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In line with the general trend in artificial intelligence research to create intelligent systems that combine

learning and symbolic components, a new sub-area has emerged that focuses on combining Machine Learn-

ing components with techniques developed by the Semantic Web community—Semantic Web Machine Learn-

ing (SWeML). Due to its rapid growth and impact on several communities in thepast two decades, there is a

need to better understand the space of these SWeML Systems, their characteristics, and trends. Yet, surveys

that adopt principled and unbiased approaches are missing. To fill this gap, we performed a systematic study

and analyzed nearly 500 papers published in the past decade in this area, where we focused on evaluating

architectural and application-specific features. Our analysis identified a rapidly growing interest in SWeML

Systems, with a high impact on several application domains and tasks. Catalysts for this rapid growth are the

increased application of deep learning and knowledge graph technologies. By leveraging the in-depth under-

standing of this area acquired through this study, a further key contribution of this article is a classification

system for SWeML Systems that we publish as ontology.
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1 INTRODUCTION

For a system to be perceived as “intelligent,” it has to fulfill certain properties: it needs to be able
to adapt and react to unknown situations, and it needs to have some understanding of the world
in which it acts, subjected to constant refinement over time while it obtains access to new infor-
mation. Although Artificial Intelligence (AI) and human intelligence are unarguably different,
and especially the latter is still not fully understood, researchers have drawn parallels between the
two in the past. A recent AAAI paper [6] relates the building blocks of AI to Daniel Kahneman’s
theory of human intelligence, which is divided into an (intuitive) system 1 and a (rational) system
2 [10]. The authors state that system 1 is comparable to Machine Learning (ML), whereas system
2 rather resembles Knowledge Representation and Reasoning (KR). They further argue that
AI, just like human intelligence, needs the combination of both, also called neuro-symbolic AI.

This symbiotic use of ML and KR techniques is a strongly emerging trend in AI. Indeed, recent
years have seen an increased interest and fast-paced developments in techniques that make use
of this combination to build intelligent systems in the vein of neuro-symbolic AI. At the same
time, the Semantic Web (SW) research community has popularized knowledge representation
techniques and resources in the past two decades [15], leading to a great interest in and uptake
of SW resources such as knowledge graphs, ontologies, thesauri, and linked datasets outside of
the SW research community [17]. These two trends have led to the development of systems that
rely on both SW resources and ML components, known as Semantic Web Machine Learning

(SWeML) Systems.
This research area of SWeML has gained a lot of traction in the past few years, as shown in a

rapidly growing number of publications in different outlets, as well as SWeML techniques being
employed to solve problems in various domains. At the same time, this growth poses two main
challenges that threaten to hamper further development of the field.

First, keeping up with the main trends in the field has become unfeasible, not only because of its
fast pace and a large volume of published papers but also because papers require understanding
techniques from the two diverse research sub-areas of AI. In an attempt to address this challenge,
several works aimed to provide overviews of SWeML Systems and related systems (see Table 1).
However, reviewing those, we conclude that existing work either (1) focuses rather on a wider or
related field [34] or, on the contrary, (2) is scoped around a very specific sub-field of SWeML [25, 26,
29]. Additinally, none of the reviewed surveys adopts a principled and reproducible methodology
that would guarantee unbiased and representative data collection. We therefore conclude that there
is a need for a survey that adopts a solid review methodology to complement current insights with
evidence-based findings.

The second challenge, which amplifies the first one, is the lack of a standardized way to report

SWeML Systems that hampers understanding all key aspects of these systems. On the one hand,
authors of SWeML Systems would benefit from a structured way to describe their system and
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its key characteristics. Readers, on the other hand, would benefit from a structured way of
interpreting such systems. This would not only facilitate the understandability for those coming
from other communities but also improve the comparability of different systems. An early work
in this direction was proposed by Van Harmelen and ten Teije [34] by introducing patterns for
representing hybrid AI systems in terms of their components and information flows with the aim
to facilitate a more schematic representation of the system. Although these patterns were derived
from a large number of papers, there is currently no insight into their adoption in the field (e.g.,
about the completeness of the introduced system patterns) or their usage frequency.

To address the preceding challenges, in this article we investigate the following main research
questions:

• What are the state of the art and trends related to systems that combine SW and ML compo-
nents?
• How can these systems be classified into a systematic taxonomy?

To that end, in contrast to previous work, we perform a Systematic Mapping Study (SMS) [20]
of the SWeML Systems field. SMS is an established method in evidence-based research because (1)
it follows a well-defined paper selection process to identify a representative set of primary studies
reducing selection bias in comparison to ad hoc study selection, and (2) it adopts a standard, well-
documented process allowing for the study to be reproduced.

Based on this methodology, we provide two main contributions:

• A trends landscape, to capture the tendencies of SWeML Systems with respect to the level of
adoption, maturity, and reproducibility, with an in-depth focus on structural aspects, their
processing flows, and the characteristics of their ML and SW components, derived from a
systematic survey.
• A classification system for SWeML Systems that can be used as a template for analyzing ex-

isting systems and describing new ones. This can be seen as a controlled vocabulary for the
different building blocks of those systems. A key aspect of this classification system is mani-
fested as a framework for documenting and classifying processing flows in SWeML Systems.

With these contributions, we aim to address a large and diverse audience and facilitate their
understanding of this rapidly emerging area both within the scope of this article and beyond. To
ensure transparency and reproducibility, we share our research material including the study proto-
col, the list of collected papers, and additional analysis.1 Furthermore, we share the classification
system in the form of an ontology to enable the creation of human-understandable yet machine-
actionable documentation.

This article is structured as follows. Section 2 defines and positions SWeML Systems, whereas
Section 3 reviews existing surveys and classification systems in related and neighboring fields.
Section 4 describes the survey methodology including a refinement of the overall research
question of this survey into more detailed ones, Section 5 presents the findings from the survey,
and Section 6 derives a new classification system for SWeML Systems. We conclude with a
discussion of our main findings and an outlook on future work.

2 SEMANTIC WEB MACHINE LEARNING SYSTEMS

2.1 Definition

SWeML Systems are the result of combining SW technologies and an inductive model. More
precisely, they describe a system that makes use of an SW knowledge structure as well as an ML

sub-system to solve a specific task.

1https://swemls.github.io/swemls/.
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Fig. 1. Relation of different research areas around SWeML.

For the purposes of this survey, we define such SW knowledge structures as a symbolic repre-
sentation of a conceptual domain model and data complying with such domain models. These
resources can have varying levels of formalization ranging from formal logical foundations (in
particular, description logic) to lightweight semantic structures. Examples include vocabularies,
taxonomies, ontologies, linked datasets, and knowledge graphs. The ML sub-system consists of an
inductive model that can generalize over a given set of examples. These models include rule learn-
ing systems, traditional ML models such as support vector machines, random forests, or multi-layer
perceptrons, as well as more recent deep learning models. SWeML Systems are tangible systems
with a software implementation. These implementations might be of different maturity, ranging
from prototypes to enterprise-ready systems. However, all of these systems aim at solving specific
tasks as opposed to being generic use components such as libraries and conceptual frameworks.

Although SWeML Systems are required to include the usage of both a semantic module and an
ML module, they are not restricted in the number of these modules, nor in the incorporation of
components that do not fall under the definition of either of these modules. This means that SW
knowledge structures as well as ML models can be used in various parts of the system—either in a
pure form or complemented with other models or knowledge structures—but they are not required
to be applied in all of the parts. Furthermore, no assumptions about the patterns of interactions
between the semantic and the ML module are made, yielding a wide variety of possible design
patterns for SWeML Systems.

2.2 Background and Positioning

To further deepen the understanding and definition of the SWeML field, it is helpful to draw connec-
tions to related fields. An overview of the connection of these research fields is shown in Figure 1.

Neuro-Symbolic Integration. Recent developments in AI mostly rely on an underlying ML sys-
tem; however, a more traditional approach is based on symbolic KR. Neuro-Symbolic Systems

(NeSy) aim to integrate both these approaches to combine and exploit the advantages of an in-
ductive and deductive system [12]. As KR and SW technologies are tightly connected, SWeML is
significantly overlapping with the area of neuro-symbolic integration, despite having a different
focus: SWeML Systems may incorporate deductive reasoners, and NeSy frequently work with SW
data representations.

Explainable Artificial Intelligence. Explainable Artificial Intelligence (XAI) systems aim to
increase the interpretability and comprehensibility of AI systems [4], where interpretable refers to
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the ability to understand how inputs are processed on a systems level, whereas comprehensible
systems provide the user with symbols that enable them to draw conclusions on how properties
of the input influence the output [11]. A SWeML System can improve the interpretability and
comprehensibility of the ML sub-system through its incorporation of a semantic symbolic sub-
system. Such explainable SWeML Systems have been used in different domains to solve a wide
variety of tasks [29]. However, not every SWeML System results in an XAI system.

SW Mining. SW mining addresses the combination of Web mining and SW technologies. Web
mining describes the application of data mining techniques to Web resources to extract useful pat-
terns and information [32]. The patterns of interaction between Web mining and SW are diverse—
that is, data mining can be used to construct SW resources, or SW data can be exploited for Web
mining [30]. Even though there are parallels between a SWeML System and a SW mining sys-
tem, they have a significantly different focus: SW mining systems aim at Web-based data, whereas
SWeML Systems do not restrict the type of their data sources. On the other side, data mining
techniques used in Web mining do not necessarily have to be based on inductive systems.

3 RELATED WORK

3.1 Related Surveys

The vision of combining symbolic knowledge and learning has a long history [12] with intensified
research activities over the past 5 years [28]. As a result, a number of survey papers have addressed
the areas of SWeML and neuro-symbolic integration as synthesized in Table 1 in terms of the system

type they cover (e.g., NeSy, SWeML System) and their paper selection procedure.
Starting with the works investigating NeSy, Besold et al. [5] survey learning and reasoning

approaches from a holistic perspective. The paper investigates the intersection of computer science,
cognitive science, and neuroscience on a general level. Coming from the ML perspective, Von
Rueden et al. [35] coin the term informed ML, which is one approach to NeSy. They propose a
taxonomy of methods to integrate knowledge into learning systems [35]. Although knowledge
graphs and other approaches are mentioned, SW data and symbolic representation methods are
not the key topics.

Two surveys on design patterns for NeSy propose a taxonomically organized vocabulary to de-
scribe both processes and data structures [33, 34]. However, their paper selection is ad hoc, without
an attempt to be exhaustive. Hitzler et al. [16] provide an initial overview of neuro-symbolic AI
for SW and discuss their mutual benefits. Examples include deductive reasoning and knowledge
graph embeddings [16]. This paper offers first insights into techniques and examples but does not
discuss common architectures or frequencies of used models. Recently, Sarker et al. [28] surveyed
43 papers from well-established AI conferences to characterize neuro-symbolic AI using two differ-
ent taxonomies. Although they offer a first perspective into trends, details concerning dataflows,
used models, and architectures are not discussed.

Finally, Seeliger et al. [29] and D’Amato [8] focus on SWeML Systems, although they do not de-
fine SWeML Systems as a concept. Seeliger et al. [29] investigate in a systematic literature review
how to make opaque ML algorithms explainable through SW technologies, exploring which com-
binations of SW and ML techniques are used to obtain explanations, in which domains they are
mainly used, and how these explanations are evaluated. From an SW perspective, D’Amato [8] de-
scribes research directions for incorporating ML techniques into symbolic approaches. Examples
include instance retrieval, concept learning, knowledge completion, or learning disjointedness, but
more of an overview of these techniques is offered than a deep analysis.

We conclude that existing surveys mostly focus on the broader category of NeSy systems and
only a few target SWeML Systems. Additionally, with exception of the work of Seeliger et al. [29],
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Table 1. Related Survey Papers Focusing on the Intersection of SW and ML

Ref. Authors Venue Type Year Paper Selection Contribution
[5] Besold et al. Neuro-Symbolic

Artificial Intelligence:
The State of the Art

NeSy 2021 Custom Overview of NeSy from
different perspectives:
Computer science,
cognitive science, cognitive
neuroscience

[35] Von Rueden
et al.

