.4 presents the task
relatedness scores for the three pairs of tasks in our experimental setting. As ex-
pected given the shared data source, the tasks dbpedia_viaf and dbpedia_dnb have
the highest relatedness score among the other task combinations.
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Results

We run each active learning experiment three times and allow an annotation budget
of 100 labeled record pairs. We use single queries, i.e. in each active learning
iteration, one record pair is selected, labeled, and added to the labeled set. We
report the average F1 scores per iteration and the standard deviation (σ) to account
for model stability on a separate test set. All experiments are run on a Linux server
with Intel Xeon 2.4 GHz processors.

Figures 7.4, 7.5, and 7.6 show the F1 scores per iteration for the boot method in
comparison to the three symbolic baseline methods. As we use single queries, each
iteration equals to one annotation, e.g. on iteration 20, we have labeled 20 record
pairs. Additionally, we indicate the upper learning bound of passive learning in
which all available training data are used.

We observe that for all tasks, our method manages to solve the cold start prob-
lem. In the first active learning iterations (1-40 depending on the tasks), boot pro-
duces better F1 scores in comparison to the two baselines that use random initial-
ization for all tasks. In comparison to the boot_TL baseline method, the results
significantly vary. For the dbpedia_dnb and dbpedia_viaf tasks, initializing active
learning with transfer learning produces better results during the first iterations
in comparison to the unsupervised initialization. Already in the very first active
learning iteration, the learner of the boot_TL baseline achieves F1 scores close to
the passive learning results for these two tasks, i.e. 0.899 for dbpedia_dnb which is
7.7 percentage points lower than the passive F1 score and 0.957 for dbpedia_viaf
which is 2.6 percentage points lower than the passive F1 score. However, this is
not the case for the rest of the tasks in our experimental setting for which the boot
method outperforms the boot_TL baseline in the first active learning iterations. The
high transferability between the dbpedia_dnb and dbpedia_viaf tasks is attributed
to their high task relatedness, which is the highest among all task combinations, as
shown in Table 7.4. Considering an active learning setting with a limited budget in
terms of manual annotations and no labeled data from another highly related task,
our method is preferable as stopping at any iteration achieves acceptable results.

Once the baseline methods go through the cold start phase, their F1 curves ap-
proach the one of the boot method. Comparing our method boot to the baselines
no_boot and no_boot_warm, which use random initialization, we observe that the
curves overlap after approximately 30 iterations for the tasks of Group 1: Dense
Data, Simple Schema, signifying that the unsupervised bootstrapping does not con-
tribute to learning a better model in terms of quality. However, this is not the case
for the tasks of the other two groups. For these tasks, the boot F1 curve dominates
the boot and no_boot_warm baseline F1 curves until the final iteration or until the
model converges to the upper learning bound of passive learning - a situation that
happens for the wdc_headphones task. Therefore, the unsupervised bootstrapping
continues to help to learn models of better quality in terms of F1 score, even after
the cold start phase has passed for the tasks of Group 3: Sparse Data, Complex
Schema, and Group 5: Textual Data, Many Corner Cases. A final observation that
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Figure 7.4: Symbolic baselines - F1 per active learning iteration - Group 1 tasks.
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Figure 7.5: Symbolic baselines - F1 per active learning iteration - Group 5 tasks.
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Figure 7.6: Symbolic baselines - F1 per active learning iteration - Group 3 tasks.
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Table 7.5: Comparison to symbolic AL baselines.

Task AL method Latency F1-AUC
F1(σ)

20th iter. 60th iter. 100th iter.

dbpedia_dnb

no_boot 0.91 sec. 79.29 0.756(0.197) 0.953(0.007) 0.952(0.009)
no_boot_warm 0.96 sec. 76.40 0.628(0.317) 0.916(0.022) 0.961(0.009)
boot_TL 1.18 sec. 93.77 0.916(0.020) 0.966(0.002) 0.969(0.002)
boot 1.21 sec. 90.06 0.850(0.022) 0.958(0.008) 0.969(0.001)

dbpedia_viaf

no_boot 1.11 sec. 81.70 0.725(0.363) 0.967(0.005) 0.972(0.005)
no_boot_warm 0.87 sec. 81.76 0.782(0.108) 0.937(0.043) 0.964(0.014)
boot_TL 0.90 sec. 95.70 0.950(0.017) 0.973(0.004) 0.980(0.002)
boot 1.39 sec. 93.91 0.909(0.014) 0.970(0.006) 0.979(0.002)

abt_buy

no_boot 0.63 sec. 61.16 0.637(0.080) 0.719(0.034) 0.723(0.031)
no_boot_warm 0.66 sec. 61.15 0.602(0.086) 0.671(0.046) 0.722(0.039)
boot_TL 0.75 sec. 62.31 0.538(0.076) 0.670(0.048) 0.717(0.029)
boot 0.78 sec. 71.15 0.685(0.048) 0.738(0.033) 0.759(0.029)

amazon_google

no_boot 0.60 sec. 49.53 0.425(0.214) 0.610(0.063) 0.628(0.046)
no_boot_warm 0.73 sec. 49.19 0.381(0.231) 0.581(0.063) 0.643(0.049)
boot_TL 0.77 sec. 59.91 0.542(0.094) 0.624(0.061) 0.653(0.053)
boot 0.85 sec. 62.00 0.594(0.055) 0.636(0.041) 0.663(0.034)

wdc_phones

no_boot 0.57 sec. 61.13 0.480(0.137) 0.712(0.063) 0.755(0.058)
no_boot_warm 0.56 sec. 47.72 0.374(0.330) 0.555(0.206) 0.707(0.077)
boot_TL 0.43 sec. 64.51 0.542(0.150) 0.692(0.064) 0.774(0.031)
boot 0.58 sec. 70.61 0.649(0.050) 0.747(0.053) 0.783(0.027)

wdc_headphones

no_boot 0.53 sec. 80.98 0.816(0.242) 0.957(0.008) 0.957(0.008)
no_boot_warm 0.59 sec. 75.71 0.464(0.386) 0.948(0.006) 0.946(0.004)
boot_TL 0.47 sec. 88.45 0.878(0.104) 0.957(0.005) 0.957(0.005)
boot 0.68 sec. 92.54 0.945(0.033) 0.955(0.007) 0.957(0.005)

can be drawn from the three figures, is that the no_boot_warm baseline underper-
forms the no_boot baseline in every active learning iteration. This shows that the
warm start setting can perform well only when the initially learned model is of
acceptable quality. The latter is guaranteed when active learning is initialized with
unsupervised labeled record pairs but not otherwise. Comparing the F1 curves after
the cold start phase of our method boot to the one of the boot_TL baseline, we see
that they converge to the same results after a maximum of 80 iterations, even for
tasks with low relatedness with abt_buy being the only exception. For the abt_buy
task, boot continues to outperform boot_TL even after 100 iterations.

Table 7.5 presents the comparison results of our method abbreviated with boot
and the symbolic active learning baselines in three active learning snapshots: 20th,
60th, and final 100th iteration. For each snapshot, we report the F1 score and stan-
dard deviation σ of the F1 scores among the five experimental runs. Additionally,
we report the average waiting time per iteration in seconds, i.e. the time between
two queries, which we denote as latency, as well as the area under the F1 curve for
all iterations, which we denote as F1-AUC.

Concerning latency, we observe that all symbolic active learning methods have
very small differences in waiting times per iteration. The waiting time increases
slightly with the size of the task at hand, e.g. dbpedia_dnb needs approximately 1
sec. per iteration, while the time reduces in half for wdc_phones.
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With regards to the performance of the symbolic active learning methods over
all 100 iterations, which we measure with the area under the F1 curve (F1-AUC),
we notice that the two baseline methods using random initialization achieve similar
results in three out of the six matching tasks. The boot method is the clear winner
among these two baselines achieving 9.48-12.47 points in F1-AUC more among all
tasks. This indicates that the boot method performs best over all iterations in com-
parison to the no_boot and no_boot_warm methods, which was already clear from
the learning curves presented in Figures 7.4-7.6. Comparing the F1-AUC scores of
the boot and boot_TL methods, we see that the first underperforms the second by
3.71 and 1.79 points for the dbpedia_dnb and dbpedia_viaf tasks, respectively. This
indicates that when labeled data from a highly related task are available, initializing
active learning using transfer learning performs overall better than using unsuper-
vised initialization. As already discussed, this is not the case for the rest of the
tasks for which boot outperforms boot_TL by 2.02 to 8.84 F1-AUC points. With
regards to the single snapshots, we observe that the improvement of our method
over the baselines that use random initialization is more dominant during the cold
start phase and up to 48% after 20 active learning iterations, i.e. the difference in F1
score between the boot and no_boot_warm results for the task wdc_headphones.

Concerning stability, we see that already in the 20th iteration, the boot method
gives stable results with the standard deviation ranging from 0.01 to 0.05. At the
same iteration point, the no_boot and no_boot_warm baseline methods are signif-
icantly more unstable, independently from the task, with the standard deviation
ranging from 0.08 to 0.38. This shows that in the cold start phase, our proposed
boot method does not only perform better in terms of F1 score in comparison to the
baseline methods using random initialization but also produces more stable models.
The stability of the boot_TL baseline method is dependent on the relatedness of the
source and target tasks, similar to the overall performance scores. More concretely,
the boot_TL produces stable results in the 20th iteration for the dbpedia_dnb and
dbpedia_viaf tasks, while for the rest of the tasks, which are not highly related, the
standard deviation ranges from 0.07 to 0.15.

On the 60th iteration, all models have recovered from the cold start phase and
are therefore more stable for all methods with the exception of the no_boot_warm
baseline, which remains highly unstable for the wdc_phones task (σ “ 0.206).
This extends our previous observation concerning the warm start setting, as it be-
comes obvious that without a good initial model, the warm start setting performs
weakly in terms of both quality and stability. Finally, on the last iteration, the boot
method produces models of at least the same stability in comparison to all symbolic
baselines.

7.3.4 Comparison to Subsymbolic Active Learning Baselines

In this section of our experimental analysis, we compare our method boot to sub-
symbolic active learning methods for entity resolution from the related work. The
subsymbolic baselines are adaptations of the method proposed by Kasai et al.



148 CHAPTER 7. UNSUPERVISED BOOTSTRAPPING OF AL FOR ER

[2019]. As discussed in the related work Section 7.1, the deep learning-based
active learning method of Kasai et al. [2019] exploits a validation set for model
selection. The validation set comprises 20% of the record pairs after blocking. The
use of a validation set increases the overall labeling effort, while it does not permit
a clear comparison to our method, which only relies on the labeled set acquired
during active learning for training the learner.

In order to be able to compare our method to the deep active learning method
of Kasai et al. [2019] on common grounds, we adjust the latter so that the vali-
dation set is sampled from the labeled set acquired during active learning. In the
following, we present the technical details of the subsymbolic baseline methods.

B4: DeepMatcher - Transfer Learning Initialization

General Overview The first subsymbolic baseline applies transfer learning for
initializing the active learning workflow. During active learning, a learner-aware
uncertainty-based strategy assesses the informativeness of the record pairs of the
pool. Additionally, confident record pairs are used to enlarge the training set and a
deep learning model based on the DeepMatcher architecture [Mudgal et al., 2018]
is used as the learner. For tuning the parameters of the model, a validation set
containing 25% of the record pairs of the enlarged labeled set is used. The latter is
the only methodological difference to the method of Kasai et al. [2019] in which
the validation set is external and acquired before active learning starts.

Initialization For initializing active learning, transfer learning is applied. To
do so, a DeepMatcher model is trained on a similar entity resolution task, called
source task, for which abundant labeled training record pairs are assumed to be
available. The source labeled record pairs are added to the labeled set. As already
discussed, in our experimental setting, finding a source task is feasible, as there
exist three pairs of related entity resolution tasks.

Query Selection and Training Set Enlargement After the transfer learning
step, the active learning workflow starts. In each iteration, the trained DeepMatcher
model, i.e. the learner, is applied to all record pairs of the unlabeled pool and the
entropy of the conditional probability distribution is computed. The entropy H
for a record pair xi, given the prediction probability ppxiq of xi to be a match, is
computed by Equation 7.5:

Hpxiq “ ´ppxiqlogppxiq ´ p1´ ppxiqqlogp1´ ppxiqq (7.5)

A batch of 10 record pairs with the highest entropy is selected for labeling
and added to the labeled set together with the corresponding labels assigned by
the annotator. Additionally, a batch of 10 record pairs with the lowest entropy
is considered as most confident and is added to the labeled set together with the
corresponding labels predicted by the learner. Figure 7.7 depicts the entropy level
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Figure 7.7: Entropy for different prediction probability scores.

for different probability scores. We observe that the highest entropy occurs when
the probability score is 0.5, i.e. the classifier is unsure of its prediction. In contrast,
the lowest entropy occurs when the prediction probability is close to 0 and close to
1, i.e. the classifier is confident about its negative or positive prediction.

Weighting of Labeled Set The record pairs of the labeled set are weighted so
that the influence of the pairs of the source task does not over dominate the record
pairs of the target task. The source weights are computed by Equation 7.6:

sourceweight “
# labeled target pairs

# labeled target pairs` # labeled source pairs
(7.6)

Learner In each iteration, the learner is re-trained with 75% of the record pairs
in the labeled set and performs parameter optimization with the rest 25%. The
learner is built using the DeepMatcher architecture [Mudgal et al., 2018] and ap-
plies pre-trained character-based fastText embeddings. In each active learning iter-
ation, we train the learner for 20 epochs and a batch size of 20. We use the Hybrid
attribute summarizer for the amazon_google and abt_buy tasks, which is a com-
bination of RNN and Attention, since it has been shown to yield better results in
comparison to other summarization techniques [Mudgal et al., 2018]. For all other
tasks, we use the RNN solution as the attribute summarizer.

B5: DeepMatcher - Unsupervised Initialization

For the second subsymbolic baseline, we replace the transfer learning-based ini-
tialization with our unsupervised initialization method. Therefore, the labeled set
is initialized with the unsupervised labeled record pairs. The re-weighting step is
executed similarly to the one of the B4 baseline so that the influence of the unsu-
pervised labels does not over dominate the manually labeled record pairs. All other
steps, including the query selection strategy, the training set enlargement, and the
training of the learner remain the same as the subsymbolic baseline method B4.
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Figure 7.8: Subsymbolic baselines - F1 and σ per # labels - Group 1 tasks.
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Figure 7.9: Subsymbolic - F1 and σ per # labels - Group 5 tasks.
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Figure 7.10: Subsymbolic baselines - F1 and σ per # labels - Group 3 tasks.
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Table 7.6: Comparison to subsymbolic AL baselines.

Task AL method Latency F1-AUC
F1(σ)

2nd iter. 6th iter. 10th iter. 20th iter. 50th iter. 100th iter.
(20 labels) (60 labels) (100 labels) (200 labels) (500 labels) (1000 labels)

dbpedia_dnb
boot 12.1 sec. 968.47 0.850(0.022) 0.958(0.008) 0.969(0.001) 0.974(0.002) 0.975(0.002) 0.977(0.001)
deepmatcher_TL 679 sec. 906.26 0.698(0.026) 0.824(0.025) 0.801(0.068) 0.890(0.009) 0.923(0.004) 0.943(0.006)
deepmatcher_boot 804 sec. 853.33 0.648(0.166) 0.763(0.027) 0.766(0.050) 0.814(0.023) 0.877(0.006) 0.910(0.010)

dbpedia_viaf
boot 13.9 sec. 977.71 0.909(0.014) 0.970(0.006) 0.979(0.002) 0.981(0.002) 0.981(0.003) 0.983(0.001)
deepmatcher_TL 627 sec. 947.64 0.828(0.062) 0.894(0.008) 0.898(0.048) 0.918(0.039) 0.963(0.003) 0.963(0.007)
deepmatcher_boot 930 sec. 907.51 0.870(0.026) 0.823(0.056) 0.900(0.006) 0.906(0.009) 0.921(0.006) 0.914(0.001)

abt_buy
boot 7.8 sec. 781.43 0.685(0.048) 0.738(0.033) 0.759(0.029) 0.765(0.012) 0.804(0.004) 0.812(0.002)
deepmatcher_TL 1001 sec. 487.74 0.312(0.028) 0.303(0.043) 0.318(0.046) 0.360(0.108) 0.482(0.100) 0.637(0.045)
deepmatcher_boot 645 sec. 549.23 0.441(0.025) 0.463(0.047) 0.480(0.035) 0.517(0.021) 0.562(0.049) 0.601(0.044)

amazon_google
boot 8.5 sec. 743.66 0.594(0.055) 0.636(0.041) 0.663(0.034) 0.681(0.002) 0.685(0.003) 0.685(0.005)
deepmatcher_TL 442 sec. 521.11 0.180(0.137) 0.284(0.094) 0.336(0.042) 0.433(0.041) 0.573(0.017) 0.678(0.006)
deepmatcher_boot 553 sec. 684.53 0.436(0.035) 0.492(0.063) 0.551(0.030) 0.526(0.043) 0.654(0.034) 0.692(0.012)

wdc_phones
boot 5.8 sec. 802.36 0.649(0.050) 0.747(0.053) 0.783(0.027) 0.840(0.017) 0.828(0.004) 0.833(0.010)
deepmatcher_TL 54 sec. 570.83 0.247(0.021) 0.337(0.023) 0.357(0.037) 0.454(0.032) 0.632(0.027) 0.705(0.009)
deepmatcher_boot 40 sec. 567.36 0.331(0.033) 0.389(0.008) 0.425(0.022) 0.477(0.044) 0.642(0.045) 0.664(0.026)

wdc_headphones
boot 6.8 sec. 946.94 0.945(0.033) 0.955(0.007) 0.957(0.005) 0.957(0.003) 0.958(0.003) 0.958(0.003)
deepmatcher_TL 113 sec. 702.52 0.114(0.005) 0.423(0.095) 0.495(0.081) 0.670(0.047) 0.772(0.004) 0.810(0.031)
deepmatcher_boot 83 sec. 781.47 0.554(0.018) 0.712(0.086) 0.761(0.053) 0.780(0.009) 0.806(0.017) 0.804(0.028)
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Results

We run each active learning experiment three times and allow an annotation bud-
get of 1000 labeled record pairs, similar to the experimental setup of Kasai et al.
[2019]. The rationale behind allowing a much larger annotation budget in com-
parison to the symbolic active learning experiments is that deep learning methods
need significantly larger amounts of training data in order to converge. Consider-
ing the long training times, we use batch queries of size 10 for the subsymbolic
active learning baselines, i.e. 100 active learning iterations per experimental run.
We report the average F1 scores per iteration and the standard deviation (σ) to
account for model stability using a separate test set. Additionally, we report the av-
erage waiting time per iteration in seconds, i.e. the time between two batch queries
for the subsymbolic baselines and the average time for ten single queries for our
method boot, as well as the overall performance of each method considering the
F1-AUC scores. All experiments are run on a Linux server with Intel Xeon 2.2
GHz processors and NVIDIA version 470.74 GPU.

