
Reihe Informatik
02 / 2003

Nested Queries and Quantifiers
in an Ordered Context

Norman May Sven Helmer Guido Moerkotte

Nested Queries and Quantifiers in an Ordered Context

Norman May Sven Helmer Guido Moerkotte

Fakultät für Mathematik und Informatik
D7, 27

Universität Mannheim
68131 Mannheim

Germany
phone: +49 621 181 2585

fax: +49 621 181 2588
[norman|helmer|moer]@pi3.informatik.uni-mannheim.de

Abstract

We present algebraic equivalences that allow to unnest nested algebraic ex-
pressions for order-preserving algebraic operators. We illustrate how these equiv-
alences can be applied successfully to unnest nested queries given in the XQuery
language. Measurements illustrate the performance gains possible by our ap-
proach.

1 Introduction

With his seminal paper Kim opened the area of unnesting nested queries in the rela-
tional context [27]. Very quickly it became clear that enormous performance gains
are possible by avoiding nested-loop evaluation of nested query blocks (as proposed
in [1]). Almost as quickly, the subtleties of unnesting became apparent. The first bugs
in the original approach were detected — among them the famous count bug [28].
Retrospectively, we can summarize the problem areas as follows:

• Special cases like empty results lead easily to bugs like the count bug [28]. They
have been corrected by different approaches [11, 18, 26, 28, 30].

• If the nested query contains grouping, special rules are needed to pull up group-
ing operators [5].

• Special care has to be taken for a correct duplicate treatment [22, 33, 35].

The main reason for the problems was that SQL lacked expressiveness and unnest-
ing took place at the query language level. The most important construct needed for
correctly unnesting queries are outer joins [11, 18, 26]. After their introduction into
SQL and their usage for unnesting, reordering of outer joins became an important topic
[3, 17, 34]. A unifying framework for different unnesting strategies for SQL can be
found in [30].

1

With the advent of object-oriented databases and their query languages, unnesting
once again attracted some attention [9, 10, 13, 36, 37, 38]. In contrast to the relational
unnesting strategies, which performed unnesting at the (extended) SQL source level,
researchers from the object-oriented area preferred to describe unnesting techniques at
the algebraic level. They used algebras that allow nesting. Thus, algebraic expressions
can be found in subscripts of algebraic operators. For example, a predicate of a selec-
tion or join operator could again contain algebraic operators. These algebras allow a
straightforward representation of nested queries, and unnesting can then take place at
the algebraic level. The main advantage of this approach is that unnesting rewrites can
be described by algebraic equivalences for which rigorous correctness proofs could be
delivered. Further, these equivalence-based unnesting techniques remain valid inde-
pendently of the query language as long as queries remain expressible in the underly-
ing algebra. For example, they can also be applied successfully to SQL. However, the
algebras used for unnesting do not maintain order. Hence, they are only applicable to
queries that do not have to retain order. But we expect increasing interest in optimiz-
ing queries while retaining order during query execution. For example applications
dealing with time series, like finance, molecular biology, or network managment [29]
might also benefit from the unnesting techniques proposed in this paper.

XQuery1 is a query language that allows the user to specify whether to retain the
order of input documents or not. If the unordered function is applied to a query,
the query result’s order is independent of the input order, and the query processor can
generate the output in any order. If this is the case, the XQuery expression can be
translated into an unordered algebra, and the unnesting techniques discovered in the
object-oriented context remain applicable. Apart from the unordered function, the
query processor can determine other cases where the output order is irrelevant. Exam-
ples include aggregate functions, the distinct-values function, and quantifiers.
However, if the result’s order is relevant, the unnesting techniques from the object-
oriented context cannot be applied.

Quantification is a core feature of XQuery in which the keywords some and
every are used to express existential and universal quantification. Optimization for
queries containing quantification has been investigated in the relational and object-
oriented context — see [7] for related work.

The area of unnesting nested queries was reopened for XQuery by Paparizos et al.
[31]. Their approach describes the introduction of a grouping operator for a nested
query. However, the verbal description of their transformation is not rigorous and
indeed not complete: one important restriction that guarantees correctness is missing.
We will come back to this point when discussing our counterpart (Eqv. 5 in Sec. 4) of
their technique in Section 5.1. To the best of our knowledge, no other paper discusses
unnesting in the ordered context. Based on their previous work, Fegaras et al. [12]
focus on unnesting queries operating on streams. It is unclear to which extent order
preservation is considered (e.g. on the algebraic level hash joins are used, whose
implementation usually does not preserve order).

Before we apply our unnesting equivalences we translate the queries given in
XQuery into our algebra, called NAL. Our algebra extends the SAL-Algebra [2] de-
veloped by Beeri and Tzaban. SAL is the order-preserving counterpart of the algebra

1http://www.w3.org/XML/Query

2

used in [9, 10] extended to handle semistructured data.
The reason for using NAL instead of TAX is that NAL is close to our physical

algebra, and we believe that a physical algebra for TAX [32] is not as efficient as one
for NAL. Our reasons for this belief are that (1) trees are dynamically generated for
intermediate results and (2) selection predicates, join predicates and the like all rely
on pattern matching on these trees. In our algebra we also allow tree-valued attributes
but try to restrict their contents to node handles pointing to nodes in trees stored in
the database. Of course our approach can only be justified or falsified by extensively
benchmarking Timber [24] and Natix [14].

Within this paper, we introduce several different unnesting strategies and discuss
their application to different query types. All these techniques are described by means
of algebraic equivalences, which we proved to be correct in Appendix A. In particular,
they are order-preserving. They can be applied to algebraic expressions resulting from
queries

• with or without aggregate functions,

• with different comparison operators in their correlation predicate, and

• with existential and universal quantifiers.

We provide performance figures for every query execution plan, demonstrating the
significant speed-up gained by unnesting.

Overview of Our Approach Except for quantifiers, our unnesting approach con-
sists of the following three steps:

1. Normalization introduces additional let clauses for nested queries (see Sec. 3).

2. let clauses are translated into map operations (χ) (see Sec. 2) with nested alge-
braic expressions representing the nested query (see Sec. 3).

3. Unnesting equivalences (see Fig. 4) pull up expressions nested in a χ operator.

The remainder of the paper is organized as follows. Section 2 briefly motivates and
defines our algebra. Section 3 shows how to normalize and translate nested queries
into our algebra. Section 4 is the core of the paper, containing the equivalences used
for unnesting nested queries. The way they are applied is demonstrated in Section 5.
There, we apply different equivalences to queries found in the XQuery use-case doc-
ument2. For every query execution plan, we provide performance figures. Section 6
concludes the paper. Proofs of correctness of the unnesting equivalences are given in
Appendix A.

2 Notation and Algebra

Our algebra (NAL) extends the SAL-Algebra [2] developed by Beeri and Tzaban. SAL
is the order-preserving counterpart of the algebra used in [9, 10] extended to handle
semistructured data. SAL and NAL work on sequences of sets of variable bindings,
i.e., sequences of unordered tuples where every attribute corresponds to a variable. We

2http://www.w3.org/TR/xmlquery-use-cases

3

allow nested tuples, i.e. the value of an attribute may be a sequence of tuples. Single
tuples are constructed by using the standard [·] brackets. The concatenation of tuples
and functions is denoted by ◦. The set of attributes defined for an expression e is
defined as A(e). The set of free variables of an expression e is defined as F(e).

The projection of a tuple on a set of attributes A is denoted by |A. For an expression
e1 possibly containing free variables, and a tuple e2, we denote by e1(e2) the result of
evaluating e1 where bindings of free variables are taken from variable bindings pro-
vided by e2. Of course this requires F(e1) ⊆ A(e2). For a set of attributes we define
the tuple constructor ⊥A such that it returns a tuple with attributes in A initialized to
NULL.

For sequences e we use α(e) to denote the first element of a sequence. We identify
single element sequences and elements. The function τ retrieves the tail of a sequence
and ⊕ concatenates two sequences. We denote the empty sequence by ε. As a first
application, we construct from a sequence of non-tuple values e a sequence of tuples
denoted by e[a] which contains an attribute a which is bound to the non-tuple values.
It is empty if e is empty. Otherwise e[a] = [a : α(e)] ⊕ τ(e)[a].

By id we denote the identity function. In order to avoid special cases during the
translation of XQuery into the algebra, we use the special algebraic operator (2) that
returns a singleton sequence consisting of the empty tuple, i.e., a tuple with no at-
tributes.

We will only define order-preserving algebraic operators. For the unordered coun-
terparts see [10]. Typically, when translating a more complex XQuery into our algebra,
a mixture of order-preserving and not order-preserving operators will occur. In order
to keep the paper readable, we only employ the order-preserving operators and use the
same notation for them that has been used in [9, 10] and SAL [2].

Our algebra will allow nesting of algebraic expressions. For example, within a
selection predicate of a select operator we allow the occurrence of further nested alge-
braic expressions. Hence, a join within a selection predicate is possible. This simpli-
fies the translation procedure of nested XQuery expressions into the algebra. However,
nested algebraic expressions force a nested loop evaluation strategy. Thus, the goal of
the paper will be to remove nested algebraic expressions. As a result, we perform
unnesting of nested queries not at the source level but at the algebraic level. This
approach is more versatile and less error-prone.

We define the algebraic operators recursively on their input sequences. For unary
operators, if the input sequence is empty, the output sequence is also empty. For binary
operators, the output sequence is empty whenever the left operand represents an empty
sequence.

The order-preserving selection operator with predicate p is defined as

σp(e) :=

{
α(e) ⊕ σp(τ(e)) if p(α(e))
σp(τ(e)) else

For a list of attribute names A we define the projection operator as

ΠA(e) := α(e)|A ⊕ΠA(τ(e))

We also define a duplicate-eliminating projection ΠD
A . Besides the projection, it has

similar semantics as the distinct-values function of XQuery: it does not pre-
serve order. However, we require it to be deterministic and idempotent. Sometimes we

4

just want to eliminate some attributes. When we want to eliminate the set of attributes
A, we denote this by ΠA. We use Π also for renaming attributes. Then we write ΠA′:A.
The attributes in A are renamed to those in A′. Attributes other than those in A remain
untouched.