IEEE Transactions on
Knowledge & Data
Engineering

NeSy 2021 Custom Overview of informed ML:
Taxonomy, overview of
knowledge types

[33, 34] Van Bekkum
et al., Van
Harmelen and
ten Teije

Applied Intelligence,
Journal of Web
Engineering

NeSy 2019,
2021

Custom Design patterns for hybrid
AI :
Taxonomy to describe
processes and data
structures, case study

[16] Hitzler et al. Semantic Web NeSy 2020 Custom (vision paper) Overview of NeSy for SW :
Knowledge graph
embeddings, explainable
deep learning, deductive
reasoning

[28] Sarker et al. arXiv NeSy 2021 Survey papers
collected from
NeurIPS, ICML, AAAI,
ICLR, IJCAI

Overview of NeSy:
Grouping into a taxonomy
[19] and into dimensions [3]

[29] Seeliger et al. SemEx ISWC XAI
SWeML
System

2019 Systematic literature
review:
(Q1) “deep learning” OR “data

mining”; (Q2) “explanation*”

OR “interpret*” OR

“transparent*”; (Q3) “Semantic

Web” OR “ontolog*” OR

“background knowledge” OR

“knowledge graph*”

Overview of :
SW for XAI, application
domains and tasks
important to this research
field, forms of explanations,
evaluation

[8] D’Amato Semantic Web SW
SWeML
System

2020 Custom Overview of ML methods for
SW :
Probabilistic latent variable
models, embedding models,
vector space embeddings

all surveys adopt a custom approach to collecting the surveyed papers. Therefore, there is a need
for a systematic survey that adopts a solid review methodology and focuses on SWeML Systems,
which we aim to address with this article.

3.2 Existing Classification Systems

Several works aim to characterize NeSy: Bader and Hitzler [3] made an early attempt to propose
eight dimensions for classification purposes. More recently, Van Harmelen and ten Teije [34] pro-
posed a set of 13 design patterns, similar to design patterns in software engineering. This taxonomy
is extended with processes and models in the work of Van Bekkum et al. [33]. Kautz [19] introduced
a neuro-symbolic taxonomy of six different types of systems. Although the goal is similar, his tax-
onomy does not reflect the internal architectures of the investigated systems. The taxonomies
proposed by Sarker et al. [28] and Von Reuden et al. [35] are more fine-grained but with less focus
on how to combine different system architectures.

For SWeML Systems, no works that target their classification could be found. To fill this gap,
we are proposing a classification system that uses ideas from the taxonomically organized vo-
cabulary to describe both processes and data structures for NeSy in the work of Van Harmelen
and ten Tieje [34]. However, our proposed classification system (1) takes a more coarse-grained
system-level view as opposed to the fine-grained view in characterizing data structures/processes;
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Fig. 2. Overview of the SMS process.

(2) focuses on a particular type of neuro-symbolic AI systems, namely SWeML Systems; and
(3) has been derived as part of the SMS from a large number of papers.

4 METHODOLOGY

To gain an overview of existing research that falls under the term of SWeML Systems, we conducted
an SMS [20], which is well suited to structure broad research areas. A more detailed explanation
of the methodology (e.g., details on keyword selection and selection criteria) can be found in the
study protocol.2 The SMS consists of three consecutive phases (cf. Figure 2) as follows:

(1) Study Planning, where we design and develop the Study Protocol, as detailed in (Section 4.1);
(2) Study Execution, consisting of (2.1) Literature Search, (2.2–2.3) Literature Selection, and (2.4)

Data Extraction, which rely on details specified in the Study Protocol (Section 4.2); and
(3) Analysis & Reporting, focusing on the analysis of the extracted data and the reporting thereof

(Section 5).

4.1 Study Planning

As the first phase of the study, planning focuses on scoping the study and, accordingly, proposing the

methodology for each step of the study as documented in the study protocol. Study scoping includes
positioning the planned work in the context of related research areas and related work in terms of
similar surveys. This forms a basis for deriving pertinent research questions (Section 4.1.1), which
are then translated into appropriate search queries (Section 4.1.2), a number of paper selection
criteria (Section 4.1.3) used to identify relevant papers, and a data extraction form that facilitates
the objective and unbiased extraction of data. The methodological details captured in the study
protocol aim to make the study process transparent and reproducible.

4.1.1 Detailed Research Questions. We refine our two overall research questions (announced
in Section 1) into a number of more detailed research questions, which (1) help identify emerging
trends in the area and (2) provide insights into the characteristics of SWeML Systems for deriving
a classification scheme thereof:

RQ1 Bibliographic characteristics: How are the publications temporally and geographically
distributed? How are the systems positioned, and which keywords are used to describe
them?

RQ2 System architecture: What processing patterns are used in terms of inputs/outputs and
the order of processing units?

RQ3 Application areas: What kind of tasks are solved (e.g., text analysis)? In which domains
are SWeML Systems applied (e.g., life sciences)?

2https://swemls.github.io/swemls/.
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Table 2. Sub-Queries for the Search Query Q = Q1 ∩Q2 ∩Q3

Sub-Query Search Strings

Q1 (SW module) knowledge graph, linked data, semantic web, ontolog*, RDF, OWL,
SPARQL, SHACL

Q2 (ML module) deep learning, neural network, embedding, representation learning,
feature learning, language model, language representation model,
rule mining, rule learning, rule induction, genetic programming,
genetic algorithm, kernel method

Q3 (system) Natural Language Processing, Computer Vision, Information
Retrieval, Data Mining, Information integration, Knowledge
management, Pattern recognition, Speech recognition

Each sub-query consists of a disjunction (OR) of search strings.

RQ4 Characteristics of the ML module: What ML models are incorporated (e.g., SVM)? Which
ML components can be identified (e.g., attention)? What training type(s) is used during the
system training phase?

RQ5 Characteristics of the SW module: What type of SW structure is used (e.g., taxonomy)?
What is the degree of semantic exploitation? What are the size and the formalism of the
resources? Does the system integrate semantic processing modules (i.e., KR)?

RQ6 Maturity, transparency, and auditability: What is the level of maturity of the systems?
How transparent are the systems in terms of sharing source code, details of infrastructure,
and evaluation setup? Does the system have a provenance-capturing mechanism?

4.1.2 Digital Libraries and Search Queries.

Digital Libraries. We performed a query-based search in the following digital libraries to retrieve
important conference and journals papers, as they are referred to as good sources for software
engineering publications [7, 20]: (i) Web of Science, (ii) ACM Digital Library, (iii) IEEE Xplore, and
(iv) Scopus.3

Search Query. The search query was derived from the study research questions and iteratively
refined to obtain a high number of relevant papers while keeping the number of retrieved papers
manageable. The query consists of three sub-queries targeting the SW module (Q1), the ML module

(Q2), and the system aspect (Q3) of SWeML Systems, respectively. The search strings contained in
these queries are presented in Table 2. Each sub-query consists of a union of the listed search terms;
the final query used for the study search is an intersection of the three sub-queries. The collection
of the search terms for the sub-queries followed a systematic methodology, which is described in
more detail in Appendix A.1.

4.1.3 Study Selection Criteria. We have selected eight study selection criteria. For each crite-
rion (C), an inclusion criterion (IC) and a complimentary exclusion criterion (EC) are given. This
improves the specificity of the criteria. Inclusion criteria 1 through 5 concern metadata of the
publications, such as publication date (2010–2020), language (English), publication type (peer re-
viewed), accessibility (accessible to authors), and duplicates (latest version). C6 and C7 refer to the
SWeML Systems definition: whether described systems have an interconnection between the SW
and ML component (C6), and whether the system solves a task (C7). C8 filters out papers with low
English and/or scientific quality that cannot be fully understood.

3(i) http://www.webofknowledge.com/, (ii) https://dl.acm.org/, (iii) https://ieeexplore.ieee.org/, (iv) https://www.scopus.

com/.
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4.2 Study Execution

Based on the study protocol, the study is executed through the steps described in the next sections.

Literature Search. The execution of search queries in the four digital libraries returned 2,865
papers.4 After merging the four result sets, 1,986 papers remained (cf. box 2.1 of Figure 2). We
used a combination of automatic merging of bibtex entries,5 as well as manual checking to ensure
the correctness of the merged results.

Literature Selection. Literature selection includes two separate selection steps. The first step fo-
cuses on metadata, titles, and abstracts (cf. box 2.2 of Figure 2). We divided the retrieved papers
into 10 batches of 200 papers each and assigned two researchers to each batch. The first researcher
decided on inclusion or exclusion considering the criteria C6 and C7. The second assignee checked
unclear cases plus 10% of the decisions of the first researcher. This step reduced the number of pa-
pers to 987 papers. In the second step (cf. Box 2.3 of Figure 2), all papers were investigated more
thoroughly based on their content and in terms of the study selection criteria C1 through C8,
leading to 476 papers selected for data extraction.

Data Extraction. This step (cf. box 2.4 of Figure 2) was conducted with the help of a shared data
extraction form that defines how and which data is collected from papers to answer the study
research questions (Section 4.1.1). The form was prepared prior to study execution to reduce re-
searcher bias and allow multiple researchers to extract data objectively [20]. The detailed data
extraction form is available in the study protocol.

5 DATA ANALYSIS

Because our study criteria lead to 476 publications that are included in the data analysis, it is
not possible to perform a publication-wise analysis. We will therefore limit ourselves to meta-
analysis. However, to provide a better understanding of the concrete outcomes, we will exemplify
the extracted values with seven example papers included in the analysis: PUB1 [13], PUB2 [39],
PUB3 [2], PUB4 [24], PUB5 [38], PUB6 [9], and PUB7 [31].

5.1 RQ1 Bibliographic Characteristics

5.1.1 Temporal Distribution. Figure 3 shows the non-exclusive distribution per year of the 476
publications.6 We observed two trends in the publication count over the years. Starting from 2016,
there is a surge in the number of papers in all digital libraries. Furthermore, a large portion of the
selected papers were retrieved from Scopus. Between 2010 and 2016, the published papers account
yearly for less than 5% of the total number of selected publications. From 2016 onward, 15% to 20%
were retrieved yearly, increasing in 2019 and 2020 to more than 35% of all publications selected for
data extraction. An important aspect we take into account in the remainder of the data analysis is
that the decrease from 2019 might be because the set of papers from 2020 is incomplete.7

5.1.2 Thematic Distribution. For identifying the positioning and focus of a paper, we con-
centrate on author-defined keywords. If no keywords were provided in the paper (e.g., PUB4

4The literature search was executed on November 2, 2020.
5Using bibliographic data management software from Mendeley (https://www.mendeley.com/) and Zotero (https://www.

zotero.org/).
6Note for Figure 3 that several papers were counted multiple times in the graph due to being available in more than one

digital library.
7The search for papers was performed on November 2, 2020, and many digital libraries have delays of several months for

indexing publications, whereas some relevant conferences only take place in December.
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Fig. 3. Number of selected publica-

tions in individual digital libraries per

year (non-exclusive).

Fig. 4. Popularity of the top 10

keywords.

Fig. 5. Thematic distribu-

tion of the selected papers

based on the author

keywords.

and PUB5), they were automatically generated by extracting the terms with the highest TF-IDF
score [22] from the title and abstract of the paper. To increase quality, only those generated key-
words were considered that also appeared in the global list of all author-provided keywords. With
this procedure, we, for example, generated for PUB5 (titled Using Distributional Semantics for Auto-

matic Taxonomy Induction) the keywords “taxonomy,” “textual entailment,” and “natural language
processing.”

Keywords. Figure 4 shows the evolution of the top 10 keywords over the years. Two of the
top 3 keywords describe types of semantic resources: (1) knowledge graph (110 papers) and (2)
ontology (54 papers), followed by (3) deep learning (39 papers). From a semantics perspective, until
2016, ontology was used as a frequent term, whereas from 2017 on, a substantial switch toward
knowledge graphs can be seen (for a detailed analysis of semantic resources and their types, cf.
Section 5.5). Deep learning gained traction from 2016 on, as well as embeddings from 2017 on
(both word and knowledge graph embeddings, cf. Section 5.4 for details on the ML components).
However, for both assertions, it is important to note that the number of included papers in our
study significantly increased from 2016 on with 57 papers from 2010 to 2015 compared to 419
papers from 2016 to 2020. Until 2015, the small number of selected papers and thus few keywords
do not support conclusive insights for this period. As the field matures, future studies might show
a drift toward more common system tasks and application areas. However, until now, mainly ML
and SW components are used for the definition of systems.

Positioning. Figure 5 depicts the positioning of papers according to their specified area. To that
end, we categorized keywords that appeared in at least two papers8 into Machine Learning (ML),
Semantic Web (SW ), and Systems (SYS).

Each keyword can be associated with one or multiple categories—for example, knowledge graph

is in the SW category, deep learning is in the ML category, and knowledge graph embedding is
associated both with SW and ML. Question answering and information retrieval are examples of
SYS keywords. The majority of papers fall into all three areas of ML, SW, and SYS (144 papers);
second is the intersection between ML and SW (83 papers); and third, SW and SYS (76 papers).
The SYS area has been assigned less often, which could be both related to our choice of system
keywords, or an indication that SWeML Systems remains an evolving field with a high variety in
use cases and domains, without clearly dominant tasks or system-related keywords.