We present the results of our method, abbreviated with boot, and the two sub-
symbolic active learning baselines B4 deepmatcher_TL and B5 deepmatcher_boot,
as learning curves in Figures 7.8, 7.9 and 7.10. As we use batch queries, we plot
the F1 score for different amounts of labeled pairs rather than number of itera-
tions. Additionally, we denote the standard deviation σ using the light-colored
area around the plotted F1 curves. Finally, we report the results for six different
active learning snapshots in Table 7.6. For readability reasons, we highlight the
method that outperforms in all iterations or the outperforming result in the final
iteration.

Overall we observe that the subsymbolic active learning baselines have signif-
icantly larger latencies, due to the long training times required by deep learning-
based models. The average waiting time per iteration ranges from 40 seconds for
the wdc_phones task to 16 minutes for the abt_buy task. The increased latency can
be prohibitive considering that for a complete active learning cycle of 100 itera-
tions, a human annotator would need to be active for more than 26 hours.

Considering the F1-AUC scores, it becomes clear that the boot method has
an overall better performance in comparison to the subsymbolic baseline methods
for all tasks. The deepmatcher_TL and deepmatcher_boot methods underperform
our symbolic active learning method, given the limited annotation budget of 1000
record pairs as it achieves the highest F1-AUC scores for all tasks. With regards
to the F1 score results of specific active learning iterations, we see that our method
outperforms the subsymbolic baselines for all tasks and a labeling budget of 500
record pairs by up to 32%, i.e. the difference in F1 score at the 50th iteration
between boot and deepmatcher_TL for the abt_buy task. Our method still out-
performs the subsymbolic baselines with a labeling budget of 1000 record pairs
for all tasks apart from the amazon_google task, for which the deepmatcher_boot
method outperforms. Among all evaluation tasks, the amazon_google is the task
with the highest textuality. Additionally, we see that our symbolic active learning
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method converges after a small number of record pairs has been labeled in com-
parison to the subsymbolic baselines, which still improve after 500 labels. More
concretely, for the tasks wdc_headphones, dbpedia_dnb, and dbpedia_viaf, our
method reaches F1 scores which are maximum 2% lower than the ones reached
in the final iteration, already after 60 record pairs have been labeled. For the rest
three of the tasks, our method improves only marginally (< 1%) between the la-
beling budgets of 500 and 1000 labels. In contrast, the difference in the F1 scores
achieved by the subsymbolic methods between the labeling budgets of 500 and
1000 labels is larger and up to 15.5%.

Concerning the two initialization methods, i.e. transfer learning and unsu-
pervised, we observe that none consistently outperforms the other. For exam-
ple, for the dbpedia_dnb and dbpedia_viaf tasks, initializing the active learning
DeepMatcher model with transfer learning performs better overall than our unsu-
pervised initialization method. However, this is not the case for the other tasks,
such as abt_buy, for which the unsupervised initialization outperforms the transfer
learning initialization. This is consistent and verifies the findings of our analysis of
the symbolic baseline results presented in Section 7.3.3, showing that initializing
active learning with transfer learning produces better results in comparison to un-
supervised matching only if the tasks are highly related but not otherwise. Finally,
a clear comparison of the results for certain tasks and iteration combinations is
rather limited given the F1 score differences in combination with the results’ devi-
ations. For example, deepmatcher_boot seems to outperform deepmatcher_TL in
the 50th iteration for the wdc_phones task. However, the former has a standard de-
viation of 0.045, which signifies that for some of the runs deepmatcher_boot may
underperform deepmatcher_TL.

7.4 Discussion and Conclusion

In this chapter, we presented an unsupervised method for bootstrapping active
learning for entity resolution. Our method relies on a thresholding heuristic that
considers pre-calculated similarity scores and assigns labels with some degree of
noise to the record pairs of the unlabeled pool. The noisy labels are used for ini-
tializing the active learning process and throughout the whole active learning cycle
for the training of the learner and query selection.

The proposed method comes at no additional labeling cost in contrast to the
common practice of using a manually labeled seeding set of matching and non-
matching record pairs applied in many related works, discussed in Section 7.1. In
comparison to initialization approaches that do not increase the labeling effort by
randomly initializing the learner, which is typically a set of linkage rules evolv-
ing using genetic programming [Isele and Bizer, 2013; Ngomo and Lyko, 2012;
Ngomo et al., 2013], our method uses a random forest classifier as a learner. Tree-
based models, such as random forests, have been shown to perform better than
rule-based models in active learning settings for entity resolution [Meduri et al.,
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2020]. Finally, our method does not assume abundant labeled data from a similar
entity resolution task, which is required for approaches applying transfer learning
as a means of initializing active learning [Kasai et al., 2019].

We used six entity resolution benchmark tasks with different profiling char-
acteristics to evaluate our proposed unsupervised thresholding heuristic, as well
as the overall active learning method. With regard to the unsupervised threshold-
ing heuristic, we showed that it achieves overall better results independently from
the underlying similarity score distribution in comparison to static, Otsu’s, and
valley-emphasis thresholding. With regard to the overall active learning method,
we showed that it outperforms baseline active learning methods, which use the
HeALER query strategy [Chen et al., 2019] and random initialization. The im-
provement in the F1 score is more dominant in the cold start phase (up to 48%
after 20 iterations with single queries), while within a labeling budget of 100 la-
beled records pairs our method outperforms by up to 3% depending on the task.
Additionally, we compared our method to an active learning symbolic baseline
that uses transfer learning for initialization. We showed that the latter can only
achieve good results and outperform our method if the source and target tasks are
highly related. For pairs of tasks that are not highly related, our method delivers
better results in terms of F1 score by up to 4.2% after 100 active learning iterations
with single queries.

Finally, we compared our method to the subsymbolic active learning method
for entity resolution of Kasai et al. [2019], which applies transfer learning for ini-
tialization and uses the DeepMatcher model as learner [Mudgal et al., 2018]. Con-
sidering that the method of Kasai et al. [2019] relies on an external validation set
and the implementation is not publicly available, we re-implemented and adapted
the method so that the validation set is part of the labeled set and the augmented
training data. Furthermore, we combined our unsupervised initialization method
with the active learning method of Kasai et al. [2019] into an additional subsym-
bolic baseline. Our comparison results showed that the subsymbolic methods entail
significantly larger waiting times among the active learning iterations, i.e. up to 16
minutes for a batch query of 10 record pairs. This can be prohibitive in an active
learning setting, given that a human annotator is steadily involved in the learning
loop. With respect to the learner’s performance in terms of F1 score, we observed
that the unsupervised bootstrapped subsymbolic baseline outperforms our method
given a labeling budget of 1000 record pairs for one of the six evaluation tasks, en-
tailing a large number of corner cases and the highest textuality among the others.
In contrast, for all other tasks, our symbolic active learning method consistently
outperforms the subsymbolic baselines for a labeling budget up to 1000 record
pairs. Given a labeling budget of 500 record pairs our method outperforms both
subsymbolic baselines for all tasks by up to 32% in F1 score. This confirms the
finding of Meduri et al. [2020], indicating that neural network-based active learn-
ing methods underperform traditional classifiers, such as random forest and SVM
models, in active learning settings with a limited labeling budget for entity resolu-
tion.



Chapter 8

Active Learning for Multi-Source
Entity Resolution

Multi-source entity resolution is the task of identifying records that derive from
more than two data sources and refer to the same real-world object [Christophides
et al., 2020; Papadakis et al., 2021]. A multi-source entity resolution task can be
viewed as a combination of multiple two-source tasks between pairs of data sources
with potentially different underlying matching patterns. In the context of our work,
we focus on multi-source tasks with records having the same schema while we set
no assumption on the existence of duplicates in the same data sources. Within
this context, the formal definition of the general entity resolution task, as stated in
Section 2.2, is also applied for the multi-source entity resolution task.

Multi-source entity resolution tasks have inherent characteristics which are
complementary to the ones of two-source tasks, described in Chapter 3. We hy-
pothesize that these characteristics can be exploited to reduce the labeling effort in
a pool-based active learning setting. Active learning has been barely applied for
the task of matching records between multiple sources [Huang et al., 2018], while
no previous work has explored the hypothesis that the performance of an active
learning method can be improved if multi-source-related characteristics are taken
into consideration.

We illustrate our hypothesis using the motivating example of Figure 8.1. The
example multi-source task comprises four data sources with records describing
mobile phones (Figure 8.1a). Combining pairwise the four data sources results in
six two-source entity resolution tasks (Figure 8.1b). Given the overlap of records
describing the same real-world object among the data sources, the multi-source
task can be viewed as a correspondence graph with the edges denoting matching
relations (Figure 8.1c). Exploiting graph signals, such as graph transitivity, can
contribute to the discovery of potentially false learner predictions. For example,
given the correspondence graph of Figure 8.1c and the learner predictions (A1-
B1): match, (B1-C1): match, and (A1-C1): non-match, selecting the record pair
(A1-C1) for labeling can lead to the discovery of a false negative prediction. Addi-
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(a) Data sources (b) Two-source tasks of the
multi-source task

(c) Correspondence graph

(d) Groups of tasks

Figure 8.1: Example of a multi-source entity resolution task.

tionally, given the different value representations of the attributes used to describe
the phone records, different groups of two-source tasks with similar matching pat-
terns arise, as shown in Figure 8.1d and denoted with different colors. We consider
a matching pattern as a disjunction of conjunctions of similarity-based features
and threshold values. Exploiting the grouping signals during active learning can
lead to the selection of more informative record pairs for labeling, by, for example,
annotating only representative pairs from each group.

In this chapter, we turn our focus to active learning methods for reducing the
labeling effort for multi-source entity resolution. We investigate how the graph
and grouping signals that exist in multi-source entity resolution tasks, can be in-
tegrated within the active learning workflow for boosting the query selection and
learner components, thus covering the contribution [C5] of the thesis. We de-
velop ALMSER, an Active Learning algorithm for Multi-Source Entity Resolution,
which comes with two query strategies exploiting graph signals (ALMSERgraph)
and grouping signals (ALMSERgroup). Additionally, ALMSER exploits graph
signals to boost the learner’s training with additional training data. We evalu-
ate ALMSER on six multi-source entity resolution tasks and compare its results
to baseline active learning methods using a common margin-based query strat-
egy [Meduri et al., 2020; Mozafari et al., 2014] and the committee-based query
strategy HeALER [Chen et al., 2019]. Our evaluation shows that graph and group-
ing signals lead to overall improved performance over the baseline methods when
used for both query selection and the training of the learner.
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The contributions of this chapter are summarized as follows:

• We are the first to tackle the problem of multi-source entity resolution with
active learning by exploiting the inherent characteristics of the multi-source
entity resolution tasks.

• We propose ALMSER, an active learning algorithm for multi-source entity
resolution, which uses graph and grouping signals for query selection and
training data enlargement.

• We evaluate ALMSER on five multi-source entity resolution tasks and show
that it consistently outperforms baseline methods that do not use graph or
grouping signals in terms of F1 score.

This chapter is structured into four sections. In Section 8.1, we present the
methodological details of ALMSER. Section 8.2 presents the experimental setup
and discusses the experimental results. Section 8.3 discusses related work on multi-
source entity resolution. Finally, in Section 8.4, we discuss and summarize the
main findings of this chapter.

The methodology as well as the evaluation of ALMSER presented in this chap-
ter have been published in the Proceedings of the 20th International Semantic Web
Conference [Primpeli and Bizer, 2021] and in the Proceedings of the 19th Extended
Semantic Web Conference [Primpeli and Bizer, 2022]. The code and datasets used
for the experimental evaluation of this chapter are publicly available.1

8.1 Methodology

In this section, we present our proposed active learning algorithm for multi-source
entity resolution, which we abbreviate with ALMSER. We first summarize the
overall process that is executed by ALMSER. Figure 8.2 gives an overview of the
ALMSER workflow. The following subsections detail each step in the process.

We consider a pool-based active learning setting, as described in Section 6.2.
We initialize ALMSER by bootstrapping the labeled set of record pairs in an un-
supervised fashion, as described in the previous Chapter 7. After initialization, the
following steps are executed: First, we train a random forest base learner using
the current labeled set (1) and get base predictions for all unlabeled record pairs
of the pool (2), which together with the labeled set are used to construct a corre-
spondence graph (3). Next, we derive the clean components of the graph (4) and
assign graph-inferred labels to the record pairs of the pool, which are part of the
clean components (5). In the following step, the query strategy picks the most
informative record pair for labeling (6). ALMSER comes in two variations with
respect to the query strategy for assessing the informativeness of the pool record
pairs: ALMSERgraph and ALMSERgroup. The ALMSERgraph query strategy
considers the disagreement between the predicted labels of the base learner and

1https://github.com/wbsg-uni-mannheim/ALMSER-GB

https://github.com/wbsg-uni-mannheim/ALMSER-GB
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Figure 8.2: Overview of the ALMSER algorithm.

the graph-inferred labels. Additionally, the ALMSERgroup query strategy exploits
grouping signals. The selected record pair is annotated as match or non-match and
is added to the labeled set (7). We use the graph-inferred labels to derive additional
training data, which together with the labeled set are used for training the random
forest boosted learner (8). In order to evaluate how the performance of the boosted
learner develops during the active learning process, we apply the boosted learner
to an unseen test set after each iteration (9).

8.1.1 Initialization

The initialization of active learning is a non-trivial step, which has been shown to
suffer from the cold start problem [Konyushkova et al., 2017] and was thoroughly
discussed in Chapter 7. To circumvent the cold start problem, we use the unsuper-
vised bootstrapping method proposed in Chapter 7 and initialize the labeled set.
We apply the approach for each two-source task of the multi-source setting and
select two record pairs per task: one with the highest and one with the lowest ag-
gregated score. Considering that in the very early active learning iterations, the
base model, which we use to construct the correspondence graph, is highly unsta-
ble, we perform the first 20 iterations using the committee-based query strategy
HeALER [Chen et al., 2019]. Afterward, we switch to ALMSER.

8.1.2 Correspondence Graph Construction

After initializing the labeled set, the graph-boosted active learning with ALMSER
starts. In each active learning iteration, we construct from scratch the correspon-
dence graph of the multi-source task (steps 1-3 in Figure 8.2) with the aim of ob-
taining graph signals. The graph signals are used in later steps of our methodology
for query selection and training of the learner. The correspondence graph contains
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all distinct records of the record pairs in the pool and the labeled set as nodes. We
add an edge to the graph for every confirmed matching record pair in the labeled
set, while we add no edge for every labeled non-matching pair.

Additionally, we use the pool predictions of a random forest classifier, which
we refer to as base learner, for inferring potential matching pairs. More concretely,
in each iteration, the base learner is trained on all record pairs of the labeled set and
applied to the record pairs of the pool. Each pool pair is assigned the predicted base
label, match or non-match together with a confidence score, which is the predicted
class probability of the base learner. We add an edge to the correspondence graph
between the nodes of every pool record pair with a matching base label, while we
add no edge if the base label is non-match.

Finally, we assign weights to the edges of the correspondence graph. Every
edge that derives from the labeled set and is therefore confirmed to be true receives
the weight of 100. The edges deriving from the base learner matching predic-
tions are weighted according to their confidence score, which is in the range of
0.5 to 1.0. The significantly larger weight of 100 assigned to edges representing
confirmed matching relations in comparison to the weight of edges representing
predicted matching relations ensures that the labeled record pairs contribute more
to the cleansing steps which follow the graph construction step. The value of 100
is empirically estimated for multi-source tasks comprising less than 10 sources that
may contain duplicates. More formally:

Definition 8.1.1 (Correspondence Graph) A correspondence graph is an undi-
rected weighted graph G “ pR,E,wq, with E Ď ttri, rju : ri, rj P Ru being the
set of edges and R being all the records appearing in all data sources SD of the
matching task. An edge e tri, rju P E exists ðñ tri, rju P tLmatch Y Pmatchu,
with Lmatch being the set of record pairs labeled as matching and Pmatch being
the set of record pairs predicted as matching by the base learner. Every edge e
is attributed a weight w as follows: w “ 100 ðñ tri, rju P Lmatch and
w “ P ptri, rju |C “ matchq, i.e. the prediction probability that the record pair
is matching.