The map operator is defined as follows:

χa:e2(e1) := α(e1) ◦ [a : e2(α(e1))]⊕ χa:e2(τ(e1))

It extends a given input tuple t1 ∈ e1 by a new attribute a whose value is computed by
evaluating e2(t1). For an example see Figure 1.

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

χa:σA1=A2
(R2)(R1) =

A1 a

1 〈[1, 2], [1, 3]〉
2 〈[2, 4], [2, 5]〉
3 〈 〉

Figure 1: Example for map operator

We define the cross product of two tuple sequences as

e1 × e2 := (α(e1)×e2)⊕ (τ(e1)× e2)

where

e1×e2 :=

{
ε if e2 = ε
(e1 ◦ α(e2))⊕ (e1×τ(e2)) else

We are now prepared to define the join operation on ordered sequences:

e1
�
p e2 := σp(e1 × e2)

We define the semijoin as

e1 � p e2 :=

{
α(e1)⊕ (τ(e1) � p e2) if ∃x ∈ e2 p(α(e1) ◦ x)
τ(e1) � p e2 else

and the anti-join as

e1 .p e2 :=

{
α(e1)⊕ (τ(e1) .p e2) if 6 ∃x ∈ e2 p(α(e1) ◦ x)
(τ(e1) .p e2) else

The left outer join, which will play an essential role in unnesting, is defined as
e1

� g:e
p e2 :=

(α(e1) � p e2)⊕ (τ(e1) � g:e
p e2) if (α(e1) � p e2) 6= ε

(α(e1) ◦ ⊥A(e2)\{g} ◦ [g : e]) else
⊕(τ(e1) � g:e

p e2)

where g ∈ A(e2). Our definition slightly deviates from the standard left outer join
operator, as we want to use it in conjunction with grouping and (aggregate) functions.

5

Consider the relations R1 and R2 in Figure 2. If we want to join R1 (via left outer
join) to Rcount2 that is grouped by A2 with counted values for B, we need to be able to
handle empty groups (for A1 = 3). e defines the value given to attribute g for values
in e1 that do not find a join partner in e2 (in this case 0).

For the rest of the paper let θ ∈ {=,≤,≥, <,>, 6=} be a comparison operator
on atomic values. The grouping operators produce a sequence-valued new attribute
containing “the group”. The unary grouping operator is defined in terms of the binary
grouping operator.

Γg;θA;f(e) := ΠA:A′(Π
D
A′:A(ΠA(e))Γg;A′θA;fe)

where the binary grouping operator (sometimes called nest-join [36]) is defined as

e1Γg;A1θA2;fe2 := α(e1) ◦ [g : G(α(e1)]⊕ (τ(e1)Γg;A1θA2;fe2)

Here, G(x) := f(σx|A1
θA2

(e2)) and function f assigns a meaningful value to empty
groups. See also Figure 2 for an example. The unary grouping operator processes a
single relation and obviously groups only on those values that are present. The binary
grouping operator works on two relations and uses the left hand one to determine the
groups. This will become important for the correctness of the unnesting procedure.

R1

A1

1
2
3

R2

A2 B

1 2
1 3
2 4
2 5

Γg;=A2;count(R2) =
Rcount2

A2 g

1 2
2 2

Γg;=A2;id(R2) =
Rg2

A2 g

1 〈[1, 2], [1, 3]〉
2 〈[2, 4], [2, 5]〉

R1Γg;A1=A2;id(R2) =
Rg1,2

A1 g

1 〈[1, 2], [1, 3]〉
2 〈[2, 4], [2, 5]〉
3 〈 〉

Figure 2: Examples for unary and binary Γ

Given a tuple with a sequence-valued attribute, we can unnest it by using the
unnest operator defined as

µg(e) := (α(e)|{g} × α(e).g) ⊕ µg(τ(e))

where e.g retrieves the sequence of tuples of attribute g. In case that g is empty, it
returns the tuple ⊥A(e.g). (In our example in Figure 2, µg(R

g
2) = R2.)

We define the unnest map operator as follows:

Υa:e2(e1) := µg(χg:e2[a](e1))

This operator is mainly used for evaluating XPath expressions. Since this is a very
complex issue [19, 20, 23], we do not delve into optimizing XPath evaluation but

6

instead take an XPath expression occurring in a query as it is and use it in place of
e2. Optimized translation of XPath is orthogonal to our unnesting approach and not
covered in this paper. The interested reader is referred to [23].

For result construction, we employ a simplified operator Ξ that combines a pair of
Groupify-GroupApply operators [15]. It executes a semicolon-separated list of com-
mands and, as a side effect, constructs the query result. The Ξ operator occurs in two
different forms. In its simple form, besides side-effects, Ξ is the identity function,
i.e., it returns its input sequence. For simplicity, we assume that the result is con-
structed as a string on some output stream. Then the simplest command is a string
copied to the output stream. If the command is a variable, its string value is copied
to the output stream. For more complex expressions, the procedure is similar. If e
is an expression that evaluates to a sequence of tuples containing a string-valued at-
tribute a that is successively bound to author names from some bibliography document,
Ξ”<author>”;a;”</author>”(e) embeds every author name into an author element.

In its group-detecting form, s1Ξs3A;s2
uses a list of attributes (A) and three sequences

of commands. We define

s1Ξs3A;s2
(e) := Ξ(s1;Ξs2 ;s3)(Γg;=A;ide)

where Γ has to use an order-preserving duplicate operation in its definition and Ξs2

processes the sequence-valued attribute created by Γ. Like grouping in general, Ξ can
be implemented very efficiently on condition that a group spans consecutive tuples
in the input sequence and group boundaries are detected by a change of any of the
attribute values in A. Then for every group the first sequence of statements (s1) is
executed using the first tuple of a group, the second one (s2) is executed for every
tuple within a group, and the third one (s3) is executed using the last tuple of a group.
This condition can be met by a stable(!) sort on A. Introducing the complex Ξ saves a
grouping operation that would have to construct a sequence-valued attribute.

Let us illustrate s1Ξs3A;s2
(e) by a simple example. Assume that the expression e

produces the following sequence of four tuples:

[a: "author1", t: "title1"]
[a: "author1", t: "title2"]
[a: "author2", t: "title1"]
[a: "author2", t: "title3"]

Then s1Ξs3a;s2(e) with

s1 = "<author>";"<name>";a;"</name>"
s2 = "<title>";t;"</title>"
s3 = "</author>"}

produces

<author>
<name>author1</name>
<title>title1</title>
<title>title2</title>

</author>

7

<author>
<name>author2</name>
<title>title1</title>
<title>title3</title>

</author>

To acquaint the reader with ordered sequences, we state some familiar equivalences
that still hold.

σp1(σp2(e)) = σp2(σp1(e))

σp(e1 × e2) = σp(e1)× e2

σp(e1 × e2) = e1 × σp(e2)

σp1(e1
�
p2 e2) = σp1(e1)

�
p2 e2

σp1(e1
�
p2 e2) = e1

�
p2 σp1(e2)

σp1(e1
�
p2 e2) = σp1(e1)

�
p2 e2

σp1(e1
� g:e
p2
e2) = σp1(e1)

� g:e
p2
e2

e1 × (e2 × e3) = (e1 × e2)× e3

e1
�
p1 (e2

�
p2 e3) = (e1

�
p1 e2)

�
p2 e3

Of course, in the above equivalences the usual restrictions hold. For example, if
we want to push a selection predicate into the left part of a join, it may not reference
attributes of the join’s right argument. In other words, F(p1)∩A(e2) = ∅ is required.
Please note that cross product and join are still associative in the ordered context.
However, neither of them is commutative.

One word on implementation. Standard implementation techniques for algebraic
operators [21] do not preserve order. Claussen et al. provide an efficient implementa-
tion for an order-preserving hash join [6]. Currently, we have not implemented it but
use a Grace-Hash-Join [16] instead with a subsequent sorting operator to restore or-
der. Further performance enhancements for unnested plans with joins can be expected
when using the order-preserving hash join [6]. The technique presented there can be
adopted to implement unary and binary grouping. For another implementation of the
binary grouping operator see [4]. There, it is called MD-Join. We would also like to
point out that the Υ operator generates its output in document order if the translation
of XPath expressions described in [23] is used.

3 Normalization and Translation

The first part of this section briefly describes the normalization step that is applied to
the original query. It takes place at the source level. Then we sketch the translation
from XQuery into our algebra. Since Section 5 will give many examples of both steps,
we do not give any example in this section.

Prior to translation into the algebra, we use a normalization step that introduces
new variables. This step is called dependency-based optimization and is used to elim-
inate common subexpressions. This kind of optimization, although vital, is simple
enough and requires mainly one traversal of the query’s syntax tree. Since it has been
presented elsewhere [8], we will not detail it. The splitting allows us to consider

8

The binary T function for FLWR expressions:

T (Q,A) :=

T (REST,Υxn:T (en)(. . . (Υx1:T (e1)(A)))) if Q = for $x1 in e1, . . . , $xn in en REST
T (REST, χxn:T (en)[x′n](. . . (χx1:T (e1)[x′

1
](A)))) if Q = let $x1 := e1, . . . , $xn := en REST

T (REST, σT (p)(A)) if Q = where p
ΞC(e)(A) if Q = return e
A if Q is empty string

The unary T function for other expressions:

T (Q) :=

∃x ∈ T (D)T (P) if Q = some $x in D satisfies P
∀x ∈ T (D)T (P) if Q = every $x in D satisfies P
ΠD(T (e)) if Q = distinct-values(e)
T (Q,2) if Q is a FLWR expression
f(T (e1), . . . , T (en)) if Q = f(e1, . . . , en)
Q if Q is a variable or constant

Figure 3: Translation of XQuery FLWR expressions into the algebra

every possible subexpression that can be factorized. In this paper, we will not split
everywhere but only when necessary in order to demonstrate the major points. The
motivation for this step becomes apparent when considering that (1) a let clause will
be translated into a χ operator and (2) most unnesting equivalences (see Fig. 4) use a
χ operator as their starting point. Roughly, we apply the following steps:

1. We embed range expressions of quantifiers into new FLWR expressions.

2. We break up complex expressions and introduce new variables for subexpres-
sions.

3. We factorize common subexpressions.

4. We move predicates from XPath expressions to the where clause whenever pos-
sible.

Note that all of these steps require some attention, since careless application of this
procedure may change the semantics of the query.