5.1.3 Geographical Distribution. Figure 6 illustrates the regional distribution of the publishing
institutes of the included publications. We found three major regional clusters of publishing in-
stitutions in the domain of SWeML Systems. More specifically, 43% of the surveyed papers have

8Twenty-eight of the 476 papers used only unique keywords and hence were not considered in this analysis.
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Fig. 6. Regional distribution of affiliation of paper authors. The area of the circles corresponds to the number

of publications. The distribution is non-exclusive (e.g., PUB5 appears in both Germany and Pakistan). The

raw data can be found in Appendix A.2.

an author affiliated with an institution in Asia, approximately 29% have one affiliated in Europe,
and nearly 19% have an author based in North America. Among the Asian countries, in 71% of
the cases, the author is based in China, whereas in North America, the authors are located in the
United States in 86% of the cases. The geographical distribution in Europe is less skewed, with
Germany, France, the United Kingdom, and Italy being the most frequent countries of affiliation
of the authors, each in more than 10% of the cases. In only 1% of the cases, publications have an
author from Africa or from South and Central America. Similarly, the Middle East and Oceania
are also underrepresented, as in only 2.5% to 3.5% of the cases, respectively, publications have an
author affiliated with an institution from one of the two regions.

5.1.4 Conclusions: RQ1. We conclude that there is a recent and accelerated growth in interest
(and corresponding published papers) in the area of SWeML that is present worldwide, with a
strong cluster in China and a general weak representation of the global south. Furthermore, based
on their keywords, papers reporting on SWeML Systems mostly relate to the SW area (in par-
ticular, ontology, knowledge graph) or ML area (most frequently deep learning) or a combination
thereof, and less to a particular domain (although natural language processing is a prominently
used keyword).

5.2 RQ2 System Architecture

To gain deeper insights into how SW and ML modules are combined in a SWeML System, we
analyze the overall processing flows and the roles these modules play. To depict the processing
flows in SWeML Systems, we use a boxology notation framework to define interaction patterns.

5.2.1 SWeML Systems Boxology. To efficiently analyze the internals of SWeML Systems, it is
necessary to abstract their processing flows under a common framework. Such a framework would
not only enable comparability of system architectures but would also facilitate the common under-
standing of these systems, as it provides a unified and intuitive way of describing, documenting,
and visualizing.

In this survey, we introduce a visual framework that focuses on depicting the flow of information
through SWeML Systems. Herefore, a set of basic elements is defined, which can be combined into
reusable design patterns. Our work builds on top of the boxology for NeSy introduced by Van
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Fig. 7. Visual (top) and flat (bottom) notation of system patterns according to the SWeML Systems boxology.

The patterns (from left to right) correspond to the processing workflows from PUB5, PUB1, and PUB2.

Harmelen and ten Teije [34], which proposes two base elements: algorithmic modules (i.e., objects
that perform some computation) that can be of type inductive (ML) or deductive (KR), and data
structures, which are the input and output to such modules that can be of symbolic (sym) (e.g.,
semantic entities or relations) or non-symbolic (data) nature (e.g., text, images, or embeddings)
(Figure 7).

Based on our definition, each pattern that describes a SWeML System needs to incorporate at
least one ML and one sym (=Semantic Web resource) module. Although deductive KR modules
are not necessary for a SWeML System, their presence and therefore the documentation of their
participation in a processing flow is of great interest. Each of the algorithmic modules ingests some
input and produces some output, meaning that each must have at least one incoming and one
outgoing data structure; the chaining of algorithmic modules without intermediate data modules
is not permitted. However, an algorithmic module can consist of a combination of model parts (e.g.,
a Transformer model and attached classification layer can be represented using one ML module).

The processing pattern for a specific system can most intuitively be represented visually, as
shown in Figure 8; however, to be able to also efficiently refer to them in writing, we are further
introducing a flat notation. Herefore, we use the symbols M, K, s, and d for ML and KR, and sym

and data, respectively. Furthermore, the flow arrows are simplified into dashes, whereas parallel
sub-flows are separated by slashes and enclosed by curly brackets. After the closing curly bracket,
the parallel processes fuse. We would like to point out that the used notation is prone to limitations,
as highly complex patterns (e.g., those including loops) cannot be represented; however, most of
the patterns, we found this notation to be useful for easy comprehensible textual reference.

Figure 7 provides an overview and some examples of processing patterns. The first depicted
pattern shows a low complexity and corresponds to the processing flow in PUB5, where the authors
use a textual corpus (data) on which they applied a distributional word embedding model (ML) to
induce a taxonomy (sym). The second pattern is more complex, depicting the creation of graph
embeddings (s-M-d) that are together with image data (d) fed into a CNN model (M) to create image
classifications (s) from PUB1. The third illustrated highly complex pattern is derived from PUB2,
where the authors build a visual question answering system: a language model creates embeddings
from the question and a CNN model from the image (both d-M-d). Both kinds of embedding are
used as input to a complex neural network to produce the answer (upper part of the diagram).
Furthermore, the CNN is deployed to provide attribute and object labels s that are—together with
the input question—used to query ConceptNet and retrieve concept descriptions ({s/d/s}-K-d)
that are further fed to a language model to produce embeddings that serve as additional input to
the complex neural network.

Although in the original boxology the introduced design patterns are based on the task of their
underlying system, in this work we aim to separate these concerns. The purpose of a design pat-
tern is to show the structural characteristics of a system only; therefore, it focuses on the input
consumed and output produced by the different modules, as well as the connection between these
modules to aggregate common paths rather than perfectly depicting a single system. Although
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Fig. 8. For each pattern type, the most popular

patterns are shown in boxology and flat notation.
Fig. 9. Overall distribution of patterns and pattern

types.

this abstraction naturally leads to the loss of some details, it facilitates the understandability of the
patterns, as it reduces complexity, while providing an overview summarizing the most important
processing information, and enables their aggregation into pattern types.

5.2.2 Pattern Types. We started off with the existing 11 patterns presented in the original pa-
per.9 During the annotation process, the annotators were tasked to reuse already discovered pat-
terns; however, if none of the existing patterns captured the processing flow of a given paper, the
annotator introduced a new pattern. This resulted in 33 new patterns, summing up to a total of 41
different processing flow patterns that we include in this analysis.10 To allow a conclusive analysis,
we further classified these patterns into pattern types. As the boxology itself focuses on the archi-
tectural properties of the processing flows, we based our classification schema on the structural
characteristics of the pattern shape as a feature of its complexity, resulting in the following six
types (see examples in Figure 8):

Atomic Pattern: A single algorithmic module consumes a single input.
Fusion Pattern: A single algorithmic module consumes more than one input.
I-Pattern: A chain of Atomic Patterns.
T-Pattern: A chain of Atomic and Fusion Patterns (usually, an I-Pattern with one Fusion
Pattern).
Y-Pattern: Combination of two (or more) Atomic Patterns via a Fusion Pattern.
Other Pattern: Patterns that do not fall in any of the previous types. These patterns are typ-
ically quite complex; however, a further reduction would lead to loss of essential insights
into the processing workflow. An example of this is the third pattern in Figure 7.

As can be seen in Figure 9, the majority of systems (more than 63%) exploit rather simple design
patterns (i.e., Atomic and Fusion Patterns). The most often used pattern is s-M-s (A1), which is, for
example, the classical pattern for link prediction in a KG based on cosine similarity of graph em-
beddings; however, rule-learning systems such as presented in PUB2 also use this pattern. Within

9The original paper introduced 15 patterns; however, patterns (1) and (2) were excluded because they do not represent a

SWeML System, (10) forms a duplication of (6), and (14) does not follow our definition of processing flow.
10The original patterns (8), (13), and (15) were not assigned to any analyzed system and therefore not considered in the

analysis.
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Fig. 10. Mean number of KR and

ML modules in analyzed

systems.

Fig. 11. Overall input types consumed

and output types produced by ana-

lyzed systems.

Fig. 12. Intermediate represen-

tation type of systems with at

least two algorithmic modules.

the fusion patterns, d/s-M-d (F1) and d/s-M-s (F2) are equally important, showing the flexibility
of a system that consumes both sym and data input.

Among the more complex patterns, T-Patterns are the most prominent, without a clear trend
for a specific pattern. A different picture is drawn for I- and Y-Patterns: in I-Patterns, s-M-d-M-s
(I1) is most prominent (using sym input to produce sym output with intermediate data represen-
tation), whereas for Y-Patterns, {s-M-d/d-M-d}-M-s (Y1) and {s-M-d/d-M-d}-M-d (Y2) represent
the vast majority. These Y-Patterns include (but are not limited to) creating embeddings for both
sym and data input, and combining these embeddings in a further inference step. A concrete ex-
ample of such a processing flow can be seen in PUB6, where a system for the extraction of adverse
drug events and related information (e.g., drugs, their attributes, and reason for administration)
from unstructured medical documents is introduced: a linguistic model generates semantic word
embeddings from the textual input while, at the same time, a graph embedding model calculates
embeddings from an accompanying medical knowledge structure for entities identified in the text.
Both these embedding types are then fed into a neural network to create the predictions.

Over time, systems tend to grow larger in terms of number of modules per pattern: in Figure 10,
we observe that the number of ML modules continuously grows starting from 2014, whereas the
usage of KR modules remains on a low frequency over the years.

5.2.3 Pattern Abstraction and Meta-Flow Analysis. By abstracting the patterns to the highest
degree possible, an input-output-centric view can be achieved (Figure 11). From this representation,
we can see that in 92.4% of the cases, sym input is consumed by the SWeML System (where it is
used as sole input type in 35.5%), whereas data is taken as input in 64.5% of the systems (7.6% use
data as sole input). In fact, most of the systems (56.9%) use both sym and data as input.

However, about one-third of the papers produce only data output compared to 65.1% producing
only sym output (1.9% produce both). Therefore, although consuming SW resources seems to be
quite essential to a SWeML System, the creation of new or extension of existing SW resources is
targeted in two-thirds of the cases.

To perform a deeper analysis of how inputs and outputs are connected, and which intermediate
data structures are used (Figure 12), the paths from all patterns used in the analyzed papers were
aggregated into a meta processing flow (Figure 13), which shows the popularity of different paths.
It can be seen that sym and data are most often fused in the very first step via an ML module.
This processing path is taken by the very frequently used patterns F1 and F2, but also by some
T-patterns such as T2. By comparing the incoming and outcoming arrows of the second ML and
KR module, we can further investigate that also for combinations of sym and data in later steps,
ML modules are used more frequently than KR modules (e.g., patterns T1, T3, T4, T6, and Y1-Y2
use the path via the second ML module, T5 via the second KR module).
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Fig. 13. Meta processing flow of interaction patterns. The most common patterns are fused into a meta

pattern to illustrate the most popular paths. The thickness and color of the connections show the number of

systems taking this path. A cycle represents a fusion.

The output of type sym is in most cases either produced in one processing step (e.g., s-M-s)
or via an intermediate data representation (e.g., s-M-d-M-s). This conclusion is also applicable to
data output, although with an overall lower frequency. Generally, data enjoys significantly higher
popularity as intermediate representation type compared to sym (patterns T1-T4, T6, I1-I2, and
Y1-Y2 exclusively use the path via the intermediate data representation, but only T5 via interme-
diate sym). The trend can be also observed in the temporal analysis in Figure 12, showing a steep
incline of publications with intermediate representations starting from 2016. In those papers, data

is used more frequently as intermediate representation compared to sym. This development could
be explained by the increased incorporation of embedding and representation learning methods
as pre-processors.

5.2.4 Conclusions: RQ2. The usage of the boxology framework allowed us to gain deeper in-
sights into the processing patterns of SWeML Systems. Overall, we discovered 41 different patterns,
where simple patterns that only incorporate one ML module are more often used than more com-
plex ones; however, we observed that the number of modules used in SWeML Systems is growing
over time.

In terms of input-output analysis, we observe that sym data structures are almost always used
as input, and often as output of SWeML Systems, whereas data is often used as intermediate rep-
resentation. Combining both data and sym as input is quite popular, especially through an ML

module.

5.3 RQ3 Application Areas

SWeML Systems can be characterized in terms of the kind of tasks they aim to solve and the
domains in which they are applied.

5.3.1 Targeted Tasks. From the papers in this survey, we identified several tasks targeted
by SWeML Systems, which we grouped into four main task categories: tasks based on Natural

Language Processing (NLP), on Graphs, on Image, and Other tasks. Tasks and task categories can
be seen in Figure 14. PUB6 and PUB7 target Named Entity Recognition and relation extraction
and therefore fall under the NLP-based tasks Annotation and Information Extraction. Another
NLP system is the geological text classification approach introduced in PUB4, which solves a Text

Analysis task. The Creation task of automatic taxonomy induction from PUB5 and the Extension
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Fig. 14. Distribution of papers per targeted task. The dashed line represents the expected distribution

E (xT ) = NT

N
∗ xT for task T , where N is the total number of papers published, NT is the total number

of papers published that target task T , and xT represents the publications per year that target task T .

task of identifying missing links from PUB3 are examples for the Graph-based task category.
Finally, PUB1 and PUB2 target Image tasks with their artwork analysis model and visual question
answering system, respectively.