8.1.3 Correspondence Graph Cleansing

Exploiting the transitivity of the correspondence graph can lead to the discovery
of false negative base learner predictions. For example, given three record pairs
(A-B), (B-C), and (A-C) which have been predicted by the base learner as match,
match and non-match respectively, we can infer using graph transitivity that (A-C)
is also a matching pair and that it is likely a false negative prediction of the base
learner.

However, given that the edges of the correspondence graph, deriving from the
matching base learner predictions, are subject to some noise, a wrongly assigned
edge can lead to a series of false positive record pairs. Therefore, we need to dis-
cover likely wrong edges and remove them from the correspondence graph. The
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(a) Example labeled set of current iteration

(b) Correspondence graph given labeled
set and base-model predictions

(c) Correspondence graph after minimum
cuts (D-C & G-H) and bridges (F-I) re-
moval

Figure 8.3: Exploiting the graph to detect false positives - an example.

example in Figure 8.3 demonstrates this problem. Figure 8.3b shows an example
graph with 11 nodes and weighted edges. The solid edges connect nodes of match-
ing record pairs found in the labeled set of Figure 8.3a and are therefore assigned
a weight of 100. The dotted edges represent the base labels and are assigned their
corresponding confidence weights. The resulting graph is connected and forms
one connected component, i.e. there is a path from any node to any other node
in the graph, indicating that all nodes refer to the same real-world object. How-
ever, this cannot be the case as there is a confirmed non-matching pair (D-H) in the
labeled set of Figure 8.3a. Therefore, the path between nodes D and H needs to
be cut. Given the edge weights, we calculate the minimum cut of the graph. The
edges which should be removed in order to cut the path between D and H are the
following: (D-C) and (G-H), as their total edge weight is less than any other cut
alternative. We can additionally observe that the edge (F-I) forms a bridge between
the two components (E,D,F,G) and (I,J,K) and is a possible false positive. We con-
sider an edge to be a bridge edge if it connects two nodes that have each a degree
larger than two, i.e. they have three or more direct neighbors, and a clustering
coefficient larger than 0, i.e. there exist at least one edge between the neighbor-
ing nodes. Figure 8.3c shows the graph after minimum cuts and bridges removal,
which reveals three connected components.

We rely on these observations and remove edges between nodes of potentially
false positive record pairs using a two-step procedure. First, we iterate over all
non-matching pairs in the labeled set and for each pair, we check if there is a path
between the two nodes-records in the graph. In case we find a path, we calculate the
minimum cut of the graph considering the weights of the edges. For the calculation
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of the minimum cuts, we use the networkx implementation2, which is based on the
max-flow min-cut theorem [Dantzig and Fulkerson, 1956]. As a second step, we
identify bridge edges from the graph, as explained above, and remove them.

8.1.4 Clean Components Filtering

After cleansing the correspondence graph, we filter its clean components and as-
sign graph-inferred labels to a subset of the pool record pairs (steps 4-5 in Fig-
ure 8.2) with the aim to get more accurate graph signals that can both identify
wrong base learner predictions and lead to clean enlarged training data.

In order to derive the clean components of the correspondence graph, we first
compute all connected components. Considering that smaller components are
cleaner than larger ones, we assume a component to be clean if its size is equal
to or smaller than the number of data sources to be matched, independently if all
the nodes of the component derive from partially the same or different data sources.
Although this heuristic comes naturally for deduplicated sources, we show during
evaluation that it is also a good approximation for discovering the clean compo-
nents of the graph in multi-source entity resolution tasks with non-deduplicated
data sources.

We use the correspondence graph and the clean connected components to as-
sign graph-inferred labels to a subset of the pool record pairs. To do so, we use the
following simple heuristic: If the pair belongs to the same clean component, we
assign a matching graph-inferred label. If there is no path in the correspondence
graph between the two records of the pair, then we assign a non-match graph-
inferred label. Finally, for record pairs belonging to non-clean components, no
graph-inferred label is assigned. Although this heuristic results in the extraction
of cleaner enlarged training data in comparison to the complete correspondence
graph, which will be shown in our evaluation in Section 8.2.5, possible alterna-
tive directions for assigning graph-inferred labels could be considered, such as the
overall weight of the edges of a connected component.

8.1.5 Query Selection

After filtering the clean components of the correspondence graph, the informative-
ness of the pool record pairs is assessed. To do so, two query strategies are imple-
mented: ALMSERgraph and ALMSERgroup. ALMSERgraph exploits graph sig-
nals for selecting likely false positive and negative predicted pairs by the learner.
ALMSERgroup uses, in addition to the graph signals, grouping signals that can
be relevant to a multi-source entity resolution task considering the overlap of the
matching patterns among the different two-source tasks. In the following, we de-
scribe the ALMSERgraph and ALMSERgroup query strategies.

2https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithm
s.\flow.minimum_cut.html

https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.\flow.minimum_cut.html
https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.\flow.minimum_cut.html
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ALMSERgraph

The ALMSERgraph query selection strategy assigns binary informativeness scores
to the record pairs of the clean components of the correspondence graph (Step 6 in
Figure 8.2). Pairs without conflicts between the graph-inferred label and the base
label are assigned a score of 0. Pairs whose graph-inferred label is different from
the base label are assigned a score of 1 and are considered as most informative.

Margin-based and committee-based query strategies aim to select instances for
which the learner or a committee of models produces non-confident predictions.
On the contrary, the ALMSERgraph query strategy uses the clean components of
the correspondence graph to pick instances that are most likely predicted wrong by
the base learner. In that regard, ALMSERgraph can be categorized as a heuristic-
based query strategy, as discussed in Section 6.3.1. These disagreements between
the graph and the base learner hint toward matching patterns that are not covered
yet by the base learner and can occur under two conditions: First, if the base learner
has predicted the record pair to be a non-match and due to graph transitivity the
graph-inferred label is match. Second, if the record pair has been predicted as
match by the base learner, but the corresponding edge was found to be a bridge
edge or was part of a minimum cut between confirmed non-matching pairs and
therefore was removed during the cleansing step, as described in Section 8.1.3.

We illustrate the discovery of new matching patterns by graph transitivity with
the example of Figure 8.4. The example presents three records from different data
sources describing the same author (Figure 8.4a) and a subset of labeled pairs and
base learner predictions (Figure 8.4b) which are used to construct the correspon-
dence graph (Figure 8.4c). Given the matching pair (1a-2a) of the labeled set, the
base learner might be trained to capture matching patterns based on the similarity
of the Lastname and the Works attributes. However, it might wrongly predict the
pair (1a-3a) as non-matching, as it has not yet learned the pattern that high similar-
ity of Birthdate and Firstname also indicate a match. Based on graph transitivity,
the pair (1a-3a) is assigned a matching graph-inferred label and receives an infor-
mativeness score of 1. Selecting this pair as a query candidate supports the model
in learning the relevance of the Birthdate and Firstname attribute combination for
matching.

In order to ensure that the ALMSERgraph query strategy selects equally likely
false positives, i.e. pairs with a non-match graph inferred label, and likely false
negative pairs, i.e. pairs with a match graph-inferred label, we assign selection
probability weights to all record pairs with an informativeness score of 1. For ex-
ample, given 10 likely false negatives and 1 likely false positive, we assign the se-
lection probability weights 0.1 for each false negative and 1.0 for the false positive
pair. Finally, considering the selection probability scores, we perform weighted
random selection over the candidate record pairs with an informativeness score of
1 and select one pair which is annotated and added to the labeled set (Step 7 in
Figure 8.2). Alternative schemes for weighting the likely false predicted record
pairs that could be considered but are not evaluated in our work could be based on
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(a)

(b) (c)

Figure 8.4: Discovery of matching patterns with ALMSERgraph - an example.

the prediction probability assigned by the base learner. In that case, the assigned
weights would influence the query strategy to select either confident (prediction
probability close to 1.0) or unconfident (prediction probability close to 0.5) pool
record pairs. However, the confidence scores of a random forest classifier can be
misleading mostly in the early active learning iterations due to overfitting, thus
leading to query selection bias and low learner performance. Additionally, weight-
ing schemes based on the overall edge weight or the vertex connectivity of the
connected components from which the likely false predicted pool record pairs de-
rive, could be further researched.

ALMSERgroup

A multi-source matching task can contain groups of two-source matching tasks
sharing the same underlying matching patterns, as already motivated in the intro-
duction of this chapter. We hypothesize that exploiting such grouping information
can direct the active learning strategy to select record pairs covering all underlying
matching patterns of the complete multi-source task with a smaller amount of an-
notations. We illustrate our hypothesis with the example of Fig. 8.1. The pairwise
combinations of the four data sources result in six matching tasks, which given
the underlying matching patterns, can be grouped into three groups, as shown in
Fig. 8.1d. In such a setting, the active learning query strategy should distribute the
queries for labeling over the tasks A-B, C-D and any of the {A-C, A-D, B-C, B-D},
as the latter have all the same underlying matching pattern. However, none of the
existing active learning query strategies for entity matching exploits such grouping
information.

In order to investigate whether the labeling effort can be further reduced by
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exploiting such grouping signals, we develop ALMSERgroup, a variation of the
ALMSERgraph query strategy. ALMSERgroup filters the pool to only include
record pairs belonging to matching tasks that are representative of a cluster of sim-
ilar matching tasks. We explain below how representative tasks are selected. In
this way, ALMSERgroup avoids picking record pairs for annotation from similar
tasks. During active learning, the ALMSERgraph query strategy is applied using
the reduced pool. In the case of no disagreements between the learner predictions
and the graph-inferred labels among the record pairs of the reduced pool, HeALER
is used as a fallback query strategy.

In order to identify two-source tasks with similar matching patterns in an un-
supervised way, we first compute the task relatedness (TR) between all pairs of
two-source tasks [Thirumuruganathan et al., 2018]. TR calculates how similar
two tasks are by training a logistic regression classifier to predict the task from
which each record pair originates. We measure the prediction quality of the classi-
fier using the Matthews correlation coefficient (MCC) and calculate the TR score
as 1 ´ MCC [Thirumuruganathan et al., 2018]. Algorithm 2 Part A shows the
pseudocode for calculating the relatedness scores of all pairwise combinations of
two-source tasks T of a multi-source entity resolution task.

Given the TR scores of each pairwise combination of two-source tasks, we
cluster them such that the overall mean TR score of all clusters is maximized.
We determine the optimal number of clusters by penalizing the overall mean TR
score with a penalty factor α multiplied by the number of clusters. In this way, we
prefer smaller amounts of clusters over larger ones which results in a smaller pool
of representative record pairs for the query strategy to choose from. Finally, we
identify the most representative two-source tasks of each cluster, considering their
TR to all other tasks of the same cluster, and select only the record pairs of the
representative tasks for initializing the unlabeled pool. Algorithm 2 Part B shows
the pseudocode for finding the most representative tasks Tsubmax, which maximize
the overall task relatedness.

8.1.6 Boosted Learner Training

Training on small amounts of data tends to cause the classification models to overfit
the training data and not be able to generalize well on unseen data [Anthony and
Biggs, 1997]. To circumvent the overfitting of the learner on the small labeled set
acquired during active learning, we enlarge the set used for training the learner,
which therefore we call boosted learner.

Similar to the base learner, we use a random forest classifier as the boosted
learner, assuming that a random forest model with a large number of estimators can
expand to fit the matching patterns of all tasks in a multi-source entity resolution
setting. The enlarged training set contains, in addition to all pairs of the labeled set,
the record pairs of the clean connected components of the current iteration whose
labels are not manually verified but inferred from the correspondence graph.

In a real-world active learning setting, we would train the boosted learner at
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Algorithm 2 ALMSERgroup: selecting a subset of two-source entity resolution
tasks to query from.

Input: T feature vectors without labels of each two-source task,
α subset size penalty,
R = r|T |s r|T |s Ð 0 init. relatedness matrix,
Tsub all subsequences of T
Output: subset of two-source tasks Tsubmax Ď T that maximizes the mean
relatedness

// Part A: calculate task relatedness

1: for i in T do
2: for j in T do
3: if Ti ‰ Tj then
4: X Ð concatpTi, Tjq
5: y Ð r"Ti"ˆ |Ti|, "Tj"ˆ |Tj |s
6: mÐ LogRegpq
7: Rij , Rji ÐMCCpm,X, yq
8: end if
9: end for

10: end for
// Part B: find task subsequence with max. overall
relatedness

11: for tsub in Tsub do
12: Rsub Ð RiPtsub,jPT

13: tsubRLTD Ð meanpRsubq ´ aˆ |tsub|
14: end for
15: Tsubmax Ð tsub of maxptsubRLTDq

16: return Tsubmax

the last active learning iteration, as it does not affect the query selection, i.e. the
query strategies of ALMSER are agnostic towards the boosted learner. However,
so that we can evaluate the boosted learner along each active learning iteration, we
train and apply it to the test set as a final step of each iteration (Steps 8 and 9 in
Figure 8.2).

8.2 Experimental Evaluation

We evaluate ALMSER with its two variant query strategies, ALMSERgraph and
ALMSERgroup, using five multi-source entity resolution tasks having different
profiling characteristics. In this section, we first present the evaluation tasks and
the experimental setup. Afterward, we compare ALMSER to two baseline active
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Table 8.1: Multi-source entity resolution tasks used for evaluating ALMSER.

Multi-source # Data
# Pairs (in K) Range of

task sources matches non-matches
Schema

complexity
Sparsity

Corner
cases

MusicBrainz 5 16.1 369.7 [3-5] [0.05-0.12] [0.08-0.42]
MusicBrainz_mut 5 16.1 369.7 [3-6] [0.05-0.23] [0.06-0.62]
computers 4 4.8 69.6 [3-4] [0-0.05] [0.02-0.30]
computers_mut 4 4.8 69.6 [3-6] [0-0.18] [0.24-0.50]
restaurants 4 11.2 56.5 [4-7] [0-0.08] [0.05-0.19]

learning methods that do not use graph and grouping signals. Additionally, we
perform an ablation study by evaluating the distinct components of ALMSER that
exploit graph or grouping signals separately. Finally, we evaluate the cleanliness
of the enlarged training data used for boosting the learner.

8.2.1 Multi-Source Entity Resolution Tasks

We use five multi-source entity resolution tasks for our experimental evaluation.
The tasks cover the domains of music, products, and restaurants. Table 8.1 contains
profiling information about the five tasks, including the number of sources to be
matched, as well as the amount of matching and non-matching pairs per task. The
last three columns in Table 8.1 show the value ranges of the profiling dimensions
schema complexity, sparsity, and corner cases for the two-source entity resolution
tasks that make up each multi-source task. Details on the profiling dimensions and
their calculation were discussed in Chapter 3, Section 3.4.2.

MusicBrainz Task The MusicBrainz multi-source task has been published by
the Database Group of the University of Leipzig.3 The task contains song records
from the MusicBrainz database.4 Each data source is a modified version of the
original data source and therefore the two-source tasks that make up the multi-
source task have different underlying patterns. In five of the ten two-source tasks
the attributes album, length, and title are most relevant for matching, while for the
rest of the tasks different attributes reveal the underlying matching patterns such as
title and song number or title and artist.

MusicBrainz_mut Task Additionally to the original MusicBrainz multi-source
task, we curate a modified version of it, abbreviated with MusicBrainz_mut. For
the curation of the modified version, we remove 30% of the values of the attribute
album in two of the five data sources. Additionally, we remove 10% of the values
of the attribute title in one of the five data sources. Finally, we add noise in the

3https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_r
esolution

4https://musicbrainz.org/doc/MusicBrainz_Database

https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://dbs.uni-leipzig.de/research/projects/object_matching/benchmark_datasets_for_entity_resolution
https://musicbrainz.org/doc/MusicBrainz_Database
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artist values of 30% of the records in one of the five data sources. The noise is
added in the form of pre-defined string values, e.g. “the band of” or “an album
by”, thus decreasing the token similarity of values referring to the same artist.
The modifications lead to an increased schema complexity, sparsity, and amount of
corner cases in comparison to the original MusicBrainz task, as shown in Table 8.1.

Computers Task We use the English version of the WDC Product Corpus for
Entity Resolution, presented in Chapter 5, and derive a subset of computer prod-
uct records published on four e-commerce websites. For generating the computers
task, we first filter the offers of the English Corpus that contain specification ta-
bles. Next, we use the apriori algorithm [Agrawal and Srikant, 1994] for finding
a subset of websites that frequently appear in the same clusters, i.e. they anno-
tate offers describing the same real-world products. We identify the following four
websites having the largest overlap of offers describing the same real-world prod-
uct: harddrivesdirect.com, sillworks.com, tweakers.net, and usapartsdirect.com.
We manually align the schema across the offers of the four websites and derive
the following 11 attributes: title, description, brand, part number, sub-category,
category, generation, capacity, spindle speed, manufacturer, and price. It is worth
noting that the part number attribute is not enough for matching the records across
all data sources, as its density is 90%. Thus, additional attributes are required for
matching, such as title and description, which results in a schema complexity larger
than one, as shown in Table 8.1.

Computers_mut Task Similarly to the MusicBrainz task, we curate a modi-
fied version of the computers task, which we abbreviate with computers_mut. We
modify the computers task by removing 30% of the part number attribute values
from one data source. This leads to an increased schema complexity, sparsity, and
amount of corner cases in comparison to the computers task, as indicated in Ta-
ble 8.1. While the underlying matching patterns of the original task focus mostly
on the combination of the title, part number, and description attributes, the mutated
task requires additional attributes, such as category, capacity, and generation.

Restaurants Task The restaurant-related multi-source task derives from the
Magellan repository,5 which provides a large number of two-source entity reso-
lution tasks. We retrieve four of the restaurant data sources that have been crawled
from large restaurant aggregators and use the phone number as weak supervision
in order to establish the complete mappings between all data source pairs. While
three of the six two-source entity resolution tasks have a low containment of corner
cases (<10%) and can be solved only with address-related attributes, the rest of the
two-source tasks require additional attributes such as name, cuisine, and website.