We specify the translation procedure by means of two recursive procedures T (see
Figure 3). For a given query Q, T (Q) translates Q into the algebra. One of them is
unary, the other binary. The binary T procedure is responsible for translating FLWR
expressions into the algebra. We do not treat the order by clause, since we concen-
trate on the ordered case in this paper. The first argument of the binary T procedure
is the (remainder of) the query to be translated, and the second argument is the alge-
braic expression constructed so far. For non-FLWR expressions, we use the unary T
operation. Both are mutually recursive, since a FLWR expression can occur within
simple expressions and vice versa. The translation is rather straightforward, but two
technical remarks are necessary. When translating the let clause we have to introduce
additional attributes/variables for the items in the results of the expressions ei since
XQuery expressions do not return sequences of tuples but sequences of items and the
data model of our algebra allows only nested sequences of tuples. Hence, we have to
invent new attribute names. However, in case the result of some ei is a singleton, we
do not need to do so and will not either.

9

χg:f(σA1θA2
(e2))(e1) = e1Γg;A1θA2;fe2 (1)

χg:f(σA1=A2
(e2))(e1) = Π

A2
(e1 � g:f(ε)

A1=A2
(Γg;=A2;f (e2))) (2)

χg:f(σA1θA2
(e2))(e1) = ΠA1:A2

(Γg;θA2;f (e2)) if e1 = ΠDA1:A2
(ΠA2

(e2)) (3)

χg:f(σA1∈a2
(e2))(e1) = Π

A2
(e1 � g:f(ε)

A1=A2
Γg;=A2;f (µDa2

(e2))) (4)

χg:f(σA1∈a2
(e2))(e1) = ΠA1:A2

(Γg;=A2;f (µDa2
(e2))) if e1 = ΠDA1:A2

(ΠA2
(µa2 (e2))) (5)

σ∃x∈(Πx′ (σA1=A2
(e2)))p(e1) = e1 � A1=A2∧p′ e2 (6)

σ∀x∈(Πx′ (σA1=A2
(e2)))p(e1) = e1 .A1=A2∧¬p′ e2 (7)

Figure 4: Unnesting equivalences

Additionally, we have to use the function C, which converts the return expression
into a sequence of expressions. Every expression is either treated as a constant string
that is printed by Ξ, or as an evaluable expression if it is escaped by { and }. On
the latter C applies T . This treatment of the return clause of XQuery is not really
advanced, but since our focus is on unnesting nested queries, it suffices for demonstra-
tion purposes. The interested reader is referred to [15] for a more detailed description
on how to treat result construction for XML query languages.

Besides result construction, another suboptimal spot of our translation is the treat-
ment of path expressions. We are aware of the fact that efficient evaluation algorithms
for path expressions exist [19, 20, 23]. But again, since this is orthogonal to the unnest-
ing, we do not describe any optimizing translation procedure. Note the ease of our
translation compared to the one described in [25], which also does not elaborate on
efficient XPath evaluation.

4 Unnesting Equivalences

Figure 4 contains the equivalences that will allow us to unnest nested algebraic expres-
sions. For readers unfamiliar with the general procedure of unnesting nested queries,
we suggest skipping this section during the first reading. We advise to continue with
the next section containing the example queries. After having worked through the
examples, one can come back to this section to have a look at the rigorous defini-
tions of the equivalences, which are crucial for a correct treatment of this subject.
Too often, incorrect unnesting procedures have appeared. Thus, before commenting
on the equivalences, let us give the conditions that ensure correctness. For the first
three equivalences we must have Ai ⊆ A(ei) and F(e2) ∩ A(e1) = ∅. In Eqv. 4,
µDg (e) abbreviates Πg′(µg′(χg′:ΠD(g)(e))). For equivalences 4 and 5, we must have
a2 ∈ A(e2) and A2 = A(a2). In these two equivalences, the function f may not de-
pend on the values of the attributes a2 and A2. In other words, it must satisfy that for
every sequence s f(s) = f(Πa2(s)) = f(ΠA2

(s)). As f will mostly be a projection,
aggregate function, or a combination of both, this condition will easily be satisfied.
The first five equivalences make use of a new attribute g with g 6∈ A(e1) ∪A(e2). We
further assume the attribute names occurring in e1 and e2 to be different: A1∩A2 = ∅.

10

Please note that the conditions given in Eqv. 3 and 5 imply A1 = A(e1). For the last
two equivalences, x′ ∈ A(e2) must hold. Further, p′ results from p by replacing x by
x′.

Why are the equivalences useful? Remember from the normalization process that
a nested query becomes an expression in the let clause, and from the translation pro-
cess that a let is translated into a χ operation. Hence, all unnesting equivalences will
be applied from left to right. Whenever there are alternative applications, the most
efficient plan should be chosen. This plan typically results from the equivalences with
the most restrictive conditions attached. In case the where clause contains a quantifier,
the translation process results in an expression matching the left-hand side of one of
the last two equivalences.

As an example, consider Eqv. 1: The left hand side of the equivalence is shown
in Figure 1. The naive nested loop evaluation of the expression χa:σA1=A2

(R2)(R1)
results in three scans over R2 — the number of items in R1. The right hand side of the
equivalence is depicted in Figure 2. A more efficient evaluation for Rg

1,2 is possible
because R2 needs to be scanned just once — independent of the number of items in
R1.

Related Work: For all equivalences except 4 and 5, counterparts for a traditional
algebra on (unordered) sets appeared in the literature (see [10] and the related work
discussion there). Equivalences 4 and 5 are new in both the ordered and the unordered
context. An equivalent to Eqv. 5 in the ordered context appeared in [31] but without
giving the important condition e1 = ΠD

A1:A2
(ΠA2(e2)). The counterparts of Eqvs. 6

and 7 appeared, for example, in [7, 11]. Nevertheless, we have to prove the correctness
of both, the new equivalences and those with counterparts in the unordered context, for
the ordered context. The proofs of all these equivalences can be found in Appendix A.

The next two equivalences do not unnest, but save scanning the same document
twice, which leads to faster execution. They are typically applied after unnesting.

ΠD(e1)
�
A1=A2 (σp(e2)) = σc>0(E) (8)

ΠD(e1) .A1=A2 (σp(e2)) = σc=0(E) (9)

withE = ΠA1:A2(Γc;=A2;count◦σp(e2)). The equivalences hold ifAi ⊆ A(ei),F(e2)∩
A(e1) = ∅, and ΠD(e1) = ΠD

A1:A2
(ΠA2(e2)).

5 Example Applications

In this section, we present example applications for the unnesting equivalences. We
based the queries on those in the XQuery use case document and the DTDs therein.
The DTDs for the first four queries are given in Figure. 5. We rewrote the queries
by renaming variables and simplifying them slightly, thereby retaining the essence of
the query. The numbers in the subsection headings correspond to the query numbers
therein. Due to space restrictions, we will discuss only the first query in a detailed
way.

We verified the effectiveness of the unnesting techniques experimentally. The ex-
periments were carried out on a simple PC running SuSE Linux 8.1 with a 2.4 GHz
Pentium using the Natix query evaluation engine [14]. The evaluation engine was

11

Use case XMP:

<!DOCTYPE bib [
<!ELEMENT bib (book*)>
<!ELEMENT book (title, (author+ |

editor+),
publisher,
price)>

<!ATTLIST book year CDATA
#REQUIRED>

<!ELEMENT author (last, first)>
<!ELEMENT editor (last, first,

affiliation)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT last (#PCDATA)>
<!ELEMENT first (#PCDATA)>
<!ELEMENT affiliation (#PCDATA)>
<!ELEMENT publisher (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>

<!DOCTYPE reviews [
<!ELEMENT reviews (entry*)>
<!ELEMENT entry (title, price,

review)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT price (#PCDATA)>
<!ELEMENT review (#PCDATA)>

]>

<!DOCTYPE prices [
<!ELEMENT prices (book*)>
<!ELEMENT book (title, source,

price)>
<!ELEMENT title (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ELEMENT price (#PCDATA)>

]>

Use case R:

<!DOCTYPE users [
<!ELEMENT users (usertuple*)>
<!ELEMENT usertuple (userid, name,

rating?)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT rating (#PCDATA)>

]>

<!DOCTYPE items [
<!ELEMENT items (itemtuple*)>
<!ELEMENT itemtuple (itemno,

description,
offered_by,
startdate?,
enddate?,
reserveprice?)>

<!ELEMENT itemno (#PCDATA)>
<!ELEMENT description (#PCDATA)>
<!ELEMENT offered_by (#PCDATA)>
<!ELEMENT startdate (#PCDATA)>
<!ELEMENT enddate (#PCDATA)>
<!ELEMENT reserveprice (#PCDATA)>

]>

<!DOCTYPE bids [
<!ELEMENT bids (bidtuple*)>
<!ELEMENT bidtuple (userid, itemno,

bid, biddate)>
<!ELEMENT userid (#PCDATA)>
<!ELEMENT itemno (#PCDATA)>
<!ELEMENT bid (#PCDATA)>
<!ELEMENT biddate (#PCDATA)>

]>

Figure 5: DTDs for the example queries

compiled using g++ 3.2. The database cache was configured such that it could hold
the queried documents.