Distribution of Tasks. Figure 14 shows the distribution of systems in terms of their tasks. The task
categories NLP and Graph are the most frequent, covering 40% and 38.9% of systems, respectively.
In contrast, only 5.7% of the SWeML Systems are concerned with the least common category of
Image-related tasks (i.e., image or video annotation and classification, image segmentation, action
recognition, object detection), whereas 15.4% of the surveyed papers target Other tasks, such as
recommender systems, data augmentation, or association rule learning. When taking a closer look
at the Graph-based tasks, we see that almost 55% focus on Graph Extension. All remaining sub-tasks
each represent 7% to 22% of the total number of Graph-based tasks. In comparison to Graph-based
tasks, the distribution of NLP sub-tasks is not as skewed. In this category, Text Analysis is targeted
most often, in roughly 30% of the papers, followed by Annotation in 21.7% of the publications, and
by QA & conversational and Information Extraction sub-tasks in nearly 16% of the papers.

Tasks over Time. The evolution of targeted tasks over the years is also shown in Figure 14. To fa-
cilitate the interpretation when correcting for the overall number of published papers, an expected
temporal distribution was added that indicates increased interest (actual publications higher than
expected value) and decreased interest (actual publications lower than expected value) in a specific
task for a given year.
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Fig. 15. Overall distribution of systems across

domains.

Fig. 16. Temporal evolution of interest for domains.

The total number of systems published in a specific

domain is shown.

Although before 2016 we observe an increased interest in Information Retrieval tasks, this seems
to slowly decline in more recent years. The current trends of the last 2 years include QA & conver-

sational and Text Analysis and Graph Alignment tasks. In contrast, solving Image tasks seems to
have become less relevant to the SWeML community recently.

5.3.2 Application Domain. SWeML Systems can either be domain independent (e.g., PUB2 and
PUB5) or used in a specific application domain, such as Natural Sciences (e.g., biology for PUB3 and
health for PUB6), Culture & Education (e.g., art for PUB1), or Geography & Economics (e.g., geology
for PUB4).

Distribution of Application Domains. More than half of the surveyed SWeML Systems are
General-Domain ones (Figure 15). However, some papers target specific application domains.
Among the domain-dependent systems, the largest share (26.7%) is from Natural Sciences domains,
such as biology, medicine, or chemistry, followed by Culture & Education (including education,
academia, digital humanities, art) and Geography & Economics. The least popular application do-
mains for SWeML Systems appear to be Production of Goods (e.g., manufacturing, transportation,
and logistics) and Administration & Politics, represented in only 1.5%, respectively 1.2%, of the
surveyed papers. Later, Figure 28 shows an overview of concrete SW resources specific to these
domains.

Application Domains over Time. Figure 16 shows the evolution of application domains over time.
On the one hand, the distribution of papers applied to domains such as Administration & Politics,
Production of Goods, or News & Social Media, has remained relatively constant over the years. On
the other hand, the number of General Domain papers, as well as of those targeting Natural Sciences,
Culture & Education, and Geography & Economics, showed a steep increase from 2016. The number
of General Domain papers has not only increased significantly in the past 5 years (by 466% between
2015 and 2019) but has kept growing, although at a slower pace, throughout the last 2 years. In
contrast, the number of domain-dependent papers from Natural Sciences and Culture & Education

started to decrease in 2019, by approximately 12% and 50%, respectively. A similar trend can be
observed in the case of the Geography & Economics domain, which suffered a slow decrease since
2019. However, this observed decrease might be influenced by the incomplete number of papers
from 2020 included in the survey.

5.3.3 Correlation of Tasks and Application Domain. The majority of NLP and Image tasks
are applied in General Domain scenarios, as illustrated in Figure 17. Among domain-dependent

ACM Computing Surveys, Vol. 55, No. 14s, Article 313. Publication date: July 2023.



313:18 A. Breit et al.

Fig. 17. Normalized distribution of domains per targeted

tasks. In the bars, the absolute numbers are provided.

Table 3. Distribution of Input Types Con-

sumed by Systems for Domains with at

Least 10 Publications

Domain Data Data & Sym Sym

General Domain 3% 50% 46%
Natural Science 5% 68% 27%
Culture & Education 22.5% 55% 22.5%
News & Soc. Media 14% 79% 7%
Geo. & Economics 21% 56% 23%
Software & Tech 8% 67% 25%

All systems 8% 57% 35%

Fig. 18. Task categories solved by systems

per pattern type.

applications, NLP and Image tasks are most often encountered in the field of Natural Sciences. One
exception is QA & conversational tasks, which are applied in the Culture & Education domain more
often than the Natural Sciences. Another interesting observation is that both Text Analysis and
Information Extraction are quite popular in the Geography & Economics field. In comparison, the
distribution of Graph tasks shows much more variation: whereas Graph Extension and Graph Align-

ment are mostly applied in General Domain scenarios, Graph Creation and Other Graph tasks are
heavily applied in specific domains. More specifically, Graph Creation was most widely utilized in
the field of Culture & Education, followed by the General Domain, Natural Sciences, and Geography

& Economics. Similarly, Other Graph tasks, such as node clustering or graph pattern mining, are
also mainly domain dependent and appear most often in the Natural Sciences domain. Furthermore,
Other tasks are most often applied either in General Domain scenarios or in the Natural Sciences

domain. The field of Software & Technology generally represents a rarely targeted application do-
main for all tasks and is even not encountered in combination with Text Analysis, Graph Alignment,
or Graph Creation, whereas 10% of Image- or Video-based tasks are applied to this domain.

5.3.4 Correlations of Application Areas and Patterns. In the analysis of input types per target
task, we identify that for Graph tasks, sym is used as sole input in 58% of the cases. Conversely, for
NLP (77%) and Image (90%) tasks, the majority of systems take both sym and data as inputs. This
observation is also reflected in the analysis by pattern types (Figure 18): Fusion and Y-Patterns
are often used for NLP tasks, whereas Atomic and I-Patterns are more common for Graph-related
tasks. Image tasks are mostly solved with T-, Y- and Fusion Patterns combining image/video and
sym inputs in the first step.

When analyzing the input types per application domain, we can see different distributions for
general domain and domain-specific areas: Table 3 shows that domain-independent systems over-
proportionally consume only sym, whereas domain-bound systems tend to incorporate data more
often than on average, either as sole input (Culture & Education and Geography & Economics) or in
combination with sym (Natural Sciences, News & Social Media, and Software & Tech). A particular
outlier is News & Social Media, where the usage of only sym is 30 percentage points less likely than
on average.

5.3.5 Conclusions: RQ3. Overall, we observed that SWeML Systems are used in a wide range of
domains, as well as for solving a variety of tasks, which contributes to their increasing importance
for authors of numerous scientific disciplines. Furthermore, SWeML Systems are versatile, offering
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solutions both in the general domain and in specific application domains, particularly in those
that are data intensive, such as Natural Sciences or Culture & Education. Last, in terms of addressed
tasks, NLP- and Graph-based tasks are the most frequent ones, the latter being facilitated by
the growing interest in knowledge graphs in recent years. We further observed that different
Targeted Tasks and Application Domains have preferences for certain pattern types, especially
with respect to their input types. This insight is useful from a systems engineering perspective
since it helps the engineer select an appropriate processing pattern given a task, a domain, or an
SW resource.

5.4 RQ4 Characteristics of the ML Module

Each ML module of a SWeML System can consist of multiple parts: not only can it be a combination
of different ML models or categories, but this combination can also introduce further ML compo-

nents. In the ML module of PUB4, for example, a word2vec and a Bi-LSTM model are applied,
which are further extended by an attention mechanism component. Investigating these module-
based characteristics helps to landscape architectural preferences in the field. Additionally, the
systems can be analyzed based on their overall training type, providing possible insight into the
efforts needed to develop such systems.

5.4.1 Model Categories. Due to the great variety of ML models used in the analyzed systems, an
abstraction into ML categories was necessary to enable meaningful analysis. ML categories summa-
rize related families of ML models—for example, the modular co-attention network introduced in
PUB2 goes together with BERT-based models (among others) in the category Transformer, whereas
word2vec, fasttext, and RDF2vec are all part of the category Plain Encoder. As it was not possible to
construct a global taxonomy for these ML categories,11 we only introduce the shallow separation
of (1) Classical ML (i.e., not neural network based) and (2) Deep Learning (DL) (i.e., neural network
based). As the emerging field of neural networks that can directly operate on and exploit structural
information of graph data is of special interest when analyzing SWeML Systems, we introduce a
third super-category for (3) Graph Deep Learning (Graph DL). Examples for Classical ML are the as-
sociation rule mining approach introduced in PUB3 or the SVM applied in PUB7, whereas models
such as word2vec (PUB5-7), CNNs (PUB1), LSTMs (PUB2, 4 and 6), and approaches such as LINE
(PUB7) and node2vec (PUB1) are classified as DL. The raw data of ML categories can be found in
Appendix A.3.

Distribution of ML Categories. Figure 19 summarizes the temporal evolution of ML categories,
sorted by their usage frequency. The overall frequency is also shown later in Figure 21. The three
most frequently used ML categories are Encoders, Plain Feed Forward Neural Networks (FFNNs), and
Translational Distance Models, where the large occurrence of Encoders is mainly due to the heavy
usage of the word2vec algorithm in the surveyed publications. The top five ML categories are all
DL, whereby there is only one dedicated Graph DL.

Since the number of publications varies significantly over time, we add the expected distribu-
tion of ML categories if the categories would have the same share of publications each year. This
helps identify usage trends while correcting for overall growing publication numbers. With the
exception of Matrix Factorization and Recurrent GNNs, the number of systems incorporating DL

models has been rapidly growing in recent years, showing an increasing interest by the research

11In fact, we found that there is no overarching taxonomy of ML algorithms, as existing classifications are either too coarse-

grained regarding modern DL approaches (e.g., [21]) or only focus on (sub-areas of) DL (e.g., [27], [40]). Since constructing

one ourselves would be biased toward the papers selected in this survey, we decided to create appropriate categories for

this survey for which we do not claim universal completeness.
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Fig. 19. Temporal evolution of ML categories that appear in at least 10 papers. Plots are sorted by their

aggregated usage frequency. The dashed line represents the expected distribution E (xC ) = NC

N
∗ x for ML

category C , where N is the total number of papers published, NC is the total number of papers published

that contain the ML category C , and xC represents the publications per year for ML category C .

Fig. 20. ML categories per domain, for those domains that characterize at least 10 papers. In parentheses,

the number of models (not systems) deployed for the specific domain is shown.

community. In contrast, publications of Rule Learning approaches, which were the most popular
type of ML category before 2014, stay at a constant rate.

ML Category Usage in Application Domains. The distribution of ML super-categories for each of
the six largest application domains is presented in Figure 20. In all domains, DL is most prominent;
it is used on average in around two-thirds of the papers. Our analysis shows that Classical ML is
most prevalent in Natural Sciences, whereas the relative share of DL models is the greatest in News

& Social Media. In the General Domain, models from Graph DL are notably more often applied
compared to their usage in specific domains. This could be seen as an indicator for Graph DL

still being in the phase of developing and establishing models, which are evaluated on established
domain-independent benchmarks (e.g., based on DBpedia, WordNet, or Freebase)—only slowly
transitioning toward domain-specific applications.
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Fig. 21. Relation between ML categories (those that are used in at least 10 papers) and tasks performed

by the analyzed systems. Both task categories and individual tasks are shown via color coding, and ML

categories are sorted by total frequency.

ML Category Usage per Task. The individual ML categories were analyzed in combination with
the Targeted Tasks. Figure 21 shows the total number of occurrences for each category together
with the most frequent tasks and task category. Graph and NLP tasks appear in every ML cate-
gory, typically fairly balanced. ML categories that focus on solving NLP tasks include Plain En-

coders, Transformer models, and kNN, whereas Graph DL model categories such as Translational

Distance models and Convolutional GNNs, but also Rule Learning models, mainly focus on Graph

tasks. Image tasks are addressed particularly with CNN algorithms. Overall, we do not see dom-
ination of a task category for a specific ML category; instead, ML categories are generally used
across tasks—even presumably task-bound algorithms such as Translational Distance models or
Transformer models are broadly used in multiple tasks.