5https://sites.google.com/site/anhaidgroup/useful-stuff/data

https://sites.google.com/site/anhaidgroup/useful-stuff/data
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Record Pair Comparison We turn the records of all tasks into feature vectors
by calculating data type-specific similarity scores, as described in Section 2.3.3.
For string attributes, the following similarity scores are calculated: Levenshtein,
Jaccard, extended Jaccard with inner Levenshtein, exact similarity, and Jaccard
containment. For numeric attributes, the numeric similarity is calculated, as de-
scribed in Section 2.3.3. In the case that a similarity score cannot be computed
for an attribute combination because of missing values, we assign the out-of-range
score -1. This allows any classifier to consider all record pairs without dropping or
replacing the missing values.

Task Scenarios The selected multi-source tasks cover two distinct scenarios.
The first scenario includes entity resolution tasks of duplicate-free data sources.
Therefore their correspondence graph forms connected components of maximum
size equal to the total amount of sources, which is the case for the MusicBrainz
and MusicBrainz_mut tasks. The second scenario covers tasks of non-deduplicated
data sources. This results in components that are larger than the total amount of
sources, which happens for the computers, computers_mut, and restaurants tasks.
We cover both scenarios in order to evaluate if ALMSER is robust towards tasks
including non-deduplicated sources, considering that the training data enlargement
step relies on the clean connected components of the correspondence graph. We
remind the reader that we heuristically defined as clean the components of the
graph whose size is equal to or smaller than the number of data sources to be
matched, as described in Section 8.1.4.

8.2.2 Experimental Setup

We split the multi-source tasks into two subsets: one for initializing the pool that
is available for query selection and one for testing. In order to ensure that there
is no leakage by graph transitivity from the pool set to the test set, we split the
record pairs to pool pairs and test pairs based on the connected components of the
complete correspondence graph with a ratio 70%:30%.

We execute three runs for each active learning experiment and allow 200 itera-
tions for each run. In each iteration, we allow single queries, i.e. 200 record pairs
have been labeled in total by the end of each experimental run. All classification
models used as part of ALMSER or the baselines are parametrized with the default
parameters of the python scikit-learn library, version 0.24.2. Given that we are in-
terested in solving the multi-source task globally, we report the F1 score achieved
by the learner in each iteration over the complete test set and do not average the F1
scores achieved for each two-source task separately. Finally, we report the upper
learning bound of passive learning for which all record pairs of the pool together
with their respective labels are used for model learning. All experiments were run
on a Linux server with Intel Xeon 2.4 GHz processors.
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8.2.3 Comparison to Baselines

Baseline Methods We compare the two variants of ALMSER, i.e. ALMSER-
graph and ALMSERgroup, to two baseline active learning methods with differ-
ent classification-based query strategies and no graph signals. The first baseline
method, abbreviated with QHC, uses the committee-based query strategy of the
HeALER algorithm [Chen et al., 2019], which measures the informativeness of
each candidate record pair as the disagreement of the predictions of a committee
of heterogeneous classification models. The second baseline method, abbreviated
with MB, uses a margin-based query strategy [Meduri et al., 2020; Mozafari et al.,
2014]. The MB baseline is a learner-agnostic method, i.e. the classification model
used as part of the query strategy is different from the learner. It selects the query
candidates with a minimum distance to the decision hyperplane defined by an SVM
classifier. Similar to ALMSERgraph and ALMSERgroup, a random forest classi-
fier is used as a learner for the baseline methods. However, the learners of the
baseline methods do not use graph signals and therefore are trained only on the
labeled set. In order to ensure a comparable start of the learning process for all
methods, we apply the same initialization step, described in Section 8.1.1. In the
rest of this section, we first present the overall experimental results and compare
the active learning methods across all iterations and passive learning. Afterward,
we present detailed results of three active learning snapshots.

Comparison Overview of Active Learning Methods Figure 8.5 shows the av-
erage F1 score curves of ALMSERgraph, ALMSERgroup, and the two baseline
methods for each multi-source entity resolution task per iteration. We can observe
that as the active learning process unfolds, ALMSERgraph and ALMSERgroup
outperform both baselines for all tasks. The MB baseline underperforms the QHC
baseline for all tasks, while it fails to converge after 200 iterations for both the Mu-
sicBrainz and the MusicBrainz_mut tasks. The performance of ALMSERgraph
and ALMSERgroup is comparable in three of the five tasks. ALMSERgraph sig-
nificantly outperforms ALMSERgroup for the MusicBrainz_mut task. Addition-
ally, ALMSERgroup is highly unstable considering the standard deviation of the
F1 scores until the 100th iteration.6 This indicates that exploiting grouping signals
in addition to the graph signals is not helpful for the MusicBrainz_mut task.

Comparison to Passive Learning When 200 record pairs have been annotated,
the F1 scores achieved by ALMSERgraph for all tasks are 0 to 3.2 percentage
points lower than the passive learning results. The difference of the ALMSER-
group results to passive learning is 0.4 to 2.8 percentage points, while for the QHC
baseline, it is 0.4 to 5.0 percentage points. The passive learning results are calcu-
lated by training a random forest classifier with all pairs from the pool as training

6We show the standard deviation of the F1 scores per iteration with the light-colored area around
the plotted curves. To ease readability, we depict the standard deviation only for the ALMSERgraph
and ALMSERgroup methods.
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Figure 8.5: Comparison of ALMSERgraph and ALMSERgroup to active learning
baselines and passive learning.



8.2. EXPERIMENTAL EVALUATION 171

Table 8.2: Comparison of passive learning results with single and multiple (one
per two-source task) random forest models.

Task F1 - Single RF F1 - Multiple RFs
MusicBrainz 0.966 0.960
MusicBrainz_mut 0.942 0.944
computers 0.950 0.944
computers_mut 0.910 0.903
restaurants 0.930 0.933

data and are indicated with the black horizontal lines in the plots of Figure 8.5.
Finally, we want to verify that a single random forest model is enough to capture
the matching patterns of all two-source tasks of the multi-source setting. To do
so, we compare the passive learning F1 score, achieved by a single random for-
est trained on all available training data, to the F1 score achieved by task-specific
models trained on the training data of each two-source task. Table 8.2 presents the
comparison of the passive learning results. We observe that the F1 scores achieved
with a single random forest model are similar to the ones achieved with multi-
ple models. This confirms our hypothesis that a single random forest model can
expand enough to fit all matching patterns of the multi-source setting.

Detailed Comparison of Active Learning Methods In the upper part of each it-
eration line in Table 8.3, we compare the F1 scores of the baseline methods MB and
QHC to ALMSERgraph and ALMSERgroup at three snapshots of the active learn-
ing process. We observe that ALMSERgraph achieves a quicker gain in F1 score
in the earlier iterations of the active learning process. ALMSERgraph outperforms
the QHC and MB baselines by up to 5.5 and 13.4 percentage points, respectively,
at the 75th iteration. At the same iteration, ALMSERgroup performs similarly to
QHC for the MusicBrainz task, while for the rest of the tasks it outperforms QHC
by up to 2.3 and MB by up to 11.6 percentage points.

Although ALMSERgraph and ALMSERgroup outperform the two baselines
that do not use graph signals, even in the 200th active learning iteration, the gain in
F1 is reduced. ALMSERgraph has improved performance by up to 1.9 percentage
points in comparison to QHC and up to 4.8 percentage points in comparison to MB.
For ALMSERgroup, the difference is smaller with up to 1.8 percentage points in
comparison to QHC and up to 3.5 percentage points in comparison to MB.

With respect to the latency, ALMSERgraph and ALMSERgroup require more
time for query selection in comparison to the QHC and MB baselines. For example,
one baseline iteration for the computers task without graph signals takes 2.9-3.15
seconds, while one ALMSER iteration takes 14.58-15.10 seconds. This is due to
the correspondence graph construction and cleansing steps, which are required for
the ALMSERgraph and ALMSERgroup methods but not for the QHC and MB
baselines that do not use graph signals.
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Table 8.3: Comparison to baselines with no or partial graph signals.

Iteration AL method
MusicBrainz computers

restaurants
_mut _mut

F1 @
75th

MB 0.805 0.836 0.881 0.833 0.915
QHC 0.921 0.851 0.891 0.841 0.917
ALMSERgraph 0.939 0.906 0.921 0.862 0.926
ALMSERgroup 0.921 0.874 0.906 0.864 0.926
MB_boost_learner 0.877 0.833 0.889 0.827 0.914
QHC_boost_learner 0.891 0.891 0.894 0.843 0.924
ALMSERgraph_qs 0.912 0.841 0.919 0.842 0.916
ALMSERgroup_qs 0.887 0.822 0.898 0.859 0.917

F1 @
125th

MB 0.890 0.817 0.912 0.840 0.919
QHC 0.932 0.893 0.909 0.854 0.925
ALMSERgraph 0.946 0.920 0.918 0.873 0.929
ALMSERgroup 0.943 0.905 0.926 0.876 0.929
MB_boost_learner 0.866 0.856 0.910 0.846 0.917
QHC_boost_learner 0.914 0.914 0.901 0.865 0.930
ALMSERgraph_qs 0.924 0.884 0.927 0.868 0.923
ALMSERgroup_qs 0.913 0.865 0.924 0.872 0.919

F1 @
200th

MB 0.914 0.879 0.925 0.854 0.920
QHC 0.945 0.908 0.918 0.866 0.927
ALMSERgraph 0.951 0.927 0.930 0.878 0.931
ALMSERgroup 0.947 0.914 0.936 0.883 0.931
MB_boost_learner 0.903 0.872 0.922 0.859 0.924
QHC_boost_learner 0.926 0.926 0.916 0.871 0.932
ALMSERgraph_qs 0.934 0.896 0.938 0.884 0.926
ALMSERgroup_qs 0.918 0.888 0.932 0.883 0.921

F1-AUC
50th-200th

MB 128.81 123.84 135.68 124.82 138.02
QHC 140.07 132.43 135.62 127.66 138.51
ALMSERgraph 141.57 137.51 139.19 130.13 139.18
ALMSERgroup 140.99 133.92 138.48 130.78 139.03
MB_boost_learner 138.28 131.74 136.56 127.21 138.52
QHC_boost_learner 136.39 136.39 134.93 128.82 138.35
ALMSERgraph_qs 138.37 131.38 138.96 128.95 138.21
ALMSERgroup_qs 137.02 127.19 137.64 130.19 137.48
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8.2.4 Ablation Study

In this part of our experimental analysis, we evaluate the components of ALMSER,
which are boosted using graph and grouping signals separately. To do so, we con-
struct the following four setups that use partial graph and grouping signals and
compare them to the methods employing full (ALMSERgraph, ALMSERgroup)
or no (MB, QHC) graph and grouping signals:

1. ALMSERgraph_qs, a variation of ALMSERgraph which utilizes the graph
signals only as part of the query strategy but not for boosting the learner with
additional training data.

2. ALMSERgroup_qs, a variation of ALMSERgroup which uses graph and
grouping signals only as part of the query strategy but not for boosting the
learner with additional training data.

3. QHC_boost_learner, which applies the QHC query strategy for selecting
candidates and uses graph signals for enlarging the training data and boost-
ing the random forest learner.

4. MB_boost_learner, which applies the MB query strategy and uses graph sig-
nals for enlarging the training data and boosting the random forest learner.

We present the F1 scores in three snapshots of the active learning process for all
methods that use partial graph and/or grouping signals in Table 8.3. Additionally,
we report the area under the F1 curve (F1-AUC) from iteration 50 to iteration 200
for all methods.

Comparing the methods that do not use any training data enlargement tech-
nique, i.e. MB, QHC, ALMSERgraph_qs, and ALMSERgroup_qs, we can see
there is no clear winner among the other query selection strategies. For example,
QHC performs best for the MusicBrainz and MusicBrainz_mut tasks with respect
to the F1-AUC scores, while ALMSERgraph_qs and ALMSERgroup_qs perform
best for the computers and computers_mut tasks, respectively. Finally, for the
restaurants tasks all of these four methods perform comparably as the differences
of the F1-AUC scores are rather small. This indicates that the positive contribution
of graph and grouping signals to the active learning query strategy is subject to the
task at hand. We will investigate the impact of the profiling characteristics of the
multi-source tasks on the performance of the different query selection strategies in
Chapter 9.

We observe that the best performing methods for all tasks and snapshots use
partial, e.g. ALMSERgraph_qs at iteration 125 for the computers, or full graph
and grouping signals, e.g. ALMSERgroup at iteration 75 for the computers_mut
task. However, in terms of F1-AUC, ALMSERgraph achieves overall better results
between iterations 50 and 200 in all tasks except computers_mut. For the latter,
ALMSERgroup outperforms in terms of F1-AUC.
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Figure 8.6: Comparison of the accuracy of the augmented training data and the
labels derived from the complete correspondence graph.

8.2.5 Training Data Enlargement Evaluation

In the last part of our experimental evaluation, we report the size and correctness
of the augmented training set, which results from the clean components of the
correspondence graph, as explained in Section 8.1.4. Figure 8.6 presents the accu-
racy of the augmented training set in comparison to the accuracy of the complete
correspondence graph for the MusicBrainz_mut and the restaurants tasks in each
active learning iteration. We observe that our heuristic for filtering clean compo-
nents extracts a cleaner part of the correspondence graph, as the accuracy of the
augmented training set (blue line) exceeds the one of the complete graph (orange
line) in each iteration. This occurs for both task scenarios, i.e. multi-source tasks
with duplicate-free (MusicBrainz_mut) and non duplicate-free (restaurants) data
sources.

Exploiting the record pairs from the clean components for training the boosted
learner results in large amounts of additional training pairs. However, only the
subset of record pairs in the augmented training set with a graph-inferred label dif-
ferent from the base label can give additional matching information to the boosted
learner. Table 8.4 shows the size of the augmented training set, the number of
record pairs in the training set with a disagreement between the graph-inferred and
the base labels, as well as the ratio of correct graph-inferred labels to all record
pairs with a disagreement in three active learning snapshots. Although the size of
the augmented training set is much larger in comparison to the clean labeled data,
there is only a relatively small amount of disagreements between the predictions of
the base learner trained on the labeled set and the graph-inferred labels. Consider-
ing that for the majority of those disagreements, the graph-inferred label is correct
(78.8-96.7%, as shown in Table 8.4), we conclude that the additional matching
information that the boosted learner receives from the graph is subject only to a
small amount of noise. Thus, it successfully supports the discovery of additional
matching patterns which are not covered yet by the record pairs in the labeled set.
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Table 8.4: Augmented training set in three AL snapshots.

Iteration Musicbrainz_mut restaurants
#Train
pairs (K) #Disagr. % Correct

graph
#Train
pairs (K) #Disagr. % Correct

graph
75th 256.5 1,476 0.966 42.8 73 0.821

125th 256.4 1,506 0.967 42.5 52 0.788
200th 254.7 1,009 0.874 42.6 27 0.814

8.3 Related Work

Multi-source entity resolution has been previously studied in related work. It is
highly related to the task of knowledge base synthesis, which focuses on the “inges-
tion, disambiguation and enrichment of entities from a variety of sources” [Bellare
et al., 2013]. There exist two main lines of research on multi-source entity resolu-
tion, which either focus on solving the scalability issues of integrating data from
multiple sources [Hertling and Paulheim, 2021; Shen et al., 2007] or on develop-
ing supervised and unsupervised techniques for deriving models that can generalize
well on all tasks of the multi-source setting [Jin et al., 2021; Saeedi et al., 2017,
2018].

In the work of Hertling and Paulheim [2021] on knowledge graph matching,
different matching execution plans are evaluated in terms of accuracy and latency.
Each execution plan follows a different matching order, defined by knowledge
graph-related measures, such as the number of classes, instances, and statements.
Similarly, the supervised SOCCER framework proposed by Shen et al. [2007] de-
fines an efficient order of executing pairwise entity resolution tasks. The basic
hypothesis of SOCCER is that different data sources come with different degrees
of semantic ambiguity. This leads to domain-specific matchers not being able to
fit all matching patterns among the different data source pairs. As matchers, the
authors consider rules defined by an expert. These works confirm that defining a
matching execution plan and employing one matching model for each pair of data
sources is relevant for large-scale multi-source settings with more than 50 data
sources. However, in Section 8.2.3, we showed that for multi-source entity reso-
lution tasks with up to five data sources, training a single random forest model on
all record pairs after blocking delivers similar results to multiple models trained on
single two-source tasks.

Saeedi et al. [2017] compare different unsupervised clustering-based methods
for multi-source entity resolution and propose CLIP [Saeedi et al., 2018]. Although
CLIP is an unsupervised approach, it requires an expert to define domain-specific
matching rules. The rules are then used to construct a correspondence graph. Ad-
ditionally, the clustering approach of CLIP assumes duplicate-free sources, an as-
sumption that is not necessary for our proposed method.
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Jin et al. [2021] approach multi-source entity resolution with transfer learn-
ing. The authors consider a setting in which labeled and unlabeled data from new
sources come incrementally and need to be integrated with record pairs that have
already been matched. In this context, they study the following three challenges
that can be related to the new unseen data: (i) missing attribute values, (ii) new at-
tributes, and (iii) different value distributions. Their proposed system, AdaMEL
addresses those challenges by leveraging existing labeled data as well as large
amounts of unlabeled data in a transfer learning scenario with domain adaptation.
In comparison to our active learning-based approach that relies on carefully se-
lected record pairs (up to 200), AdaMEL assumes that the record pairs of half of
the data sources in the multi-source setting are labeled. JointBERT [Peeters and
Bizer, 2021] applies deep learning techniques for multi-source entity resolution
and treats the matching problem in parallel as a binary and multi-class classifi-
cation task. Similar to the work of Jin et al. [2021], JointBERT is applied only
in a passive learning setting and therefore requires large amounts of training data
(2K-70K record pairs).