The XML files were generated by ToXgene3 using the DTD in the XQuery use
case document. We executed the various evaluation plans on different sizes of input
documents as listed in Figure 6. The number of users per bid varied between 1 and 10.
We note the number of elements contained in the input documents for each measure-
ment and thereby reference to the documents below.

5.1 Query 1.1.9.4 (Grouping)

The first query restructures the input document by grouping books by authors (note
that grouping in XQuery is done implicitly).

let $d1 := doc("bib.xml")
for $a1 in distinct-values($d1//author)
return

3available at: http://www.cs.toronto.edu/tox/toxgene/

12

Use case XMP
file bib.xml (authors per book) prices.xml reviews.xml

size 2 5 10
100 20.6 KB 39.0 KB 68.7 KB 10.7 KB 20.8 KB

1000 207 KB 388 KB 688 KB 106 KB 203 KB
10000 2.09 MB 3.90 MB 6.90 MB 1.06 MB 2.07 MB

Use case R
file/size bids.xml items.xml users.xml

100 11.1 KB 21.4 KB 9.0 KB
1000 111 KB 215 KB 89.4 KB

10000 1.13 MB 2.16 MB 903 KB

Figure 6: Size of the input documents for the example queries

<author>
<name> { $a1 } </name>
{
let $d2 := doc("bib.xml")
for $b2 in $d2/book[$a1 = author]
return $b2/title

}
</author>

and its normalization yields

let $d1 := doc("bib.xml")
for $a1 in distinct-values($d1//author)
let $t1 := let $d2 := doc("bib.xml")

for $b2 in $d2/book
let $a2 := $b2/author,

$t2 := $b2/title
where $a1 = $a2
return $t2

return
<author>
<name> { $a1 } </name>
{ $t1 }

</author>

Normalization of the query first moves the nested FLWR expression outside the return
clause into a new let clause. We prepare the moved for clause for the translation into
an algebraic expression by introducing new variables. We further moved the predicate
at the end of the path expression into the where clause to have it translated into a
σ. (Note the σ in the subscripts of the χ on the left-hand side of the equivalences in
Fig. 4.)

During translation, we have to take care of one important point. There exist differ-
ent comparison operators in XQuery, and a simple ‘=’ has existential semantics in case
either side contains a sequence of expressions. In our case, $a1 is bound to a single
value, and $a2 is bound to a sequence. Consequently, we have to translate $a1 = $a2

13

into a1 ∈ a2. From the DTD we know that every book contains only a single title
element. Thuus, we can save the introduction of an attribute t2′ and the invocation of
a concatenation operation that is implicitly invoked in XQuery4. Hence, we can apply
a simple projection on t2 to model the return clause of the inner query block. The
translation then results in

Ξs1;a1;s2;t1;s3(χt1:Πt2(σa1∈a2(ê2))(ê1))

where

ê1 := Υa1:ΠD(d1//author)(χd1:doc(2))

ê2 := χt2:b2/title(χa2:b2/author[a2′](Υb2:d2/book(χd2:doc(2))))

and

doc = doc("bib.xml")
s1 = "<author><name>"
s2 = "</name>"
s3 = "</author>"

Looking at the left-hand sides of our unnesting equivalences, Eqvs. 4 and 5 are
obvious candidates. To verify the conditions mentioned in the text in Sec. 4 is easy
for Eqv. 4. In order to meet the conditions of Eqv. 5, we have to project unneeded
attributes away. (Although not necessary, we also do so for Eqv. 4.) Hence, we define
e1 := Πa1(ê1) and e2 := Πa2 ,t2(ê2). Then, the condition e1 = ΠD

a1:a2
(Πa2(e2))

of Eqv. 5 obviously holds if there are no author elements other than those directly
under book elements. This is the case for the DTD given in the XQuery use case
document. However, it is not true for DBLP’s DTD. In fact, exactly this condition
escaped the authors of [31]. Still, if we knew from the document that all authors have
written a book, the condition would hold.

After having checked the conditions, we can apply both equivalences if the use
case document’s DTD is satisfied and get the unnested argument expressions for Ξ:

Ξs1;a1;s2;t1;s3(Πa2′(e1
� t1:ε
a1=a2′ (Γt1;=a2′;Πt2(µDa2(e2)))))

and

Ξs1;a1;s2;t1;s3(Πa1:a2′(Γt1;=a2′ ;Πt2(µDa2(e2))))

Note that although the order is destroyed on authors, both expressions produce the
titles of each author in document order, as is required by the XQuery semantics for
this query.

The latter expression can be simplified by renaming a1 to a2′:

Ξs1;a2′;s2;t1;s3(Γt1;=a2′;Πt2(µDa2(e2)))

The simplified expression can be enhanced further by using the group-detecting Ξ
operator:

s1;a2′;s2Ξs3a2′;t2(µDa2(e2))

4XQuery specifies that the result sequences the return clause generates for every tuple binding are
concatenated.

14

In the table below, we summarize the evaluation times for the first query. The
document bib.xml contained either 100, 1000, or 10000 books and authors. To
investigate the effect of different group sizes, we varied the number of authors per
book between 2 and 10.

Authors Evaluation Time (books)
Plan per Book 100 1000 10000

nested 2 0.15 s 7.04 s 788 s
5 0.25 s 17.06 s 1678 s

10 0.40 s 31.65 s 3195 s
outer join 2 0.08 s 0.12 s 0.57 s

5 0.09 s 0.17 s 1.17 s
10 0.09 s 0.25 s 2.45 s

grouping 2 0.08 s 0.11 s 0.39 s
5 0.09 s 0.16 s 0.87 s

10 0.10 s 0.27 s 2.07 s
group Ξ 2 0.07 s 0.09 s 0.33 s

5 0.07 s 0.13 s 0.73 s
10 0.08 s 0.17 s 1.37 s

While the query plan using the outer join needs to scan the input document twice
and the last two plans just once, the nested plan needs to scan the document |author|+
1 times where |author| is the number of author elements in the input document. The
measurements demonstrate the massive performance improvements as an immediate
consequence. However, all evaluation plans scale approximately linear for the size of
each group.

To give some performance numbers on a reasonably sized document, we also ran
the query against the DBLP database comprising about 140 MB. This XML document
contains publications including books, articles, theses and so on. Each publication may
have child nodes which are authors. When we evaluate the example query against this
document, we may not apply Eqv. 5 because there are authors that have not published
a book. Thus, we have to stay with the more general plan using the outer join. This
plan takes 13.95 seconds to evaluate. This is in stark contrast to the execution time of
the nested plan taking 182h42m, which is a little more than a week! Due to this high
execution time, we limit ourselves to smaller documents for the rest of the paper.

5.2 Query 1.1.9.10 (Aggregation)

Aggregation is often used in conjunction with grouping. The second query extends the
first query with an aggregation.

let $d1 := doc("prices.xml")
for $t1 in distinct-values($d1//book/title)
let $p1 := let $d2 := doc("prices.xml")

for $p2 in $d2//book[title = $t1]
/price

return decimal($p2)
return

15

<minprice title="{ $t1 }">
<price> { min($p1) } </price>

</minprice>

We first normalize the query. In general, we have to be very careful when rewriting
a path expression. Breaking up the XPath expression in the query is only possible
because we know from the DTD that every book element has exactly one price
child element.

let $d1 := doc("prices.xml")
for $t1 in distinct-values($d1//book/title)
let $m1 := min(

let $d2 := doc("prices.xml")
for $b2 in $d2//book
let $t2 := $b2/title
let $p2 := $b2/price
let $c2 := decimal($p2)
where $t1 = $t2
return $c2)

return
<minprice title="{ $t1 }">

<price> { $m1 } </price>
</minprice>

Knowing that every book element has exactly one title child element5 , the
translation yields

Ξs1,t1,s2;m1;s3(χm1:min(Πc2(σt1=t2(ê2)))(ê1))

where

ê1 = Υt1:ΠD(d1//book/title)(χd1:doc(2))

ê2 = χc2:decimal(p2)(χp2:b2/price(χt2:b2/title(Υb2:d2//book(χd2:doc(2)))))

and

doc = doc("prices.xml")
s1 = "<minprice title=\""
s2 = "\"><price>"
s3 = "</price></minprice>"

Let us again project unneeded attributes away and define e1 := Πt1(ê1) and e2 :=
Πt2,c2(ê2). Since only title elements under book elements are considered, not
only are Eqvs. 1 and 2 applicable but the restriction e1 = ΠD

t1:t2(Πt2(e2)) holds and
Eqv. 3 can be used. Since the latter results in the most efficient plan, we neglect the
other possibilities for space reasons. Applying Eqv. 3 leaves us with

Ξs1,t1,s2;m1;s3(Πt1:t2(Γm1;=t2;min◦Πc2(e2)))

Below, we compare the evaluation times for the two plans. Again we observe
impressive performance gains for the same reasons as previously explained.

5Otherwise, the translation must use ‘∈’ instead of ‘=’.

16

Evaluation Time (books)
Plan 100 1000 10000

nested 0.09 s 1.81 s 173.51 s
grouping 0.07 s 0.08 s 0.19 s

5.3 Query 1.1.9.5 (Existential Quantification I)

The third example query uses a nested existentially quantified expression in the where
clause. Note that although order preservation within the quantifier is not needed, the
following query retrieves title elements in document order.

let $d1 := document("bib.xml")
for $t1 in $d1//book/title
where some $t2 in

document("reviews.xml")//entry/title
satisfies $t1 = $t2

return
<book-with-review>

{ $t1 }
</book-with-review>

Normalized, this query reads

let $d1 := document("bib.xml")
for $t1 in $d1//book/title
where some $t2 in (

let $d3 := document("reviews.xml")
for $t3 in $d3//entry/title
return $t3)

satisfies $t1 = $t2
return

<book-with-review>
{ $t1 }

</book-with-review>

We can move the correlation predicate into the range expression and translate the nor-
malized query into

Ξs1;t1;s2(σ∃t2∈e2 true(e1))

where

e1 := Υt1:d1//book/title(χd1:doc1(2))

e2 := Πt3(σt1=t3(e3))

e3 := Υt3:d3//entry/title(χd3:doc3(2))

and

doc1 = document("bib.xml")
doc3 = document("reviews.xml")
s1 = "<book-with-review>"
s2 = "</book-with-review>"

17

We use Eqv. 6 to get
Ξs1;t1;s2(e1

�
t1=t3 e3).