5.4.2 Deep Learning Components. Since DL models may be composed of multiple architectural
patterns, we further analyzed which basic building blocks were used in these models. We
identified the following components, which we assigned on the ML module level: (1) Feed Forward

(FF ), (2) Recurrent (Rec), (3) Convolution (Conv), and (4) Attention (Att). FF components can
be found for example, in the word2vec algorithm of PUB4-6; Rec components are present in
the LSTM models (including ELMO) in PUB2, PUB4, and PUB6; and PUB1-2 also incorporate
Conv components. Attention can be seen as a standard component of a deployed model, such
as the modular co-attention network introduced in PUB2, or as an extension to other models,
such as in PUB4, where a word2vec and a BiLSTM model are combined with an attention
mechanism.

Figure 22 summarizes the main statistical properties of the DL components of SWeML Systems—
that is, their total frequency as well as their combined usage. Given the overall usage, FFs are
clearly the main DL component in SWeML Systems, whereas the remaining components (Rec,
Conv, and Att) are used equally often. We found that all possible combinations of components
occur. The combination of Conv and Rec is quite unpopular; however, both of these components
are frequently (and almost equally likely) combined with FF and Att, which reflects the universality
of these components—for example, to add a classification layer or to improve prediction quality,
respectively. Furthermore, almost 70% of systems that incorporate Att also use FF components,
where the 28 identified Transformer-based models play a major role.

An analysis of DL components per task reveals that FFs dominate each task (Figure 23). FF is
a broad group of many simple DL architectures, and therefore its broader usage is not surprising.
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Fig. 22. Co-occurrence of DL

components within a system. In

parentheses, the total frequency

is provided.

Fig. 23. Tasks solved by systems containing a certain DL component.

The remaining components are relatively evenly spread. An exception is the dominance of Convs

for Image tasks.

5.4.3 Training Type. We identified five distinct training types, which are analyzed indepen-
dently of the model to provide a higher-level understanding. In the following, we introduce each
training type whereby the total number of papers falling into each category is provided in paren-
theses (five papers did not provide sufficient information about the training type used):

Supervised ML (194): A supervised model is trained based on labeled data—for example, a
fraud detection system that recognizes fraudulent financial transactions based on 10,000
manually labeled transactions.
Self-supervised ML (188): A self-supervised model uses unlabeled data in combination with a
training objective—for example, a word2vec algorithm that uses an unlabeled text corpus as
input. Given a sentence from the corpus, the algorithm is trained to predict the surrounding
words for each word in the sentence.
Semi-supervised ML (24): A semi-supervised model is trained based on a small set of labeled
and a large set of unlabeled data. A classifier is typically trained on the labeled data and
then used to create further pseudo-labeled data. The entirety of labeled and pseudo-labeled
data is used to train the final classifier. This approach is often used, for example, for text
classification.
Reinforcement learning (7): Reinforcement learning does not require labeled data but instead
requires a feedback loop where the machine making decisions obtains feedback and opti-
mizes its strategy over time. An example would be an algorithm that is tasked to play a
game such as Go or chess.
Unsupervised ML (58): In unsupervised learning situations, a model is obtained without any
labeled data. An example would be an algorithm that clusters products of a company.

Note that these training types are applied on the system level rather than on the individual
modules or models. For example, if a system—such as PUB6—uses models that are trained in a self-
supervised fashion (e.g., word2vec) to train a supervised approach (the BiLSTM-CRF classifier),
we consider the entire system supervised. With regard to the overall distribution of the different
training types, we found that supervised and self-supervised models account for approximately
40% of the systems each, no supervision is used in approximately 12% of the systems, and models
based on semi-supervision or reinforcement are rare. Examples for semi-supervision are, for ex-
ample, the iterative hierarchy induction approach from PUB5 and the surrogate learning approach
from PUB7. This finding is intuitive since on the one hand supervised systems are the most widely
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Fig. 24. Combination frequency of ML cate-

gories (i.e., their co-occurrence within a system).

ML categories are grouped by super-categories.

Fig. 25. Position distribution of ML categories in

systems with more than one algorithmic module.

Shown is the relative frequency of usage within

the first or a later module.

adopted and established type of system (e.g., PUB1, PUB2, PUB4, and PUB6), and on the other
hand a wide range of models that are most commonly trained in a self-supervised fashion such
as different kinds of embedding models (e.g., for systems targeting Graph Extension tasks) or rule
learning approaches (cf. PUB3) are heavily applied in the analyzed systems.

5.4.4 Combination of ML Categories and Patterns. The analysis of ML categories combined in
a single SWeML System is shown in Figure 24. It can be seen that, in general, a combination of DL

models is more common than a combination of Classical ML models. Plain Encoders (e.g., word2vec)
are combined with a wide variety of models, including Classical ML, DL, and Graph DL categories.
As depicted in Figure 25, Plain Encoders mostly take the role of a pre-processor, meaning that
they are applied in the first processing step of the SWeML System. The same observation can be
made for Translation Distance models; however, these graph embedding models are less likely to
be combined with Classic ML models.

Plain neural network architectures (e.g., Plain FFNN, Plain RNN, Plain CNN ) are more often
combined than advanced architectures (e.g., Transformer), where plain neural networks have a
slight trend to be used in a later step, whereas Transformer models are slightly more often used in
the first processing step. The trend of combining simpler models is also reflected in the Graph DL

area: complex models such as Recurrent GNNs are far less often combined than simpler ones such
as Translational Distance models (e.g., TransE).

Many DL and Graph DL categories show a rather balanced position distribution, except for those
categories mainly consisting of simple graph and text embedding methods (see Figure 25). Classi-

cal ML categories seem to have a more established position: Genetic Algorithms, for example, are
always used in the first step, whereas Decision Trees, SVMs, and Regression models are exclusively
being used in later steps when combined with other ML models.

5.4.5 Conclusions: RQ4. Our analysis showed that SWeML Systems use primarily supervised

and self-supervised models. ML categories are used across applications without a significant expo-
sure of one category to exclusively one task. Throughout all application domains, DL categories
are most prevalent (with a share of 60%) followed by Classical ML categories. Graph DL categories
occur with low frequency (<20%) in all domains except the General Domain, where they occur sig-
nificantly more often. The popularity in the General Domain potentially indicates that the models
are still being explored and did not transition into more specific applications.
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Fig. 26. Comparison of semantic resource types as as-

signed by authors (left) and the study team (right).

Fig. 27. Temporal evolution of semantic resource

types. Types correspond to those assigned by the

study team.

Interestingly, we found that even presumably task-bound ML categories (e.g., Transformers) are
used in a variety of tasks (i.e., are not purely dependent on a particular task). Furthermore, DL

categories—especially those that include typical and rather simple embedding models—are most
likely combined with other ML models and used as system pre-processors. Component-wise, we
found that the most broadly used DL component in SWeML Systems is FF, which is most often
combined with Att, whereas the combination of Conv and Rec is least popular.

5.5 RQ5 Characteristics of the SW Module

SW knowledge structures (aka SW resources) play an important role in SWeML Systems. From the
reviewed 476 papers, a large number of papers (307) make use of already existing (i.e., predefined)
semantic resources such as general domain resources (e.g., DBpedia, YAGO) that usually play the
role of inputs. Furthermore, some of the reported systems create custom SW resources as their out-

put or as internal, intermediary representations. Since in the papers reviewed the information about
semantic resources, such as type, size, and representation formalism, is generally weakly specified,
we focus our analysis on the predefined semantic resources, where we can collect this information
from the sources that describe the resources as such (i.e., resource websites, relevant papers). As
some papers rely on several SW resources, we identified 516 non-unique (corresponding to 139
unique) predefined resources in the 307 papers that make use of such resources.

5.5.1 Types of Semantic Resources.

Author Assigned Type. The left part of Figure 26 depicts the types of the 516 predefined SW
resources as mentioned by the authors of the analyzed papers. Several papers fail to name the type
of the resource; however, others most often mention employing resources of type knowledge graph,
followed by ontology, dataset, and knowledge base. Less frequent mentions of semantic resource
types are taxonomy, thesaurus, hierarchy, controlled vocabulary, linked dataset, and entity catalog.
This indicates that on the one hand, there is a preference for using rather generic terms (ontology,
knowledge graph, dataset) as opposed to more specific terms that describe more specialized types
of resources (e.g., controlled vocabulary, taxonomy), and on the other hand, terms novel to the
SW community are introduced (e.g., database, entity catalog). Both could be explained by the fact
that several of the studies originate from communities other than the SW community, where such
terminological knowledge is present to a more limited extent.

Type Assigned by the Study Team. As our study includes papers from several communities, we
noticed an inconsistent use of terminology among these communities as well as over time (with
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the same SW resource being categorized as ontology, linked dataset, or knowledge graph depending
on the trending terminology at the time the corresponding paper was written). For example, the
term knowledge graph was popularized only in 2012 by Google, although some of the resources that
would be called knowledge graphs today were already in use before. Therefore, besides collecting
the types of these resources as mentioned by the paper authors, we also evaluated the semantic
resources and assigned them a type12 based on the following predefined glossary13:

Thesaurus: A controlled vocabulary connected with relations that express linguistic rela-
tions such as equivalency (synonyms), and broader/narrower relations without strict logical
semantics such as subsumption. Examples are Agrovoc, WordNet, ConceptNet.
Taxonomy: A domain model containing terminological (T-Box) information limited to con-
cepts and their subsumption hierarchy.
Ontology: A terminological model richer than a taxonomy containing also additional named
relations and axioms (T-Box).
Dataset: Contains semantic instance data (or metadata), corresponding to an A-Box in logics.
A collection of triples describing instances can be considered a dataset.
Knowledge base: Contains both terminological and instance knowledge (TBox+ABox).
Linked dataset: A differentiating feature of linked datasets from the semantic structures
described earlier is that they contain links (in terms of URI references) to other semantic
resources. Additionally, such datasets contain large numbers of instance data, although
they may include (lightweight) terminological knowledge as well. The canonical example
is DBpedia.
Knowledge graph: Knowledge graph was most recently defined as “a graph of data intended
to accumulate and convey knowledge of the real world, whose nodes represent entities of in-
terest and whose edges represent potentially different relations between these entities” [17].
This is a very broad definition that actually subsumes all the semantic resource type
definitions presented earlier. However, when one resource could be clearly classified in the
preceding categories, we did so. This still left a number of resources that represented graph
data using a non-semantic formalization (e.g., JSON, XML, proprietary formats), thus making
it impossible to classify these along the ABox-TBox distinction which underlies the descrip-
tion of the preceding semantic resource types. Such resources were classified as knowledge
graphs.

The right side of Figure 26 shows the types (and corresponding number) of the 516 predefined
resources in terms of the types assigned by the study team. Accordingly, we can confirm that
knowledge graphs are most frequently used. However, contrary to the author-based classification,
thesauri and linked datasets precede ontologies in terms of the frequency of their use, indicating a
focus on instance data as opposed to terminological information.

We can also conclude on some aspects of terminological (mis)use. The terms that are mostly
incorrectly used are dataset (to describe resources that are ontologies, knowledge graphs, linked

dataset, or knowledge bases), knowledge graph (almost half of the uses of this type can be mapped
to other resource types), and knowledge base. Interestingly, the term linked dataset is seldom used
by paper authors.

12The assigned type reflects the type of the resource per se, independently of its use by the SWeML System—for example,

a semantically rich ontology would be assigned the type ontology even if the system would only make use of its taxonomic

structure.
13Although the definition of the semantic resource types reflects the joint understanding of the study’s author team, we

are aware that, as with all terminologies, variations in definitions exist. Nevertheless, our goal here was to establish a

common baseline to define resources that would allow having a consistent view of the analyzed resources and account for

terminology variations across communities.
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Fig. 28. Concrete SW resources, the frequency of their use, and their domain classification. The raw data

can be found in Appendix A.4.

From a temporal perspective (Figure 27), whereas ontologies appear as the most frequently used
resource types until 2014, from 2016, besides ontologies, there is a (sharply) increased interest in
other data types, particularly thesauri, linked datasets, and knowledge graphs. Knowledge graphs

dominate the scene from 2018 onward.

5.5.2 Concrete Semantic Resources. Figure 28 depicts concrete semantic resources used by the
reviewed papers, the frequency of their use, and their domain classification (it covers the 516
non-unique predefined resources). Reconfirming findings related to the application domains of
the papers (see Figure 15 in Section 5.3.2), the majority of studies make use of domain-agnostic
resources, whereas the most domain-specific resources stem from the topmost popular domains—
that is, Natural Sciences, Culture & Education, and Geography & Economics.