Active learning has been barely applied for tackling the task of multi-source
entity resolution. To the best of our knowledge, Huang et al. [2018] are the first to
propose an active learning-based method for multi-source entity resolution. How-
ever, differently from our active learning setting, their work considers error-prone
human annotators. The main focus is on improving the interaction with the human
annotator by querying an optimal comparative table of records originating from
multiple sources. The evaluation of the authors relies on user satisfaction studies
and indicates that presenting the queries as comparative tables rather than single
queries can increase the accuracy of the annotators’ answers.

8.4 Discussion and Conclusion

In this chapter, we presented ALMSER, an active learning method for multi-source
entity resolution. ALMSER uses graph and grouping signals which are inherent to
multi-source entity resolution tasks for query selection and training of the learner.
ALMSER comes with the query strategies ALMSERgraph and ALMSERgroup,
which, to the best of our knowledge, are the first query strategies specially tailored
to multi-source entity resolution tasks.

Compared to CLIP, an unsupervised clustering method for multi-source entity
resolution within the FAMER framework [Saeedi et al., 2018, 2020], ALMSER
does not assume deduplicated data sources. Additionally, CLIP relies on linkage
rules, i.e. combinations of similarity functions and attributes, for calculating sim-
ilarity links among the clustered records. Considering that the linkage rules need
to be domain-specific, an expert is required to define them. On the other hand,
ALMSER uses record pairs labeled by a human annotator during active learning
for training a classification model.

We evaluated ALMSER with its two query strategies on five multi-source en-
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tity resolution tasks containing up to five data sources. The relatively small amount
of data sources contained in the tasks used for evaluation makes it possible to use
the subset of the Cartesian product selected after blocking during active learning
within an acceptable runtime (up to 15 seconds per iteration). In that regard, scal-
ability issues that arise in larger multi-source entity resolution settings are not ad-
dressed in the context of our work. Such issues have been addressed in related
work by defining optimal matching execution plans [Hertling and Paulheim, 2021;
Shen et al., 2007] or with the parallel design and execution of the entity resolution
method [Saeedi et al., 2017].

We identified that ALMSER reaches close to passive learning results achieved
with a symbolic baseline method for all tasks after 200 iterations. More concretely,
ALMSERgraph reaches 0 to 3.2 and ALMSERgroup reaches 0.4 to 2.8 percent-
age points in F1 score lower than passive learning after 200 iterations with single
queries. This implies a significantly smaller labeling effort in comparison to pas-
sive learning, which requires 57K to 386K labeled record pairs considering the
tasks used in our evaluation.

Additionally, we compared ALMSER to two baseline active learning meth-
ods using a committee-based and a margin-based query strategy and no graph or
grouping signals. The comparison results indicated that ALMSER consistently
outperforms the two baselines in all tasks. The F1 score difference is larger in
the earlier iterations than the later ones, with ALMSERgraph outperforming the
committee-based baseline by up to 5.5 percentage points in F1 score in the 75th
iteration and up to 1.9 percentage points in F1 score in the 200th iteration.

Finally, we performed an ablation study to evaluate the distinct components
of ALMSER that exploit graph and grouping signals. We identified that when the
signals are used for both query selection and learner training, overall better perfor-
mance is achieved in terms of F1-AUC. However, we saw that in some iterations,
methods using partial graph or grouping signals outperform ALMSER. Interest-
ingly, the ablation study results indicated that the positive contribution of graph
and grouping signals to the active learning query strategy is subject to the task at
hand. This finding will be further investigated in the following Chapter 9.
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Chapter 9

Impact of the Profile of
Multi-Source Entity Resolution
Tasks on Active Learning

Multi-source entity resolution tasks inherently offer graph and grouping signals,
which can be exploited during active learning to reduce the overall labeling effort,
as demonstrated in Chapter 8. However, the degree of graph and grouping signals
may vary across different multi-source tasks and is dependent on the profile of
the data sources to be matched. This observation is motivated by the results of
Chapter 8, indicating that the positive contribution of graph and grouping signals
to the query selection active learning component is dependent on the task at hand.
For example, if there is no significant overlap of records describing the same real-
world object across the data sources of the multi-source task, graph signals are
expected to be of low quality. Similarly, grouping signals are potentially not helpful
for multi-source entity resolution tasks comprising two-source tasks with different
underlying matching patterns.

In this chapter, we analyze the impact of the profiling characteristics of multi-
source entity resolution tasks on the performance of active learning methods which
exploit different signals as part of their query strategy, thus covering contributions
[C6] and [C7] of the thesis. To do so, we propose three profiling dimensions for
describing multi-source entity resolution tasks that can affect the utility of graph
and grouping signals. The proposed profiling dimensions are complementary to
the ones presented in Chapter 3, which solely focus on two-source entity resolu-
tion tasks. To enable our analysis, we develop ALMSERgen, a multi-source entity
resolution task generator, and curate a continuum of 252 multi-source tasks along
the suggested dimensions. In contrast to existing entity resolution task genera-
tors [Hildebrandt et al., 2020; Ioannou et al., 2013; Saveta et al., 2015], ALM-
SERgen covers desiderata relevant to the multi-source setting. We evaluate the
following three active learning query strategies on the generated tasks as well as
on five benchmark tasks: (i) HeALER, a committee-based query strategy proposed
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by Chen et al. [2019], (ii) ALMSERgraph, a query strategy which exploits graph
signals, introduced in Chapter 8, and (iii) ALMSERgroup, a query strategy which
exploits graph and grouping signals, introduced in Chapter 8. By analyzing our
evaluation results, we identify the best performing active learning query strategies
for groups of multi-source entity resolution tasks sharing the same characteristics.

The contributions of this chapter are summarized as follows:

• We propose a set of dimensions for profiling multi-source entity resolution
tasks which are relevant to the active learning query strategy.

• We develop ALMSERgen, a tool for generating multi-source entity resolu-
tion tasks along the suggested profiling dimensions.

• We analyze the experimental results of a continuum of 252 multi-source en-
tity resolution tasks generated by ALMSERgen as well as five benchmark
tasks and study the effect of their profiling characteristics on the performance
of active learning methods using different query strategies.

This chapter is structured into five sections. In Section 9.1, we discuss the
related work on task generators for entity resolution. Section 9.2 presents the di-
mensions for profiling multi-source entity resolution tasks. Section 9.3 presents
the multi-source task generator ALMSERgen, which we use for generating a con-
tinuum of multi-source entity resolution tasks and enabling our analysis. In Sec-
tion 9.4, we present the experimental setup and the results of our analysis. Finally,
in Section 9.5, we summarize the main findings of this chapter.

The methodology as well as the evaluation of the results presented in this chap-
ter have been published in the Proceedings of the 22nd Extended Semantic Web
Conference [Primpeli and Bizer, 2022]. The code for ALMSERgen is publicly
available1 along with the 252 generated tasks used in our experimental analysis.2

9.1 Related Work

Numerous benchmark studies have compared the performance of different super-
vised entity resolution methods in passive learning [Achichi et al., 2017; Christophides
et al., 2020; Konda et al., 2016; Köpcke et al., 2010] and active learning set-
tings [Meduri et al., 2020]. However, there has been no benchmark study com-
paring active learning methods for multi-source entity resolution tasks to the best
of our knowledge.

To allow a fair comparison of evaluation results, the existing benchmark studies
typically use multiple entity resolution tasks. These tasks contain (i) records deriv-
ing from one or more data sources, such as proprietary and public databases [Saeedi

1https://github.com/wbsg-uni-mannheim/ALMSER-GEN
2http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/almser_gen_data/

https://github.com/wbsg-uni-mannheim/ALMSER-GEN
http://data.dws.informatik.uni-mannheim.de/benchmarkmatchingtasks/almser_gen_data/


9.1. RELATED WORK 181

et al., 2017] and (ii) a manually labeled correspondence set of matching and non-
matching record pairs. Alternatively, synthetic tasks curated with data generator
tools can be used for evaluation [Ferrara et al., 2011]. Entity resolution task gener-
ators use a single de-duplicated data source as a starting point and generate mutated
versions of it by applying different transformations [Ferrara et al., 2011; Ioannou
et al., 2013]. The correspondence set can be thus acquired with no labeling effort
by simply assigning a matching label between all mutated records originating from
the same record in the initial data source. Any pair of records originating from
different records in the initial data source is assigned a non-matching label.

There exist several data generators which focus on curating entity resolution
tasks for Linked Data and have been used for evaluating link discovery frame-
works [Achichi et al., 2017]. Such data generators produce entity resolution tasks
with varying degrees of difficulty by applying structural, syntactic, and semantic
transformations. The first approach towards synthetically generating entity reso-
lution tasks for link discovery frameworks was developed by Ferrara et al. [2011]
and called SWING (Semantic Web INstance Generation). SWING is based on
Description Logics and therefore the structural and semantic transformation oper-
ations are bound to Description Logics, e.g. addition of disjointness restrictions.
With respect to the syntactic transformations on value level, SWING offers the
following three operations: (i) addition of random tokens, (ii) deletion of random
tokens, and (iii) modification of random tokens. A more flexible data generator tool
is EMBench, developed by Ioannou et al. [2013]. EMBench has more expressive
power in comparison to SWING, as it supports aggregation and grouping opera-
tions. Additionally, EMBench extends the set of syntactic operations on value level
of SWING by permutating words and replacing them with their acronyms, initials,
or abbreviations. Saveta et al. [2015] develop SPIMBENCH, which relies on the
value transformations of SWING but additionally sets a severity level to deter-
mine the degree of the applied modification. In comparison to SWING, EMBench,
and SPIMBENCH, our data generation tool ALMSERgen applies a similar set of
transformations on value level as well as user-defined severity levels. However,
structural transformations are not supported since schema matching is not studied
within the context of our work.

Besides data generation tools focused on evaluating link discovery frameworks,
there exist several tools for generating entity resolution tasks without accounting
for class and property hierarchies. An overview of such data generators is pro-
vided by Hildebrandt et al. [2020]. The DBGen [Hernández and Stolfo, 1998] and
Febrl [Christen, 2009] data generators curate synthetic tasks given a pre-defined
schema with person-related attributes, such as name and birthdate. The modifi-
cations applied to each attribute are hard-coded and include typographical errors,
word permutations, and substitution of names with initials. The GeCo data gener-
ator [Tran et al., 2013] is a successor of the Febrl data generator and allows more
flexibility regarding the schema of the generated task, as it enables the user to de-
fine their own schema. A drawback of GeCo is that it does not support parallel
execution, thus leading to increased runtimes. A more systematic and scalable ap-
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proach to generating synthetic entity resolution tasks is DaPo, developed by Hilde-
brandt et al. [2020]. DaPo defines an error model containing multiple error con-
cepts such as typographical, OCR, phonetic, and formatting errors. The different
concepts can be combined within a single transformation. Additionally, DaPo is
built upon Apache Spark, allowing vertical, i.e. distribution of the workload to
multiple cores of a single machine, and horizontal scalability, i.e. distribution of
the workload to multiple machines. Similarly, ALMSERgen supports parallelism
and allows for vertical scalability. In contrast to DaPo, no horizontal scalability is
supported. Finally, the existing generators of entity resolution tasks can be used for
curating multiple modified versions of a single data source and can thus construct a
multi-source entity resolution task. However, none of them consider multi-source
entity resolution task-related desiderata, which we cover in our work.

9.2 Profiling Dimensions for Multi-Source Tasks

Multi-source entity resolution tasks have certain inherent properties which are
complementary to the profiling dimensions of two-source tasks, covered in Chap-
ter 3, and can impact active learning. In this section, we define three dimensions
for profiling multi-source entity resolution tasks: entity overlap, value heterogene-
ity, and value pattern overlap. In the following, we present how each dimension is
calculated and discuss its relevance to the active learning query strategy.

Entity Overlap The dimension of entity overlap (EO) refers to the ratio of enti-
ties, i.e. distinct real-world objects as per Definition 2.2.2, that appear in more than
two sources over the entities of the multi-source task that appear in two or more
sources. Transforming the multi-source task into a correspondence graph, the di-
mension of entity overlap is calculated as |CCsizeě3|

|CCsizeě2|
, where CC are the connected

components of the correspondence graph. An entity overlap of 0 indicates that
all entities are represented by records appearing in a maximum of two of the data
sources. An entity overlap of 1 indicates that all entities are represented by records
in at least three data sources. For the calculation of the entity overlap level, further
fine-grained weighting factors could be considered, e.g. in how many more than
three sources an entity appears. However, in the context of our work, we make a
cut at three sources which is the minimum number of overlapping entities required
for graph transitivity signals to fire.

We expect a multi-source task with no entity overlap to offer low-quality graph
signals. Given that the maximum size of connected components is two nodes,
i.e. records, no additional information can be extracted from the correspondence
graph considering different graph signals, such as graph transitivity. In such multi-
source entity resolution tasks, non-graph-based query strategies are expected to
outperform graph-based ones.
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(a) VH=0.0 (b) VH=0.5 (c) VH=1.0

Figure 9.1: Example multi-source tasks with different value heterogeneity levels.

Value Heterogeneity The dimension of value heterogeneity (VH) captures the
heterogeneity of the relevant attribute values of the records that appear in differ-
ent data sources and represent the same entity. We remind the reader that relevant
attributes are those that contribute to the solution of an entity resolution task and
are heuristically defined, as described in Section 3.4.1. The heterogeneity of val-
ues may derive from different surface forms of the same value, e.g. iphone 4s vs.
iphone 4s smartphone vs. 4s iphone, as well as spelling errors, e.g. apple vs. ap-
plle. We compute value heterogeneity as the ratio of entities in a multi-source entity
resolution setting that are represented by records with dissimilar values in all their
relevant attributes to all entities. The example of Figure 9.1 presents three tasks
with different levels of value heterogeneity. The task of Figure 9.1a has VH=0, as
both entities are represented by records with identical values in sources A and B.
On the other hand, the tasks of Figures 9.1b and 9.1c have a value heterogeneity
level of 0.5 and 1.0, respectively, as 50% (9.1b) and 100% (9.1c) of the entities are
represented by records with different values.

We expect that multi-source entity resolution tasks with a low level of value
heterogeneity are easy to solve. Considering that the matching and non-matching
pairs are almost perfectly separable for such tasks, the learner can reach a high
prediction accuracy even with a small number of labeled record pairs. On the other
hand, given a task with high value heterogeneity, we expect that a small number of
labeled record pairs can lead to the overfitting of the learner. In that case, exploiting
the correspondence graph for directing the query strategy to pick record pairs that
are likely erroneously predicted by the overfitted learner can be helpful.

Value Pattern Overlap The dimension of value pattern overlap (VPO) refers to
the number of groups of data sources of the multi-source entity resolution setting
adhering to the same attribute value patterns. The overlap of value patterns results
from similar surface forms or types of errors within the record values of the data
sources. For example, within the e-commerce phone product domain, different e-
shops may share one of the following surface forms for representing the names of
smartphones: [model] [model generation], e.g. iphone 4s, [model] [model gener-
ation] [product type], e.g. iphone 4s smartphone or [model generation] [model],
e.g. 4s iphone.
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(a) Data sources with the same attribute value pattern (b) Matching pattern per two-
source entity resolution task

(c) Data sources with different attribute value pat-
terns

(d) Matching pattern per two-
source entity resolution task

Figure 9.2: Example multi-source tasks with high (a-b) and low (c-d) value pattern
overlap.

Data sources with overlapping value patterns can produce groups of entity res-
olution tasks with similar underlying matching patterns. We consider a matching
pattern as a disjunction of conjunctions of similarity-based features and thresh-
old values. We illustrate this observation with the example of Figure 9.2, which
presents two multi-source entity resolution tasks. In the first task of Figure 9.2a,
all data sources follow the same value pattern for the name attribute, which is a
concatenation of multiple fine-grained attributes: [brand] [model] [model genera-
tion] [product type]. Although the [product type] is different for every data source,
the value pattern overlaps in all three data sources. This further leads to a uni-
fied matching pattern across all two-source tasks, as shown in Figure 9.2b. On the
other hand, the records of the data sources of the second multi-source task contain
heterogeneous value patterns: [brand] [model] [model generation] for data source
A, [brand] [misspelled model] [model generation] for data source B and [model]
[model generation] [brand] for data source C. This results in distinct matching pat-
terns for each two-source entity resolution task, as shown in Figure 9.2d.

We calculate the value pattern overlap as 1
GV PO

, with GV PO indicating the
number of groups of data sources having the same value pattern. In order to align
the range of the VPO level to the ranges of EO and VH, we rescale the VPO level
values to the range [0,1]. A value pattern overlap of 1 indicates that all data sources
contain records with the same value pattern and therefore construct pairwise tasks
with the same underlying matching patterns. On the other hand, a value pattern
overlap of 0 indicates that the records of each data source contain different value
patterns and therefore the pairwise tasks contain distinct underlying matching pat-
terns. We expect those query strategies that can identify groups of entity resolution
tasks sharing similar matching patterns and distribute the queries across the groups
can outperform query strategies that ignore the grouping information.