The performance of these two evaluation plans is compared in the following table.
As in the previous examples, the unnested query plan scales better for larger input
documents.

Evaluation Time (books/reviews)
Plan 100 1000 10000

nested 0.10 s 1.83 s 175.80 s
semijoin 0.08 s 0.09 s 0.20 s

5.4 Existential Quantification II

Existential quantification might be expressed in different ways. Instead of using a
quantified expression, it is also possible to use the function empty or check if count-
ing evaluates to zero. The following example illustrates a third alternative using the
function exists.

let $d1 := doc("bib.xml")
for $b1 in $d1//book,

$a1 in $b1/author
where exists(

let $b2 := $d1//book
for $a2 in $b2/author
where contains($a2, "Suciu")
and $b1 = $b2

return $b2)
return

<book>
{ $a1 }

</book>

The translation of the query yields:

Ξs1;a1;s2(σ∃b3∈e3 true(e1))

where

e1 := Υa1:b1/author(Υb1:d1//book(χd1:doc1(2)))

e2 := Υa2:b2/authorΥb2:d1//book(χd1:doc1(2))

e3 := Πa2(σb1=b2∧contains(a2,”Suciu”)(e2))

and

d1 = doc("bib.xml")
s1 = "<book>"
s2 = "</book>"

The expression can be unnested by using Eqv. 6. We check the prerequisites of
Eqv. 8 and notice that the required duplicate elimination on the book elements of
e1 is not necessary because //book returns a duplicate-free sequence of books by

18

definition. So we can apply Eqv. 8. Both expressions (for Eqv. 6 and Eqv. 8) are
shown below.

Ξs1;a2;s2(e1
�
b1=b2∧contains(a2,”Suciu”) (e2)

Ξs1;a2;s2(σc>0(Γc;=b2;count◦σcontains(a2,”Suciu”)
(e2))

In the table below, we summarize the execution times for the three presented ex-
pressions. The tremendous effect of unnesting can also be seen in this case. In addi-
tion, we observe a performance gain in the third evaluation plan, which is caused by
avoiding one scan of the input document.

Evaluation Time (books)
Plan 100 1000 10000

nested 0.04 s 1.31 s 138.8 s
semijoin 0.03 s 0.05 s 0.30 s
grouping 0.02 s 0.02 s 0.02 s

5.5 Query with Universal Quantification

Besides existential quantification, XQuery supports universal quantification. The fol-
lowing example returns the authors whose books were all published after 1993.

let $d1 := doc("bib.xml")
for $a1 in distinct-values($d1//author)
where every $b2 in doc("bib.xml")//

book[author = $a1]
satisfies $b2/@year > 1993

return
<new-author>

{ $a1 }
<new-author>

Normalization is a little more complex here, as some more rewrites are necessary.
First, for the range expression of the quantifier (doc("bib.xml")//book[author
= $a1]) we introduce a new query block (FLWR expression). Then we unnest the
authors of the correlation predicate. Finally, since the year attribute is the only
information about books needed in the satisfies part of the quantifier, we change
the range variable. As these rewrites have been discussed in depth (see [7]), we do not
detail on them here. They result in

let $d1 := doc("bib.xml")
for $a1 in distinct-values($d1//author)
where every $y2 in (

let $d3 := doc("bib.xml")
for $b3 in $d3//book
let $y3 := $b3/@year
for $a3 in $b3/author
where $a1 = $a3
return $y3)

satisfies $y2 > 1993

19

return
<new-author>

{ $a1 }
<new-author>

The nested query plan is derived by application of the translation rules.

Ξs1;a1;s2(σ∀y2∈e2 y2>1993(e1))

where

e1 = Υa1:ΠD(d1//author)(χd1:doc(2))

e2 = Πy3(σa1=a3(e3))

e3 = Υa3:b3/author(χy3:b3/@year(Υb3:d3//book(

χd3:doc(2))))

and

doc = doc("bib.xml")
s1 = "<new-author>"
s2 = "</new-author>"

Eqv. 7 is applicable and yields

Ξs1;a1;s2(e1 .a1=a3∧y3≤1993 e3)

Of course, we can push the second part of the join predicate into its second operand.
This yields

Ξs1;a1;s2(e1 .a1=a3 σy3≤1993(e3))

Since we know from the DTD that author elements occur only under book
elements, ΠD

a1(e1) = ΠD
a1 :a3

(Πa3(e3)) holds and thus, we can apply Eqv. 9, which
yields:

Ξs1;a1;s2(σc=0(Γc;=aa;count◦σy3≤1993
(e3)))

A comparison of the evaluation times of the discussed plans is given in the table
below. The unnested query plans scale better than the nested plan because they need
to scan the input document once or twice. In contrast to that the nested plan needs to
execute the nested query as often as there are author elements in the input document.

Evaluation Time (books)
Plan 100 1000 10000

nested 0.12 s 4.86 s 507.85 s
anti-semijoin 0.07 s 0.08 s 0.24 s

grouping 0.07 s 0.08 s 0.23 s

20

5.6 Query 1.4.4.14 (Aggregation in the Where Clause)

In our last example query, nesting occurs in a predicate in the where clause that de-
pends on an aggregate function, count in this case. This is similar to a having-clause
in SQL: after grouping bids by itemno, they are selected by the result of the aggre-
gation.

let $d1 := document("bids.xml")
for $i1 in distinct-values($d1//itemno)
where

count($d1//bidtuple[itemno = $i1]) >= 3
return

<popular-item>
{ $i1 }

</popular-item>

During normalization we extract the left argument of the general comparison, turn
it into a let clause, and move the XPath predicate into a where clause.

let $d1 := document("bids.xml")
for $i1 in distinct-values($d1//itemno)
let $c1 := count(

let $d2 := document("bids.xml")
for $i2 = $d2//bidtuple/itemno
where $i1 = $i2
return $i2)

where $c1 >= 3
return

<popular_item>
{ $i1 }

</popular_item>

Now the translation into our algebra is easy. As the result, tuples from the inner
query are counted, we do not need to introduce a Ξ operator, an attribute i2′, or project
down to i2.

Ξs1,i1,s2(σc1>=3(χc1:count(σi1=i2(ê2))(ê1)))

where

ê1 := Υi1:ΠD(d1//itemno)(χd1:doc(2))

ê2 := Υi2:d2//bidtuple/itemno(χd2:doc(2))

and

doc = document("bids.xml")
s1 = "<popular_item>"
s2 = "</popular_item>"

21

We would like to apply Eqv. 3 for unnesting the above expression. In order to
do that, we have to check that the prerequisites hold. Projecting away unnecessary
attributes, we define e1 := Πi1(ê1) and e2 := Πi2(ê2). Looking at the DTD of
bids.xml, we see that itemno elements appear only directly beneath bidtuple el-
ements. Thus, the condition e1 = ΠD

i1:i2(Πi2(e2)) holds and we can apply Eqv. 3:

Ξs1,i1,s2(σc1>=3(Πi1:i2(Γc1;=i2;count(e2))))

The evaluation times for each plan are given in the table below. The number of
bids and items is varied. The number of items equals 1/5 times the number of bids.
Again, the measurements verify the effectiveness of the unnesting techniques.

Evaluation Time (bids)
Plan 100 1000 10000

nested 0.06 s 0.53 s 48.1 s
grouping 0.06 s 0.07 s 0.10 s

6 Conclusion

In the core of the paper we presented equivalences that allow to unnest nested algebraic
expressions. Some of these equivalences are counterparts of existing equivalences
valid for algebras whose operators do not preserve order. For others, no counterpart
has been published so far. We demonstrated each of the equivalences by means of an
example. Thereby, we showed their applicability to queries with and without aggre-
gate functions and with or without quantifiers. Further, we experimentally compared
the performance of the nested algebraic expressions with the unnested algebraic ex-
pressions. In doing so, enormous performance improvements could be observed.

Acknowledgment. We thank Simone Seeger for her help in preparing the manuscript
and C.-C. Kanne for his help in carrying out the experiments.

References

[1] M. M. Astrahan and D. D. Chamberlin. Implementation of a structured English
query language. Communications of the ACM, 18(10):580–588, 1975.

[2] C. Beeri and Y. Tzaban. SAL: An algebra for semistructured data and XML. In
ACM SIGMOD Workshop on the Web and Databases (WebDB), 1999.

[3] G. Bhargava, P. Goel, and B. Iyer. Hypergraph based reorderings of outer join
queries with complex predicates. In Proc. of the ACM SIGMOD Conf. on Man-
agement of Data, pages 304–315, 1995.

[4] D. Chatziantoniou, M. Akinde, T. Johnson, and S. Kim. The MD-Join: An Oper-
ator for Complex OLAP. In Proc. IEEE Conference on Data Engineering, pages
524–533, 2001.

[5] S. Chaudhuri and K. Shim. Optimizing queries with aggregate views. In Proc. of
the Int. Conf. on Extending Database Technology (EDBT), pages 167–182, 1996.

22

[6] J. Claussen, A. Kemper, and D. Kossmann. Order-preserving hash joins: Sorting
(almost) for free. Technical Report MIP-9810, University of Passau, 1998.

[7] J. Claussen, A. Kemper, G. Moerkotte, and K. Peithner. Optimizing queries
with universal quantification in object-oriented and object-relational databases.
In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 286–295, 1997.