Analyzing the concrete resources themselves, we conclude that a large number of different re-
sources are used, and there is a mix between frequently used resources and more specialized/niche
resources. Among the domain-agnostic resources, DBpedia, YAGO, Freebase, and WordNet are the
most frequently used resources, either as the resources themselves or benchmarks based on them.
From the domain-specific resources, most frequent are those from Natural Sciences, particularly
Medicine/Health (with often used reference resources such as UMLS, Mesh, and ICD) and Biology

(with the Gene Ontology being the most frequently used resource). In the Human Culture and Ed-

ucation domain resources related to Movies, Music and Academic Publishing are the most frequent
(e.g., the AIFB research ontology being the most frequently used).

5.5.3 Resource Size and Representation Formalism. Figure 29 depicts the size of used resources
(in terms of number of triples) over time considering the resource size as collected by the review-
ing team in 2021 (which, in some cases, might differ from the resource size when it was used by
the reporting study). We conclude that although in the first part of the past decade (up to 2014)
there is more or less an equal mix of resource sizes, from 2014 larger resources (with > 1M triples)
are more prevalent and there is a sharp rise in the use thereof. This could correlate with the in-
creased popularity of ML methods that require larger training datasets, the availability of large-
scale linked datasets and knowledge graphs, and the increased scalability of processing tools as
well as the available compute power. Indeed, several of the frequently used resources, such as
DBpedia, Freebase, or YAGO, exceed 1M triples. Additionally, several very large domain-specific
resources are employed—for example, UMLS (Health), MusicBrainz (Music), and Microsoft Aca-

demic Graph (Academia/publishing). In terms of the (knowledge) representation formalisms used
(Figure 30), whereas until 2014 there is no clear trend, from 2014 most frequently RDF/RDF-S is
employed, followed by a widespread practice to serialize SW resources in non-semantic formats
such as XML, JSON, and a number of non-mainstream/proprietary formats. This is in line with
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Fig. 29. Temporal evolution of semantic resources

in terms of their size in number of triples.

Fig. 30. Analysis of semantic resources in terms of

their representation formalism.

the trend of using large, instance-heavy resources for which such serialization formats with light-
weight semantics basis suffice. The least frequent was the use of OWL/OWL-2 representations,
which allow semantically more fine-grained knowledge representation.

5.5.4 Usage of SW Resources. To better understand how the SW resources are employed, we
investigate the extent to which these resources are used:

• Only labels (43) of concepts or relationships were used, but no structural information. For
example, in PUB4, the labels from an ontology provided keyword importance for processing
textual input.
• Simple relations (44) (i.e., triples of one relation type, only considering one hop) were used. An

example is PUB2, where descriptive statements are queried from ConceptNet, given object
labels and attributes.
• Hierarchical structure (53) includes typical is_a kind of relations, which could span over mul-

tiple levels. PUB3, for example, makes use of the hierarchical structure of Gene Ontology.
• complex structures (289) include collections of concepts and relations, and property chains

over multiple relationships. These are, for example, used by graph embedding models, as it
is the case in PUB1.

There is a tendency to use complex structures from the resource as opposed to more simple as-
pects thereof. Indeed, the majority of the papers (60.71%) made use of complex structures from
the resources, whereas 11.13% explored the hierarchical structure of the resources. Simple relations

were exploited by 9.24% of the papers, whereas 9.03% of the papers made use of only labels. For
6.72% of the papers, this aspect was not applicable (e.g., in PUB5, where a semantic resource is
created), and for 3.15% of the papers, this information was not available.

5.5.5 Semantic Processing and NeSy. Interestingly, only a small number of papers (29, approxi-
mately 6%) report on making use of semantic processing (KR) units: in 20 papers, reasoning capabil-
ities are used to infer new knowledge from the semantic resources, whereas in 9 papers, SPARQL

queries are employed to select a relevant subset of the resource. Despite their small number, these
systems that combine techniques from ML and KR (i.e., NeSy) are of particular interest. We identi-
fied 14 patterns that contain such a combination and subsequently analyzed the types of processing
that were performed by these systems. Based on the results in Table 4, we summarize our findings
next.

Distribution. The distribution of these NeSys follows the general trends: there is no growth over
the years beyond the general increase of papers over the years, and the selection of application
domains is reflecting the general distribution of papers (a high number of papers in the General

Domain, Natural Sciences, and Human Culture and Education). The NeSys differ in their targeted
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Table 4. Analysis of the Connection of Interaction Families/Processing Types and

Patterns in the Analyzed NeSy

Interaction F. Processing Type I3 O1 T7 T5 T8 T9 T10 T11 T12 T13 T14 T15 I4 O2

ML→ KR
Contribute to same task 2 1 1 2
Learn & improve ruleset 4 1
Learn & apply ruleset 3 3 1 1

KR→ML
Data enrichment 5 1
Model enrichment 1 1 1

ML || KR Contribute to same task 1
I3: d-M-s-K-s O1: highly complex T9: {s-M-s/d}-K-d T12: {d/s}-K-s-M-s T15: {s-K-s/s}-M-s

T7:
{{{d/s}-M-d/s} T5: {d-M-s/s}-K-s T10: {d-M-d/d/s}-K-s T13: {d/s}K-d-M-d I4: s-K-d-M-s
-M-s/s}-K-d T8: {s-M-s/s}-K-s T11: {{d/s}-M-s/d}-K-d T14: {s-K-d/d}-M-s O2: d-{M||s-K}-s

Pattern O1 is of very high complexity and cannot be depicted in flat notation. The corresponding boxology notation can

be found in Figure 7 on the right.

Fig. 31. Distribution of ML categories used in NeSys

compared to their overall distribution in all analyzed

SWeML Systems.

Fig. 32. Input type of SWeML Systems containing

a specific SW resource.

tasks: Image analysis and Other tasks are overrepresented among them compared to the low num-
ber of papers targeting these tasks in the general corpus. Because of addressing Image tasks, the
ML modules often use CNNs (Figure 31). Furthermore, Rule Learning models are used to a much
greater extent than in the overall distribution. This is to be expected since Rule Learning combines
naturally with the symbolic representations used in the KR component. Finally, embedding models
(Plain Encoder and Translational Distance) are underrepresented.

Interaction Families and Processing Types. Using ML before KR is much more popular than KR
before ML: two-thirds of the papers belong to ML→KR, almost one-third to KR→ML, and only 1
to ML | | KR (i.e., using ML and KR in parallel). These three interaction families were further subdi-
vided into five processing types: (i) the ML systems learn a ruleset that is subsequently improved
by a KR module (e.g., through checking for redundancy or inconsistency); (ii) the ML system learns
rules which are subsequently applied by a KR module; (iii-iv) a KR module is first used to enrich
either the ML model or the data which is then used by an ML system; and (v) an ML and KR ap-
proach are both applied to the same task. By far the most frequent use of combined systems is to
extract rules from data (13 out of 29). These extracted rulesets are then either improved with a KR
module or directly applied in a KR module.

Coupling Between Patterns and Processing Types. Four of the 14 patterns (T5, T8, T9, T12) account
for 18 of the 29 papers, and all of these 4 are T-patterns. Twelve of the 14 observed patterns
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contribute to only a single processing type (in other words, the matrix from Table 4 forms a near
diagonal). This suggests a very strong coupling between our patterns and the processing type
that the system is performing.

5.5.6 Combination of SW Resources and Patterns. In Figure 32, we depict the types of input
taken by SWeML Systems per used SW resource. We see general-purpose resources such as DBpe-

dia, Wikidata, Freebase, YAGO, andWordNet equally used with data and sym, and only sym inputs.
Domain-specific resources such as GO, UMLS, MeSH, ICD, DO, and CheBI are more often used
in combination with data to enhance the analysis. Dumps of Freebase and WordNet are popular
benchmarks for various algorithms and hence are often used as the only sym input. Remarkably,
Wikipedia, MeSH, CheBI , and ConceptNet are used almost exclusively with additional data inputs.

Upon analyzing the co-usage of SW resources, no clear pattern has been observed. There are
some cases where the most common general domain SW resources are combined (DBpedia & Wiki-

data and DBpedia & YAGO in 10 cases each, YAGO & Wikidata in 4 cases); however, otherwise, the
combination of SW resources—which could be considered as one of the most powerful aspects of
the SW—seems surprisingly unpopular. Within the Biology domain, where the incorporation of
different knowledge sources has a long tradition, the most commonly used resource GO is com-
bined with other SW resources in less than 25% of the cases, and the second most common UMLS

is combined with other SW resources in only 14% of the cases.

5.5.7 Conclusions: RQ5. SW resources play diverse roles in SWeML Systems (input, intermedi-
ary structure, output); however, their characteristics (in terms of type, size, serialization) are gener-
ally weakly reported in the studies. We identified a large number of SW resources that are used in
SWeML Systems, both cross domain (DBpedia, YAGO, Freebase, WordNet) and domain specific (e.g.,
UMLS, Mesh, ICD). In terms of resource type, there is a terminological shift across communities and
time periods; however, after the alignment to a proposed type terminology, we conclude that al-
though until 2014 the focus is on employing smaller resources of terminological type (ontologies),
from 2014 there is an increased tendency of focusing on resources rich in instance data (linked

datasets, knowledge graphs) with very large sizes (>1M triples) and often encoded in non-semantic
serializations. Most papers make use of the various complex relations encoded in the semantic re-
sources; however, the use of reasoning mechanisms that fully explore semantic features is limited:
only 29 papers combine ML and KR modules. These papers demonstrate a tendency to use an ML
module to abstract data into knowledge to be subsequently used by a KR module. We found that
although domain-independent resources are combined with data input in about half of the cases,
this combination is more popular when incorporating domain-specific resources.

5.6 RQ6 Maturity, Transparency, and Auditability

Through the combination of SW and ML methods, researchers and practitioners solve complex
tasks with SWeML Systems. However, the applicability of these solutions is often hindered by a
low degree of system maturity. This maturity can be defined from a software engineering point
of view, meaning that the system should be stable, tested, and verified. Although the first two as-
pects are not significantly different from other software engineering projects, verification—despite
its importance—is often overlooked in AI development, with many claims about benefits and utility
not backed by easily accessible evidence. Both companies and the scientific community recognized
these problems. Google defined principles guiding its AI development [14]. The third principle
stresses that AI-based systems must be tested in constrained environments and that their operation
must be monitored after deployment. In the scientific community, the ACM has issued a “State-
ment on Algorithmic Transparency and Accountability”that emphasizes the need for auditability
of models, algorithms, and decisions [1].
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To enable the transparency and auditability of systems used for data analysis, it is essential to
capture and understand the broad context in which the system operates: data sources, algorithms,
processes, and services that the deployed systems depend on. To this end, this research question
aims to investigate the maturity of SWeML Systems, with a special focus on auditability and trans-
parency aspects. First, we will categorize the system according to their overall maturity level tak-
ing into account features like stability and usability. Second, we investigate the transparency of
the SWeML Systems by checking the following aspects: system components (i.e., description of
infrastructure and software stacks) and evaluation-centric parameters (i.e., process steps, metrics,
data, and data-split). Our goal is to check whether these aspects were documented, but not to check
whether the results could be reproduced. Third, we check whether the SWeML Systems support
auditability (e.g., by capturing the provenance of the data processing). In this sub-research ques-
tion, we assumed the field to be still evolving and the notion of auditability not being thoroughly
developed. Therefore, we limited the scope of this sub-research question to focus on (i) identifying
whether the system captures data processing provenance and what kind of context information is
captured, and (ii) the reasoning behind the provenance capturing.

5.6.1 Maturity. Reviewers manually assigned one of the following maturity levels to each paper
(total numbers of assigned papers are shown in parentheses):

low (209+236) scripts and prototypes if no source code is available, nor any statement about
the system maturity by the authors, the reviewers assigned probably low.

medium (23) simple user interface or error handling.
high (8) stable system, available UI, (non-prototype) system is used in a professional context.

In Figure 33, the maturity of systems over the years is depicted. In total, only a small amount of
systems qualified for medium (4.8%) and high (1.7%) maturity, underlining the notion that SWeML
is an emerging field with ongoing research efforts. The majority of papers were either low (43.9%)
or probably low (49.6%), describing proof of concepts and initial prototypes for exploring use cases
and techniques.

Focusing on changes over time, between 2012 and 2015, the majority of papers did not provide
sufficient information on the described systems (probably low). Starting with 2016, more papers
provided scripts and prototypes (low); however, despite initiatives for reproducibility in computer
science,14,15 in the last 3 years, the balance between probably low and low maturity systems re-
mained rather stable, with a slight surplus of probably low maturity systems. Highly mature sys-
tems only appear from 2016 onward; however, it is important to note that in this period, the number
of publications also increased. An analysis of the correlation between system maturity levels and
application domains was inconclusive. In general, the number of mature systems is very low, but
future studies might identify an increase in stable systems applied to specific problem domains.