It should be noted that in the context of the exploratory analysis presented in
this chapter, it is possible to exactly calculate the GV PO score and thus the value
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Figure 9.3: Multi-source entity resolution task curation with ALMSERgen.

pattern overlap level. This is due to the fact that our analysis is based on gener-
ated multi-source tasks for which we pre-define and inject a set of attribute-value
patterns to generated data sources, as will be presented in Section 9.3. However,
in a real-world setting, the attribute value patterns are usually not fixed and there-
fore it is hard to precisely calculate the GV PO level. For these cases, the value
pattern overlap can be estimated by the overlap of matching patterns among the
two-source tasks of the multi-source setting. One way to approximate the latter
is to calculate the naive transfer learning scores among all combinations of two-
source tasks [Thirumuruganathan et al., 2018]. We will present in detail and use
this approximation for estimating the VPO level of benchmark tasks in our experi-
mental analysis presented in Section 9.4.4.

9.3 ALMSERgen: a Multi-Source Task Generator

In order to test the performance of different active learning query strategies over
a large continuum of multi-source test cases, we develop ALMSERgen, a multi-
source entity resolution task generator. ALMSERgen takes a set of records as
input and generates a multi-source task of a pre-defined amount of data sources
by replicating the input record set and injecting transformations along the three di-
mensions explained in Section 9.2. In the following, we explain each component of
ALMSERgen along with the illustrated example of curating a multi-source entity
resolution task given a pre-defined configuration of Figure 9.3.

Step 1: Complement Initial Set Depending on the domain and the integration
task at hand, different attributes might be relevant for matching. For example,
for the task of matching phone records, one might consider that the combination
of phone name and phone brand identifies a distinct phone, while in more fine-
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grained entity resolution tasks, the phone color might also be important. We call the
attributes that are useful for distinguishing real-world objects of a specific domain
and are relevant for entity resolution relevant attributes, and they are given as input
to ALMSERgen. Considering that the input set of records may not contain enough
examples for the relevant attributes to show, ALMSERgen artificially activates the
relevant attributes by replicating 20% of the input records and replacing a subset of
the relevant attribute values with random non-identical values of the same attribute.
The non-relevant attribute values are simply copied from the original record to
the replicated records. In the example of Figure 9.3, the input set contains three
records. Given that the relevant attributes are configured to be name and brand,
ALMSERgen generates the additional records 2.iphone 4s - htc and 5.galaxy s21 -
apple, which represent phone entities different from the ones that the records 1 and
4 represent.

Step 2: Distribute Records over Data Sources Next, the entity overlap level
(EO) of the multi-source task is fixed. Given a pre-defined EO level value in the
range [0,1], we iterate over all initial entities (IE) produced in Step 1 and add a
subset of them, the amount of which equals EO ˆ |IE|, to more than two data
sources. For specifying in how many more than two sources the selected subset
of entities should be added, we follow a power-law distribution, i.e. most entities
are described by records in few data sources while a few entities are described
by records in all data sources. Therefore, given that a record describing the same
entity is selected to be added in more than two data sources, the probability that
it is added in x data sources is 1{x, with x ą 2. In the illustrated example, the
EO level is set to 0.6, i.e. 60% of the five entities produced in Step 1, are added
to more than two sources: the entity with id 1, which is added in four sources, and
the entities with ids 2 and 3, which are added in three sources.

Steps 3-4: Inject Groups of Patterns In the next step, the levels of value pat-
tern overlap (VPO) and value heterogeneity (VH) are fixed. These two dimen-
sions are interwoven, considering that VH defines how many records across all
data sources contain heterogeneous representations for the same real-world object
and VPO controls the similarity of the value patterns of the records across all data
sources. Given the pre-defined VPO level, ALMSERgen creates groups of data
sources to which the same value pattern is injected. The same value pattern is in-
jected in the records of the groups representing a subset of entities, the amount of
which is V H ˆ |IE|, with IE being the initial entities generated in Step 1 and VH
being the value heterogeneity level in the range of [0,1].

A value pattern is comprised of distinct combinations of attributes and value
transformations. ALMSERgen offers the following value transformations similarly
to existing data generators for entity resolution [Ioannou et al., 2013; Saveta et al.,
2015]:
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1. Addition of random characters

2. Deletion of random characters

3. Modification of random characters

4. Shuffling and modification on word level

5. Shuffling of words

6. Addition of random words

7. Subtraction of (5/10/20)% of the value

8. Addition of (5/10/20)% of the value

Transformations 1-6 are performed on string attributes, while transformations 7-
8 are applied only on numerical attributes. Finally, for the transformations 1-4, a
level of severity in the range of [0.1, 0.5] is randomly picked for each value pattern,
i.e. maximum of 50% of the characters can be modified or deleted to ensure that the
identity of each entity is not completely altered and remains distinguishable. After
this step, the curation of the data sources of the multi-source setting is completed.

In the example of Figure 9.3, the VPO level is set to 0.5 and the VH level
is set to 0.6. This further implies that the data sources will be grouped into two
groups of overlapping value patterns, G1: A-B and G2: C-D. For each group, one
combination of attribute and value transformation is randomly chosen and injected
into the records describing 60% of the five entities of Step 1, i.e. the entities with
ids 1, 3, and 5. The value pattern for both attributes of the records in G1 is the
addition of random words. The value pattern for G2 is the deletion of random
characters with a severity of 0.2.

Step 5: Derive Matching and Non-Matching Pairs In the final step, ALM-
SERgen derives the complete set of matching pairs considering all pairwise com-
binations of replicated records referring to the same entity, e.g. A1-B1. For de-
riving hard non-matching pairs, we extract all combinations of records and their
corresponding negative examples injected in Step 1, e.g. A1-C2. Additionally,
we randomly pick easy non-matching record pairs, e.g. A1-C3, until the ratio of
matching to non-matching pairs is 1/3.

9.4 Experimental Evaluation

In this section, we present the results of our experimental analysis. First, we pro-
vide the details of the ALMSERgen configuration and the active learning setup.
Next, we present the experimental results on a continuum of 252 generated tasks
and discuss our main findings on the performance of three active learning meth-
ods using different query strategies with respect to the profiling characteristics of
the tasks. Finally, we verify our findings on the five multi-source entity resolution
tasks used in the evaluation Section 8.2 of Chapter 8.
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Table 9.1: Explanation of VPO levels in ALMSERgen.

VPO
Groups of data sources
with the same
attribute value pattern

# Groups
of data
sources

# Groups
of two-source
tasks

0.0 {1}{2}{3}{4}{5}{6} 6 15
0.2 {1,2}{3}{4}{5}{6} 5 11
0.4 {1,2}{3,4}{5}{6} 4 8
0.6 {1,2}{3,4}{5,6} 3 6
0.8 {1,2,3}{4,5,6} 2 3
1.0 {1,2,3,4,5,6} 1 1

9.4.1 ALMSERgen Configuration

We provide a set of 1000 records, each describing a song entity as input to ALM-
SERgen. The input dataset is a subset of the last.fm song dataset.3 Each song
record is described with the following four attributes: title, release, artist, and coun-
try. We configure all of the four attributes as relevant ones and set the number of
curated data sources of each setting to 6. We iterate in steps of 0.2 in the range [0.0,
1.0] for the dimensions of entity overlap (EO) and value pattern overlap (VPO) and
in steps of 0.1 in the range [0.2, 0.8] for the value heterogeneity (VH) dimension.
The defined ranges and steps result in the curation of 252 multi-source entity res-
olution tasks. As the VPO levels are rescaled to match the ranges of the other
two dimensions, we present the details of each VPO level in terms of groups of
data sources, amount of resulting groups of data sources, and amount of resulting
groups of two-source tasks in Table 9.1. For example, a VPO level of 0.8 indicates
that two groups of three data sources each are formed. The data sources of the
same group, e.g. 1, 2, and 3 as shown in Table 9.1, are injected the same attribute
value pattern. This results in three groups of two-source tasks having the same
underlying matching patterns.

9.4.2 Experimental Setup

We compare the performance of three active learning methods using the query
strategies HeALER [Chen et al., 2019], ALMSERgraph, and ALMSERgroup. The
query strategies use different criteria for assessing the informativeness of the record
pairs of the unlabeled pool. We remind the reader that HeALER uses a committee
of heterogeneous classifiers and selects record pairs with the highest disagreement
among the predictions of the committee. We use the following five classification
models for building the committee: logistic regression, linear SVM, decision tree,
XGBoost, and random forest. ALMSERgraph exploits the signals of the corre-
spondence graph constructed from the predictions of the learner and selects record
pairs for labeling that are likely erroneously predicted by the learner. ALMSER-
group uses the same strategy as ALMSERgraph, but further exploits grouping

3http://millionsongdataset.com/lastfm/

http://millionsongdataset.com/lastfm/
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signals for restricting the number of record pairs of the unlabeled pool. A de-
tailed description of the ALMSERgraph and ALMSERgroup query strategies is
provided in Section 8.1.5. In our experiments, we only modify the query selection
component while keeping the rest of the active learning setting the same. For the
sake of convenience, we will use the abbreviations HeALER, ALMSERgraph and
ALMSERgroup to denote the methods that use the corresponding query selection
strategies. To avoid confusion, we remind the reader that these were abbreviated as
QHC, ALMSERgraph_qs and ALMSERgroup_qs, respectively, in the evaluation
Section 8.2 of the previous chapter.

We allow 200 iterations for each experiment and use single queries. In the case
that the query strategy assigns the maximum informativeness score to more than
one record pair of the pool, one of them is randomly selected for annotation. We
use a random forest classifier4 as a learner and measure the F1 score of its predic-
tions on the test set in each iteration. No graph or grouping signals are exploited for
model learning. We conduct three experimental runs for each multi-source task and
each method. Finally, we use the area under the mean F1 curve, which we abbre-
viate with F1-AUC, for comparing the active learning methods along all iterations.
A higher F1-AUC score signifies overall better results in terms of F1 score.

9.4.3 Results and Analysis of ALMSERgen Tasks

In this section, we compare the results of the three active learning methods on the
continuum of the curated multi-source entity resolution tasks and identify which
signals are helpful to the query selection component given the profiling charac-
teristics of the tasks. For our analysis, we use 2D and 3D scatter plots with the
color of each circle representing the winning active learning method. The varying
circle sizes indicate the difference of the outperforming method to the second-best
method in terms of F1-AUC for iterations 50 to 200. Large dots signify clear win-
ners, while smaller dots represent winning methods that are only slightly better
than the runner-up methods.

Figure 9.4 presents the overall comparison results of the three active learning
methods on the continuum of the 252 multi-source tasks along the three dimensions
described in Section 9.2: value heterogeneity (VH), value pattern overlap (VPO),
and entity overlap (EO). In 41.6% of the tasks, HeALER is the winning active
learning query strategy, while ALMSERgraph and ALMSERgroup outperform in
25.8% and 33% of the tasks, respectively. Looking at the 3D plot of Figure 9.4,
we observe four main patterns, which we indicate with the dotted circles and the
abbreviations P1-P4. In the following, we discuss in detail each pattern. Addition-
ally, we report the best performing active learning methods for the tasks of every
pattern by relating their results to the runner-up methods as well as to passive F1,
i.e. the upper bound F1 scores achieved in a passive learning setting with a random
forest classifier being trained on the complete pool of records pairs.

4With default parameters as defined by the scikit-learn library version 0.24.2
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Figure 9.4: Overall task continuum results.
Outperforming AL methods per task along the three profiling dimensions.
The circle size indicates the F1-AUC difference to the runner-up method.

P1 - No clear winner for easy tasks. For all of the tasks with entity and value
pattern overlap larger than 0.6 as well as a minimal value heterogeneity of 0.3
or less, HeALER and ALMSERgroup outperform ALMSERgraph, as shown in
the P1 circled settings of Figure 9.4. However, the mean F1-AUC difference to the
runner-up methods is only 0.51 for the settings in which HeALER outperforms and
0.68 for the settings in which ALMSERgroup outperforms. This indicates that the
best-performing methods are not clear winners as they only marginally outperform
the second best method. The mean passive F1 score for all tasks adhering to this
pattern is 0.983, while the mean F1 of the best performing active learning methods
at the final 200th iteration is 0.961. We consider such multi-source entity resolution
tasks relatively easy to solve as the high overlap of mostly homogeneous entity
records eases the discovery of the few distinct matching patterns, i.e. selecting one
matching record pair for annotation can help the classifier to learn the underlying
pattern of many other record pairs at once.

P2 - Graph signals are helpful for tasks with high value heterogeneity. In
71.6% of the tasks with a value heterogeneity level larger than 0.5, ALMSERgraph
is the winning strategy with a mean F1-AUC difference of 3.41, given that the value
pattern overlap level is 0.6 or below. The mean passive F1 score for all tasks of this
pattern is 0.888, while the mean F1 of the best performing active learning methods
at the final 200th iteration is 0.828. Such tasks are harder to solve as they contain
heterogeneous value representations for a large number of entities. Furthermore,
the low value pattern overlap level signifies that there exist many different under-
lying matching patterns. Exploiting the signals from the correspondence graph
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(a) EO=0 (b) VPO=0

(c) VPO=0.4 (d) VPO=0.8

Figure 9.5: Outperforming AL methods per task for specific settings.
The circle size indicates the F1-AUC difference to the runner-up method.

leads to the faster discovery of all underlying matching patterns in comparison
to committee-based query strategies. However, this observation only holds when
there exists a minimum entity overlap, i.e. EO>0.0. For multi-source tasks with
an entity overlap level of 0, i.e. when all entities are represented by one record in
a maximum of two data sources, the correspondence graph does not have a rich
structure as the maximum component size is 2. Therefore exploiting graph sig-
nals cannot lead to the selection of informative query candidates, which causes the
ALMSERgraph query strategy to fail in most cases. Figure 9.5a compares the three
query strategies along all tasks with EO=0. In 88% of these tasks, either HeALER
or ALMSERgroup outperform ALMSERgraph with a mean F1-AUC difference of
3.67 to the runner-up methods.

P3: Grouping signals are helpful for tasks with low value heterogeneity and
high pattern overlap. In 55.5% of the tasks with a value heterogeneity lower
than 0.5 and a value pattern overlap larger than 0.5, ALMSERgroup is the winning
active learning strategy with a mean F1-AUC difference to the runner-up method
of 1.52. However, ALMSERgroup does not deliver better results over HeALER in
the case of multi-source tasks with low pattern overlap. We illustrate and further
analyze this observation with Figures 5b-5d. The figures depict the winning strate-
gies for tasks with a value heterogeneity level of 0.5 or lower and three different
value pattern overlap levels: 0.0, 0.4, and 0.8. We see that for the multi-source
entity resolution tasks, where the value pattern overlap is 0 (Figure 5b), i.e. dif-
ferent underlying matching patterns exist in each two-source task of the setting,
HeALER outperforms ALMSERgroup in 66% of the settings. The mean F1-AUC
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difference of HeALER’s results to the runner-up method is 3.30, while for the tasks
where ALMSERgroup outperforms, the mean F1-AUC difference to the runner-
up method is 1.30. With the increase of the value pattern overlap level, we can
observe that the grouping signal starts contributing to the selection of more infor-
mative record pairs for labeling. For VPO=0.4 (Figure 5c), HeALER outperforms
in 54% of the tasks with a mean F1-AUC difference to the runner-up method of
1.93, while the mean F1-AUC difference for the settings where ALMSERgroup is
the best performing query strategy is 2.31. Finally, ALMSERgroup performs the
best in 58.3% of the tasks when the value pattern overlap level is 0.8 (Figure 5d)
with a mean F1-AUC difference to the second-best method of 2.26, while HeALER
outperforms in 37% of the tasks with a smaller F1-AUC difference of 0.98.

P4: Graph and grouping signals are not needed for tasks with low value het-
erogeneity and low pattern overlap In 89.5% of the tasks with a value hetero-
geneity of 0.5 or lower, the HeALER and ALMSERgroup query strategies outper-
form ALMSERgraph independently from the other two dimensions. The F1-AUC
difference to the runner-up methods is 2.26 and 1.71 for HeALER and ALMSER-
group, respectively. In terms of F1 scores, the tasks of this pattern lie between the
results of the tasks in P1 and P2. More concretely, the mean passive F1 is 0.941 and
the mean F1 of the best performing active learning methods at the 200th iteration
is 0.91. For such tasks, solely exploiting graph signals for picking record pairs for
annotation does not lead to the faster discovery of matching patterns.

As already introduced in the analysis of P3, the contribution of grouping sig-
nals is positively related to the value pattern overlap level, i.e. grouping signals
contribute less for tasks with a low value pattern overlap level. More concretely,
we observe that for 67% of the tasks with a value heterogeneity and a value pattern
overlap of 0.5 or lower ALMSERgroup underperforms compared to the other two
methods. In the following paragraph, we further investigate this observation.

Interpretation of the Contribution of Grouping Signals In order to investi-
gate the reasons why grouping signals do not contribute to tasks with a low value
pattern overlap, we perform a two-step analysis: First, we evaluate how represen-
tative the metric of task relatedness is for finding groups of two-source tasks with
similar patterns. We remind the reader that ALMSERgroup uses the metric of task
relatedness in order to select a subset of representative two-source tasks and reduce
the size of the unlabeled pool. Second, we evaluate to what extent ALMSERgroup
identifies all groups of two-source entity resolution tasks of each setting.

For the first part of our analysis, we calculate the cosine similarity of the naive
transfer learning (NTL) and the task relatedness (RLTD) for each combination of
two-source tasks in the continuum of multi-source tasks. A high naive transfer
learning score between two tasks A and B indicates that the tasks have the same
underlying matching patterns, as a model trained on the record pairs of task A
performs well when applied to task B. A high similarity between the NTL scores
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Table 9.2: Evaluation of using task relatedness for identifying groups of tasks with
similar patterns.