[8] S. Cluet and C. Delobel. A general framework for the optimization of object-
oriented queries. In Proc. of the ACM SIGMOD Conf. on Management of Data,
pages 383–392, 1992.

[9] S. Cluet and G. Moerkotte. Nested queries in object bases. In Proc. Int. Workshop
on Database Programming Languages, 1993.

[10] S. Cluet and G. Moerkotte. Classification and optimization of nested queries in
object bases. Technical Report 95-6, RWTH Aachen, 1995.

[11] U. Dayal. Of nests and trees: A unified approach to processing queries that
contain nested subqueries, aggregates, and quantifiers. In VLDB, pages 197–208,
1987.

[12] Leonidas Fegaras, David Levine, Sujoe Bose, and Vamsi Chaluvadi. Query pro-
cessing of streamed XML data. In Proceedings of the 2002 ACM CIKM Inter-
national Conference on Information and Knowledge Management, McLean, VA,
USA, November 4-9, 2002, pages 126–133. ACM, 2002.

[13] Leonidas Fegaras and David Maier. Optimizing object queries using an effective
calculus. ACM Transactions on Database Systems, 25(4):457–516, 2000.

[14] T. Fiebig, S. Helmer, C.-C. Kanne, G. Moerkotte, J. Neumann, R. Schiele, and
T. Westmann. Anatomy of a Native XML Base Management System. VLDB
Journal, 11(4):292–314, 2002.

[15] T. Fiebig and G. Moerkotte. Algebraic XML construction and its optimization in
Natix. World Wide Web Journal, 4(3):167–187, 2002.

[16] S. Fushimi, M. Kitsuregawa, and H. Tanaka. An overview of the systems software
of a parallel relational database machine: GRACE. In Proc. Int. Conf. on Very
Large Data Bases (VLDB), pages 209–219, 1986.

[17] C. Galindo-Legaria and A. Rosenthal. Outerjoin simplification and reordering
for query optimization. ACM Trans. on Database Systems, 22(1):43–73, Marc
1997.

[18] R. Ganski and H. Wong. Optimization of nested SQL queries revisited. In Proc.
of the ACM SIGMOD Conf. on Management of Data, pages 23–33, 1987.

[19] G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing XPath
queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 95–106,
2002.

23

[20] G. Gottlob, C. Koch, and R. Pichler. Xpath query evaluation: Improving time
and space efficiency. In Proc. IEEE Conference on Data Engineering, page to
appear, 2003.

[21] G. Graefe. Query evaluation techniques for large databases. ACM Computing
Surveys, 25(2), June 1993.

[22] W. Hasan and H. Pirahesh. Query rewrite optimization in starburst. Research
Report RJ6367, IBM, 1988.

[23] S. Helmer, C.-C. Kanne, and G. Moerkotte. Optimized translation of xpath ex-
pressions into algebraic expressions parameterized by programs containing navi-
gational primitives. In Proc. Int. Conf. on Web Information Systems Engineering
(WISE), 2002. 215-224.

[24] H. V. Jagadish, S. Al-Khalifa, A. Chapman, L.V.S. Lakshmanan, A. Nierman,
S. Paparizos, J. Patel, D. Srivastava, N. Wiwatwattana, Y. Wu, and C. Yu. TIM-
BER: A Native XML Database. VLDB Journal, 2003. to appear.

[25] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava, and K. Thompson. TAX:
A tree algebra for XML. In Proc. Int. Workshop on Database Programming
Languages, pages 149–164, 2001.

[26] W. Kiessling. SQL-like and Quel-like correlation queries with aggregates revis-
ited. ERL/UCB Memo 84/75, University of Berkeley, 1984.

[27] W. Kim. On optimizing an SQL-like nested query. ACM Trans. on Database
Systems, 7(3):443–469, Sep 82.

[28] A. Klug. Equivalence of relational algebra and relational calculus query lan-
guages having aggregate functions. Journal of the ACM, 29(3):699–717, 1982.

[29] A. Lerner and D. Shasha. AQuery: query language for ordered data, optimiza-
tion techniques, and experiments. In Proc. Int. Conf. on Very Large Data Bases
(VLDB), pages 345–356, 2003.

[30] M. Muralikrishna. Improved unnesting algorithms for join aggregate SQL
queries. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages 91–102,
1992.

[31] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, L. V. S. Lakshmanan, A. Nierman,
D. Srivastava, and Y. Wu. Grouping in XML. In EDBT Workshops, pages 128–
147, 2002.

[32] S. Paparizos, S. Al-Khalifa, H. V. Jagadish, A. Niermann, and Y. Wu. A physical
algebra for XML. Technical report, University of Michigan, 2002.

[33] H. Pirahesh, J. Hellerstein, and W. Hasan. Extensible/rule-based query rewrite
optimization in Starburst. In Proc. of the ACM SIGMOD Conf. on Management
of Data, pages 39–48, 1992.

24

[34] A. Rosenthal and C. Galindo-Legaria. Query graphs, implementing trees, and
freely-reorderable outerjoins. In Proc. of the ACM SIGMOD Conf. on Manage-
ment of Data, pages 291–299, 1990.

[35] P. Seshadri, H. Pirahesh, and T. Leung. Complex query decorrelation. In Proc.
IEEE Conference on Data Engineering, pages 450–458, 1996.

[36] H. Steenhagen, P. Apers, and H. Blanken. Optimization of nested queries in a
complex object model. In Proc. of the Int. Conf. on Extending Database Tech-
nology (EDBT), pages 337–350, 1994.

[37] H. Steenhagen, P. Apers, H. Blanken, and R. de By. From nested-loop to join
queries in oodb. In Proc. Int. Conf. on Very Large Data Bases (VLDB), pages
618–629, 1994.

[38] H. Steenhagen, R. de By, and H. Blanken. Translating OSQL queries into effi-
cient set expressions. In Proc. of the Int. Conf. on Extending Database Technol-
ogy (EDBT), pages 183–197, 1996.

A Proofs

For the following proofs let lhs denote the left hand side and rhs the right hand side of
an equivalence.

A.1 Proof of Equivalence 1

χg:f(σA1θA2
(e2))(e1) = e1Γg;A1θA2;fe2

if Ai ⊆ A(ei), g 6∈ A1 ∪A2, F(e2) ∩A(e1) = ∅, and A1 ∩A2 = ∅.

Case 1: e1 = ε
From the definition of χ and binary Γ immediately follows: lhs = ε and rhs = ε.

Case 2: e1 6= ε
Let ti be the i-th tuple of e1, ti = α(τ(τ(. . . τ︸ ︷︷ ︸

i−1

(e1) . . .))).

As the χ operator traverses e1 tuple by tuple, the i-th tuple of lhs is equal to

ti ◦ [g : f(σA1θA2(e2))(ti)].

The binary Γ operator also traverses e1 tuplewise, so the i-th tuple of rhs is equal
to

ti ◦ [g : f(σti|A1
θA2

(e2))]

= ti ◦ [g : f(σA1θA2(e2))(ti)]

as A1 ⊆ A(e1).

25

A.2 Proof of Equivalence 2

χg:f(σA1=A2
(e2))(e1) = ΠA2

(e1
� g:f(ε)
A1=A2

(Γg;=A2;f (e2)))

if Ai ⊆ A(ei), F(e2) ∩A(e1) = ∅, A1 ∩A2 = ∅, and g 6∈ A1 ∪A2.

Case 1: e1 = ε
from the definition of χ, Π and

�
immediately follows: lhs = ε and rhs = ε.

Case 2: e1 6= ε
Let ti be the i-th tuple in e1 and

h(e2) = Γg;=A2;f (e2)

= ΠA2:A′2
(ΠD

A′2:A2
(ΠA2(e2))Γg;A′2=A2;fe2).

e2 is projected on A2 with a duplicate elimination, so each value of A2 appears
only once in h(e2). Let t′j be the j-th tuple in ΠD

A′2:A2
(ΠA2(e2)). The j-th tuple

in h(e2) then is

ΠA2:A′2
(t′j ◦ [g : f(σtj |A′

2
=A2

(e2))])

= ΠA2:A′2
(t′j ◦ [g : f(σA′2=A2

(e2))(t′j)]).

Each tuple ti in e1 joins with at most one tuple in h(e2) with join predicate A1 =
A2. If no join partner is found in h(e2), then an empty tuple is concatenated to
ti via the outer join operator. For each tuple ti in e1 we have the corresponding
tuple at the i-th position after the outer join.

Case 2(a): 6 ∃x ∈ e2 : ti.A1 = x.A2

(⇒ ti
�
A1=A2 h(e2) = ε)

For lhs we have

ti ◦ [g : f(σA1=A2(e2))(ti)]

= ti ◦ [g : f(ε)].

For the right hand side (rhs) we get

ΠA2
(ti ◦ ⊥A2 ◦ [g : f(ε)])

= ti ◦ [g : f(ε)].

Case 2(b): ∃x ∈ e2 : ti.A1 = x.A2

(⇒ ti
�
A1=A2 h(e2) 6= ε)

For the left hand side (lhs) we have

ti ◦ [g : f(σA1=A2(e2))(ti)].

26

We now turn to rhs. Let t′′k be the tuple from h(e2) for which t′′k.A2 = ti.A1

(all other tuples in h(e2) are irrelevant for the join). Therefore rhs is equal
to

ΠA2
(ti

�
A1=A2 h(e2))

= ΠA2
(ti ◦ t′′k)

= ΠA2
(ti ◦ ΠA2:A′2

(t′k ◦ [g : f(σA′2=A2
(e2))(t′k)])).

As ti.A1 = t′′k.A2 = t′k.A
′
2 and we project away A′2 (after renaming it to

A2), we get

ti ◦ [g : f(σA1=A2(e2))(ti)].