5.6.2 Transparency. Our investigation found that evaluation parameters are typically well doc-
umented, with more than 50% of the papers containing all of these parameters (cf. Figure 34(a)).
Documentation about evaluation datasets is detailed in almost all papers (96.6%), as well as the
evaluation metrics (95.8%) used for quantitative evaluation. Process steps, in which authors report
on their evaluation methodology, follow in third place (88.9%). The ML model parameters (84.6%)
and data-split (68.9%) were reported less often, which might be because not all systems require
them. In contrast with the evaluation parameters, information about system implementation and

14ACM Artifact Review and Badging guidelines: https://www.acm.org/publications/policies/artifact-review-badging.
15The ACM Task Force on Data, Software, and Reproducibility in Publication: https://www.acm.org/publications/task-

force-on-data-software-and-reproducibility.
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Fig. 33. Temporal evolution of system maturity. Fig. 34. Coverage of transparency parameters on systems

in terms of the percentage of described parameters (a) and

normalized described parameters (b) over the years.

evaluation infrastructure is less commonly available. Only 49.6% of SWeML Systems report the
software stack (e.g., software framework, libraries) used to implement their system, whereas infor-
mation about the infrastructure (e.g., hardware, OS) used for evaluation is only available for 18.7%
of all systems. Interestingly, we did not see any strong trend toward improvement in this aspect
over the years (cf. Figure 34(b)), with only a slight increase in data-split and software specification
documentation.

5.6.3 Auditability. We found only three papers that report the capability of capturing the prove-
nance of their systems as the basis for auditability. This situation is understandable given that the
focus of most papers is to address the task at hand. Yin et al. [37] reported a system that captures
the input data’s contribution rate to the final results. To this end, they developed an algorithm
for their RNN model to calculate each input contribution. This information is used to explain the
result, showing the dynamics between input events and the final results. Song et al. [31] devised a
system that accommodates an additional provenance node to RDF each triple. This additional node
is then used to capture data source information (e.g., Wikidata or DBPedia). However, they stated
that the approach is not limited to this specific usage, as users can also use the additional node
for any other information. The goal of the approach is to improve the quality and auditability of
the produced data. Finally, Voogd et al. [36] proposed a system where experts provide input values
between concepts before and after the training phase of a model. This approach enables experts
to interact with the result of system training and explain specific results of the systems. The goal
of capturing the provenance of experts’ inputs is to enable better explainability by linking results
and the original expert inputs.

Additionally, we found an interesting mechanism of provenance capturing provided as part of
an evaluation framework for graph embedding techniques in the work of Pellegrino et al. [23].
Although the approach itself is not a SWeML System and therefore is excluded in the data selec-
tion phase, GEval provides a mechanism to capture traces of graph embedding system (including
SWeML) results and execution of each run to ensure the reproducibility and allow comparison to
other systems.

5.6.4 Conclusions: RQ6. We found that the maturity of these systems is relatively low, and over
the observed period, there is only limited improvement. Additionally, the transparency aspect of
the SWeML Systems is relatively well addressed, with more than half of the papers providing
information about their evaluation setup. However, the situation still can be improved by provid-
ing information about the implementation aspects, where less than half of the papers explain the
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software setup and even less the infrastructure used to evaluate the approach. Auditability and
provenance capturing are not the focus of most papers, and separate efforts would be needed to
examine this aspect of SWeML Systems.

6 SWEML SYSTEMS CLASSIFICATION SYSTEM

In addition to the formal definition of SWeML Systems (Section 2.1), we further introduce a frame-
work with which such systems can be described, documented, and visualized to improve common
understanding. To this end, we provide a classification system that not only helps to identify the
main characteristics of a SWeML System but also provides guidance on what information should
be given by authors when introducing such systems. We formalized our classification of SWeML
Systems as an ontology structured in accordance to our research questions (Section 4.1.1) and pro-
vide initial instances that were identified during the study conduction. The complete ontology and
its documentation are available online.16

In the SWeML ontology, we reuse a number of concepts introduced by Van Bekkum et al. [33],
including Instance and its sub-concepts Data and Symbol, as well as Model and its sub-
concepts StatisticalModel and SemanticModel. To complement these classes, we added a
number of classes and properties related to a SWeML System and the connection between the
system and its components. The main classes include System, to represent a specific SWeML
System; Pattern to describe the SWeML patterns (Section 5.2); SystemComponent, which de-
scribes the system components that take one or more input Instances, and uses one or more
Models to produce output Instances; Task to describe specific tasks of the SWeML System; and
Documentation, which describes information regarding transparency and reproducibility. We
have a dedicated class SemanticWebResource to describe the involved SW resources. Instances
of SemanticWebResource can be used as a SemanticModel or Symbol, since they contain both
their structure and data. The complete description of the SWeML ontology classes are given in
Figure 35 and Appendix A. We illustrate the SWeML System ontology using the seven example
papers from Section 5. An excerpt of the RDF graph visualization of these instances is shown in
Figure 36.

7 CONCLUSION AND FUTURE WORK

This article reported on an SMS of the emerging field of systems that combine SW and ML compo-
nents (SWeML), a subset of AI systems relying on both symbolic and sub-symbolic techniques. By
following a systematic approach to collect the reviewed papers, we conducted a first-of-its-kind
large-scale survey, analyzing almost 500 papers. Therefore, by capturing insights drawn from pa-
pers across many communities (e.g., NLP, computer vision), this study provides insights into the
status and trends of this field and proposes a classification system for SWeML Systems that facili-
tates their standardized documentation. Our main conclusions are presented next.

Multi-Disciplinary, High-Impact, Rapidly Developing Field. The papers collected in this study
demonstrate that research in the area of SWeML is highly multi-disciplinary, not only in terms of
the techniques employed, which are drawn from the SW and ML communities primarily, but also
in terms of (i) the variety of tasks addressed, covering the three large clusters of Natural Language

Processing (NLP), Graph Processing, and Image/Video Analysis, with graph-based tasks the most pop-
ular in the past 5 years, and (ii) the high share and variety of domain-specific use cases addressed,
with nearly half of the papers addressing domain problems, particularly those domains where SW
technologies already enjoy wide adoption, so that domain-specific semantic resources are already
available: the most frequent domain for the SWeML System is Natural Sciences (Medicine, Biology)

16https://w3id.org/semsys/ns/swemls.

ACM Computing Surveys, Vol. 55, No. 14s, Article 313. Publication date: July 2023.

https://w3id.org/semsys/ns/swemls


Combining Machine Learning and Semantic Web 313:33

Fig. 35. SWeML Systems classification concepts, relations/properties, and identified instances. Green-

colored boxes represent concepts that are subject to the data extraction in this survey, whereas white boxes

represent supplementary classes.

Fig. 36. SWeML System ontology instance of PUB1.
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due to the availability of domain-specific semantic resources (e.g., ontologies like UMLS, MESH,
and GO). By addressing all these disciplines, the SWeML field is inherently a high-impact field.
Given such impact potential, a rapid development in this field is not surprising: indeed, the publi-
cation volume significantly increased from 2014, showing a worldwide interest in the area, with a
strong cluster in China and a low representation of the global south. Although growing rapidly, the
SWeML field displays the characteristics of a young discipline: the proposed systems have a low
maturity level (mostly scripts and prototypes), and although most papers report on elements that
allow reproducing their results, provenance tracking and auditability are still very weakly covered.

Deep Learning Is a Key Catalyst for SWeML Systems. Looking at the ML components of SWeML
Systems, a wide range of ML algorithms are used pertaining to three broad categories: Classical ML,
Deep Learning (DL), and Graph Deep Learning (Graph DL). DL models are the most prevalent (60%
of all models), and the interest in them in the past years is above average at the expense of Classical

ML. Their most frequently used components are Feed Forward Neural Networks (FFNNs). We also
observe that Graph DL models are mostly used to solve domain-specific tasks and have not yet
been widely adopted in generic tasks. In terms of training, mostly supervised and self-supervised
models are used.

Large Knowledge Graphs Are on the Rise. In terms of the SW aspects of the SWeML Systems, SW
structures play primarily the role of input resources or are generated as outputs. Less frequently,
SWeML Systems rely on internal structures that can be considered a semantic resource. We further-
more found a terminological mismatch across the reviewed papers, as terms denoting the types
of SW resources are being used inconsistently across papers and communities. Future work on
terminology clarification would therefore be beneficial. Based on a glossary introduced in this ar-
ticle, we found that although until 2014 the focus is on employing smaller terminological resources
(e.g., ontologies, taxonomies), from 2014 there is an increased focus on resources of very large size
(>1M triples) and often encoded in non-semantic serializations. Most SWeML Systems make use of
the complex relations encoded in these semantic resources. However, the use of reasoning mecha-
nisms that fully explore semantic features is limited. Furthermore, information related to the type,
size, and serialization of semantic resources is weakly reported. Our recommendation to authors
of future papers on SWeML Systems is to more carefully report the technical characteristics of the
SW components.

High Diversity of System Patterns. Although the individual ML and SW components have been
studied before, in this article we also focused on understanding patterns of how such components
are used and connected through the information flow in the system. Initially we assumed that the
15 boxology patterns of Van Harmelen and ten Teije [34] will suffice in our analysis to classify
SWeML Systems; however, we found a much larger variety of patterns used in practice and intro-
duced 33 additional patterns, as well as a classification scheme of these patterns based on their
structural complexity. This newly derived pattern catalog greatly advances the understanding of
this aspect of SWeML Systems while also providing new insights for future work toward a science

of patterns.
High Diversity in Reporting SWeML Systems Requires a More Uniform Classification Scheme. As a

rapidly emerging, multi-disciplinary field, the area of SWeML Systems is characterized by a high
diversity in reporting these systems by aligning to the canons of the originating disciplines. Such
misaligned approaches to reporting these systems hamper communication across communities
and advances in the SWeML area. Therefore, we leverage the understanding and analysis of this
field gained through the performed study to also propose a classification system for SWeML Systems

that could lead to a more uniform reporting of such systems to the benefit of the development of
the field as a whole. We provide the derived scheme as an ontology both for a better understanding
and for allowing authors to create machine-actionable metadata about their systems.
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Limitations. Due to the tremendous amount of papers being published in the ML domain, an-
alyzing all of them would not be realistically feasible in a single review paper but would require
a series of studies. Therefore, during study scoping, we had to carefully choose the keywords to
include in our search query. We decided to implement an objective strategy for the collection pro-
cess as described in Appendix A.1. As a consequence, several keywords, which would be in line
with the definition of a SWeML System, were not included in the final ML query. We refrained
from the manual addition of further keywords in an effort to avoid the introduction of bias (e.g.,
originating from our own background or assumptions), and to keep the scope of the study feasible
(e.g., adding the keyword machine learning to the search query would have added an additional
800 papers to the initial results). Furthermore, the chosen systematic methodology ensures com-
parability and extension of the presented outcomes, leaving the current work as a starting point
for future analysis.

Second, during analysis, abstraction of several extracted values was necessary to improve the
comprehensibility and interpretability of the results. Due to the lack of established, reusable hierar-
chies for the ML area or SW resources, these hierarchies were created based on the values extracted
in the course of this study. Consequently, for the created hierarchies, we do not claim they rep-
resent the entire corresponding field. This exemplifies the need for comprehensive classification
systems and taxonomies in these areas and beyond.

Third, we discovered several limitations of the boxology (Section 5.2.1) that served as the core of
the introduced SWeML classification system. One limitation is that another algorithmic component
that is neither ML nor KR but a generic Calculation (e.g., the calculation of a similarity metric)
would be necessary to accurately depict the workflow of various systems. Its absence leads in some
cases to oversimplified patterns, as in the case of Jayawardana et al. [18], which is associated with
the pattern T1:{d-M-d/s-M-s}. A second limitation is that although in most cases the workflow
of SWeML Systems during the training and prediction phase is the same, where only the exact
input data differs, sometimes these phases are inherently different (e.g., in PUB1). In this survey,
the entire workflow including both the training and the prediction phase is represented in a single
pattern. Although this facilitates the aggregation of the patterns, a distinction of these two phases
might provide valuable insights and a more fine-grained classification. A third limitation is that it
is only possible to specify that a resource is an input to a system—more fine-grained roles cannot
be captured.

Future Work. The data collected during this work allows further in-depth analysis to address
research questions beyond the scope of this survey. For example, which concrete resources (e.g.,
DBpedia) are used for evaluating certain tasks (e.g., graph extension), and is there a danger of
biasing research toward using the same (or a handful of) benchmark resources? What are typi-
cal patterns used for certain tasks? For example, our analysis shows that Image-related tasks are
mostly solved with T-, Y-, and Fusion patterns that combine image/video and symbolic inputs in
the first step. A similar analysis could also be performed for other tasks (e.g., graph extension),
which would lead to a better understanding of emerging patterns addressing those tasks.