VPO
Sim.
NTL-
RLTD

Settings with
sufficient
subset

# Distribution of
settings over range

of tasks [2,4] [5,6] [7,8] [9,15]
1 0.81 42 (100%) 38 3 0 1
0.8 0.76 37 (88.0%) 29 9 4 0
0.6 0.75 18 (42.8%) 9 25 5 3
0.4 0.71 12 (28.5%) 6 14 13 9
0.2 0.69 6 (14.2%) 4 9 11 18
0 0.70 7 (16.6%) 8 8 2 24

and the RLTD scores for the complete multi-source setting indicates that the second
is a good unsupervised approximation of the first and can therefore lead to the
discovery of groups of entity resolution tasks.

For the second part of our analysis, we evaluate for how many of the multi-
source tasks ALMSERgroup selects a sufficient subset of two-source tasks to query
from. A sufficient subset contains at least one two-source task per group of tasks
with similar matching patterns. In addition, we report the size of the selected sub-
sets of the two-source tasks in order to evaluate to what extent ALMSERgroup
manages to reduce the number of query candidates to select from.

Table 9.2 presents the results of our evaluation on using task relatedness for
grouping tasks for different VPO levels. We observe that higher VPO levels lead
to a higher similarity of NTL and RLTD scores. Therefore, we can conclude that
task relatedness can better approximate the naive transfer learning scores in multi-
source entity resolution tasks with a high value pattern overlap level, i.e. a small
number of groups of two-source tasks share the same underlying patterns. Addi-
tionally, we observe that ALMSERgroup better identifies sufficient subsets of two
source tasks to query from for higher VPO levels. In addition, we see that ALM-
SERgroup achieves a large candidate reduction for high VPO levels: for VPO 1.0,
ALMSERgroup only selects candidates from a maximum of 4 out of the 15 two-
source tasks in 90% of the settings. In contrast, we see that the more distinct
matching patterns exist in the multi-source setting, the harder it is for ALMSER-
group to select a sufficient subset of two-source tasks to query from, e.g. when the
VPO is 0, ALMSERgroup can only identify a sufficient subset of two-source tasks
in 16.6% of the cases.
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Figure 9.6: Naive transfer learning scores per two-source task for the computers
multi-source entity resolution benchmark task.

9.4.4 Results and Analysis of Benchmark Tasks

In this section, we explore the impact of the profiling characteristics of the five
benchmark multi-source entity resolution tasks introduced and used in the evalua-
tion Section 8.2, i.e. computers, computers_mut, MusicBrainz, MusicBrainz_mut,
and restaurants, on the performance of HeALER, ALMSERgraph, and ALMSER-
group. Thus, we aim to verify whether the patterns observed with the multi-source
tasks generated with ALMSERgen are confirmed with the benchmark tasks. In the
following, we describe how we compute the profiling dimensions of the benchmark
tasks. Next, we present the active learning results and discuss them in relation to
the patterns analyzed in Section 9.4.3.

Profiling of Benchmark Multi-Source Tasks

We compute the value heterogeneity and the entity overlap levels of all benchmark
tasks, as described in Section 9.2. As it is not possible to know the exact num-
ber of groups of data sources adhering to the same value patterns, we approximate
the value pattern overlap level by estimating the number of groups of two-source
tasks of the multi-source setting having the same underlying matching patterns.
To do so, we use the naive transfer learning scores of a random forest classifier
for all pairwise combinations of two-source tasks and extract the subsequence of
tasks that best generalizes over all tasks, using Algorithm 2 (part B) presented in
Section 8.1.6. We illustrate this approximation with the example of Figure 9.6, pre-
senting the naive transfer learning scores for each pairwise two-source task com-
bination for the computers task in a heatmap view. The computers task contains
four data sources, which, when combined pairwise, produce six two-source entity
resolution tasks T1-T6. A random forest classifier trained on T1 performs 0.99 on
F1 score when applied on T3 and 0.98 on F1 score when applied on T6, as shown
in Figure 9.6. By applying Algorithm 2 (part B), we identify that T1 generalizes
that best over all tasks and therefore the VPO level is 1.0, i.e. there exists only one
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two-source task whose underlying matching pattern can cover all two-source tasks
of the multi-source setting. Table 9.3 (left) summarizes the profiling information
of the five benchmark tasks, which we discuss in detail below.

Computer Products Tasks The computers task and its mutated version com-
puters_mut contain computer product records from four e-commerce websites and
therefore comprise six two-source tasks T1-T6. For the computers task, the un-
derlying matching patterns of the two-source tasks T2, T3, and T6 focus on the
Jaccard similarity of the part number attribute, while the patterns of the tasks T1,
T4, and T5 rely additionally on the containment similarity of the title attribute.
Therefore, a model trained on the tasks T1, T4, and T5 can generalize well on all
two-source tasks of the computers multi-source task, as indicated in the heatmap of
Figure 9.6. Given that only one of those tasks is needed to cover the patterns of the
complete setting, we calculate the VPO level to be 1.0. Similarly, we calculate the
VPO level of the computers_mut task to be 0.8, as there exist two distinct matching
patterns shared within two groups of two-source tasks. The value heterogeneity is
calculated to be 0.40 for the computers task and 0.43 for the computers_mut, while
the entity overlap level is 0.44 for both tasks.

Music Records Tasks The music records tasks are based on song records from
the MusicBrainz dataset and comprise ten two-source tasks T1-T10. The underly-
ing matching patterns of the MusicBrainz task rely mostly on the combination of
the Levenshtein similarity of the album attribute and the song length similarity for
five out of the ten two-source tasks. The rest of the tasks have distinct patterns,
thus leading to 3 groups, i.e. a VPO level of 0.6. The MusicBrainz_mut task is
a mutated version of the MusicBrainz task and contains more complex matching
patterns, which are shared between only a few data source pair combinations. For
this task, the VPO level is 0.4.

Restaurant Task The restaurant task derives from the pairwise combination
of four data sources and comprises six two-source tasks T1-T6. Five of the six
two-source tasks share the same matching pattern, which relies on the zip number
equality and the relaxed Jaccard similarity of the address. However, one of the
six two-source tasks does not adhere to this matching pattern. Therefore groups of
two-source tasks with similar matching patterns emerge, i.e. the VPO level is 0.8.

Active Learning Results for Benchmark Tasks

We present the results of HeALER, ALMSERgraph, and ALMSERgroup on the
five benchmark multi-source tasks in Table 9.3. We report the F1-AUC, i.e. the area
under the F1 curve between iterations 50-200, and the F1-AUC difference of the
outperforming to the runner-up method, similarly to our analysis in Section 9.4.3.
Additionally, we report the mean F1 scores of the three experimental runs at the
85th, 150th, and final 200th active learning iteration.
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Table 9.3: Profiling information and active learning results for benchmark multi-
source entity resolution tasks.

Task VH EO VPO Method F1-AUC
F1-AUC

diff.
F1@85 F1@150 F1@200

computers 0.40 0.44 1.0
HeALER 135.62

1.32
0.893 0.912 0.918

ALMSERgraph 138.96 0.921 0.932 0.938
ALMSERgroup 137.64 0.904 0.931 0.932

computers_mut 0.43 0.44 0.8
HeALER 127.66

1.24
0.841 0.850 0.866

ALMSERgraph 128.95 0.824 0.879 0.878
ALMSERgroup 130.19 0.864 0.877 0.883

MusicBrainz 0.14 0.50 0.6
HeALER 140.07

1.70
0.931 0.941 0.945

ALMSERgraph 138.37 0.913 0.930 0.934
ALMSERgroup 137.02 0.888 0.926 0.918

MusicBrainz_mut 0.19 0.50 0.4
HeALER 132.43

1.05
0.857 0.895 0.908

ALMSERgraph 131.38 0.868 0.889 0.896
ALMSERgroup 127.19 0.820 0.879 0.888

restaurants 0.14 0.35 0.8
HeALER 138.51

0.30
0.921 0.927 0.927

ALMSERgraph 138.21 0.918 0.923 0.926
ALMSERgroup 137.48 0.913 0.920 0.921

We observe that the graph and grouping signals improve the active learning
results over the HeALER baseline for both computer product tasks. The profiling
dimensions of these tasks lie between patterns P2 and P4, i.e. graph signals con-
tribute due to the rather high value heterogeneity while grouping signals contribute
due to the high value pattern overlap level. Compared to HeALER, we observe
that graph and grouping signals contribute until the last 200th iteration. In con-
trast, the differences in F1 score between ALMSERgraph and ALMSERgroup are
only marginal after the 150th iteration. The music records tasks verify the pattern
P3 of our analysis. Given the low value heterogeneity and value pattern overlap
levels of the tasks, graph and grouping signals are not helpful for improving the
active learning results over HeALER. Finally, pattern P1 of our analysis is con-
firmed by the results of the restaurants task, which has a low value heterogeneity
and a high value pattern overlap. Although HeALER outperforms the other two
methods for this task in terms of F1-AUC, the F1-AUC difference to the runner-up
method is only 0.30, indicating that there is no clear winner for the task.

9.5 Discussion and Conclusion

In this chapter, we explored the impact of the characteristics of multi-source entity
resolution tasks on the performance of three active learning methods with differ-
ent query strategies: HeALER, ALMSERgraph, and ALMSERgroup. The query
strategies utilize different types of signals for selecting record pairs for labeling. To
the best of our knowledge, our work is the first benchmark study on active learning
methods for multi-source entity resolution.

Given that the dimensions for profiling entity resolution tasks proposed so far,
and discussed in Chapter 3, focus solely on the two-source setting, we established
three dimensions for profiling multi-source entity resolution tasks: entity over-
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lap, value heterogeneity, and value pattern overlap. The proposed dimensions are
unique to the multi-source setting and relevant to the active learning query strategy.

To enable our analysis, we developed ALMSERgen, a multi-source task gen-
erator, and curated a continuum of 252 multi-source entity resolution tasks. ALM-
SERgen constructs multi-source entity resolution tasks given an input data source
and a pre-defined configuration along the three dimensions. ALMSERgen is the
first data generator that considers multi-source entity resolution task-related desider-
ata. In comparison to existing entity resolution task generators developed for eval-
uating link discovery frameworks [Ferrara et al., 2011; Ioannou et al., 2013; Saveta
et al., 2015], ALMSERgen applies a similar set of transformations on value level
but does not consider any transformations on schema level. In comparison to the
DaPo entity resolution task generator [Hildebrandt et al., 2020], ALMSERgen is
less scalable, as it only supports parallel execution on multiple cores of a single
machine (vertical scalability) but no parallel execution on multiple machines (hor-
izontal scalability).

We evaluated three active learning methods using the HeALER, ALMSER-
graph, and ALMSERgroup query strategies on the 252 generated tasks as well as
on five benchmark tasks. Our findings showed that all methods perform equally
well for easy multi-source entity resolution tasks in which a high overlap of en-
tities described with rather homogeneous record values exists. With the increase
of the value heterogeneity of records describing the same entity, grouping signals
were shown to improve the active learning performance, given that there exist a
few groups of two-source tasks sharing the same underlying matching patterns.
Exploiting graph signals as part of the query strategy was shown to improve the ac-
tive learning performance for tasks containing large amounts of matching records
with heterogeneous attribute values.
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Chapter 10

Conclusion

Entity resolution aims to identify records from one or more data sources that refer
to the same real-world object [Christen, 2012]. It has been studied for decades [Fel-
legi and Sunter, 1969] and continues to play an important role in many different
application areas, such as public health [Jaro, 1995], crime detection [Phua et al.,
2010] and e-commerce [Peeters et al., 2020b].

An important challenge in entity resolution is the absence of common ob-
ject identifiers among different data sources [Christen, 2012]. To circumvent this
challenge and reconcile the heterogeneity of records referring to the same real-
world object, entity resolution methods either rely on heuristics developed by ex-
perts or use learning-based approaches that apply machine learning techniques [Pa-
padakis et al., 2021]. Supervised entity resolution methods constitute a family
of learning-based approaches that use labeled data, typically matching and non-
matching record pairs, to train a binary classification model [Christophides et al.,
2020; Papadakis et al., 2021]. The trained model can then predict matching and
non-matching relations between new record pairs.

The predictive performance of an entity resolution method can vary given the
characteristics of the task at hand [Köpcke et al., 2010; Mudgal et al., 2018]. There-
fore, uncovering the specific challenges associated with different entity resolution
tasks is essential for understanding the strengths and weaknesses of different entity
resolution methods. In this thesis, we proposed a set of dimensions for profiling
entity resolution tasks and used them for comparing and grouping existing bench-
mark tasks.

Acquiring labeled data for training machine learning models is expensive and
time-consuming, and it is thus considered a major limitation of supervised entity
resolution methods [Papadakis et al., 2021]. In this thesis, we researched two ap-
proaches for reducing the labeling effort involved in constructing training sets for
entity resolution tasks with different profiling characteristics. The first approach
explored the potential of using the Semantic Web as a source of distant supervision
for entity resolution. The second approach focused on active learning techniques,
which rely on the fundamental idea that a machine learning model can achieve bet-
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ter predictive performance if trained on a small but carefully chosen set of labeled
instances [Settles, 2012].

This chapter summarizes the three parts of the thesis, outlines our main con-
tributions, and discusses open issues and future work. In the last section of this
chapter, we discuss the research impact of our work.

10.1 Part I: Entity Resolution

10.1.1 Summary and Contributions

Profiling Entity Resolution Benchmark Tasks In the first part of the thesis, we
introduced the reader to the fundamental concepts of entity resolution, discussed
how symbolic and subsymbolic methods target the individual steps of the entity
resolution workflow, and provided a systematic understanding of the challenges of
entity resolution tasks. To achieve the latter, we proposed a heuristic for extracting
attributes relevant to solving the task and defined the following dimensions for pro-
filing entity resolution tasks: sparsity, schema complexity, textuality, development
size, and corner cases. We used the proposed heuristic and dimensions to profile
and group 21 benchmark tasks into five groups entailing similar challenges. Prior
to profiling, we complemented the correspondence sets of 17 out of the 21 bench-
mark tasks by adding a fixed set of non-matching record pairs and/or split them
into fixed train, validation, and test sets, to support the reproducibility and compa-
rability of the results of different entity resolution methods. Finally, we evaluated
the difficulty of each group of benchmark tasks by establishing baseline evaluation
results.

The proposed profiling dimensions go beyond the dimensions for profiling en-
tity resolution tasks proposed so far in related work, which solely focus on the
records of the data sources to be matched [Mudgal et al., 2018], as they also
consider properties of the correspondence set of record pairs. Furthermore, our
grouping scheme complements the categorization of entity resolution tasks pro-
posed by Mudgal et al. [2018] into structured, textual, and dirty. This is necessary
as we identified that a more fine-grained categorization is required for both textual
and structured tasks. With regard to textual tasks for which subsymbolic methods
are known to excel [Mudgal et al., 2018; Papadakis et al., 2021], we found that they
can be equally well solved using symbolic entity resolution methods if there exists
a small number of corner cases in the correspondence set. With regard to structured
tasks, we observed that structuredness alone is not enough to assess the difficulty
of a task, and additional dimensions, such as schema complexity and density, need
to be considered.

10.1.2 Open Issues and Future Research

Our analysis, grouping, and evaluation of baseline entity resolution methods were
conducted against 21 entity resolution benchmark tasks. We selected the tasks with
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the goal of including in our study diverse tasks, in terms of profiling characteristics,
that have been widely used for benchmarking [Köpcke et al., 2010; Li et al., 2020;
Mudgal et al., 2018]. Arguably, the list of selected tasks is not extensive, as not all
publicly available entity resolution benchmark tasks have been considered in our
study, including some of the tasks of the MDedup repository1 as well as the tasks
from the OAEI instance matching track.2 Future research works on entity resolu-
tion using benchmark tasks not covered in our analysis would need to calculate the
values of the five profiling dimensions in order to uncover the specific challenges
associated with the tasks. However, this does not entail high efforts as we have
made the code for profiling entity resolution tasks publicly available.

One limitation of our profiling analysis is that the calculation of the spar-
sity, textuality and corner cases dimensions relies on the extracted relevant at-
tributes. The latter are heuristically approximated using a wrapper feature extrac-
tion method [Khalid et al., 2014] optimized for a random forest classifier. Future
work may consider an ensemble of different classification models for extracting
relevant attributes. An additional interesting direction for future research would be
to analyze the differences in the values of the profiling dimensions, which result
when different classification models are applied for the calculation of the relevant
attributes.

10.2 Part II: The Semantic Web as Distant Supervision
for Entity Resolution

10.2.1 Summary and Contributions

In the second part of the thesis, we explored the potential of using semantic anno-
tations, which are one realization form of the Semantic Web, as a source of distant
supervision for entity resolution.

Adoption of Semantic Annotations In the first chapter of this part, we pre-
sented how semantic annotations can be embedded in HTML pages and gave an
overview of the four main markup formats as well as the schema.org vocabulary.
Next, we profiled the growth of semantic annotations using the four markup for-
mats and the schema.org vocabulary from 2012 to 2020. For our profiling analysis,
we used the adoption statistics of semantic annotations published yearly by the Web
Data Commons project. The project was initiated by Prof. Dr. Christian Bizer and
Dr. Hannes Mühlheisen in 2012 with the focus to extract, profile, and publicly
provide semantically annotated data from Common Crawl,3 the largest web corpus
available to the public. The contribution of this thesis to the Web Data Commons

1https://hpi.de/naumann/projects/repeatability/duplicate-detection/mdedup.html
2http://oaei.ontologymatching.org
3http://commoncrawl.org/

https://hpi.de/naumann/projects/repeatability/duplicate-detection/mdedup.html
http://oaei.ontologymatching.org
http://commoncrawl.org/
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project was the yearly extraction, profiling, and publication of semantically anno-
tated web data during the period 2016 to 2021. By analyzing the adoption trends of
different markup formats, we identified that although there is a constantly growing
amount of websites using semantic annotations, not all markup formats show the
same growth trends. We showed that Microdata and JSON-LD have dominated
in terms of adoption over the hCard and RDFa markup formats. Additionally, we
found that the Microdata and JSON-LD markup formats are mostly used together
with the schema.org vocabulary, as in 2020, at least 94.4% of the entities markedup
with either format were annotated with at least one schema.org class or property.