A.3 Proof of Equivalence 3

χg:f(σA1θA2
(e2))(e1) = ΠA1:A2(Γg;θA2;f (e2))

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅, A1 ∩ A2 = ∅, g 6∈ A(e1) ∪ A(e2), and e1 =
ΠD
A1:A2

(ΠA2(e2)) (this implies that A1 = A(e1))

Case 1: e2 = ε (⇒ e1 = ε)
From the definition of χ and unary Γ immediately follows: lhs = ε and rhs = ε.

Case 2: e2 6= ε (⇒ e1 6= ε)
The ΠD in ΠD

A1:A2
(ΠA2(e2)) does not necessarily preserve the original order in

e2, but we assume that it is a deterministic operator, i.e., for the same input we
always get the same output order. Let ti be the i-th tuple in ΠD

A1:A2
(ΠA2(e2)).

So, the i-th tuple in lhs is

ti ◦ [g : f(σA1θA2(e2))(ti)].

Replacing the unary Γ in rhs with the binary Γ, we get

ΠA1:A2(ΠA2:A′2
(ΠD

A′2:A2
(ΠA2(e2))Γg;A′2θA2;fe2))

= ΠA1:A′2
(ΠD

A′2:A2
(ΠA2(e2))Γg;A′2θA2;fe2)

= e1Γg;A1θA2;fe2.

The i-th tuple in rhs is

ti ◦ [g : f(σti|A1
θA2

(e2))]

= ti ◦ [g : f(σA1θA2(e2))(ti)].

A.4 Proof of Equivalence 4

Lemma: Let A = A(a), where a is a nested attribute of e, A′ = A(e) \ A, and c be
an arbitrary value in the domain of a. Then

27

ΠA′(σc∈a(e)) = ΠA′(σc=A(µDa (e)))

µDg (e) is an unnest operator that eliminates duplicates in the nested attribute g
of e, i.e., µDg (e) = Πg′(µg′(χg′:ΠD(g)(e))) Alternatively, µDg (e) = (α(e)|{g} ×
ΠD(α(e).g)) ⊕ µDg (τ(e)) for e 6= ε, µDg (e) = ε else.

Proof (by Induction): over the length of the sequence e

Base Case: e = ε:
lhs = rhs = ε

Inductive Hypothesis:
ΠA′(σc∈a(e)) = ΠA′(σc=A(µDa (e)))

Inductive Step: e→ e⊕ t

ΠA′(σc∈a(e⊕ t)) =

ΠA′(σc=A(µDa (e⊕ t)))
⇔ ΠA′(σc∈a(e)⊕ σc∈a(t)) =

ΠA′(σc=A(µDa (e)⊕ µDa (t)))

µDa (e⊕ t) = µDa (e) ⊕ µDa (t), as only the order within the nested attribute
of a tuple is given up. The unnest operator still preserves the order of the
tuples in e.

⇔ ΠA′(σc∈a(e)) ⊕ΠA′(σc∈a(t)) =

ΠA′(σc=A(µDa (e))) ⊕ΠA′(σc=A(µDa (t)))

As we know that ΠA′(σc∈a(e)) = ΠA′(σc=A(µDa (e))) we have to show
that ΠA′(σc∈a(t)) = ΠA′(σc=A(µDa (t)))

Case 1: t.a does not contain value c
lhs = rhs = ε

Case 2: t.a contains value c
Then we have lhs = t|A′ . As µDa filters out duplicates in a, we get
exactly one tuple with t.A = c, so rhs = t|A′ .

Equivalence 4:

χg:f(σA1∈a2
(e2))(e1) =

ΠA2
(e1

� g=f(ε)
A1=A2

Γg;=A2;f (µDa2
(e2)))

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅, A1 ∩ A2 = ∅, g 6∈ A(e1) ∪ A(e2), a2 ∈ A(e2),
and A2 = A(a2). Also, we assume that f does not access the nested attributes of a2,
i.e. ∀s : f(s) = f(Πa2(s)) = f(ΠA2

(s)).

Case 1: e1 = ε
from the definition of χ, Π and

�
immediately follows: lhs = ε and rhs = ε.

28

Case 2: e1 6= ε
Let ti be the i-th tuple in e1 and

h(e2) = Γg;=A2;f (µDa2
(e2))

= ΠA2:A′2
(ΠD

A′2:A2
(ΠA2(µDa2

(e2)))

Γg;A′2=A2;fµ
D
a2

(e2)).

e2 is projected on A2 with a duplicate elimination, so each value of A2 appears
only once in h(e2). Let t′j be the j-th tuple in ΠD

A′2:A2
(ΠA2(µDa2

(e2))). The j-th
tuple in h(e2) then is

ΠA2:A′2
(t′j ◦ [g : f(σtj |A′

2
=A2

(µDa2
(e2)))])

= ΠA2:A′2
(t′j ◦ [g : f(σA′2=A2

(µDa2
(e2)))(t′j)]).

Each tuple ti in e1 joins with at most one tuple in h(e2) with join predicate A1 =
A2. If no join partner is found in h(e2), then an empty tuple is concatenated to
ti via the outer join operator. For each tuple ti in e1 we have the corresponding
tuple at the i-th position after the outer join.

Case 2(a): 6 ∃x ∈ e2 : ti.A1 ∈ x.a2

(⇒ ti
�
A1=A2 h(e2) = ε)

For lhs we have

ti ◦ [g : f(σA1=a2(e2))(ti)]

= ti ◦ [g : f(ε)].

For the right hand side we get

ΠA2
(ti ◦ ⊥A2 ◦ [g : f(ε)])

= ti ◦ [g : f(ε)].

Case 2(b): ∃x ∈ e2 : ti.A1 ∈ x.a2

(⇒ ti
�
A1=A2 h(e2) 6= ε)

For the left hand side lhs we have

ti ◦ [g : f(σA1∈a2(e2))(ti)].

We now turn to rhs. Let t′′k be the tuple from h(e2) for which t′′k.A2 = ti.A1

(all other tuples in h(e2) are irrelevant for the join). Therefore rhs is equal
to

ΠA2
(ti

�
A1=A2 h(e2))

= ΠA2
(ti ◦ t′′k)

= ΠA2
(ti ◦ ΠA2:A′2

(t′k ◦
[g : f(σt′

k
|A′

2
=A2

(µDa2
(e2)))]))

= ΠA2
(ti ◦ ΠA2:A′2

(t′k ◦
[g : f(σA′2=A2

(µDa2
(e2)))(t′k)])).

29

As ti.A1 = t′′k.A2 = t′k.A
′
2 and we project away A′2 (after renaming it to

A2), we get

ti ◦ [g : f(σA1=A2(µDa2
(e2)))(ti)]

= lhs (see Lemma above).

A.5 Proof of Equivalence 5

χg:f(σa1∈a2(e2))(e1) = ΠA1:A2(Γg;=A2;f (µDa2
(e2)))

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅, A1 ∩ A2 = ∅, g 6∈ A(e1) ∪ A(e2), a2 ∈ A(e2),
A2 = A(a2), and e1 = ΠD

A1:A2
(ΠA2(µa2(e2))). Also, we assume that f does not

access the nested attributes of a2, i.e. ∀s : f(s) = f(Πa2(s)) = f(ΠA2
(s)).

Case 1: e2 = ε(⇒ e1 = ε)
from the definition of χ and Γ immediately follows: lhs = ε and rhs = ε.

Case 2: e2 6= ε(⇒ e1 6= ε)
Assuming that ΠD is deterministic, let ti be the i-th tuple in e1 = ΠD

A1:A2
(ΠA2(µa2(e2))).

So, the i-th tuple in lhs is

ti ◦ [g : f(σa1∈a2(e2))(ti)].

Replacing the unary Γ in rhs with the binary Γ, we get

ΠA1:A2(ΠA2:A′2
(

ΠD
A′2:A2

(ΠA2(µDa2
(e2)))Γg;A′2=A2;fµ

D
a2

(e2)))

= ΠA1:A′2
(

ΠD
A′2:A2

(ΠA2(µDa2
(e2)))Γg;A′2=A2;fµ

D
a2

(e2))

= e1Γg;A1=A2;fµ
D
a2

(e2).

The i-th tuple in rhs is equal to

ti ◦ [g : f(σti|A1
=A2

(µDa2
(e2)))])

= ti ◦ [g : f(σA1=A2(µDa2
(e2)))(ti)])

= lhs (see Lemma in Section A.4).

A.6 Proof of Equivalence 6

σ∃x∈(Πx′(σA1=A2
(e2)))p(e1) = e1

�
A1=A2∧p′ e2

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅, x′ ∈ A(e2), and p′ results from p by replacing x
by x′.
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ε:
lhs = rhs = ε

30

Inductive Hypothesis:
σ∃x∈(Πx′ (σA1=A2

(e2)))p(e1) = e1
�
A1=A2∧p′ e2

Inductive Step: e1 → e1 ⊕ t

σ∃x∈(Πx′(σA1=A2
(e2)))p(e1 ⊕ t) =

(e1 ⊕ t)
�
A1=A2∧p′ e2

⇔ σ∃x∈(Πx′(σA1=A2
(e2)))p(e1)⊕ σ∃x∈(Πx′(σA1=A2

(e2)))p(t) =

e1
�
A1=A2∧p′ e2 ⊕ t

�
A1=A2∧p′ e2

As we know that σ∃x∈(Πx′ (σA1=A2
(e2)))p(e1) = e1

�
A1=A2∧p′ e2, we have to

prove that σ∃x∈(Πx′ (σA1=A2
(e2)))p(t) = t

�
A1=A2∧p′ e2.

Case 1: ∃x ∈ e2 : (A1 = A2 ∧ p′)(t ◦ x)
First of all we show that ∃x ∈ e2 : (A1 = A2 ∧ p′)(t ◦ x) ⇔ ∃x ∈
(σA1=A2(e2))(t) : p′.