The SWeML classification system (and its ontology-based representation) reflects the current
understanding of this field while being open to modifications and extensions as understanding of
SWeML Systems will advance—for example, providing the ontological support for describing the
internal flow of the patterns in more detail.

Finally, the boxology is subject to a number of possible extensions such as (i) adding new algo-
rithmic module types beyond ML and KR to capture system architectures with higher fidelity; (ii)
considering a complementary representation format that distinguishes between different lifecycle
phases of the system (cf., [33]); and (iii) adding metadata to the flow arrows of the patterns to dis-
tinguish the role of the resource within the system (e.g., to depict whether the SW resource is used
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as input data for the ML model), or to improve the training process indirectly (e.g., by adapting
the loss function [13] or to shape the models’ outcomes [24]).

A APPENDIX

A.1 Search Query Selection

Below, we describe the methodology applied to retrieve the three search sub-queries.

Q1 - SW Module. Q1 keywords include (1) the name of the overall field of interest (semantic web);
(2) the most frequent terms to refer to semantic structures (ontolog*, linked data, and knowledge

graph) as well as (3) a number of W3C standard names that are likely to be used when implement-
ing semantic web structures of interest for this survey. During the keyword selection a number of
keywords were tested but not included in the final query as they all lead to very large result sets
containing a lot of false positive hits. These include: semantic, semantic model, vocabulary.

Q2 - ML Module. The field of Machine Learning is extremely wide which is why the task of find-
ing the keywords that most accurately describe the ML module of SWeMLS is highly challenging.
For example, including generic search terms such as machine learning in the query leads to an
unmanageable number of results of way over 2800 works. To overcome this problem and to avoid
bias in selecting, an intersection of keywords present in multiple sources was chosen as basis for
this query. These sources were ACM Computing Classification System17 where we considered all
concept narrower to CCS→Computing methodologies→Artificial intelligence and CCS→Computing

methodologies→Machine learning, Topics extracted by Microsoft Academic18 that were child Topics
to Machine Learning19 or Artificial Intelligence20, and subcategories and pages of the Wikipedia cat-
egories Artificial Intelligence21 and Machine Learning22. A keyword was considered, if its concept
appeared in all three resources.

To reduce the amount of keywords considered and to increase their quality, terms that described
a specific approach or model such as BERT or PCA, as well as terms that were too unspecific and
do not show a clear connection to Machine Learning or Artificial Intelligence without knowing
their broader terms (e.g., visual inspection) were filtered out during a manual inspection step.

Q3 - System. To assure that retrieved documents present systems that are aiming at solving spe-
cific tasks a separate query is introduced. The inclusion of specific tasks as search terms would
bias the results as assumptions about possible tasks tackled by SWeMLS must be made prior to
knowing the task landscape. Therefore, this query focuses on application fields. An intersection
of all relevant children of (1) ACM Computing Classification System1 concepts CCS→Computing

methodologies→Artificial intelligence, CCS→Computing methodologies→Machine learning, and
CCS→Information systems, (2) Microsoft Academic2 Topics Machine Learning3 and Artificial In-

telligence4, and (3) Wikipedia categories Artificial Intelligence5 and Machine Learning6 was taken
into account, where children were considered relevant. if they represent an application area.

A.2 Regional Distribution of Publishing Institutes

• Africa: morocco (1), sudan (1), tunisia (4)
• Asia: china (184), hong kong (1), india (19), indonesia (1), japan (11), pakistan (2), republic

of korea (14), singapore (11), sri lanka (3), taiwan (6), thailand (4), vietnam (2)

17https://dl.acm.org/ccs, visited Oct 2nd 2020
18https://academic.microsoft.com/topics
19https://academic.microsoft.com/topics/41008148,119857082, visited Oct 2nd 2020
20https://academic.microsoft.com/topics/41008148,154945302, visited Oct 2nd 2020
21https://en.wikipedia.org/wiki/Category:Artificial_intelligence, visited Oct 2nd 2020
22https://en.wikipedia.org/wiki/Category:Machine_learning, visited Oct 2nd 2020
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• Europe: austria (1), belgium (3), bulgaria (2), denmark (1), finland (3), france (28), germany
(31), greece (5), ireland (6), italy (19), kosovo (1), netherlands (10), norway (2), poland (4), por-
tugal (6), romania (2), russia (5), scotland (1), slovenia (2), spain (11), sweden (1), switzerland
(5), united kingdom (24), wales (1)
• Middle East: egypt (5), iran (2), palestine (1), saudi arabia (3), turkey (3), uae (1)
• North America: canada (15), usa (98)
• Oceania: australia (18), new zealand (3)
• South and Central America: brazil (5), colombia (1), jamaica (1), mexico (1)

Fig. 37. Wordcloud with the top 40 keywords over all publications.

A.3 Concrete Machine Learning Approaches

In the following, we list the concrete ML approaches grouped by their category and super-category
and used in the analyzed papers, accompanied with the corresponding counts. It shall be noted that
the low-level approaches are of different granularity, therefore only the categroies are used in the
analysis of this review.

• Classical ML

– BAYES: bayes (21)
– KNN: knn (21)
– SVM: svm (30)
– DECISION TREES: m5 rules (2), decision trees (19)
– MIXTURE MODELS: gmm (2)
– REGRESSION: regression (17)
– MARKOV MODEL: rbm (1), crf (3), markov model (3)
– CLASSIC CLUSTERING: affinity propagation (1), info map (1), louvain (1), hiearchical

clustering (2), dbscan (3), matrix clusterization (5), k means (17)
– DIMENSIONALITY REDUCTION: svd (1), t sne (1), linear discriminant analysis (2), pca

(3)
– FORMAL CONCEPT ANALYSIS: fca (3)
– RULE LEARNING: ilp (3), arm (50)
– TOPIC MODELS: lsa (1), lda (8)
– SOM: ghsom (2)
– GENETIC ALGORITHMS: genetic algorithms (11)
– FACTORIZATION MACHINES: factorization machines (3)
– VSA: vsa (1)
• DL

– TRANSFORMER: albert (1), electra (1), mcan (1), xlnet (1), transformer (8), bert (16)
– LSTM: elmo (2), bi lstm crf (6)
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– PLAIN RNN: attentive bi gru (1), han (1), hopfield network (1), knowledge attention (1),
ksr (1), neural attention model (1), rkge (1), rnn gru (1), rsn (1), policy network (2), bi gru
(3), rnn (18), lstm (67)

– PLAIN CNN: faster rcnn (1), gated cnn (1), pcnn (3), resnet (3), cnn (76)
– GAN: gan (2)
– PLAIN ENCODER: metapath2vec (1), sentence2vec (1), rdf2vec (4), encoder (5), fasttext

(5), deep walk (6), node2vec (8), doc2vec (9), w2v (110)
– PLAIN FFNN: dkrl (1), hole (1), joie (1), literale (1), order embeddings (1), proje (1), sdne

(1), simple (1), tare (1), dqn (2), line (4), ntn (4), complex (9), distmult (12), ffnn (83)
• Graph DL

– MATRIX FACTORIZATION: analogy (1), concept net (1), dre (1), rdf2vec glove (1),
swivel (3), rescal (6), glove (24)

– TRANSLATIONAL DISTANCE: asymmetrical model (1), hyte (1), on2vec (1), poincare
(1), ukge (1), tce (2), transx (101)

– RECURRENT GNN: g rnn (1), sse (1), ggnn (3), gnn (7)
– CONVOLUTIONAL GNN: conve (4), gat (6), gcn (20)
– GRAPH FFNN: gram kge (1), graph2seq (1), senn (1)

A.4 Concrete Semantic Web resource

In the following, we list the concrete Semantic Web resource used in the analyzed papers, accompa-
nied with the corresponding counts. It shall be noted that these only cover the predefined resources
used, i.e., custom resources are omitted.

• General

– Benchmarks

∗ FB Graph BM: fb-500k (1), fb122 (1), fb24k (1), fb2m (1), fb5m (2), fb13 (15), fb15k-237
(25), fb15k (45)
∗ WordNet BM: wn-100k (1), wn36 (1), wn11 (10), wn18rr (15), wn18 (29)
∗ Wikidata BM: wiki-one (1), wikidata12k (1)
∗ DBPedia BM: db111k-174 (1), dbpedia500k (1), wk31-15k (1), dbpedia50k (2), dbp15k (4)
∗ NELL BM: nell-1m (1), nell-50k (1), nell79k (1), nell186 (2), nell-one (3), nell-995 (4)
∗ SemEval BM: semeval-2010 task 8 (1)
∗ OAEI BM: oaei-benchmark (2)
∗ YAGO BM: yago11k (1), yago15k (1), yago26k-906 (1), yago3-10 (1)

– Cross Domain: framester (1), google knowledge graph (1), imagenet (1), kb4rec (1), lcsh
(1), nell (1), shenma (1), sumo (1), microsoft satori (3), wikipedia (7), conceptnet (10), yago
(18), freebase (19), wikidata (20), dbpedia (56)

– Dictionaries: babelnet (1), framebase (1), indowordnet (1), odenet (1), odp (1), ruwordnet
(1), ppdb paraphrase dataset (2), sensigrafo (2), probase (4), wordnet (32)

– Others General: ace 2005 (1), baidu ske (1), cifar-100 (1), duie2.0 dataset (1), icews 05-15
(1), icews .14 (1), infuse ontology (1), nist tac-kbp (1), webnlg (1), mutag (2)

• Natural Sciences

– Archeology: package-slip knowledge graph (1)
– Biology / Biomedicine: arabidopsis hormone database 2.0 (1), cl (1), enzymekg (1), gnbr

(1), kegg (1), nhc ontology (1), pato (1), po (1), pr (1), pto (1), so (1), ncbi taxonomy (2),
ontobiotope (2), goa (3), knowlife (3), go (19)

– Chemistry: chemical complex ontology (1), rex (1), chebi (6)
– Geology: geoonto (1), bgs (3)
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Table 5. Brief descriptions of the main concepts of the SWeMLS Classification

System Systems that rely on Semantic Web resources and Machine Learning compo-

nents (SWeMLS).

Pattern A concept to represent the overall processing flows and the roles of the SW and

ML modules in a SWeML system. We use the boxology notation framework

[34] to define the interaction patterns between these modules.

SystemComponent A concept adapted from the term "Algorithmic Module" from the boxology

notation framework. A Processor uses one or more input Instance, applies

one or more Model and produces one or more output Instance. Furthermore,

a Processor could involve additional processes, e.g., data pre-processing.

Task The kind of tasks a SWeML system aims to solve.

Domain The application domain of a SWeML system.

Model A system of postulates, data, and inferences presented as a mathematical de-

scription of an entity or state of affairs.

StatisticalModel A statistical model is usually specified as a mathematical relationship between

one or more random variables and other non-random variables.

SymbolicModel A conceptual model represents .concepts. (entities) and relationships between

them. Semantic technologies formally represent the meaning involved in in-

formation. For example, an ontology can describe concepts, relationships be-

tween things, as well as their categories.

Instance An example or single occurrence of something.

Data Factual information (such as measurements or statistics) used as a basis for

reasoning, discussion, or calculation.

Symbol Something that stands for or suggests something else by reason of relationship,

association, convention, or accidental resemblance. An arbitrary or conven-

tional sign used in writing or printing relating to a particular field to represent

operations, quantities, elements, relations, or qualities.

Maturity The classification of the maturity level of a SWeML system (cf. Section 5.6.1)

Documentation Document contains information about the transparency and auditability com-

ponents of a SWeML system (cf. Section 5.6.2, Section 5.6.3).

– Medicine / Health: biological interaction (1), cvdo (1), entrez gene (1), gimi mammogra-
phy (1), iscn (1), meddra (1), twosides (1), usc (1), ccs (3), drugbank (3), snomed ct (3), hpo
(4), do (5), icd (5), mesh (6), umls (14)

• Human Culture and Education

– Academia / Publications: aminer (1), dblp (1), microsoft academic graph (1), open aca-
demic graph (1), scholarly ontology (1), swrc (1), aifb (3)

– Cultural Heritage: am (1)
– Education: aaup (1)
– Movie: imdb (1), linkedmdb (1), mo (1), movies (1), wikimovies (1)
– Music: albums (1), magnatune (1), musicbrainz (1)
• Geography and Economics

– ECommerce: alibaba taobao.s dataset (1)
– Finance / business: forbes (1), lca ontology (1)
– Geographical Domain: cities (1), countries (1), geonames (1), geoquery-880 (1), nations

(1)
– Tourism: lonley planet (1)
• Software / Tech

– Pervasive Computing: lminws (1)
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– Software Engineering: eclipse bugs (1), owls-tc v2.1 (1), s-case ontologies (1)
• Administration & Politics

– EGovernment: govwild (1), kinship (3)
• Other

– Food: winecloud (2)
– Security: uco (1)
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