Estimating the Potential of Semantic Annotations as Distant Supervision for
Entity Resolution Given the adoption statistics, we conducted a use-case anal-
ysis in order to explore the potential of using semantically annotated schema.org
product and local business annotations as distant supervision for domain-specific
entity resolution tasks. To do so, we profiled the adoption of identifying schema.org
properties for the selected classes and grouped the entities considering the overlap
of the annotated identifiers. We observed that although schema.org provides terms
for both classes, which can be used for annotating unique entity identifiers, there
exist considerable differences concerning the adoption of such properties among
the analyzed classes. These differences are mainly attributed to the annotation
recommendations from large search engines such as Google and Yahoo. Despite
those differences, we identified that it is possible to obtain more than 50 thousand
matching record pairs for each of the analyzed classes, given the grouped enti-
ties. This indicates that semantic annotations show a big potential for generating
large training sets for entity resolution tasks related to the product and business do-
mains. Although semantic annotations have been exploited as distant supervision
for other downstream applications, such as information extraction [Foley et al.,
2015; Meusel and Paulheim, 2014], to the best of our knowledge, we are the first
to explore their potential as a source of distant supervision and thus as a means of
reducing the labeling effort for entity resolution.

The WDC Product Corpus for Entity Resolution In the second chapter of
this part, we focused on the product-specific use-case, investigated different errors
related to schema.org product annotations, and developed a pipeline for cleansing
and grouping semantically annotated product offers describing the same real-world
product. The output of this pipeline was the WDC Product Corpus, comprising
26.5 million records of product offers, grouped in 16.3 million clusters represent-
ing the same real-world product. We profiled the WDC Product Corpus along
different dimensions and showed that the offers of the corpus describe products of
different categories and derive from more than 79 thousand websites. The distantly
labeled set, derived from combining pairwise the intra- and inter-cluster offers, can
be used for training entity resolution models targeting the product entity resolu-
tion task and is the largest, in terms of the number of matching pairs, and most
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heterogeneous, in terms of amount of data sources, publicly available training set
for entity resolution. Finally, we evaluated the cleanliness and training quality of
the WDC Product Corpus. Based on a manually verified sample of pairs of offers,
we evaluated the level of noise, i.e. intra-cluster offer pairs that refer to different
real-world products, to be 6%. Using large amounts of product category-specific
matching and non-matching offer pairs (> 40 thousand) for training baseline entity
resolution models, we showed that F1 scores in the range of 89.2% to 94.4% can
be achieved when applying the deep learning-based DeepMatcher model [Mudgal
et al., 2018]. The F1 scores were calculated against a manually verified gold stan-
dard of matching and non-matching pairs of product offers with no identifiers. The
relatively high cleanliness level of the clusters of the corpus, in combination with
the high performance that can be achieved when training entity resolution models
with training subsets derived from the corpus clusters, clearly demonstrated the
utility of the Semantic Web as a valuable source of distant supervision for product-
related entity resolution tasks.

10.2.2 Open Issues and Future Research

One limitation of the profiling of the adoption growth of semantic annotations is
the omission of the crawling strategy applied by Common Crawl. Different crawl-
ing strategies have been shown to influence the profiling results of the corpora
published by the Web Data Commons project [Stolz and Hepp, 2015]. Nonethe-
less, Meusel [2017] has shown that the Common Crawl data used by the Web Data
Commons project are representative of the public Web. We relied on this finding
for conducting our profiling analysis.

Regarding the analysis of the potential of using semantically annotated schema.
org/LocalBusiness annotations as source of distant supervision for entity resolu-
tion, it shall be noted that the findings constitute an initial estimate. This is due to
the fact that our analysis relied on markedup entities grouped together, considering
solely the overlap of their annotated identifiers. As we showed for the semantically
annotated product-related data, annotation errors commonly occur, and a series of
cleansing steps is required to circumvent them. Therefore, an interesting direction
for future work would be to develop cleansing pipelines tailored to business-related
semantic annotations.

Finally, it is worth noting that for evaluating the training quality of distantly
labeled sets derived from the WDC Product Corpus, we considered a closed-world
entity resolution scenario. This means that the distantly labeled offer pairs used
for training entity resolution models and the manually labeled offer pairs used for
evaluation represent the same real-world products as they derive from the same
subset of clusters of the WDC English Product Corpus. Therefore, an interesting
direction for future research would be to investigate to which extent the training
subsets derived from the WDC Product Corpus can be used in open-world entity
resolution scenarios. The goal in such scenarios is to predict matching and non-
matching relations between offers describing unseen product entities.
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10.3 Part III: Active Learning for Entity Resolution

10.3.1 Summary and Contributions

In the third part of the thesis, we researched active learning methods as a means of
reducing the labeling effort for entity resolution. Active learning has been widely
applied in entity resolution tasks. Yet, we identified two gaps in related work,
which we addressed in our research: first, the expensive initialization of the ac-
tive learning workflow in terms of labeling effort, and second, the lack of active
learning methods for multi-source entity resolution tasks.

Unsupervised Bootstrapping of Active Learning for Entity Resolution In the
first chapter of this part, we addressed the first identified gap and developed an un-
supervised method for bootstrapping, i.e. initializing and assisting, the complete
active learning workflow. The proposed method relies on a thresholding heuristic
that considers pre-calculated similarity scores and assigns labels with some degree
of noise to the record pairs of the unlabeled pool. The noisy labels are used for
initializing the active learning process and throughout the whole active learning
cycle for the training of the learner and query selection. In comparison to existing
approaches for initializing active learning, which rely on a randomly selected and
manually labeled set [Meduri et al., 2020; Nafa et al., 2020; Qian et al., 2017],
our method comes at no additional labeling effort. In comparison to initializa-
tion approaches that do not increase the labeling effort by randomly initializing
the learner, which is typically a set of linkage rules evolving with genetic pro-
gramming [Isele and Bizer, 2013; Ngomo and Lyko, 2012; Ngomo et al., 2013],
our method uses a random forest classifier as a learner. Tree-based models, such
as random forests, have been shown to perform better than rule-based models in
active learning settings for entity resolution [Meduri et al., 2020].

We compared our proposed thresholding heuristic against commonly used thresh-
olding methods on six entity resolution tasks of different profiling groups, as de-
fined in Chapter 3. We identified that our thresholding heuristic achieves over-
all more stable results independently from the underlying similarity score distri-
bution. We compared our unsupervised bootstrapped active learning method to
symbolic active learning baselines, which are initialized either with a randomly se-
lected set of matching and non-matching pairs or with transfer learning, and use the
committee-based query strategy of HeALER [Chen et al., 2019]. Our experimental
results showed that our method outperforms the symbolic baselines, which use ran-
dom initialization by up to 48% in F1 score in the first active learning iterations.
Within a labeling budget of 100 record pairs, our method outperforms the sym-
bolic baselines by up to 3% when random sampling is used for initialization and
up to 4.2% when transfer learning from non-highly related entity resolution tasks
is applied for initializing active learning. Furthermore, we compared our method
to the active learning method of Kasai et al. [2019], which uses transfer learning
for initialization, an uncertainty-based query strategy, and a DeepMatcher model
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as learner. Given that our unsupervised initialization method can be used for ini-
tializing any active learning method and is not bound to a specific query strategy
or learner, we combined it with the active learning method of Kasai et al. [2019],
thus designing the second subsymbolic active learning baseline. We showed that
the subsymbolic baselines entail significantly larger waiting times within each ac-
tive learning iteration in comparison to our symbolic method. Finally, with respect
to the learner’s performance, we showed that our method consistently outperforms
the two subsymbolic baselines within an annotation budget of 500 record pairs by
a minimum of 1.8% and a maximum of 32% in F1 score, depending on the task.

Multi-Source Active Learning For Entity Resolution In the second and third
chapters of this part, we focused on active learning as a means of reducing the
labeling effort for multi-source entity resolution tasks. Towards this research di-
rection, we developed ALMSER, an active learning algorithm for multi-source
entity resolution. ALMSER uses graph and grouping signals which are inherent to
multi-source entity resolution tasks for query selection and training of the learner.
ALMSER comes with the query strategies ALMSERgraph and ALMSERgroup,
which to the best of our knowledge, are the first query strategies specially tai-
lored to multi-source entity resolution tasks. We evaluated ALMSER with its two
query strategies on five multi-source entity resolution tasks containing up to five
data sources. We identified that after 200 iterations ALMSER reaches close to
passive learning results, i.e. a maximum difference of 3.2 percentage points. Ad-
ditionally, we compared ALMSER to two baseline active learning methods using
a committee-based and a margin-based query strategy and no graph or grouping
signals. The comparison results indicated that ALMSER consistently outperforms
the two baselines in all tasks. Finally, by performing an ablation study to evaluate
the distinct components of ALMSER, we observed that the positive contribution
of graph and grouping signals to the performance of the learner when used only as
part of the active learning query strategy is subject to the task at hand.

To further investigate this finding, we studied the impact of the profiling char-
acteristics of multi-source entity resolution tasks on active learning methods ex-
ploiting different signals for query selection. Towards this goal, we proposed three
profiling dimensions for describing multi-source entity resolution tasks. To enable
our analysis, we developed ALMSERgen, the first multi-source entity resolution
task generator, and curated 252 tasks. We evaluated three active learning methods
using the HeALER, ALMSERgraph, and ALMSERgroup query strategies on the
252 generated tasks as well as on five benchmark tasks. By analyzing the results,
we identified four patterns for explaining the contribution of graph and grouping
signals with respect to the profile of the tasks.

10.3.2 Open Issues and Future Research

We identify two possible directions for future work concerning our work on un-
supervised bootstrapping of active learning for entity resolution. First, clustering



206 CHAPTER 10. CONCLUSION

methods such as the ones evaluated in the work of Saeedi et al. [2017] can be
used for assigning labels on the pool record pairs in an unsupervised fashion and
initializing active learning. To do so, two assumptions considered in the work
of Saeedi et al. [2017] need to be surpassed: (i) The records derive from multiple,
de-duplicated data sources. The de-duplication assumption and the number of data
sources are key to the cleansing step of some of the applied clustering techniques.
(ii) Manually defined and domain-specific matching rules are available for assign-
ing the weighted edges between the records. The latter can be replaced by our
domain-independent score aggregation function.

A second possible research direction is the adaptation of the deep active learn-
ing method of Kasai et al. [2019], which our method consistently outperforms
given a small labeling budget, so that transformer-based models are used. Li et al.
[2020] have shown that DITTO, a deep learning entity resolution system based
on pre-trained transformer-based language models, outperforms DeepMatcher on
benchmark tasks with less training data. Although DITTO has only been tested in
a passive learning setting, its promising results, when trained with small training
sets, show that it can be a good candidate for active learning settings as well.

With regard to our work on active learning for multi-source entity resolution,
it must be highlighted that no scalability issues were considered. In our work,
we assumed as computationally possible the blocking of record pairs between all
pairwise data source combinations. Given a large number of data sources and
limited resources, this can be prohibitive. To circumvent this, future work can
define a matching execution plan prior to active learning. This can be achieved by
applying related works on defining an efficient order of executing pairwise entity
resolution tasks [Hertling and Paulheim, 2021; Shen et al., 2007].

Concerning the ALMSER query strategies, it should be noted that a single
weighting scheme is applied to the record pairs of the unlabeled pool. The applied
weighting scheme aims to balance the selection of likely false positives and likely
false negatives for querying. Additionally, ALMSERgroup calculates the subset of
most representative tasks and implicitly assigns a selection weight of zero to the
record pairs that do not belong to this subset. However, in some entity resolution
settings, it might be desired to favor the record pairs deriving from specific tasks
over others, e.g. given their size. In this case, the weighting scheme needs to be
adjusted given the desired goal, e.g. by assigning a larger weight to record pairs
deriving from larger tasks.

An additional open issue, which motivates future work on active learning for
multi-source entity resolution, evolves around the suggested profiling dimensions.
The proposed profiling dimensions for multi-source entity resolution tasks rely on
the ground truth, i.e. we need to know the labels of the record pairs in order to
exactly calculate them. This was necessary for conducting our analysis and ex-
plaining the impact of the profile of multi-source entity resolution tasks on the
performance of different active learning methods. However, it does not solve the
problem of selecting an active learning method for solving a specific task. In this
case, an unsupervised approximation of the profiling dimensions is required. For
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example, entity overlap and value heterogeneity could be estimated using unsu-
pervised entity resolution methods, while value pattern overlap could be estimated
using the unsupervised metric of task relatedness [Thirumuruganathan et al., 2018].

10.4 Research Impact

In this final section of the thesis, we discuss the impact of our contributions to other
published research works. Hereby, we split the discussion into three parts, similar
to the structure of the thesis.

Research Impact of Part I: Entity Resolution - Profiling Entity Resolution
Benchmark Tasks The dimensions for profiling entity resolution tasks, intro-
duced in the first part of the thesis, help researchers to understand the specific
challenges of each task, as well as the strengths and weaknesses of different entity
resolution methods. Foxcroft et al. [2021] use the five dimensions proposed in our
work, i.e. schema complexity, sparsity, textuality, development set size, and corner
cases, to profile four product-related tasks and understand the strengths of different
symbolic and subsymbolic methods. Three of the tasks used in their evaluation
have already been introduced in Chapter 3, while the fourth task is proprietary
and has a lower schema complexity, lower sparsity, and textuality in comparison
to the three public tasks. In their experimental evaluation, the authors compare
the results of four symbolic and five subsymbolic methods. Their results confirm
our assumption that symbolic methods can achieve good performance on entity
resolution tasks belonging to the profiling Group 1: Dense Data, Simple Schema,
while subsymbolic methods are more performant for tasks with an increased level
of textuality and amount of corner cases.

Graf et al. [2021] develop Frost, a benchmarking platform that offers entity
resolution benchmark tasks, quality metrics, profiling dimensions, and visualiza-
tion tools for systematically analyzing and interpreting the results of different en-
tity resolution methods. Two of our profiling dimensions, namely sparsity and
textuality, have been implemented as part of Frost. Additionally, the profiling di-
mension capturing the level of corner cases in a task is considered for the selection
of benchmark tasks included in the benchmarking platform. Finally, Wang et al.
[2021a] cite our work on profiling entity resolution tasks. In their work, they con-
struct seven new entity resolution benchmark tasks by increasing the textuality and
sparsity of existing tasks.

Research Impact of Part II: The Semantic Web as Distant Supervision for
Entity Resolution Our work on profiling the adoption of Semantic Web annota-
tions contributed to the continuation of the Web Data Commons project, initiated
by Prof. Dr. Christian Bizer and Dr. Hannes Mühlheisen in 2012, for the pe-
riod 2016-2021. The data and results published within the Web Data Commons
Project have been referenced in multiple research works. The RDFa, Microdata,



208 CHAPTER 10. CONCLUSION

and Microformat-Data Sets page4 has been cited in 7 research papers, while our
joint work with Dr. Robert Meusel on exploiting Microdata annotations for the
specific downstream task of categorization [Meusel et al., 2015] has been cited 17
times. Furthermore, in the period 2016-2021, the Web Data Commons-RDFa, Mi-
crodata, and Microformat-Data Sets page was visited by more than 20 thousand
unique users.5

The WDC Product Corpus for entity resolution, presented in Chapter 5, has
been used in multiple research works and enabled the evaluation and comparison
of deep learning-based entity resolution methods. Since its publication in 2019,
our paper presenting the corpus [Primpeli et al., 2019] has been cited from 25
research papers. In 10 of those, it has been used as part of the experimental eval-
uation. Additionally, the training data extracted from the WDC Product Corpus
were used as part of the Semantic Web Challenge on Mining the Web of HTML-
embedded Product Data co-located with the International Semantic Web Confer-
ence in 2020 [Zhang et al., 2020b]. Finally, both the WDC Product corpus as well
as our analysis on exploiting the Semantic Web as a source of supervision for en-
tity resolution have been referenced in the exploratory analysis of Zhang and Song
[2021] on utilizing the Web of Linked Data for the specific application of product
data mining.

Research Impact of Part III: Active Learning for Entity Resolution Our
work on unsupervised bootstrapping of active learning for entity resolution has
been cited in 5 research works. In two of those, from Papadakis et al. [2021]
and Agarwal et al. [2021], our work is mentioned for explicitly tackling the cold
start problem, which occurs in active learning settings. Different from our method,
Agarwal et al. [2021] tackle multi-class classification problems with active learn-
ing. The authors apply a clustering method and select the centroids of each cluster
as seeding instances. The selected data points are manually inspected and labeled.
Papadakis et al. [2021] provide an overview of different methods for initializing
active learning, while our approach is referenced as a ”more principled approach
that requires no human intervention“ in comparison to existing ones.

Finally, we are the first to develop an active learning method that exploits multi-
source-related signals with the aim of reducing the labeling effort required for tack-
ling efficiently multi-source entity resolution tasks. While Huang et al. [2018] have
also proposed an active learning method for multi-source entity resolution, their ap-
proach relies on different workflow desiderata in comparison to our work. More
specifically, in their work, the human annotators are considered to be error-prone.
Additionally, the main focus of their work lies on improving the interaction with
and user satisfaction of the human annotator.

4http://webdatacommons.org/structureddata/
5Information extracted using Google Data Analytics to measure the unique page views for the

period 01.01.2016-31.12.2021

http://webdatacommons.org/structureddata/
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