“⇒”:
Let y be a tuple from e2 for which (A1 = A2 ∧ p′)(t ◦ y) holds.
⇒ y ∈ (σA1=A2(e2))(t), because t ◦ y satisfies A1 = A2.
⇒ ∃x ∈ (σA1=A2(e2))(t) : p′, as y also satisfies p′.

“⇐”:
Let y be a tuple from (σA1=A2(e2))(t) for which p′ holds.
⇒ y ∈ e2

⇒ ∃x ∈ e2 : (A1 = A2 ∧ p′)(t ◦ x), because y satisfies t.A1 = y.A2

and ΠA1:A2(y) satisfies p′.

For lhs this means that σ∃x∈(Πx′(σA1=A2
(e2)))p(t) = t.

For rhs we get t
�
A1=A2∧p′ e2 = t = lhs.

Case 2: 6 ∃x ∈ e2 : (A1 = A2 ∧ p′)(t ◦ x) (which is equivalent to 6 ∃x ∈
(σA1=A2(e2))(t) : p′, as already shown above)
So for lhs we get σ∃x∈(Πx′ (σA1=A2

(e2)))p(t) = ε.
For rhs t

�
A1=A2∧p′ e2 = ε = lhs.

A.7 Proof of Equivalence 7

σ∀x∈(Πx′ (σA1=A2
(e2)))p(e1) = e1 .A1=A2∧¬p′ e2

if Ai ⊆ A(ei), F(e2) ∩ A(e1) = ∅, x′ ∈ A(e2), and p′ results from p by replacing x
by x′.
Proof by Induction: over the length of the sequence e1

Base Case: e1 = ε:
lhs = rhs = ε

Inductive Hypothesis:
σ∀x∈(Πx′ (σA1=A2

(e2)))p(e1) = e1 .A1=A2∧¬p′ e2

31

Inductive Step: e1 → e1 ⊕ t
σ∀x∈(Πx′(σA1=A2

(e2)))p(e1 ⊕ t) =

(e1 ⊕ t) .A1=A2∧¬p′ e2

⇔ σ∀x∈(Πx′(σA1=A2
(e2)))p(e1)⊕ σ∀x∈(Πx′(σA1=A2

(e2)))p(t) =

e1 .A1=A2∧¬p′ e2 ⊕ t .A1=A2∧¬p′ e2

As we know that σ∀x∈(Πx′(σA1=A2
(e2)))p(e1) = e1 .A1=A2∧¬p′ e2, we have to

prove that σ∀x∈(Πx′ (σA1=A2
(e2)))p(t) = t .A1=A2∧¬p′ e2.

Case 1: 6 ∃x ∈ e2 : (A1 = A2 ∧ ¬p′)(t ◦ x)
First of all we show that 6 ∃x ∈ e2 : (A1 = A2 ∧ ¬p′)(t ◦ x) ⇔ ∀x ∈
(σA1=A2(e2))(t) : p′.

Case 1(a): e2 = ε
lhs = rhs = true

Case 1(b): e2 6= ε

“⇒”:
Let y be an arbitrary tuple from Z = {z|z ∈ e2 ∧ z.A2 6= t.A1}.
⇒ y 6∈ (σA1=A2(e2))(t)
⇒ Such a tuple y cannot be the cause for ∀x ∈ (σA1=A2(e2))(t) :
p′ = false.

So, let y′ be an arbitrary tuple from Z ′ = e2 \Z (i.e. Z ′ = {z|z ∈
e2 ∧ z.A2 = t.A1}).
⇒ y′ satisfies p′, because there is no tuple in e2 for which (A1 =
A2) and ¬p′ holds.
⇒ No tuple y′ can be the cause for ∀x ∈ (σA1=A2(e2))(t) : p′ =
false.

As Z ∪ Z ′ = e2, there can be no tuple in e2 which causes ∀x ∈
(σA1=A2(e2))(t) : p′ to be false.
⇒ ∀x ∈ (σA1=A2(e2))(t) : p′ holds.

“⇐”:
Let us assume that ∃x ∈ e2 : (A1 = A2 ∧ ¬p′)(t ◦ x).
⇒ x ∈ (σA1=A2(e2))(t)
As x satisfies ¬p′, it cannot satisfy p′.
⇒ 6 ∀x ∈ (σA1=A2(e2))(t) : p′, which contradicts our prerequi-
site.
Therefore, 6 ∃x ∈ e2 : (A1 = A2 ∧ ¬p′)(t ◦ x).

For lhs this means that σ∀x∈(Πx′(σA1=A2
(e2)))p(t) = t.

For rhs we get t .A1=A2∧¬p′ e2 = t = lhs.

Case 2: ∃x ∈ e2 : (A1 = A2 ∧ ¬p′)(t ◦ x) (which is equivalent to 6 ∀x ∈
(σA1=A2(e2))(t) : p′. as already shown above)
So for lhs we get σ∀x∈(Πx′ (σA1=A2

(e2)))p(t) = ε.
For rhs t .A1=A2∧¬p′ e2 = ε = lhs.

32

A.8 Proofs of Equivalences 8 and 9

Equivalence 8:

ΠD(e1)
�
A1=A2 (σp(e2)) = σc>0(E)

withE = ΠA1:A2(Γc;=A2;count◦σp(e2)). The equivalence holds ifAi ⊆ A(ei),F(e2)∩
A(e1) = ∅, and ΠD(e1) = ΠD

A1:A2
(ΠA2(e2)).

Case 1: e2 = ε (⇒ e1 = ε)
lhs = rhs = ε

Case 2: e2 6= ε (⇒ e1 6= ε)
Let ti be the i-th tuple in ΠD

A1:A2
(ΠA2(e2)) (again, we assume that ΠD is not

order-preserving, but deterministic and idempotent). The order of the result
of lhs is determined by the order of the tuples in ΠD

A1:A2
(ΠA2(e2)) (it is the

concatenation of the results of processing t1 to tn). The result of processing the
i-th tuple on lhs is

ti
�
A1=A2 (σp(e2)).

According to the definition of the semi-join operator:

= ti if ∃x ∈ σp(e2)(A1 = A2)(ti ◦ x)

= ε if 6 ∃x ∈ σp(e2)(A1 = A2)(ti ◦ x)

Replacing the unary Γ with the binary one on rhs, we get

σc>0(ΠA1:A2(Γc;=A2;count◦σp(e2)))

= σc>0(ΠA1:A2(ΠA2:A′2
(ΠD

A′2:A2
(ΠA2(e2))

Γc;A′2=A2;count◦σpe2)))

= σc>0(ΠD
A1:A2

(ΠA2(e2))

Γc;A1=A2;count◦σpe2).

The order of the result of rhs is determined as in lhs, so the result of processing
tuple ti on rhs is

= σc>0(ti ◦
[c : count(σp(σti|A1

=A2
(e2)))])

= σc>0(ti ◦
[c : count(σA1=A2(σp(e2)))(ti)]).

According to the definition of σ this is

= ti if count(σA1=A2(σp(e2)))(ti) > 0

= ε if count(σA1=A2(σp(e2)))(ti) = 0.

We have to show that

∃x ∈ σp(e2) (A1 = A2)(ti ◦ x)

⇔ count(σA1=A2(σp(e2)))(ti) > 0.

33

“⇒”:

∃x ∈ σp(e2) (A1 = A2)(ti ◦ x)

⇒ x ∈ e2

We know that x satisfies the predicate p, so

x ∈ σp(e2).

Was also know that ti.A1 = x.A2, so

x ∈ σA1=A2(σp(e2))(ti).

and therefore the count is larger than 0.

“⇐”:

count(σA1=A2(σp(e2)))(ti) > 0

⇒ ∃x ∈ σA1=A2(σp(e2))(ti)

⇒ ∃x ∈ σp(e2) (A1 = A2)(ti ◦ x)

Equivalence 9:

ΠD(e1) .A1=A2 (σp(e2)) = σc=0(E)

withE = ΠA1:A2(Γc;=A2;count◦σp(e2)). The equivalence holds ifAi ⊆ A(ei),F(e2)∩
A(e1) = ∅, and ΠD(e1) = ΠD

A1:A2
(ΠA2(e2)).

Case 1: e2 = ε (⇒ e1 = ε)
lhs = rhs = ε

Case 2: e2 6= ε (⇒ e1 6= ε)
Let ti be the i-th tuple in ΠD

A1:A2
(ΠA2(e2)) (with a non-order-preserving, deter-

ministic, idempotent ΠD). The order of the result of lhs is determined by the
order of the tuples in ΠD

A1:A2
(ΠA2(e2)). Processing the i-th tuple on lhs results

in

ti .A1=A2 (σp(e2)).

According to the definition of the semi-join operator:

= ti if 6 ∃x ∈ σp(e2)(A1 = A2)(ti ◦ x)

= ε if ∃x ∈ σp(e2)(A1 = A2)(ti ◦ x)

Replacing the unary Γ with the binary one on rhs, we get

σc=0(ΠA1:A2(Γc;=A2;count◦σpe2))

= σc=0(ΠA1:A2(ΠA2:A′2
(ΠD

A′2:A2
(ΠA2(e2)))

Γc;A′2=A2;count◦σp(e2)))

= σc=0(ΠD
A1:A2

(ΠA2(e2))

Γc;A1=A2;count◦σp(e2)).

34

The order of the result of rhs is determined as in lhs, so the result of processing
tuple ti on rhs is

= σc=0(ti ◦
[c : count(σp(σti|A1

=A2
(e2)))])

= σc=0(ti ◦
[c : count(σA1=A2(σp(e2)))(ti)]).

According to the definition of σ this is

= ti if count(σA1=A2(σp(e2)))(ti) = 0

= ε if count(σA1=A2(σp(e2)))(ti) > 0.

We have to show that

6 ∃x ∈ σp(e2) (A1 = A2)(ti ◦ x)

⇔ count(σA1=A2(σp(e2)))(ti) = 0.

which has already been done for the previous equivalence.

35

